1 //===- SymbolTable.cpp ----------------------------------------------------===// 2 // 3 // The LLVM Linker 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Symbol table is a bag of all known symbols. We put all symbols of 11 // all input files to the symbol table. The symbol table is basically 12 // a hash table with the logic to resolve symbol name conflicts using 13 // the symbol types. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "SymbolTable.h" 18 #include "Config.h" 19 #include "LinkerScript.h" 20 #include "Symbols.h" 21 #include "SyntheticSections.h" 22 #include "lld/Common/ErrorHandler.h" 23 #include "lld/Common/Memory.h" 24 #include "lld/Common/Strings.h" 25 #include "llvm/ADT/STLExtras.h" 26 27 using namespace llvm; 28 using namespace llvm::object; 29 using namespace llvm::ELF; 30 31 using namespace lld; 32 using namespace lld::elf; 33 34 SymbolTable *elf::Symtab; 35 36 static InputFile *getFirstElf() { 37 if (!ObjectFiles.empty()) 38 return ObjectFiles[0]; 39 if (!SharedFiles.empty()) 40 return SharedFiles[0]; 41 return nullptr; 42 } 43 44 // All input object files must be for the same architecture 45 // (e.g. it does not make sense to link x86 object files with 46 // MIPS object files.) This function checks for that error. 47 static bool isCompatible(InputFile *F) { 48 if (!F->isElf() && !isa<BitcodeFile>(F)) 49 return true; 50 51 if (F->EKind == Config->EKind && F->EMachine == Config->EMachine) { 52 if (Config->EMachine != EM_MIPS) 53 return true; 54 if (isMipsN32Abi(F) == Config->MipsN32Abi) 55 return true; 56 } 57 58 if (!Config->Emulation.empty()) 59 error(toString(F) + " is incompatible with " + Config->Emulation); 60 else 61 error(toString(F) + " is incompatible with " + toString(getFirstElf())); 62 return false; 63 } 64 65 // Add symbols in File to the symbol table. 66 template <class ELFT> void SymbolTable::addFile(InputFile *File) { 67 if (!isCompatible(File)) 68 return; 69 70 // Binary file 71 if (auto *F = dyn_cast<BinaryFile>(File)) { 72 BinaryFiles.push_back(F); 73 F->parse(); 74 return; 75 } 76 77 // .a file 78 if (auto *F = dyn_cast<ArchiveFile>(File)) { 79 F->parse<ELFT>(); 80 return; 81 } 82 83 // Lazy object file 84 if (auto *F = dyn_cast<LazyObjFile>(File)) { 85 F->parse<ELFT>(); 86 return; 87 } 88 89 if (Config->Trace) 90 message(toString(File)); 91 92 // .so file 93 if (auto *F = dyn_cast<SharedFile<ELFT>>(File)) { 94 // DSOs are uniquified not by filename but by soname. 95 F->parseSoName(); 96 if (errorCount() || !SoNames.insert(F->SoName).second) 97 return; 98 SharedFiles.push_back(F); 99 F->parseRest(); 100 return; 101 } 102 103 // LLVM bitcode file 104 if (auto *F = dyn_cast<BitcodeFile>(File)) { 105 BitcodeFiles.push_back(F); 106 F->parse<ELFT>(ComdatGroups); 107 return; 108 } 109 110 // Regular object file 111 ObjectFiles.push_back(File); 112 cast<ObjFile<ELFT>>(File)->parse(ComdatGroups); 113 } 114 115 // This function is where all the optimizations of link-time 116 // optimization happens. When LTO is in use, some input files are 117 // not in native object file format but in the LLVM bitcode format. 118 // This function compiles bitcode files into a few big native files 119 // using LLVM functions and replaces bitcode symbols with the results. 120 // Because all bitcode files that the program consists of are passed 121 // to the compiler at once, it can do whole-program optimization. 122 template <class ELFT> void SymbolTable::addCombinedLTOObject() { 123 if (BitcodeFiles.empty()) 124 return; 125 126 // Compile bitcode files and replace bitcode symbols. 127 LTO.reset(new BitcodeCompiler); 128 for (BitcodeFile *F : BitcodeFiles) 129 LTO->add(*F); 130 131 for (InputFile *File : LTO->compile()) { 132 DenseSet<CachedHashStringRef> DummyGroups; 133 auto *Obj = cast<ObjFile<ELFT>>(File); 134 Obj->parse(DummyGroups); 135 for (Symbol *Sym : Obj->getGlobalSymbols()) 136 Sym->parseSymbolVersion(); 137 ObjectFiles.push_back(File); 138 } 139 } 140 141 Defined *SymbolTable::addAbsolute(StringRef Name, uint8_t Visibility, 142 uint8_t Binding) { 143 Symbol *Sym = 144 addRegular(Name, Visibility, STT_NOTYPE, 0, 0, Binding, nullptr, nullptr); 145 return cast<Defined>(Sym); 146 } 147 148 // Set a flag for --trace-symbol so that we can print out a log message 149 // if a new symbol with the same name is inserted into the symbol table. 150 void SymbolTable::trace(StringRef Name) { 151 SymMap.insert({CachedHashStringRef(Name), -1}); 152 } 153 154 // Rename SYM as __wrap_SYM. The original symbol is preserved as __real_SYM. 155 // Used to implement --wrap. 156 template <class ELFT> void SymbolTable::addSymbolWrap(StringRef Name) { 157 Symbol *Sym = find(Name); 158 if (!Sym) 159 return; 160 Symbol *Real = addUndefined<ELFT>(Saver.save("__real_" + Name)); 161 Symbol *Wrap = addUndefined<ELFT>(Saver.save("__wrap_" + Name)); 162 WrappedSymbols.push_back({Sym, Real, Wrap}); 163 164 // We want to tell LTO not to inline symbols to be overwritten 165 // because LTO doesn't know the final symbol contents after renaming. 166 Real->CanInline = false; 167 Sym->CanInline = false; 168 169 // Tell LTO not to eliminate these symbols. 170 Sym->IsUsedInRegularObj = true; 171 Wrap->IsUsedInRegularObj = true; 172 } 173 174 // Apply symbol renames created by -wrap. The renames are created 175 // before LTO in addSymbolWrap() to have a chance to inform LTO (if 176 // LTO is running) not to include these symbols in IPO. Now that the 177 // symbols are finalized, we can perform the replacement. 178 void SymbolTable::applySymbolWrap() { 179 // This function rotates 3 symbols: 180 // 181 // __real_sym becomes sym 182 // sym becomes __wrap_sym 183 // __wrap_sym becomes __real_sym 184 // 185 // The last part is special in that we don't want to change what references to 186 // __wrap_sym point to, we just want have __real_sym in the symbol table. 187 188 for (WrappedSymbol &W : WrappedSymbols) { 189 // First, make a copy of __real_sym. 190 Symbol *Real = nullptr; 191 if (W.Real->isDefined()) { 192 Real = reinterpret_cast<Symbol *>(make<SymbolUnion>()); 193 memcpy(Real, W.Real, sizeof(SymbolUnion)); 194 } 195 196 // Replace __real_sym with sym and sym with __wrap_sym. 197 memcpy(W.Real, W.Sym, sizeof(SymbolUnion)); 198 memcpy(W.Sym, W.Wrap, sizeof(SymbolUnion)); 199 200 // We now have two copies of __wrap_sym. Drop one. 201 W.Wrap->IsUsedInRegularObj = false; 202 203 if (Real) 204 SymVector.push_back(Real); 205 } 206 } 207 208 static uint8_t getMinVisibility(uint8_t VA, uint8_t VB) { 209 if (VA == STV_DEFAULT) 210 return VB; 211 if (VB == STV_DEFAULT) 212 return VA; 213 return std::min(VA, VB); 214 } 215 216 // Find an existing symbol or create and insert a new one. 217 std::pair<Symbol *, bool> SymbolTable::insert(StringRef Name) { 218 // <name>@@<version> means the symbol is the default version. In that 219 // case <name>@@<version> will be used to resolve references to <name>. 220 // 221 // Since this is a hot path, the following string search code is 222 // optimized for speed. StringRef::find(char) is much faster than 223 // StringRef::find(StringRef). 224 size_t Pos = Name.find('@'); 225 if (Pos != StringRef::npos && Pos + 1 < Name.size() && Name[Pos + 1] == '@') 226 Name = Name.take_front(Pos); 227 228 auto P = SymMap.insert({CachedHashStringRef(Name), (int)SymVector.size()}); 229 int &SymIndex = P.first->second; 230 bool IsNew = P.second; 231 bool Traced = false; 232 233 if (SymIndex == -1) { 234 SymIndex = SymVector.size(); 235 IsNew = Traced = true; 236 } 237 238 Symbol *Sym; 239 if (IsNew) { 240 Sym = reinterpret_cast<Symbol *>(make<SymbolUnion>()); 241 Sym->Visibility = STV_DEFAULT; 242 Sym->IsUsedInRegularObj = false; 243 Sym->ExportDynamic = false; 244 Sym->CanInline = true; 245 Sym->Traced = Traced; 246 Sym->VersionId = Config->DefaultSymbolVersion; 247 SymVector.push_back(Sym); 248 } else { 249 Sym = SymVector[SymIndex]; 250 } 251 return {Sym, IsNew}; 252 } 253 254 // Find an existing symbol or create and insert a new one, then apply the given 255 // attributes. 256 std::pair<Symbol *, bool> SymbolTable::insert(StringRef Name, uint8_t Type, 257 uint8_t Visibility, 258 bool CanOmitFromDynSym, 259 InputFile *File) { 260 Symbol *S; 261 bool WasInserted; 262 std::tie(S, WasInserted) = insert(Name); 263 264 // Merge in the new symbol's visibility. 265 S->Visibility = getMinVisibility(S->Visibility, Visibility); 266 267 if (!CanOmitFromDynSym && (Config->Shared || Config->ExportDynamic)) 268 S->ExportDynamic = true; 269 270 if (!File || File->kind() == InputFile::ObjKind) 271 S->IsUsedInRegularObj = true; 272 273 if (!WasInserted && S->Type != Symbol::UnknownType && 274 ((Type == STT_TLS) != S->isTls())) { 275 error("TLS attribute mismatch: " + toString(*S) + "\n>>> defined in " + 276 toString(S->File) + "\n>>> defined in " + toString(File)); 277 } 278 279 return {S, WasInserted}; 280 } 281 282 template <class ELFT> Symbol *SymbolTable::addUndefined(StringRef Name) { 283 return addUndefined<ELFT>(Name, STB_GLOBAL, STV_DEFAULT, 284 /*Type*/ 0, 285 /*CanOmitFromDynSym*/ false, /*File*/ nullptr); 286 } 287 288 static uint8_t getVisibility(uint8_t StOther) { return StOther & 3; } 289 290 // Do extra check for --warn-backrefs. 291 // 292 // --warn-backrefs is an option to prevent an undefined reference from 293 // fetching an archive member written earlier in the command line. It can be 294 // used to keep your program compatible with GNU linkers after you switch to 295 // lld. I'll explain the feature and why you may find it useful in this 296 // comment. 297 // 298 // lld's symbol resolution semantics is more relaxed than traditional Unix 299 // linkers. For example, 300 // 301 // ld.lld foo.a bar.o 302 // 303 // succeeds even if bar.o contains an undefined symbol that have to be 304 // resolved by some object file in foo.a. Traditional Unix linkers don't 305 // allow this kind of backward reference, as they visit each file only once 306 // from left to right in the command line while resolving all undefined 307 // symbols at the moment of visiting. 308 // 309 // In the above case, since there's no undefined symbol when a linker visits 310 // foo.a, no files are pulled out from foo.a, and because the linker forgets 311 // about foo.a after visiting, it can't resolve undefined symbols in bar.o 312 // that could have been resolved otherwise. 313 // 314 // That lld accepts more relaxed form means that (besides it'd make more 315 // sense) you can accidentally write a command line or a build file that 316 // works only with lld, even if you have a plan to distribute it to wider 317 // users who may be using GNU linkers. With --warn-backrefs, you can detect 318 // a library order that doesn't work with other Unix linkers. 319 // 320 // The option is also useful to detect cyclic dependencies between static 321 // archives. Again, lld accepts 322 // 323 // ld.lld foo.a bar.a 324 // 325 // even if foo.a and bar.a depend on each other. With --warn-backrefs, it is 326 // handled as an error. 327 // 328 // Here is how the option works. We assign a group ID to each file. A file 329 // with a smaller group ID can pull out object files from an archive file 330 // with an equal or greater group ID. Otherwise, it is a reverse dependency 331 // and an error. 332 // 333 // A file outside --{start,end}-group gets a fresh ID when instantiated. All 334 // files within the same --{start,end}-group get the same group ID. E.g. 335 // 336 // ld.lld A B --start-group C D --end-group E 337 // 338 // A forms group 0. B form group 1. C and D (including their member object 339 // files) form group 2. E forms group 3. I think that you can see how this 340 // group assignment rule simulates the traditional linker's semantics. 341 static void checkBackrefs(StringRef Name, InputFile *Old, InputFile *New) { 342 if (Config->WarnBackrefs && Old && New->GroupId < Old->GroupId) 343 warn("backward reference detected: " + Name + " in " + toString(Old) + 344 " refers to " + toString(New)); 345 } 346 347 template <class ELFT> 348 Symbol *SymbolTable::addUndefined(StringRef Name, uint8_t Binding, 349 uint8_t StOther, uint8_t Type, 350 bool CanOmitFromDynSym, InputFile *File) { 351 Symbol *S; 352 bool WasInserted; 353 uint8_t Visibility = getVisibility(StOther); 354 std::tie(S, WasInserted) = 355 insert(Name, Type, Visibility, CanOmitFromDynSym, File); 356 357 // An undefined symbol with non default visibility must be satisfied 358 // in the same DSO. 359 if (WasInserted || (isa<SharedSymbol>(S) && Visibility != STV_DEFAULT)) { 360 replaceSymbol<Undefined>(S, File, Name, Binding, StOther, Type); 361 return S; 362 } 363 364 if (S->isShared() || S->isLazy() || (S->isUndefined() && Binding != STB_WEAK)) 365 S->Binding = Binding; 366 367 if (!Config->GcSections && Binding != STB_WEAK) 368 if (auto *SS = dyn_cast<SharedSymbol>(S)) 369 SS->getFile<ELFT>().IsNeeded = true; 370 371 if (S->isLazy()) { 372 // An undefined weak will not fetch archive members. See comment on Lazy in 373 // Symbols.h for the details. 374 if (Binding == STB_WEAK) { 375 S->Type = Type; 376 return S; 377 } 378 379 checkBackrefs(Name, File, S->File); 380 fetchLazy<ELFT>(S); 381 } 382 return S; 383 } 384 385 // Using .symver foo,foo@@VER unfortunately creates two symbols: foo and 386 // foo@@VER. We want to effectively ignore foo, so give precedence to 387 // foo@@VER. 388 // FIXME: If users can transition to using 389 // .symver foo,foo@@@VER 390 // we can delete this hack. 391 static int compareVersion(Symbol *S, StringRef Name) { 392 bool A = Name.contains("@@"); 393 bool B = S->getName().contains("@@"); 394 if (A && !B) 395 return 1; 396 if (!A && B) 397 return -1; 398 return 0; 399 } 400 401 // We have a new defined symbol with the specified binding. Return 1 if the new 402 // symbol should win, -1 if the new symbol should lose, or 0 if both symbols are 403 // strong defined symbols. 404 static int compareDefined(Symbol *S, bool WasInserted, uint8_t Binding, 405 StringRef Name) { 406 if (WasInserted) 407 return 1; 408 if (!S->isDefined()) 409 return 1; 410 if (int R = compareVersion(S, Name)) 411 return R; 412 if (Binding == STB_WEAK) 413 return -1; 414 if (S->isWeak()) 415 return 1; 416 return 0; 417 } 418 419 // We have a new non-common defined symbol with the specified binding. Return 1 420 // if the new symbol should win, -1 if the new symbol should lose, or 0 if there 421 // is a conflict. If the new symbol wins, also update the binding. 422 static int compareDefinedNonCommon(Symbol *S, bool WasInserted, uint8_t Binding, 423 bool IsAbsolute, uint64_t Value, 424 StringRef Name) { 425 if (int Cmp = compareDefined(S, WasInserted, Binding, Name)) 426 return Cmp; 427 if (auto *R = dyn_cast<Defined>(S)) { 428 if (R->Section && isa<BssSection>(R->Section)) { 429 // Non-common symbols take precedence over common symbols. 430 if (Config->WarnCommon) 431 warn("common " + S->getName() + " is overridden"); 432 return 1; 433 } 434 if (R->Section == nullptr && Binding == STB_GLOBAL && IsAbsolute && 435 R->Value == Value) 436 return -1; 437 } 438 return 0; 439 } 440 441 Symbol *SymbolTable::addCommon(StringRef N, uint64_t Size, uint32_t Alignment, 442 uint8_t Binding, uint8_t StOther, uint8_t Type, 443 InputFile &File) { 444 Symbol *S; 445 bool WasInserted; 446 std::tie(S, WasInserted) = insert(N, Type, getVisibility(StOther), 447 /*CanOmitFromDynSym*/ false, &File); 448 449 int Cmp = compareDefined(S, WasInserted, Binding, N); 450 if (Cmp < 0) 451 return S; 452 453 if (Cmp > 0) { 454 auto *Bss = make<BssSection>("COMMON", Size, Alignment); 455 Bss->File = &File; 456 Bss->Live = !Config->GcSections; 457 InputSections.push_back(Bss); 458 459 replaceSymbol<Defined>(S, &File, N, Binding, StOther, Type, 0, Size, Bss); 460 return S; 461 } 462 463 auto *D = cast<Defined>(S); 464 auto *Bss = dyn_cast_or_null<BssSection>(D->Section); 465 if (!Bss) { 466 // Non-common symbols take precedence over common symbols. 467 if (Config->WarnCommon) 468 warn("common " + S->getName() + " is overridden"); 469 return S; 470 } 471 472 if (Config->WarnCommon) 473 warn("multiple common of " + D->getName()); 474 475 Bss->Alignment = std::max(Bss->Alignment, Alignment); 476 if (Size > Bss->Size) { 477 D->File = Bss->File = &File; 478 D->Size = Bss->Size = Size; 479 } 480 return S; 481 } 482 483 static void reportDuplicate(Symbol *Sym, InputFile *NewFile) { 484 if (!Config->AllowMultipleDefinition) 485 error("duplicate symbol: " + toString(*Sym) + "\n>>> defined in " + 486 toString(Sym->File) + "\n>>> defined in " + toString(NewFile)); 487 } 488 489 static void reportDuplicate(Symbol *Sym, InputFile *NewFile, 490 InputSectionBase *ErrSec, uint64_t ErrOffset) { 491 if (Config->AllowMultipleDefinition) 492 return; 493 494 Defined *D = cast<Defined>(Sym); 495 if (!D->Section || !ErrSec) { 496 reportDuplicate(Sym, NewFile); 497 return; 498 } 499 500 // Construct and print an error message in the form of: 501 // 502 // ld.lld: error: duplicate symbol: foo 503 // >>> defined at bar.c:30 504 // >>> bar.o (/home/alice/src/bar.o) 505 // >>> defined at baz.c:563 506 // >>> baz.o in archive libbaz.a 507 auto *Sec1 = cast<InputSectionBase>(D->Section); 508 std::string Src1 = Sec1->getSrcMsg(*Sym, D->Value); 509 std::string Obj1 = Sec1->getObjMsg(D->Value); 510 std::string Src2 = ErrSec->getSrcMsg(*Sym, ErrOffset); 511 std::string Obj2 = ErrSec->getObjMsg(ErrOffset); 512 513 std::string Msg = "duplicate symbol: " + toString(*Sym) + "\n>>> defined at "; 514 if (!Src1.empty()) 515 Msg += Src1 + "\n>>> "; 516 Msg += Obj1 + "\n>>> defined at "; 517 if (!Src2.empty()) 518 Msg += Src2 + "\n>>> "; 519 Msg += Obj2; 520 error(Msg); 521 } 522 523 Symbol *SymbolTable::addRegular(StringRef Name, uint8_t StOther, uint8_t Type, 524 uint64_t Value, uint64_t Size, uint8_t Binding, 525 SectionBase *Section, InputFile *File) { 526 Symbol *S; 527 bool WasInserted; 528 std::tie(S, WasInserted) = insert(Name, Type, getVisibility(StOther), 529 /*CanOmitFromDynSym*/ false, File); 530 int Cmp = compareDefinedNonCommon(S, WasInserted, Binding, Section == nullptr, 531 Value, Name); 532 if (Cmp > 0) 533 replaceSymbol<Defined>(S, File, Name, Binding, StOther, Type, Value, Size, 534 Section); 535 else if (Cmp == 0) 536 reportDuplicate(S, File, dyn_cast_or_null<InputSectionBase>(Section), 537 Value); 538 return S; 539 } 540 541 template <typename ELFT> 542 void SymbolTable::addShared(StringRef Name, SharedFile<ELFT> &File, 543 const typename ELFT::Sym &Sym, uint32_t Alignment, 544 uint32_t VerdefIndex) { 545 // DSO symbols do not affect visibility in the output, so we pass STV_DEFAULT 546 // as the visibility, which will leave the visibility in the symbol table 547 // unchanged. 548 Symbol *S; 549 bool WasInserted; 550 std::tie(S, WasInserted) = insert(Name, Sym.getType(), STV_DEFAULT, 551 /*CanOmitFromDynSym*/ true, &File); 552 // Make sure we preempt DSO symbols with default visibility. 553 if (Sym.getVisibility() == STV_DEFAULT) 554 S->ExportDynamic = true; 555 556 // An undefined symbol with non default visibility must be satisfied 557 // in the same DSO. 558 if (WasInserted || 559 ((S->isUndefined() || S->isLazy()) && S->Visibility == STV_DEFAULT)) { 560 uint8_t Binding = S->Binding; 561 bool WasUndefined = S->isUndefined(); 562 replaceSymbol<SharedSymbol>(S, File, Name, Sym.getBinding(), Sym.st_other, 563 Sym.getType(), Sym.st_value, Sym.st_size, 564 Alignment, VerdefIndex); 565 if (!WasInserted) { 566 S->Binding = Binding; 567 if (!S->isWeak() && !Config->GcSections && WasUndefined) 568 File.IsNeeded = true; 569 } 570 } 571 } 572 573 Symbol *SymbolTable::addBitcode(StringRef Name, uint8_t Binding, 574 uint8_t StOther, uint8_t Type, 575 bool CanOmitFromDynSym, BitcodeFile &F) { 576 Symbol *S; 577 bool WasInserted; 578 std::tie(S, WasInserted) = 579 insert(Name, Type, getVisibility(StOther), CanOmitFromDynSym, &F); 580 int Cmp = compareDefinedNonCommon(S, WasInserted, Binding, 581 /*IsAbs*/ false, /*Value*/ 0, Name); 582 if (Cmp > 0) 583 replaceSymbol<Defined>(S, &F, Name, Binding, StOther, Type, 0, 0, nullptr); 584 else if (Cmp == 0) 585 reportDuplicate(S, &F); 586 return S; 587 } 588 589 Symbol *SymbolTable::find(StringRef Name) { 590 auto It = SymMap.find(CachedHashStringRef(Name)); 591 if (It == SymMap.end()) 592 return nullptr; 593 if (It->second == -1) 594 return nullptr; 595 return SymVector[It->second]; 596 } 597 598 template <class ELFT> 599 void SymbolTable::addLazyArchive(StringRef Name, ArchiveFile &F, 600 const object::Archive::Symbol Sym) { 601 Symbol *S; 602 bool WasInserted; 603 std::tie(S, WasInserted) = insert(Name); 604 if (WasInserted) { 605 replaceSymbol<LazyArchive>(S, F, Sym, Symbol::UnknownType); 606 return; 607 } 608 if (!S->isUndefined()) 609 return; 610 611 // An undefined weak will not fetch archive members. See comment on Lazy in 612 // Symbols.h for the details. 613 if (S->isWeak()) { 614 replaceSymbol<LazyArchive>(S, F, Sym, S->Type); 615 S->Binding = STB_WEAK; 616 return; 617 } 618 if (InputFile *File = F.fetch(Sym)) 619 addFile<ELFT>(File); 620 } 621 622 template <class ELFT> 623 void SymbolTable::addLazyObject(StringRef Name, LazyObjFile &Obj) { 624 Symbol *S; 625 bool WasInserted; 626 std::tie(S, WasInserted) = insert(Name); 627 if (WasInserted) { 628 replaceSymbol<LazyObject>(S, Obj, Name, Symbol::UnknownType); 629 return; 630 } 631 if (!S->isUndefined()) 632 return; 633 634 // See comment for addLazyArchive above. 635 if (S->isWeak()) { 636 replaceSymbol<LazyObject>(S, Obj, Name, S->Type); 637 S->Binding = STB_WEAK; 638 return; 639 } 640 if (InputFile *F = Obj.fetch()) 641 addFile<ELFT>(F); 642 } 643 644 template <class ELFT> void SymbolTable::fetchLazy(Symbol *Sym) { 645 if (auto *S = dyn_cast<LazyArchive>(Sym)) { 646 if (InputFile *File = S->fetch()) 647 addFile<ELFT>(File); 648 return; 649 } 650 651 auto *S = cast<LazyObject>(Sym); 652 if (InputFile *File = cast<LazyObjFile>(S->File)->fetch()) 653 addFile<ELFT>(File); 654 } 655 656 // Initialize DemangledSyms with a map from demangled symbols to symbol 657 // objects. Used to handle "extern C++" directive in version scripts. 658 // 659 // The map will contain all demangled symbols. That can be very large, 660 // and in LLD we generally want to avoid do anything for each symbol. 661 // Then, why are we doing this? Here's why. 662 // 663 // Users can use "extern C++ {}" directive to match against demangled 664 // C++ symbols. For example, you can write a pattern such as 665 // "llvm::*::foo(int, ?)". Obviously, there's no way to handle this 666 // other than trying to match a pattern against all demangled symbols. 667 // So, if "extern C++" feature is used, we need to demangle all known 668 // symbols. 669 StringMap<std::vector<Symbol *>> &SymbolTable::getDemangledSyms() { 670 if (!DemangledSyms) { 671 DemangledSyms.emplace(); 672 for (Symbol *Sym : SymVector) { 673 if (!Sym->isDefined()) 674 continue; 675 if (Optional<std::string> S = demangleItanium(Sym->getName())) 676 (*DemangledSyms)[*S].push_back(Sym); 677 else 678 (*DemangledSyms)[Sym->getName()].push_back(Sym); 679 } 680 } 681 return *DemangledSyms; 682 } 683 684 std::vector<Symbol *> SymbolTable::findByVersion(SymbolVersion Ver) { 685 if (Ver.IsExternCpp) 686 return getDemangledSyms().lookup(Ver.Name); 687 if (Symbol *B = find(Ver.Name)) 688 if (B->isDefined()) 689 return {B}; 690 return {}; 691 } 692 693 std::vector<Symbol *> SymbolTable::findAllByVersion(SymbolVersion Ver) { 694 std::vector<Symbol *> Res; 695 StringMatcher M(Ver.Name); 696 697 if (Ver.IsExternCpp) { 698 for (auto &P : getDemangledSyms()) 699 if (M.match(P.first())) 700 Res.insert(Res.end(), P.second.begin(), P.second.end()); 701 return Res; 702 } 703 704 for (Symbol *Sym : SymVector) 705 if (Sym->isDefined() && M.match(Sym->getName())) 706 Res.push_back(Sym); 707 return Res; 708 } 709 710 // If there's only one anonymous version definition in a version 711 // script file, the script does not actually define any symbol version, 712 // but just specifies symbols visibilities. 713 void SymbolTable::handleAnonymousVersion() { 714 for (SymbolVersion &Ver : Config->VersionScriptGlobals) 715 assignExactVersion(Ver, VER_NDX_GLOBAL, "global"); 716 for (SymbolVersion &Ver : Config->VersionScriptGlobals) 717 assignWildcardVersion(Ver, VER_NDX_GLOBAL); 718 for (SymbolVersion &Ver : Config->VersionScriptLocals) 719 assignExactVersion(Ver, VER_NDX_LOCAL, "local"); 720 for (SymbolVersion &Ver : Config->VersionScriptLocals) 721 assignWildcardVersion(Ver, VER_NDX_LOCAL); 722 } 723 724 // Handles -dynamic-list. 725 void SymbolTable::handleDynamicList() { 726 for (SymbolVersion &Ver : Config->DynamicList) { 727 std::vector<Symbol *> Syms; 728 if (Ver.HasWildcard) 729 Syms = findAllByVersion(Ver); 730 else 731 Syms = findByVersion(Ver); 732 733 for (Symbol *B : Syms) { 734 if (!Config->Shared) 735 B->ExportDynamic = true; 736 else if (B->includeInDynsym()) 737 B->IsPreemptible = true; 738 } 739 } 740 } 741 742 // Set symbol versions to symbols. This function handles patterns 743 // containing no wildcard characters. 744 void SymbolTable::assignExactVersion(SymbolVersion Ver, uint16_t VersionId, 745 StringRef VersionName) { 746 if (Ver.HasWildcard) 747 return; 748 749 // Get a list of symbols which we need to assign the version to. 750 std::vector<Symbol *> Syms = findByVersion(Ver); 751 if (Syms.empty()) { 752 if (!Config->UndefinedVersion) 753 error("version script assignment of '" + VersionName + "' to symbol '" + 754 Ver.Name + "' failed: symbol not defined"); 755 return; 756 } 757 758 // Assign the version. 759 for (Symbol *Sym : Syms) { 760 // Skip symbols containing version info because symbol versions 761 // specified by symbol names take precedence over version scripts. 762 // See parseSymbolVersion(). 763 if (Sym->getName().contains('@')) 764 continue; 765 766 if (Sym->VersionId != Config->DefaultSymbolVersion && 767 Sym->VersionId != VersionId) 768 error("duplicate symbol '" + Ver.Name + "' in version script"); 769 Sym->VersionId = VersionId; 770 } 771 } 772 773 void SymbolTable::assignWildcardVersion(SymbolVersion Ver, uint16_t VersionId) { 774 if (!Ver.HasWildcard) 775 return; 776 777 // Exact matching takes precendence over fuzzy matching, 778 // so we set a version to a symbol only if no version has been assigned 779 // to the symbol. This behavior is compatible with GNU. 780 for (Symbol *B : findAllByVersion(Ver)) 781 if (B->VersionId == Config->DefaultSymbolVersion) 782 B->VersionId = VersionId; 783 } 784 785 // This function processes version scripts by updating VersionId 786 // member of symbols. 787 void SymbolTable::scanVersionScript() { 788 // Handle edge cases first. 789 handleAnonymousVersion(); 790 handleDynamicList(); 791 792 // Now we have version definitions, so we need to set version ids to symbols. 793 // Each version definition has a glob pattern, and all symbols that match 794 // with the pattern get that version. 795 796 // First, we assign versions to exact matching symbols, 797 // i.e. version definitions not containing any glob meta-characters. 798 for (VersionDefinition &V : Config->VersionDefinitions) 799 for (SymbolVersion &Ver : V.Globals) 800 assignExactVersion(Ver, V.Id, V.Name); 801 802 // Next, we assign versions to fuzzy matching symbols, 803 // i.e. version definitions containing glob meta-characters. 804 // Note that because the last match takes precedence over previous matches, 805 // we iterate over the definitions in the reverse order. 806 for (VersionDefinition &V : llvm::reverse(Config->VersionDefinitions)) 807 for (SymbolVersion &Ver : V.Globals) 808 assignWildcardVersion(Ver, V.Id); 809 810 // Symbol themselves might know their versions because symbols 811 // can contain versions in the form of <name>@<version>. 812 // Let them parse and update their names to exclude version suffix. 813 for (Symbol *Sym : SymVector) 814 Sym->parseSymbolVersion(); 815 } 816 817 template void SymbolTable::addFile<ELF32LE>(InputFile *); 818 template void SymbolTable::addFile<ELF32BE>(InputFile *); 819 template void SymbolTable::addFile<ELF64LE>(InputFile *); 820 template void SymbolTable::addFile<ELF64BE>(InputFile *); 821 822 template void SymbolTable::addSymbolWrap<ELF32LE>(StringRef); 823 template void SymbolTable::addSymbolWrap<ELF32BE>(StringRef); 824 template void SymbolTable::addSymbolWrap<ELF64LE>(StringRef); 825 template void SymbolTable::addSymbolWrap<ELF64BE>(StringRef); 826 827 template Symbol *SymbolTable::addUndefined<ELF32LE>(StringRef); 828 template Symbol *SymbolTable::addUndefined<ELF32BE>(StringRef); 829 template Symbol *SymbolTable::addUndefined<ELF64LE>(StringRef); 830 template Symbol *SymbolTable::addUndefined<ELF64BE>(StringRef); 831 832 template Symbol *SymbolTable::addUndefined<ELF32LE>(StringRef, uint8_t, uint8_t, 833 uint8_t, bool, InputFile *); 834 template Symbol *SymbolTable::addUndefined<ELF32BE>(StringRef, uint8_t, uint8_t, 835 uint8_t, bool, InputFile *); 836 template Symbol *SymbolTable::addUndefined<ELF64LE>(StringRef, uint8_t, uint8_t, 837 uint8_t, bool, InputFile *); 838 template Symbol *SymbolTable::addUndefined<ELF64BE>(StringRef, uint8_t, uint8_t, 839 uint8_t, bool, InputFile *); 840 841 template void SymbolTable::addCombinedLTOObject<ELF32LE>(); 842 template void SymbolTable::addCombinedLTOObject<ELF32BE>(); 843 template void SymbolTable::addCombinedLTOObject<ELF64LE>(); 844 template void SymbolTable::addCombinedLTOObject<ELF64BE>(); 845 846 template void 847 SymbolTable::addLazyArchive<ELF32LE>(StringRef, ArchiveFile &, 848 const object::Archive::Symbol); 849 template void 850 SymbolTable::addLazyArchive<ELF32BE>(StringRef, ArchiveFile &, 851 const object::Archive::Symbol); 852 template void 853 SymbolTable::addLazyArchive<ELF64LE>(StringRef, ArchiveFile &, 854 const object::Archive::Symbol); 855 template void 856 SymbolTable::addLazyArchive<ELF64BE>(StringRef, ArchiveFile &, 857 const object::Archive::Symbol); 858 859 template void SymbolTable::addLazyObject<ELF32LE>(StringRef, LazyObjFile &); 860 template void SymbolTable::addLazyObject<ELF32BE>(StringRef, LazyObjFile &); 861 template void SymbolTable::addLazyObject<ELF64LE>(StringRef, LazyObjFile &); 862 template void SymbolTable::addLazyObject<ELF64BE>(StringRef, LazyObjFile &); 863 864 template void SymbolTable::fetchLazy<ELF32LE>(Symbol *); 865 template void SymbolTable::fetchLazy<ELF32BE>(Symbol *); 866 template void SymbolTable::fetchLazy<ELF64LE>(Symbol *); 867 template void SymbolTable::fetchLazy<ELF64BE>(Symbol *); 868 869 template void SymbolTable::addShared<ELF32LE>(StringRef, SharedFile<ELF32LE> &, 870 const typename ELF32LE::Sym &, 871 uint32_t Alignment, uint32_t); 872 template void SymbolTable::addShared<ELF32BE>(StringRef, SharedFile<ELF32BE> &, 873 const typename ELF32BE::Sym &, 874 uint32_t Alignment, uint32_t); 875 template void SymbolTable::addShared<ELF64LE>(StringRef, SharedFile<ELF64LE> &, 876 const typename ELF64LE::Sym &, 877 uint32_t Alignment, uint32_t); 878 template void SymbolTable::addShared<ELF64BE>(StringRef, SharedFile<ELF64BE> &, 879 const typename ELF64BE::Sym &, 880 uint32_t Alignment, uint32_t); 881