1 //===- SymbolTable.cpp ----------------------------------------------------===//
2 //
3 //                             The LLVM Linker
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Symbol table is a bag of all known symbols. We put all symbols of
11 // all input files to the symbol table. The symbol table is basically
12 // a hash table with the logic to resolve symbol name conflicts using
13 // the symbol types.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "SymbolTable.h"
18 #include "Config.h"
19 #include "Error.h"
20 #include "LinkerScript.h"
21 #include "Memory.h"
22 #include "Symbols.h"
23 #include "llvm/ADT/STLExtras.h"
24 
25 using namespace llvm;
26 using namespace llvm::object;
27 using namespace llvm::ELF;
28 
29 using namespace lld;
30 using namespace lld::elf;
31 
32 SymbolTable *elf::Symtab;
33 
34 // All input object files must be for the same architecture
35 // (e.g. it does not make sense to link x86 object files with
36 // MIPS object files.) This function checks for that error.
37 template <class ELFT> static bool isCompatible(InputFile *F) {
38   if (!isa<ELFFileBase<ELFT>>(F) && !isa<BitcodeFile>(F))
39     return true;
40 
41   if (F->EKind == Config->EKind && F->EMachine == Config->EMachine) {
42     if (Config->EMachine != EM_MIPS)
43       return true;
44     if (isMipsN32Abi(F) == Config->MipsN32Abi)
45       return true;
46   }
47 
48   if (!Config->Emulation.empty())
49     error(toString(F) + " is incompatible with " + Config->Emulation);
50   else
51     error(toString(F) + " is incompatible with " + toString(Config->FirstElf));
52   return false;
53 }
54 
55 // Add symbols in File to the symbol table.
56 template <class ELFT> void SymbolTable::addFile(InputFile *File) {
57   if (!Config->FirstElf && isa<ELFFileBase<ELFT>>(File))
58     Config->FirstElf = File;
59 
60   if (!isCompatible<ELFT>(File))
61     return;
62 
63   // Binary file
64   if (auto *F = dyn_cast<BinaryFile>(File)) {
65     BinaryFile::Instances.push_back(F);
66     F->parse<ELFT>();
67     return;
68   }
69 
70   // .a file
71   if (auto *F = dyn_cast<ArchiveFile>(File)) {
72     F->parse<ELFT>();
73     return;
74   }
75 
76   // Lazy object file
77   if (auto *F = dyn_cast<LazyObjFile>(File)) {
78     F->parse<ELFT>();
79     return;
80   }
81 
82   if (Config->Trace)
83     message(toString(File));
84 
85   // .so file
86   if (auto *F = dyn_cast<SharedFile<ELFT>>(File)) {
87     // DSOs are uniquified not by filename but by soname.
88     F->parseSoName();
89     if (ErrorCount || !SoNames.insert(F->SoName).second)
90       return;
91     SharedFile<ELFT>::Instances.push_back(F);
92     F->parseRest();
93     return;
94   }
95 
96   // LLVM bitcode file
97   if (auto *F = dyn_cast<BitcodeFile>(File)) {
98     BitcodeFile::Instances.push_back(F);
99     F->parse<ELFT>(ComdatGroups);
100     return;
101   }
102 
103   // Regular object file
104   auto *F = cast<ObjFile<ELFT>>(File);
105   ObjFile<ELFT>::Instances.push_back(F);
106   F->parse(ComdatGroups);
107 }
108 
109 // This function is where all the optimizations of link-time
110 // optimization happens. When LTO is in use, some input files are
111 // not in native object file format but in the LLVM bitcode format.
112 // This function compiles bitcode files into a few big native files
113 // using LLVM functions and replaces bitcode symbols with the results.
114 // Because all bitcode files that consist of a program are passed
115 // to the compiler at once, it can do whole-program optimization.
116 template <class ELFT> void SymbolTable::addCombinedLTOObject() {
117   if (BitcodeFile::Instances.empty())
118     return;
119 
120   // Compile bitcode files and replace bitcode symbols.
121   LTO.reset(new BitcodeCompiler);
122   for (BitcodeFile *F : BitcodeFile::Instances)
123     LTO->add(*F);
124 
125   for (InputFile *File : LTO->compile()) {
126     ObjFile<ELFT> *Obj = cast<ObjFile<ELFT>>(File);
127     DenseSet<CachedHashStringRef> DummyGroups;
128     Obj->parse(DummyGroups);
129     ObjFile<ELFT>::Instances.push_back(Obj);
130   }
131 }
132 
133 template <class ELFT>
134 DefinedRegular *SymbolTable::addAbsolute(StringRef Name, uint8_t Visibility,
135                                          uint8_t Binding) {
136   Symbol *Sym = addRegular<ELFT>(Name, Visibility, STT_NOTYPE, 0, 0, Binding,
137                                  nullptr, nullptr);
138   return cast<DefinedRegular>(Sym->body());
139 }
140 
141 // Add Name as an "ignored" symbol. An ignored symbol is a regular
142 // linker-synthesized defined symbol, but is only defined if needed.
143 template <class ELFT>
144 DefinedRegular *SymbolTable::addIgnored(StringRef Name, uint8_t Visibility) {
145   SymbolBody *S = find(Name);
146   if (!S || S->isInCurrentDSO())
147     return nullptr;
148   return addAbsolute<ELFT>(Name, Visibility);
149 }
150 
151 // Set a flag for --trace-symbol so that we can print out a log message
152 // if a new symbol with the same name is inserted into the symbol table.
153 void SymbolTable::trace(StringRef Name) {
154   Symtab.insert({CachedHashStringRef(Name), {-1, true}});
155 }
156 
157 // Rename SYM as __wrap_SYM. The original symbol is preserved as __real_SYM.
158 // Used to implement --wrap.
159 template <class ELFT> void SymbolTable::addSymbolWrap(StringRef Name) {
160   SymbolBody *B = find(Name);
161   if (!B)
162     return;
163   Symbol *Sym = B->symbol();
164   Symbol *Real = addUndefined<ELFT>(Saver.save("__real_" + Name));
165   Symbol *Wrap = addUndefined<ELFT>(Saver.save("__wrap_" + Name));
166 
167   // Tell LTO not to eliminate this symbol
168   Wrap->IsUsedInRegularObj = true;
169 
170   Config->RenamedSymbols[Real] = {Sym, Real->Binding};
171   Config->RenamedSymbols[Sym] = {Wrap, Sym->Binding};
172 }
173 
174 // Creates alias for symbol. Used to implement --defsym=ALIAS=SYM.
175 template <class ELFT>
176 void SymbolTable::addSymbolAlias(StringRef Alias, StringRef Name) {
177   SymbolBody *B = find(Name);
178   if (!B) {
179     error("-defsym: undefined symbol: " + Name);
180     return;
181   }
182   Symbol *Sym = B->symbol();
183   Symbol *AliasSym = addUndefined<ELFT>(Alias);
184 
185   // Tell LTO not to eliminate this symbol
186   Sym->IsUsedInRegularObj = true;
187   Config->RenamedSymbols[AliasSym] = {Sym, AliasSym->Binding};
188 }
189 
190 // Apply symbol renames created by -wrap and -defsym. The renames are created
191 // before LTO in addSymbolWrap() and addSymbolAlias() to have a chance to inform
192 // LTO (if LTO is running) not to include these symbols in IPO. Now that the
193 // symbols are finalized, we can perform the replacement.
194 void SymbolTable::applySymbolRenames() {
195   for (auto &KV : Config->RenamedSymbols) {
196     Symbol *Dst = KV.first;
197     Symbol *Src = KV.second.Target;
198     Dst->body()->copy(Src->body());
199     Dst->Binding = KV.second.OriginalBinding;
200   }
201 }
202 
203 static uint8_t getMinVisibility(uint8_t VA, uint8_t VB) {
204   if (VA == STV_DEFAULT)
205     return VB;
206   if (VB == STV_DEFAULT)
207     return VA;
208   return std::min(VA, VB);
209 }
210 
211 // Find an existing symbol or create and insert a new one.
212 std::pair<Symbol *, bool> SymbolTable::insert(StringRef Name) {
213   // <name>@@<version> means the symbol is the default version. In that
214   // case <name>@@<version> will be used to resolve references to <name>.
215   size_t Pos = Name.find("@@");
216   if (Pos != StringRef::npos)
217     Name = Name.take_front(Pos);
218 
219   auto P = Symtab.insert(
220       {CachedHashStringRef(Name), SymIndex((int)SymVector.size(), false)});
221   SymIndex &V = P.first->second;
222   bool IsNew = P.second;
223 
224   if (V.Idx == -1) {
225     IsNew = true;
226     V = SymIndex((int)SymVector.size(), true);
227   }
228 
229   Symbol *Sym;
230   if (IsNew) {
231     Sym = make<Symbol>();
232     Sym->InVersionScript = false;
233     Sym->Binding = STB_WEAK;
234     Sym->Visibility = STV_DEFAULT;
235     Sym->IsUsedInRegularObj = false;
236     Sym->ExportDynamic = false;
237     Sym->Traced = V.Traced;
238     Sym->VersionId = Config->DefaultSymbolVersion;
239     SymVector.push_back(Sym);
240   } else {
241     Sym = SymVector[V.Idx];
242   }
243   return {Sym, IsNew};
244 }
245 
246 // Find an existing symbol or create and insert a new one, then apply the given
247 // attributes.
248 std::pair<Symbol *, bool> SymbolTable::insert(StringRef Name, uint8_t Type,
249                                               uint8_t Visibility,
250                                               bool CanOmitFromDynSym,
251                                               InputFile *File) {
252   bool IsUsedInRegularObj = !File || File->kind() == InputFile::ObjectKind;
253   Symbol *S;
254   bool WasInserted;
255   std::tie(S, WasInserted) = insert(Name);
256 
257   // Merge in the new symbol's visibility.
258   S->Visibility = getMinVisibility(S->Visibility, Visibility);
259 
260   if (!CanOmitFromDynSym && (Config->Shared || Config->ExportDynamic))
261     S->ExportDynamic = true;
262 
263   if (IsUsedInRegularObj)
264     S->IsUsedInRegularObj = true;
265 
266   if (!WasInserted && S->body()->Type != SymbolBody::UnknownType &&
267       ((Type == STT_TLS) != S->body()->isTls())) {
268     error("TLS attribute mismatch: " + toString(*S->body()) +
269           "\n>>> defined in " + toString(S->body()->File) +
270           "\n>>> defined in " + toString(File));
271   }
272 
273   return {S, WasInserted};
274 }
275 
276 template <class ELFT> Symbol *SymbolTable::addUndefined(StringRef Name) {
277   return addUndefined<ELFT>(Name, /*IsLocal=*/false, STB_GLOBAL, STV_DEFAULT,
278                             /*Type*/ 0,
279                             /*CanOmitFromDynSym*/ false, /*File*/ nullptr);
280 }
281 
282 static uint8_t getVisibility(uint8_t StOther) { return StOther & 3; }
283 
284 template <class ELFT>
285 Symbol *SymbolTable::addUndefined(StringRef Name, bool IsLocal, uint8_t Binding,
286                                   uint8_t StOther, uint8_t Type,
287                                   bool CanOmitFromDynSym, InputFile *File) {
288   Symbol *S;
289   bool WasInserted;
290   uint8_t Visibility = getVisibility(StOther);
291   std::tie(S, WasInserted) =
292       insert(Name, Type, Visibility, CanOmitFromDynSym, File);
293   // An undefined symbol with non default visibility must be satisfied
294   // in the same DSO.
295   if (WasInserted ||
296       (isa<SharedSymbol>(S->body()) && Visibility != STV_DEFAULT)) {
297     S->Binding = Binding;
298     replaceBody<Undefined>(S, Name, IsLocal, StOther, Type, File);
299     return S;
300   }
301   if (Binding != STB_WEAK) {
302     SymbolBody *B = S->body();
303     if (B->isShared() || B->isLazy() || B->isUndefined())
304       S->Binding = Binding;
305     if (auto *SS = dyn_cast<SharedSymbol>(B))
306       cast<SharedFile<ELFT>>(SS->File)->IsUsed = true;
307   }
308   if (auto *L = dyn_cast<Lazy>(S->body())) {
309     // An undefined weak will not fetch archive members, but we have to remember
310     // its type. See also comment in addLazyArchive.
311     if (S->isWeak())
312       L->Type = Type;
313     else if (InputFile *F = L->fetch())
314       addFile<ELFT>(F);
315   }
316   return S;
317 }
318 
319 // Using .symver foo,foo@@VER unfortunately creates two symbols: foo and
320 // foo@@VER. We want to effectively ignore foo, so give precedence to
321 // foo@@VER.
322 // FIXME: If users can transition to using
323 // .symver foo,foo@@@VER
324 // we can delete this hack.
325 static int compareVersion(Symbol *S, StringRef Name) {
326   bool A = Name.contains("@@");
327   bool B = S->body()->getName().contains("@@");
328   if (A && !B)
329     return 1;
330   if (!A && B)
331     return -1;
332   return 0;
333 }
334 
335 // We have a new defined symbol with the specified binding. Return 1 if the new
336 // symbol should win, -1 if the new symbol should lose, or 0 if both symbols are
337 // strong defined symbols.
338 static int compareDefined(Symbol *S, bool WasInserted, uint8_t Binding,
339                           StringRef Name) {
340   if (WasInserted)
341     return 1;
342   SymbolBody *Body = S->body();
343   if (!Body->isInCurrentDSO())
344     return 1;
345 
346   if (int R = compareVersion(S, Name))
347     return R;
348 
349   if (Binding == STB_WEAK)
350     return -1;
351   if (S->isWeak())
352     return 1;
353   return 0;
354 }
355 
356 // We have a new non-common defined symbol with the specified binding. Return 1
357 // if the new symbol should win, -1 if the new symbol should lose, or 0 if there
358 // is a conflict. If the new symbol wins, also update the binding.
359 static int compareDefinedNonCommon(Symbol *S, bool WasInserted, uint8_t Binding,
360                                    bool IsAbsolute, uint64_t Value,
361                                    StringRef Name) {
362   if (int Cmp = compareDefined(S, WasInserted, Binding, Name)) {
363     if (Cmp > 0)
364       S->Binding = Binding;
365     return Cmp;
366   }
367   SymbolBody *B = S->body();
368   if (isa<DefinedCommon>(B)) {
369     // Non-common symbols take precedence over common symbols.
370     if (Config->WarnCommon)
371       warn("common " + S->body()->getName() + " is overridden");
372     return 1;
373   } else if (auto *R = dyn_cast<DefinedRegular>(B)) {
374     if (R->Section == nullptr && Binding == STB_GLOBAL && IsAbsolute &&
375         R->Value == Value)
376       return -1;
377   }
378   return 0;
379 }
380 
381 Symbol *SymbolTable::addCommon(StringRef N, uint64_t Size, uint32_t Alignment,
382                                uint8_t Binding, uint8_t StOther, uint8_t Type,
383                                InputFile *File) {
384   Symbol *S;
385   bool WasInserted;
386   std::tie(S, WasInserted) = insert(N, Type, getVisibility(StOther),
387                                     /*CanOmitFromDynSym*/ false, File);
388   int Cmp = compareDefined(S, WasInserted, Binding, N);
389   if (Cmp > 0) {
390     S->Binding = Binding;
391     replaceBody<DefinedCommon>(S, N, Size, Alignment, StOther, Type, File);
392   } else if (Cmp == 0) {
393     auto *C = dyn_cast<DefinedCommon>(S->body());
394     if (!C) {
395       // Non-common symbols take precedence over common symbols.
396       if (Config->WarnCommon)
397         warn("common " + S->body()->getName() + " is overridden");
398       return S;
399     }
400 
401     if (Config->WarnCommon)
402       warn("multiple common of " + S->body()->getName());
403 
404     Alignment = C->Alignment = std::max(C->Alignment, Alignment);
405     if (Size > C->Size)
406       replaceBody<DefinedCommon>(S, N, Size, Alignment, StOther, Type, File);
407   }
408   return S;
409 }
410 
411 static void warnOrError(const Twine &Msg) {
412   if (Config->AllowMultipleDefinition)
413     warn(Msg);
414   else
415     error(Msg);
416 }
417 
418 static void reportDuplicate(SymbolBody *Sym, InputFile *NewFile) {
419   warnOrError("duplicate symbol: " + toString(*Sym) + "\n>>> defined in " +
420               toString(Sym->File) + "\n>>> defined in " + toString(NewFile));
421 }
422 
423 template <class ELFT>
424 static void reportDuplicate(SymbolBody *Sym, InputSectionBase *ErrSec,
425                             typename ELFT::uint ErrOffset) {
426   DefinedRegular *D = dyn_cast<DefinedRegular>(Sym);
427   if (!D || !D->Section || !ErrSec) {
428     reportDuplicate(Sym, ErrSec ? ErrSec->File : nullptr);
429     return;
430   }
431 
432   // Construct and print an error message in the form of:
433   //
434   //   ld.lld: error: duplicate symbol: foo
435   //   >>> defined at bar.c:30
436   //   >>>            bar.o (/home/alice/src/bar.o)
437   //   >>> defined at baz.c:563
438   //   >>>            baz.o in archive libbaz.a
439   auto *Sec1 = cast<InputSectionBase>(D->Section);
440   std::string Src1 = Sec1->getSrcMsg<ELFT>(D->Value);
441   std::string Obj1 = Sec1->getObjMsg<ELFT>(D->Value);
442   std::string Src2 = ErrSec->getSrcMsg<ELFT>(ErrOffset);
443   std::string Obj2 = ErrSec->getObjMsg<ELFT>(ErrOffset);
444 
445   std::string Msg = "duplicate symbol: " + toString(*Sym) + "\n>>> defined at ";
446   if (!Src1.empty())
447     Msg += Src1 + "\n>>>            ";
448   Msg += Obj1 + "\n>>> defined at ";
449   if (!Src2.empty())
450     Msg += Src2 + "\n>>>            ";
451   Msg += Obj2;
452   warnOrError(Msg);
453 }
454 
455 template <typename ELFT>
456 Symbol *SymbolTable::addRegular(StringRef Name, uint8_t StOther, uint8_t Type,
457                                 uint64_t Value, uint64_t Size, uint8_t Binding,
458                                 SectionBase *Section, InputFile *File) {
459   Symbol *S;
460   bool WasInserted;
461   std::tie(S, WasInserted) = insert(Name, Type, getVisibility(StOther),
462                                     /*CanOmitFromDynSym*/ false, File);
463   int Cmp = compareDefinedNonCommon(S, WasInserted, Binding, Section == nullptr,
464                                     Value, Name);
465   if (Cmp > 0)
466     replaceBody<DefinedRegular>(S, Name, /*IsLocal=*/false, StOther, Type,
467                                 Value, Size, Section, File);
468   else if (Cmp == 0)
469     reportDuplicate<ELFT>(S->body(),
470                           dyn_cast_or_null<InputSectionBase>(Section), Value);
471   return S;
472 }
473 
474 template <typename ELFT>
475 void SymbolTable::addShared(SharedFile<ELFT> *File, StringRef Name,
476                             const typename ELFT::Sym &Sym,
477                             const typename ELFT::Verdef *Verdef) {
478   // DSO symbols do not affect visibility in the output, so we pass STV_DEFAULT
479   // as the visibility, which will leave the visibility in the symbol table
480   // unchanged.
481   Symbol *S;
482   bool WasInserted;
483   std::tie(S, WasInserted) = insert(Name, Sym.getType(), STV_DEFAULT,
484                                     /*CanOmitFromDynSym*/ true, File);
485   // Make sure we preempt DSO symbols with default visibility.
486   if (Sym.getVisibility() == STV_DEFAULT)
487     S->ExportDynamic = true;
488 
489   SymbolBody *Body = S->body();
490   // An undefined symbol with non default visibility must be satisfied
491   // in the same DSO.
492   if (WasInserted ||
493       (isa<Undefined>(Body) && Body->getVisibility() == STV_DEFAULT)) {
494     replaceBody<SharedSymbol>(S, File, Name, Sym.st_other, Sym.getType(), &Sym,
495                               Verdef);
496     if (!S->isWeak())
497       File->IsUsed = true;
498   }
499 }
500 
501 Symbol *SymbolTable::addBitcode(StringRef Name, uint8_t Binding,
502                                 uint8_t StOther, uint8_t Type,
503                                 bool CanOmitFromDynSym, BitcodeFile *F) {
504   Symbol *S;
505   bool WasInserted;
506   std::tie(S, WasInserted) =
507       insert(Name, Type, getVisibility(StOther), CanOmitFromDynSym, F);
508   int Cmp = compareDefinedNonCommon(S, WasInserted, Binding,
509                                     /*IsAbs*/ false, /*Value*/ 0, Name);
510   if (Cmp > 0)
511     replaceBody<DefinedRegular>(S, Name, /*IsLocal=*/false, StOther, Type, 0, 0,
512                                 nullptr, F);
513   else if (Cmp == 0)
514     reportDuplicate(S->body(), F);
515   return S;
516 }
517 
518 SymbolBody *SymbolTable::find(StringRef Name) {
519   auto It = Symtab.find(CachedHashStringRef(Name));
520   if (It == Symtab.end())
521     return nullptr;
522   SymIndex V = It->second;
523   if (V.Idx == -1)
524     return nullptr;
525   return SymVector[V.Idx]->body();
526 }
527 
528 SymbolBody *SymbolTable::findInCurrentDSO(StringRef Name) {
529   if (SymbolBody *S = find(Name))
530     if (S->isInCurrentDSO())
531       return S;
532   return nullptr;
533 }
534 
535 template <class ELFT>
536 Symbol *SymbolTable::addLazyArchive(ArchiveFile *F,
537                                     const object::Archive::Symbol Sym) {
538   Symbol *S;
539   bool WasInserted;
540   StringRef Name = Sym.getName();
541   std::tie(S, WasInserted) = insert(Name);
542   if (WasInserted) {
543     replaceBody<LazyArchive>(S, *F, Sym, SymbolBody::UnknownType);
544     return S;
545   }
546   if (!S->body()->isUndefined())
547     return S;
548 
549   // Weak undefined symbols should not fetch members from archives. If we were
550   // to keep old symbol we would not know that an archive member was available
551   // if a strong undefined symbol shows up afterwards in the link. If a strong
552   // undefined symbol never shows up, this lazy symbol will get to the end of
553   // the link and must be treated as the weak undefined one. We already marked
554   // this symbol as used when we added it to the symbol table, but we also need
555   // to preserve its type. FIXME: Move the Type field to Symbol.
556   if (S->isWeak()) {
557     replaceBody<LazyArchive>(S, *F, Sym, S->body()->Type);
558     return S;
559   }
560   std::pair<MemoryBufferRef, uint64_t> MBInfo = F->getMember(&Sym);
561   if (!MBInfo.first.getBuffer().empty())
562     addFile<ELFT>(createObjectFile(MBInfo.first, F->getName(), MBInfo.second));
563   return S;
564 }
565 
566 template <class ELFT>
567 void SymbolTable::addLazyObject(StringRef Name, LazyObjFile &Obj) {
568   Symbol *S;
569   bool WasInserted;
570   std::tie(S, WasInserted) = insert(Name);
571   if (WasInserted) {
572     replaceBody<LazyObject>(S, Name, Obj, SymbolBody::UnknownType);
573     return;
574   }
575   if (!S->body()->isUndefined())
576     return;
577 
578   // See comment for addLazyArchive above.
579   if (S->isWeak())
580     replaceBody<LazyObject>(S, Name, Obj, S->body()->Type);
581   else if (InputFile *F = Obj.fetch())
582     addFile<ELFT>(F);
583 }
584 
585 // Process undefined (-u) flags by loading lazy symbols named by those flags.
586 template <class ELFT> void SymbolTable::scanUndefinedFlags() {
587   for (StringRef S : Config->Undefined)
588     if (auto *L = dyn_cast_or_null<Lazy>(find(S)))
589       if (InputFile *File = L->fetch())
590         addFile<ELFT>(File);
591 }
592 
593 // This function takes care of the case in which shared libraries depend on
594 // the user program (not the other way, which is usual). Shared libraries
595 // may have undefined symbols, expecting that the user program provides
596 // the definitions for them. An example is BSD's __progname symbol.
597 // We need to put such symbols to the main program's .dynsym so that
598 // shared libraries can find them.
599 // Except this, we ignore undefined symbols in DSOs.
600 template <class ELFT> void SymbolTable::scanShlibUndefined() {
601   for (SharedFile<ELFT> *File : SharedFile<ELFT>::Instances) {
602     for (StringRef U : File->getUndefinedSymbols()) {
603       SymbolBody *Sym = find(U);
604       if (!Sym || !Sym->isDefined())
605         continue;
606       Sym->symbol()->ExportDynamic = true;
607 
608       // If -dynamic-list is given, the default version is set to
609       // VER_NDX_LOCAL, which prevents a symbol to be exported via .dynsym.
610       // Set to VER_NDX_GLOBAL so the symbol will be handled as if it were
611       // specified by -dynamic-list.
612       Sym->symbol()->VersionId = VER_NDX_GLOBAL;
613     }
614   }
615 }
616 
617 // Initialize DemangledSyms with a map from demangled symbols to symbol
618 // objects. Used to handle "extern C++" directive in version scripts.
619 //
620 // The map will contain all demangled symbols. That can be very large,
621 // and in LLD we generally want to avoid do anything for each symbol.
622 // Then, why are we doing this? Here's why.
623 //
624 // Users can use "extern C++ {}" directive to match against demangled
625 // C++ symbols. For example, you can write a pattern such as
626 // "llvm::*::foo(int, ?)". Obviously, there's no way to handle this
627 // other than trying to match a pattern against all demangled symbols.
628 // So, if "extern C++" feature is used, we need to demangle all known
629 // symbols.
630 StringMap<std::vector<SymbolBody *>> &SymbolTable::getDemangledSyms() {
631   if (!DemangledSyms) {
632     DemangledSyms.emplace();
633     for (Symbol *Sym : SymVector) {
634       SymbolBody *B = Sym->body();
635       if (B->isUndefined())
636         continue;
637       if (Optional<std::string> S = demangle(B->getName()))
638         (*DemangledSyms)[*S].push_back(B);
639       else
640         (*DemangledSyms)[B->getName()].push_back(B);
641     }
642   }
643   return *DemangledSyms;
644 }
645 
646 std::vector<SymbolBody *> SymbolTable::findByVersion(SymbolVersion Ver) {
647   if (Ver.IsExternCpp)
648     return getDemangledSyms().lookup(Ver.Name);
649   if (SymbolBody *B = find(Ver.Name))
650     if (!B->isUndefined())
651       return {B};
652   return {};
653 }
654 
655 std::vector<SymbolBody *> SymbolTable::findAllByVersion(SymbolVersion Ver) {
656   std::vector<SymbolBody *> Res;
657   StringMatcher M(Ver.Name);
658 
659   if (Ver.IsExternCpp) {
660     for (auto &P : getDemangledSyms())
661       if (M.match(P.first()))
662         Res.insert(Res.end(), P.second.begin(), P.second.end());
663     return Res;
664   }
665 
666   for (Symbol *Sym : SymVector) {
667     SymbolBody *B = Sym->body();
668     if (!B->isUndefined() && M.match(B->getName()))
669       Res.push_back(B);
670   }
671   return Res;
672 }
673 
674 // If there's only one anonymous version definition in a version
675 // script file, the script does not actually define any symbol version,
676 // but just specifies symbols visibilities.
677 void SymbolTable::handleAnonymousVersion() {
678   for (SymbolVersion &Ver : Config->VersionScriptGlobals)
679     assignExactVersion(Ver, VER_NDX_GLOBAL, "global");
680   for (SymbolVersion &Ver : Config->VersionScriptGlobals)
681     assignWildcardVersion(Ver, VER_NDX_GLOBAL);
682   for (SymbolVersion &Ver : Config->VersionScriptLocals)
683     assignExactVersion(Ver, VER_NDX_LOCAL, "local");
684   for (SymbolVersion &Ver : Config->VersionScriptLocals)
685     assignWildcardVersion(Ver, VER_NDX_LOCAL);
686 }
687 
688 // Set symbol versions to symbols. This function handles patterns
689 // containing no wildcard characters.
690 void SymbolTable::assignExactVersion(SymbolVersion Ver, uint16_t VersionId,
691                                      StringRef VersionName) {
692   if (Ver.HasWildcard)
693     return;
694 
695   // Get a list of symbols which we need to assign the version to.
696   std::vector<SymbolBody *> Syms = findByVersion(Ver);
697   if (Syms.empty()) {
698     if (Config->NoUndefinedVersion)
699       error("version script assignment of '" + VersionName + "' to symbol '" +
700             Ver.Name + "' failed: symbol not defined");
701     return;
702   }
703 
704   // Assign the version.
705   for (SymbolBody *B : Syms) {
706     // Skip symbols containing version info because symbol versions
707     // specified by symbol names take precedence over version scripts.
708     // See parseSymbolVersion().
709     if (B->getName().contains('@'))
710       continue;
711 
712     Symbol *Sym = B->symbol();
713     if (Sym->InVersionScript)
714       warn("duplicate symbol '" + Ver.Name + "' in version script");
715     Sym->VersionId = VersionId;
716     Sym->InVersionScript = true;
717   }
718 }
719 
720 void SymbolTable::assignWildcardVersion(SymbolVersion Ver, uint16_t VersionId) {
721   if (!Ver.HasWildcard)
722     return;
723 
724   // Exact matching takes precendence over fuzzy matching,
725   // so we set a version to a symbol only if no version has been assigned
726   // to the symbol. This behavior is compatible with GNU.
727   for (SymbolBody *B : findAllByVersion(Ver))
728     if (B->symbol()->VersionId == Config->DefaultSymbolVersion)
729       B->symbol()->VersionId = VersionId;
730 }
731 
732 // This function processes version scripts by updating VersionId
733 // member of symbols.
734 void SymbolTable::scanVersionScript() {
735   // Handle edge cases first.
736   handleAnonymousVersion();
737 
738   // Now we have version definitions, so we need to set version ids to symbols.
739   // Each version definition has a glob pattern, and all symbols that match
740   // with the pattern get that version.
741 
742   // First, we assign versions to exact matching symbols,
743   // i.e. version definitions not containing any glob meta-characters.
744   for (VersionDefinition &V : Config->VersionDefinitions)
745     for (SymbolVersion &Ver : V.Globals)
746       assignExactVersion(Ver, V.Id, V.Name);
747 
748   // Next, we assign versions to fuzzy matching symbols,
749   // i.e. version definitions containing glob meta-characters.
750   // Note that because the last match takes precedence over previous matches,
751   // we iterate over the definitions in the reverse order.
752   for (VersionDefinition &V : llvm::reverse(Config->VersionDefinitions))
753     for (SymbolVersion &Ver : V.Globals)
754       assignWildcardVersion(Ver, V.Id);
755 
756   // Symbol themselves might know their versions because symbols
757   // can contain versions in the form of <name>@<version>.
758   // Let them parse and update their names to exclude version suffix.
759   for (Symbol *Sym : SymVector)
760     Sym->body()->parseSymbolVersion();
761 }
762 
763 template void SymbolTable::addSymbolWrap<ELF32LE>(StringRef);
764 template void SymbolTable::addSymbolWrap<ELF32BE>(StringRef);
765 template void SymbolTable::addSymbolWrap<ELF64LE>(StringRef);
766 template void SymbolTable::addSymbolWrap<ELF64BE>(StringRef);
767 
768 template Symbol *SymbolTable::addUndefined<ELF32LE>(StringRef);
769 template Symbol *SymbolTable::addUndefined<ELF32BE>(StringRef);
770 template Symbol *SymbolTable::addUndefined<ELF64LE>(StringRef);
771 template Symbol *SymbolTable::addUndefined<ELF64BE>(StringRef);
772 
773 template Symbol *SymbolTable::addUndefined<ELF32LE>(StringRef, bool, uint8_t,
774                                                     uint8_t, uint8_t, bool,
775                                                     InputFile *);
776 template Symbol *SymbolTable::addUndefined<ELF32BE>(StringRef, bool, uint8_t,
777                                                     uint8_t, uint8_t, bool,
778                                                     InputFile *);
779 template Symbol *SymbolTable::addUndefined<ELF64LE>(StringRef, bool, uint8_t,
780                                                     uint8_t, uint8_t, bool,
781                                                     InputFile *);
782 template Symbol *SymbolTable::addUndefined<ELF64BE>(StringRef, bool, uint8_t,
783                                                     uint8_t, uint8_t, bool,
784                                                     InputFile *);
785 
786 template void SymbolTable::addSymbolAlias<ELF32LE>(StringRef, StringRef);
787 template void SymbolTable::addSymbolAlias<ELF32BE>(StringRef, StringRef);
788 template void SymbolTable::addSymbolAlias<ELF64LE>(StringRef, StringRef);
789 template void SymbolTable::addSymbolAlias<ELF64BE>(StringRef, StringRef);
790 
791 template void SymbolTable::addCombinedLTOObject<ELF32LE>();
792 template void SymbolTable::addCombinedLTOObject<ELF32BE>();
793 template void SymbolTable::addCombinedLTOObject<ELF64LE>();
794 template void SymbolTable::addCombinedLTOObject<ELF64BE>();
795 
796 template Symbol *SymbolTable::addRegular<ELF32LE>(StringRef, uint8_t, uint8_t,
797                                                   uint64_t, uint64_t, uint8_t,
798                                                   SectionBase *, InputFile *);
799 template Symbol *SymbolTable::addRegular<ELF32BE>(StringRef, uint8_t, uint8_t,
800                                                   uint64_t, uint64_t, uint8_t,
801                                                   SectionBase *, InputFile *);
802 template Symbol *SymbolTable::addRegular<ELF64LE>(StringRef, uint8_t, uint8_t,
803                                                   uint64_t, uint64_t, uint8_t,
804                                                   SectionBase *, InputFile *);
805 template Symbol *SymbolTable::addRegular<ELF64BE>(StringRef, uint8_t, uint8_t,
806                                                   uint64_t, uint64_t, uint8_t,
807                                                   SectionBase *, InputFile *);
808 
809 template DefinedRegular *SymbolTable::addAbsolute<ELF32LE>(StringRef, uint8_t,
810                                                            uint8_t);
811 template DefinedRegular *SymbolTable::addAbsolute<ELF32BE>(StringRef, uint8_t,
812                                                            uint8_t);
813 template DefinedRegular *SymbolTable::addAbsolute<ELF64LE>(StringRef, uint8_t,
814                                                            uint8_t);
815 template DefinedRegular *SymbolTable::addAbsolute<ELF64BE>(StringRef, uint8_t,
816                                                            uint8_t);
817 
818 template DefinedRegular *SymbolTable::addIgnored<ELF32LE>(StringRef, uint8_t);
819 template DefinedRegular *SymbolTable::addIgnored<ELF32BE>(StringRef, uint8_t);
820 template DefinedRegular *SymbolTable::addIgnored<ELF64LE>(StringRef, uint8_t);
821 template DefinedRegular *SymbolTable::addIgnored<ELF64BE>(StringRef, uint8_t);
822 
823 template Symbol *
824 SymbolTable::addLazyArchive<ELF32LE>(ArchiveFile *,
825                                      const object::Archive::Symbol);
826 template Symbol *
827 SymbolTable::addLazyArchive<ELF32BE>(ArchiveFile *,
828                                      const object::Archive::Symbol);
829 template Symbol *
830 SymbolTable::addLazyArchive<ELF64LE>(ArchiveFile *,
831                                      const object::Archive::Symbol);
832 template Symbol *
833 SymbolTable::addLazyArchive<ELF64BE>(ArchiveFile *,
834                                      const object::Archive::Symbol);
835 
836 template void SymbolTable::addLazyObject<ELF32LE>(StringRef, LazyObjFile &);
837 template void SymbolTable::addLazyObject<ELF32BE>(StringRef, LazyObjFile &);
838 template void SymbolTable::addLazyObject<ELF64LE>(StringRef, LazyObjFile &);
839 template void SymbolTable::addLazyObject<ELF64BE>(StringRef, LazyObjFile &);
840 
841 template void SymbolTable::addShared<ELF32LE>(SharedFile<ELF32LE> *, StringRef,
842                                               const typename ELF32LE::Sym &,
843                                               const typename ELF32LE::Verdef *);
844 template void SymbolTable::addShared<ELF32BE>(SharedFile<ELF32BE> *, StringRef,
845                                               const typename ELF32BE::Sym &,
846                                               const typename ELF32BE::Verdef *);
847 template void SymbolTable::addShared<ELF64LE>(SharedFile<ELF64LE> *, StringRef,
848                                               const typename ELF64LE::Sym &,
849                                               const typename ELF64LE::Verdef *);
850 template void SymbolTable::addShared<ELF64BE>(SharedFile<ELF64BE> *, StringRef,
851                                               const typename ELF64BE::Sym &,
852                                               const typename ELF64BE::Verdef *);
853 
854 template void SymbolTable::scanUndefinedFlags<ELF32LE>();
855 template void SymbolTable::scanUndefinedFlags<ELF32BE>();
856 template void SymbolTable::scanUndefinedFlags<ELF64LE>();
857 template void SymbolTable::scanUndefinedFlags<ELF64BE>();
858 
859 template void SymbolTable::scanShlibUndefined<ELF32LE>();
860 template void SymbolTable::scanShlibUndefined<ELF32BE>();
861 template void SymbolTable::scanShlibUndefined<ELF64LE>();
862 template void SymbolTable::scanShlibUndefined<ELF64BE>();
863