1 //===- SymbolTable.cpp ----------------------------------------------------===//
2 //
3 //                             The LLVM Linker
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Symbol table is a bag of all known symbols. We put all symbols of
11 // all input files to the symbol table. The symbol table is basically
12 // a hash table with the logic to resolve symbol name conflicts using
13 // the symbol types.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "SymbolTable.h"
18 #include "Config.h"
19 #include "Error.h"
20 #include "Symbols.h"
21 #include "llvm/Bitcode/ReaderWriter.h"
22 #include "llvm/Support/StringSaver.h"
23 
24 using namespace llvm;
25 using namespace llvm::object;
26 using namespace llvm::ELF;
27 
28 using namespace lld;
29 using namespace lld::elf;
30 
31 // All input object files must be for the same architecture
32 // (e.g. it does not make sense to link x86 object files with
33 // MIPS object files.) This function checks for that error.
34 template <class ELFT> static bool isCompatible(InputFile *FileP) {
35   auto *F = dyn_cast<ELFFileBase<ELFT>>(FileP);
36   if (!F)
37     return true;
38   if (F->getELFKind() == Config->EKind && F->getEMachine() == Config->EMachine)
39     return true;
40   StringRef A = F->getName();
41   StringRef B = Config->Emulation;
42   if (B.empty())
43     B = Config->FirstElf->getName();
44   error(A + " is incompatible with " + B);
45   return false;
46 }
47 
48 // Add symbols in File to the symbol table.
49 template <class ELFT>
50 void SymbolTable<ELFT>::addFile(std::unique_ptr<InputFile> File) {
51   InputFile *FileP = File.get();
52   if (!isCompatible<ELFT>(FileP))
53     return;
54 
55   // .a file
56   if (auto *F = dyn_cast<ArchiveFile>(FileP)) {
57     ArchiveFiles.emplace_back(cast<ArchiveFile>(File.release()));
58     F->parse<ELFT>();
59     return;
60   }
61 
62   // Lazy object file
63   if (auto *F = dyn_cast<LazyObjectFile>(FileP)) {
64     LazyObjectFiles.emplace_back(cast<LazyObjectFile>(File.release()));
65     F->parse<ELFT>();
66     return;
67   }
68 
69   if (Config->Trace)
70     llvm::outs() << getFilename(FileP) << "\n";
71 
72   // .so file
73   if (auto *F = dyn_cast<SharedFile<ELFT>>(FileP)) {
74     // DSOs are uniquified not by filename but by soname.
75     F->parseSoName();
76     if (!SoNames.insert(F->getSoName()).second)
77       return;
78 
79     SharedFiles.emplace_back(cast<SharedFile<ELFT>>(File.release()));
80     F->parseRest();
81     return;
82   }
83 
84   // LLVM bitcode file
85   if (auto *F = dyn_cast<BitcodeFile>(FileP)) {
86     BitcodeFiles.emplace_back(cast<BitcodeFile>(File.release()));
87     F->parse<ELFT>(ComdatGroups);
88     return;
89   }
90 
91   // Regular object file
92   auto *F = cast<ObjectFile<ELFT>>(FileP);
93   ObjectFiles.emplace_back(cast<ObjectFile<ELFT>>(File.release()));
94   F->parse(ComdatGroups);
95 }
96 
97 // This function is where all the optimizations of link-time
98 // optimization happens. When LTO is in use, some input files are
99 // not in native object file format but in the LLVM bitcode format.
100 // This function compiles bitcode files into a few big native files
101 // using LLVM functions and replaces bitcode symbols with the results.
102 // Because all bitcode files that consist of a program are passed
103 // to the compiler at once, it can do whole-program optimization.
104 template <class ELFT> void SymbolTable<ELFT>::addCombinedLtoObject() {
105   if (BitcodeFiles.empty())
106     return;
107 
108   // Compile bitcode files.
109   Lto.reset(new BitcodeCompiler);
110   for (const std::unique_ptr<BitcodeFile> &F : BitcodeFiles)
111     Lto->add(*F);
112   std::vector<std::unique_ptr<InputFile>> IFs = Lto->compile();
113 
114   // Replace bitcode symbols.
115   for (auto &IF : IFs) {
116     ObjectFile<ELFT> *Obj = cast<ObjectFile<ELFT>>(IF.release());
117 
118     llvm::DenseSet<StringRef> DummyGroups;
119     Obj->parse(DummyGroups);
120     ObjectFiles.emplace_back(Obj);
121   }
122 }
123 
124 template <class ELFT>
125 DefinedRegular<ELFT> *SymbolTable<ELFT>::addAbsolute(StringRef Name,
126                                                      uint8_t Visibility) {
127   return cast<DefinedRegular<ELFT>>(
128       addRegular(Name, STB_GLOBAL, Visibility)->body());
129 }
130 
131 // Add Name as an "ignored" symbol. An ignored symbol is a regular
132 // linker-synthesized defined symbol, but is only defined if needed.
133 template <class ELFT>
134 DefinedRegular<ELFT> *SymbolTable<ELFT>::addIgnored(StringRef Name,
135                                                     uint8_t Visibility) {
136   if (!find(Name))
137     return nullptr;
138   return addAbsolute(Name, Visibility);
139 }
140 
141 // Rename SYM as __wrap_SYM. The original symbol is preserved as __real_SYM.
142 // Used to implement --wrap.
143 template <class ELFT> void SymbolTable<ELFT>::wrap(StringRef Name) {
144   SymbolBody *B = find(Name);
145   if (!B)
146     return;
147   StringSaver Saver(Alloc);
148   Symbol *Sym = B->symbol();
149   Symbol *Real = addUndefined(Saver.save("__real_" + Name));
150   Symbol *Wrap = addUndefined(Saver.save("__wrap_" + Name));
151   // We rename symbols by replacing the old symbol's SymbolBody with the new
152   // symbol's SymbolBody. This causes all SymbolBody pointers referring to the
153   // old symbol to instead refer to the new symbol.
154   memcpy(Real->Body.buffer, Sym->Body.buffer, sizeof(Sym->Body));
155   memcpy(Sym->Body.buffer, Wrap->Body.buffer, sizeof(Wrap->Body));
156 }
157 
158 static uint8_t getMinVisibility(uint8_t VA, uint8_t VB) {
159   if (VA == STV_DEFAULT)
160     return VB;
161   if (VB == STV_DEFAULT)
162     return VA;
163   return std::min(VA, VB);
164 }
165 
166 // Find an existing symbol or create and insert a new one.
167 template <class ELFT>
168 std::pair<Symbol *, bool> SymbolTable<ELFT>::insert(StringRef Name) {
169   unsigned NumSyms = SymVector.size();
170   auto P = Symtab.insert(std::make_pair(Name, NumSyms));
171   Symbol *Sym;
172   if (P.second) {
173     Sym = new (Alloc) Symbol;
174     Sym->Binding = STB_WEAK;
175     Sym->Visibility = STV_DEFAULT;
176     Sym->IsUsedInRegularObj = false;
177     Sym->ExportDynamic = false;
178     Sym->VersionScriptGlobal = !Config->VersionScript;
179     SymVector.push_back(Sym);
180   } else {
181     Sym = SymVector[P.first->second];
182   }
183   return {Sym, P.second};
184 }
185 
186 // Find an existing symbol or create and insert a new one, then apply the given
187 // attributes.
188 template <class ELFT>
189 std::pair<Symbol *, bool>
190 SymbolTable<ELFT>::insert(StringRef Name, uint8_t Type, uint8_t Visibility,
191                           bool CanOmitFromDynSym, bool IsUsedInRegularObj,
192                           InputFile *File) {
193   Symbol *S;
194   bool WasInserted;
195   std::tie(S, WasInserted) = insert(Name);
196 
197   // Merge in the new symbol's visibility.
198   S->Visibility = getMinVisibility(S->Visibility, Visibility);
199   if (!CanOmitFromDynSym && (Config->Shared || Config->ExportDynamic))
200     S->ExportDynamic = true;
201   if (IsUsedInRegularObj)
202     S->IsUsedInRegularObj = true;
203   if (!WasInserted && S->body()->Type != SymbolBody::UnknownType &&
204       ((Type == STT_TLS) != S->body()->isTls()))
205     error("TLS attribute mismatch for symbol: " +
206           conflictMsg(S->body(), File));
207 
208   return {S, WasInserted};
209 }
210 
211 // Construct a string in the form of "Sym in File1 and File2".
212 // Used to construct an error message.
213 template <typename ELFT>
214 std::string SymbolTable<ELFT>::conflictMsg(SymbolBody *Existing,
215                                            InputFile *NewFile) {
216   StringRef Sym = Existing->getName();
217   return demangle(Sym) + " in " + getFilename(Existing->getSourceFile<ELFT>()) +
218          " and " + getFilename(NewFile);
219 }
220 
221 template <class ELFT> Symbol *SymbolTable<ELFT>::addUndefined(StringRef Name) {
222   return addUndefined(Name, STB_GLOBAL, STV_DEFAULT, /*Type*/ 0,
223                       /*File*/ nullptr);
224 }
225 
226 template <class ELFT>
227 Symbol *SymbolTable<ELFT>::addUndefined(StringRef Name, uint8_t Binding,
228                                         uint8_t StOther, uint8_t Type,
229                                         InputFile *File) {
230   Symbol *S;
231   bool WasInserted;
232   std::tie(S, WasInserted) =
233       insert(Name, Type, StOther & 3, /*CanOmitFromDynSym*/ false,
234              /*IsUsedInRegularObj*/ !File || !isa<BitcodeFile>(File), File);
235   if (WasInserted) {
236     S->Binding = Binding;
237     replaceBody<Undefined>(S, Name, StOther, Type);
238     cast<Undefined>(S->body())->File = File;
239     return S;
240   }
241   if (Binding != STB_WEAK &&
242       (S->body()->isShared() || S->body()->isLazy()))
243     S->Binding = Binding;
244   if (auto *L = dyn_cast<Lazy>(S->body())) {
245     // An undefined weak will not fetch archive members, but we have to remember
246     // its type. See also comment in addLazyArchive.
247     if (S->isWeak())
248       L->Type = Type;
249     else if (auto F = L->getFile())
250       addFile(std::move(F));
251   }
252   return S;
253 }
254 
255 // We have a new defined symbol with the specified binding. Return 1 if the new
256 // symbol should win, -1 if the new symbol should lose, or 0 if both symbols are
257 // strong defined symbols.
258 static int compareDefined(Symbol *S, bool WasInserted, uint8_t Binding) {
259   if (WasInserted)
260     return 1;
261   SymbolBody *Body = S->body();
262   if (Body->isLazy() || Body->isUndefined() || Body->isShared())
263     return 1;
264   if (Binding == STB_WEAK)
265     return -1;
266   if (S->isWeak())
267     return 1;
268   return 0;
269 }
270 
271 // We have a new non-common defined symbol with the specified binding. Return 1
272 // if the new symbol should win, -1 if the new symbol should lose, or 0 if there
273 // is a conflict. If the new symbol wins, also update the binding.
274 static int compareDefinedNonCommon(Symbol *S, bool WasInserted, uint8_t Binding) {
275   if (int Cmp = compareDefined(S, WasInserted, Binding)) {
276     if (Cmp > 0)
277       S->Binding = Binding;
278     return Cmp;
279   }
280   if (isa<DefinedCommon>(S->body())) {
281     // Non-common symbols take precedence over common symbols.
282     if (Config->WarnCommon)
283       warning("common " + S->body()->getName() + " is overridden");
284     return 1;
285   }
286   return 0;
287 }
288 
289 template <class ELFT>
290 Symbol *SymbolTable<ELFT>::addCommon(StringRef N, uint64_t Size,
291                                      uint64_t Alignment, uint8_t Binding,
292                                      uint8_t StOther, uint8_t Type,
293                                      InputFile *File) {
294   Symbol *S;
295   bool WasInserted;
296   std::tie(S, WasInserted) =
297       insert(N, Type, StOther & 3, /*CanOmitFromDynSym*/ false,
298              /*IsUsedInRegularObj*/ true, File);
299   int Cmp = compareDefined(S, WasInserted, Binding);
300   if (Cmp > 0) {
301     S->Binding = Binding;
302     replaceBody<DefinedCommon>(S, N, Size, Alignment, StOther, Type);
303   } else if (Cmp == 0) {
304     auto *C = dyn_cast<DefinedCommon>(S->body());
305     if (!C) {
306       // Non-common symbols take precedence over common symbols.
307       if (Config->WarnCommon)
308         warning("common " + S->body()->getName() + " is overridden");
309       return S;
310     }
311 
312     if (Config->WarnCommon)
313       warning("multiple common of " + S->body()->getName());
314 
315     C->Size = std::max(C->Size, Size);
316     C->Alignment = std::max(C->Alignment, Alignment);
317   }
318   return S;
319 }
320 
321 template <class ELFT>
322 void SymbolTable<ELFT>::reportDuplicate(SymbolBody *Existing,
323                                         InputFile *NewFile) {
324   std::string Msg = "duplicate symbol: " + conflictMsg(Existing, NewFile);
325   if (Config->AllowMultipleDefinition)
326     warning(Msg);
327   else
328     error(Msg);
329 }
330 
331 template <typename ELFT>
332 Symbol *SymbolTable<ELFT>::addRegular(StringRef Name, const Elf_Sym &Sym,
333                                       InputSectionBase<ELFT> *Section) {
334   Symbol *S;
335   bool WasInserted;
336   std::tie(S, WasInserted) =
337       insert(Name, Sym.getType(), Sym.getVisibility(),
338              /*CanOmitFromDynSym*/ false, /*IsUsedInRegularObj*/ true,
339              Section ? Section->getFile() : nullptr);
340   int Cmp = compareDefinedNonCommon(S, WasInserted, Sym.getBinding());
341   if (Cmp > 0)
342     replaceBody<DefinedRegular<ELFT>>(S, Name, Sym, Section);
343   else if (Cmp == 0)
344     reportDuplicate(S->body(), Section->getFile());
345   return S;
346 }
347 
348 template <typename ELFT>
349 Symbol *SymbolTable<ELFT>::addRegular(StringRef Name, uint8_t Binding,
350                                       uint8_t StOther) {
351   Symbol *S;
352   bool WasInserted;
353   std::tie(S, WasInserted) =
354       insert(Name, STT_NOTYPE, StOther & 3, /*CanOmitFromDynSym*/ false,
355              /*IsUsedInRegularObj*/ true, nullptr);
356   int Cmp = compareDefinedNonCommon(S, WasInserted, Binding);
357   if (Cmp > 0)
358     replaceBody<DefinedRegular<ELFT>>(S, Name, StOther);
359   else if (Cmp == 0)
360     reportDuplicate(S->body(), nullptr);
361   return S;
362 }
363 
364 template <typename ELFT>
365 Symbol *SymbolTable<ELFT>::addSynthetic(StringRef N,
366                                         OutputSectionBase<ELFT> *Section,
367                                         uintX_t Value) {
368   Symbol *S;
369   bool WasInserted;
370   std::tie(S, WasInserted) =
371       insert(N, STT_NOTYPE, STV_HIDDEN, /*CanOmitFromDynSym*/ false,
372              /*IsUsedInRegularObj*/ true, nullptr);
373   int Cmp = compareDefinedNonCommon(S, WasInserted, STB_GLOBAL);
374   if (Cmp > 0)
375     replaceBody<DefinedSynthetic<ELFT>>(S, N, Value, Section);
376   else if (Cmp == 0)
377     reportDuplicate(S->body(), nullptr);
378   return S;
379 }
380 
381 template <typename ELFT>
382 void SymbolTable<ELFT>::addShared(SharedFile<ELFT> *F, StringRef Name,
383                                   const Elf_Sym &Sym,
384                                   const typename ELFT::Verdef *Verdef) {
385   // DSO symbols do not affect visibility in the output, so we pass STV_DEFAULT
386   // as the visibility, which will leave the visibility in the symbol table
387   // unchanged.
388   Symbol *S;
389   bool WasInserted;
390   std::tie(S, WasInserted) =
391       insert(Name, Sym.getType(), STV_DEFAULT, /*CanOmitFromDynSym*/ true,
392              /*IsUsedInRegularObj*/ false, F);
393   // Make sure we preempt DSO symbols with default visibility.
394   if (Sym.getVisibility() == STV_DEFAULT)
395     S->ExportDynamic = true;
396   if (WasInserted || isa<Undefined>(S->body()))
397     replaceBody<SharedSymbol<ELFT>>(S, F, Name, Sym, Verdef);
398 }
399 
400 template <class ELFT>
401 Symbol *SymbolTable<ELFT>::addBitcode(StringRef Name, bool IsWeak,
402                                       uint8_t StOther, uint8_t Type,
403                                       bool CanOmitFromDynSym, BitcodeFile *F) {
404   Symbol *S;
405   bool WasInserted;
406   std::tie(S, WasInserted) = insert(Name, Type, StOther & 3, CanOmitFromDynSym,
407                                     /*IsUsedInRegularObj*/ false, F);
408   int Cmp =
409       compareDefinedNonCommon(S, WasInserted, IsWeak ? STB_WEAK : STB_GLOBAL);
410   if (Cmp > 0)
411     replaceBody<DefinedBitcode>(S, Name, StOther, Type, F);
412   else if (Cmp == 0)
413     reportDuplicate(S->body(), F);
414   return S;
415 }
416 
417 template <class ELFT> SymbolBody *SymbolTable<ELFT>::find(StringRef Name) {
418   auto It = Symtab.find(Name);
419   if (It == Symtab.end())
420     return nullptr;
421   return SymVector[It->second]->body();
422 }
423 
424 template <class ELFT>
425 void SymbolTable<ELFT>::addLazyArchive(
426     ArchiveFile *F, const llvm::object::Archive::Symbol Sym) {
427   Symbol *S;
428   bool WasInserted;
429   std::tie(S, WasInserted) = insert(Sym.getName());
430   if (WasInserted) {
431     replaceBody<LazyArchive>(S, F, Sym, SymbolBody::UnknownType);
432     return;
433   }
434   if (!S->body()->isUndefined())
435     return;
436 
437   // Weak undefined symbols should not fetch members from archives. If we were
438   // to keep old symbol we would not know that an archive member was available
439   // if a strong undefined symbol shows up afterwards in the link. If a strong
440   // undefined symbol never shows up, this lazy symbol will get to the end of
441   // the link and must be treated as the weak undefined one. We already marked
442   // this symbol as used when we added it to the symbol table, but we also need
443   // to preserve its type. FIXME: Move the Type field to Symbol.
444   if (S->isWeak()) {
445     replaceBody<LazyArchive>(S, F, Sym, S->body()->Type);
446     return;
447   }
448   MemoryBufferRef MBRef = F->getMember(&Sym);
449   if (!MBRef.getBuffer().empty())
450     addFile(createObjectFile(MBRef, F->getName()));
451 }
452 
453 template <class ELFT>
454 void SymbolTable<ELFT>::addLazyObject(StringRef Name, MemoryBufferRef MBRef) {
455   Symbol *S;
456   bool WasInserted;
457   std::tie(S, WasInserted) = insert(Name);
458   if (WasInserted) {
459     replaceBody<LazyObject>(S, Name, MBRef, SymbolBody::UnknownType);
460     return;
461   }
462   if (!S->body()->isUndefined())
463     return;
464 
465   // See comment for addLazyArchive above.
466   if (S->isWeak())
467     replaceBody<LazyObject>(S, Name, MBRef, S->body()->Type);
468   else
469     addFile(createObjectFile(MBRef));
470 }
471 
472 // Process undefined (-u) flags by loading lazy symbols named by those flags.
473 template <class ELFT> void SymbolTable<ELFT>::scanUndefinedFlags() {
474   for (StringRef S : Config->Undefined)
475     if (auto *L = dyn_cast_or_null<Lazy>(find(S)))
476       if (std::unique_ptr<InputFile> File = L->getFile())
477         addFile(std::move(File));
478 }
479 
480 // This function takes care of the case in which shared libraries depend on
481 // the user program (not the other way, which is usual). Shared libraries
482 // may have undefined symbols, expecting that the user program provides
483 // the definitions for them. An example is BSD's __progname symbol.
484 // We need to put such symbols to the main program's .dynsym so that
485 // shared libraries can find them.
486 // Except this, we ignore undefined symbols in DSOs.
487 template <class ELFT> void SymbolTable<ELFT>::scanShlibUndefined() {
488   for (std::unique_ptr<SharedFile<ELFT>> &File : SharedFiles)
489     for (StringRef U : File->getUndefinedSymbols())
490       if (SymbolBody *Sym = find(U))
491         if (Sym->isDefined())
492           Sym->symbol()->ExportDynamic = true;
493 }
494 
495 // This function process the dynamic list option by marking all the symbols
496 // to be exported in the dynamic table.
497 template <class ELFT> void SymbolTable<ELFT>::scanDynamicList() {
498   for (StringRef S : Config->DynamicList)
499     if (SymbolBody *B = find(S))
500       B->symbol()->ExportDynamic = true;
501 }
502 
503 // This function processes the --version-script option by marking all global
504 // symbols with the VersionScriptGlobal flag, which acts as a filter on the
505 // dynamic symbol table.
506 template <class ELFT> void SymbolTable<ELFT>::scanVersionScript() {
507   for (StringRef S : Config->VersionScriptGlobals)
508     if (SymbolBody *B = find(S))
509       B->symbol()->VersionScriptGlobal = true;
510 }
511 
512 template class elf::SymbolTable<ELF32LE>;
513 template class elf::SymbolTable<ELF32BE>;
514 template class elf::SymbolTable<ELF64LE>;
515 template class elf::SymbolTable<ELF64BE>;
516