1 //===- SymbolTable.cpp ----------------------------------------------------===// 2 // 3 // The LLVM Linker 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Symbol table is a bag of all known symbols. We put all symbols of 11 // all input files to the symbol table. The symbol table is basically 12 // a hash table with the logic to resolve symbol name conflicts using 13 // the symbol types. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "SymbolTable.h" 18 #include "Config.h" 19 #include "Error.h" 20 #include "LinkerScript.h" 21 #include "Memory.h" 22 #include "Symbols.h" 23 #include "llvm/ADT/STLExtras.h" 24 25 using namespace llvm; 26 using namespace llvm::object; 27 using namespace llvm::ELF; 28 29 using namespace lld; 30 using namespace lld::elf; 31 32 // All input object files must be for the same architecture 33 // (e.g. it does not make sense to link x86 object files with 34 // MIPS object files.) This function checks for that error. 35 template <class ELFT> static bool isCompatible(InputFile *F) { 36 if (!isa<ELFFileBase<ELFT>>(F) && !isa<BitcodeFile>(F)) 37 return true; 38 39 if (F->EKind == Config->EKind && F->EMachine == Config->EMachine) { 40 if (Config->EMachine != EM_MIPS) 41 return true; 42 if (isMipsN32Abi(F) == Config->MipsN32Abi) 43 return true; 44 } 45 46 if (!Config->Emulation.empty()) 47 error(toString(F) + " is incompatible with " + Config->Emulation); 48 else 49 error(toString(F) + " is incompatible with " + toString(Config->FirstElf)); 50 return false; 51 } 52 53 // Add symbols in File to the symbol table. 54 template <class ELFT> void SymbolTable<ELFT>::addFile(InputFile *File) { 55 if (!isCompatible<ELFT>(File)) 56 return; 57 58 // Binary file 59 if (auto *F = dyn_cast<BinaryFile>(File)) { 60 BinaryFiles.push_back(F); 61 F->parse<ELFT>(); 62 return; 63 } 64 65 // .a file 66 if (auto *F = dyn_cast<ArchiveFile>(File)) { 67 F->parse<ELFT>(); 68 return; 69 } 70 71 // Lazy object file 72 if (auto *F = dyn_cast<LazyObjectFile>(File)) { 73 F->parse<ELFT>(); 74 return; 75 } 76 77 if (Config->Trace) 78 message(toString(File)); 79 80 // .so file 81 if (auto *F = dyn_cast<SharedFile<ELFT>>(File)) { 82 // DSOs are uniquified not by filename but by soname. 83 F->parseSoName(); 84 if (ErrorCount || !SoNames.insert(F->getSoName()).second) 85 return; 86 SharedFiles.push_back(F); 87 F->parseRest(); 88 return; 89 } 90 91 // LLVM bitcode file 92 if (auto *F = dyn_cast<BitcodeFile>(File)) { 93 BitcodeFiles.push_back(F); 94 F->parse<ELFT>(ComdatGroups); 95 return; 96 } 97 98 // Regular object file 99 auto *F = cast<ObjectFile<ELFT>>(File); 100 ObjectFiles.push_back(F); 101 F->parse(ComdatGroups); 102 } 103 104 // This function is where all the optimizations of link-time 105 // optimization happens. When LTO is in use, some input files are 106 // not in native object file format but in the LLVM bitcode format. 107 // This function compiles bitcode files into a few big native files 108 // using LLVM functions and replaces bitcode symbols with the results. 109 // Because all bitcode files that consist of a program are passed 110 // to the compiler at once, it can do whole-program optimization. 111 template <class ELFT> void SymbolTable<ELFT>::addCombinedLTOObject() { 112 if (BitcodeFiles.empty()) 113 return; 114 115 // Compile bitcode files and replace bitcode symbols. 116 LTO.reset(new BitcodeCompiler); 117 for (BitcodeFile *F : BitcodeFiles) 118 LTO->add(*F); 119 120 for (InputFile *File : LTO->compile()) { 121 ObjectFile<ELFT> *Obj = cast<ObjectFile<ELFT>>(File); 122 DenseSet<CachedHashStringRef> DummyGroups; 123 Obj->parse(DummyGroups); 124 ObjectFiles.push_back(Obj); 125 } 126 } 127 128 template <class ELFT> 129 DefinedRegular *SymbolTable<ELFT>::addAbsolute(StringRef Name, 130 uint8_t Visibility, 131 uint8_t Binding) { 132 Symbol *Sym = 133 addRegular(Name, Visibility, STT_NOTYPE, 0, 0, Binding, nullptr, nullptr); 134 return cast<DefinedRegular>(Sym->body()); 135 } 136 137 // Add Name as an "ignored" symbol. An ignored symbol is a regular 138 // linker-synthesized defined symbol, but is only defined if needed. 139 template <class ELFT> 140 DefinedRegular *SymbolTable<ELFT>::addIgnored(StringRef Name, 141 uint8_t Visibility) { 142 SymbolBody *S = find(Name); 143 if (!S || S->isInCurrentDSO()) 144 return nullptr; 145 return addAbsolute(Name, Visibility); 146 } 147 148 // Set a flag for --trace-symbol so that we can print out a log message 149 // if a new symbol with the same name is inserted into the symbol table. 150 template <class ELFT> void SymbolTable<ELFT>::trace(StringRef Name) { 151 Symtab.insert({CachedHashStringRef(Name), {-1, true}}); 152 } 153 154 // Rename SYM as __wrap_SYM. The original symbol is preserved as __real_SYM. 155 // Used to implement --wrap. 156 template <class ELFT> void SymbolTable<ELFT>::wrap(StringRef Name) { 157 SymbolBody *B = find(Name); 158 if (!B) 159 return; 160 Symbol *Sym = B->symbol(); 161 Symbol *Real = addUndefined(Saver.save("__real_" + Name)); 162 Symbol *Wrap = addUndefined(Saver.save("__wrap_" + Name)); 163 164 // We rename symbols by replacing the old symbol's SymbolBody with the new 165 // symbol's SymbolBody. This causes all SymbolBody pointers referring to the 166 // old symbol to instead refer to the new symbol. 167 memcpy(Real->Body.buffer, Sym->Body.buffer, sizeof(Sym->Body)); 168 memcpy(Sym->Body.buffer, Wrap->Body.buffer, sizeof(Wrap->Body)); 169 } 170 171 static uint8_t getMinVisibility(uint8_t VA, uint8_t VB) { 172 if (VA == STV_DEFAULT) 173 return VB; 174 if (VB == STV_DEFAULT) 175 return VA; 176 return std::min(VA, VB); 177 } 178 179 // Find an existing symbol or create and insert a new one. 180 template <class ELFT> 181 std::pair<Symbol *, bool> SymbolTable<ELFT>::insert(StringRef Name) { 182 auto P = Symtab.insert( 183 {CachedHashStringRef(Name), SymIndex((int)SymVector.size(), false)}); 184 SymIndex &V = P.first->second; 185 bool IsNew = P.second; 186 187 if (V.Idx == -1) { 188 IsNew = true; 189 V = SymIndex((int)SymVector.size(), true); 190 } 191 192 Symbol *Sym; 193 if (IsNew) { 194 Sym = make<Symbol>(); 195 Sym->InVersionScript = false; 196 Sym->Binding = STB_WEAK; 197 Sym->Visibility = STV_DEFAULT; 198 Sym->IsUsedInRegularObj = false; 199 Sym->ExportDynamic = false; 200 Sym->Traced = V.Traced; 201 Sym->VersionId = Config->DefaultSymbolVersion; 202 SymVector.push_back(Sym); 203 } else { 204 Sym = SymVector[V.Idx]; 205 } 206 return {Sym, IsNew}; 207 } 208 209 // Construct a string in the form of "Sym in File1 and File2". 210 // Used to construct an error message. 211 static std::string conflictMsg(SymbolBody *Existing, InputFile *NewFile) { 212 return "'" + toString(*Existing) + "' in " + toString(Existing->File) + 213 " and " + toString(NewFile); 214 } 215 216 // Find an existing symbol or create and insert a new one, then apply the given 217 // attributes. 218 template <class ELFT> 219 std::pair<Symbol *, bool> 220 SymbolTable<ELFT>::insert(StringRef Name, uint8_t Type, uint8_t Visibility, 221 bool CanOmitFromDynSym, InputFile *File) { 222 bool IsUsedInRegularObj = !File || File->kind() == InputFile::ObjectKind; 223 Symbol *S; 224 bool WasInserted; 225 std::tie(S, WasInserted) = insert(Name); 226 227 // Merge in the new symbol's visibility. 228 S->Visibility = getMinVisibility(S->Visibility, Visibility); 229 if (!CanOmitFromDynSym && (Config->Shared || Config->ExportDynamic)) 230 S->ExportDynamic = true; 231 if (IsUsedInRegularObj) 232 S->IsUsedInRegularObj = true; 233 if (!WasInserted && S->body()->Type != SymbolBody::UnknownType && 234 ((Type == STT_TLS) != S->body()->isTls())) 235 error("TLS attribute mismatch for symbol " + conflictMsg(S->body(), File)); 236 237 return {S, WasInserted}; 238 } 239 240 template <class ELFT> Symbol *SymbolTable<ELFT>::addUndefined(StringRef Name) { 241 return addUndefined(Name, /*IsLocal=*/false, STB_GLOBAL, STV_DEFAULT, 242 /*Type*/ 0, 243 /*CanOmitFromDynSym*/ false, /*File*/ nullptr); 244 } 245 246 static uint8_t getVisibility(uint8_t StOther) { return StOther & 3; } 247 248 template <class ELFT> 249 Symbol *SymbolTable<ELFT>::addUndefined(StringRef Name, bool IsLocal, 250 uint8_t Binding, uint8_t StOther, 251 uint8_t Type, bool CanOmitFromDynSym, 252 InputFile *File) { 253 Symbol *S; 254 bool WasInserted; 255 std::tie(S, WasInserted) = 256 insert(Name, Type, getVisibility(StOther), CanOmitFromDynSym, File); 257 if (WasInserted) { 258 S->Binding = Binding; 259 replaceBody<Undefined>(S, Name, IsLocal, StOther, Type, File); 260 return S; 261 } 262 if (Binding != STB_WEAK) { 263 if (S->body()->isShared() || S->body()->isLazy()) 264 S->Binding = Binding; 265 if (auto *SS = dyn_cast<SharedSymbol>(S->body())) 266 cast<SharedFile<ELFT>>(SS->File)->IsUsed = true; 267 } 268 if (auto *L = dyn_cast<Lazy>(S->body())) { 269 // An undefined weak will not fetch archive members, but we have to remember 270 // its type. See also comment in addLazyArchive. 271 if (S->isWeak()) 272 L->Type = Type; 273 else if (InputFile *F = L->fetch()) 274 addFile(F); 275 } 276 return S; 277 } 278 279 // We have a new defined symbol with the specified binding. Return 1 if the new 280 // symbol should win, -1 if the new symbol should lose, or 0 if both symbols are 281 // strong defined symbols. 282 static int compareDefined(Symbol *S, bool WasInserted, uint8_t Binding) { 283 if (WasInserted) 284 return 1; 285 SymbolBody *Body = S->body(); 286 if (Body->isLazy() || !Body->isInCurrentDSO()) 287 return 1; 288 if (Binding == STB_WEAK) 289 return -1; 290 if (S->isWeak()) 291 return 1; 292 return 0; 293 } 294 295 // We have a new non-common defined symbol with the specified binding. Return 1 296 // if the new symbol should win, -1 if the new symbol should lose, or 0 if there 297 // is a conflict. If the new symbol wins, also update the binding. 298 template <typename ELFT> 299 static int compareDefinedNonCommon(Symbol *S, bool WasInserted, uint8_t Binding, 300 bool IsAbsolute, typename ELFT::uint Value) { 301 if (int Cmp = compareDefined(S, WasInserted, Binding)) { 302 if (Cmp > 0) 303 S->Binding = Binding; 304 return Cmp; 305 } 306 SymbolBody *B = S->body(); 307 if (isa<DefinedCommon>(B)) { 308 // Non-common symbols take precedence over common symbols. 309 if (Config->WarnCommon) 310 warn("common " + S->body()->getName() + " is overridden"); 311 return 1; 312 } else if (auto *R = dyn_cast<DefinedRegular>(B)) { 313 if (R->Section == nullptr && Binding == STB_GLOBAL && IsAbsolute && 314 R->Value == Value) 315 return -1; 316 } 317 return 0; 318 } 319 320 template <class ELFT> 321 Symbol *SymbolTable<ELFT>::addCommon(StringRef N, uint64_t Size, 322 uint32_t Alignment, uint8_t Binding, 323 uint8_t StOther, uint8_t Type, 324 InputFile *File) { 325 Symbol *S; 326 bool WasInserted; 327 std::tie(S, WasInserted) = insert(N, Type, getVisibility(StOther), 328 /*CanOmitFromDynSym*/ false, File); 329 int Cmp = compareDefined(S, WasInserted, Binding); 330 if (Cmp > 0) { 331 S->Binding = Binding; 332 replaceBody<DefinedCommon>(S, N, Size, Alignment, StOther, Type, File); 333 } else if (Cmp == 0) { 334 auto *C = dyn_cast<DefinedCommon>(S->body()); 335 if (!C) { 336 // Non-common symbols take precedence over common symbols. 337 if (Config->WarnCommon) 338 warn("common " + S->body()->getName() + " is overridden"); 339 return S; 340 } 341 342 if (Config->WarnCommon) 343 warn("multiple common of " + S->body()->getName()); 344 345 Alignment = C->Alignment = std::max(C->Alignment, Alignment); 346 if (Size > C->Size) 347 replaceBody<DefinedCommon>(S, N, Size, Alignment, StOther, Type, File); 348 } 349 return S; 350 } 351 352 static void print(const Twine &Msg) { 353 if (Config->AllowMultipleDefinition) 354 warn(Msg); 355 else 356 error(Msg); 357 } 358 359 static void reportDuplicate(SymbolBody *Existing, InputFile *NewFile) { 360 print("duplicate symbol " + conflictMsg(Existing, NewFile)); 361 } 362 363 template <class ELFT> 364 static void reportDuplicate(SymbolBody *Existing, InputSectionBase *ErrSec, 365 typename ELFT::uint ErrOffset) { 366 DefinedRegular *D = dyn_cast<DefinedRegular>(Existing); 367 if (!D || !D->Section || !ErrSec) { 368 reportDuplicate(Existing, ErrSec ? ErrSec->getFile<ELFT>() : nullptr); 369 return; 370 } 371 372 std::string OldLoc = 373 cast<InputSectionBase>(D->Section)->template getLocation<ELFT>(D->Value); 374 std::string NewLoc = ErrSec->getLocation<ELFT>(ErrOffset); 375 376 print(NewLoc + ": duplicate symbol '" + toString(*Existing) + "'"); 377 print(OldLoc + ": previous definition was here"); 378 } 379 380 template <typename ELFT> 381 Symbol *SymbolTable<ELFT>::addRegular(StringRef Name, uint8_t StOther, 382 uint8_t Type, uint64_t Value, 383 uint64_t Size, uint8_t Binding, 384 SectionBase *Section, InputFile *File) { 385 Symbol *S; 386 bool WasInserted; 387 std::tie(S, WasInserted) = insert(Name, Type, getVisibility(StOther), 388 /*CanOmitFromDynSym*/ false, File); 389 int Cmp = compareDefinedNonCommon<ELFT>(S, WasInserted, Binding, 390 Section == nullptr, Value); 391 if (Cmp > 0) 392 replaceBody<DefinedRegular>(S, Name, /*IsLocal=*/false, StOther, Type, 393 Value, Size, Section, File); 394 else if (Cmp == 0) 395 reportDuplicate<ELFT>(S->body(), 396 dyn_cast_or_null<InputSectionBase>(Section), Value); 397 return S; 398 } 399 400 template <typename ELFT> 401 void SymbolTable<ELFT>::addShared(SharedFile<ELFT> *File, StringRef Name, 402 const Elf_Sym &Sym, 403 const typename ELFT::Verdef *Verdef) { 404 // DSO symbols do not affect visibility in the output, so we pass STV_DEFAULT 405 // as the visibility, which will leave the visibility in the symbol table 406 // unchanged. 407 Symbol *S; 408 bool WasInserted; 409 std::tie(S, WasInserted) = insert(Name, Sym.getType(), STV_DEFAULT, 410 /*CanOmitFromDynSym*/ true, File); 411 // Make sure we preempt DSO symbols with default visibility. 412 if (Sym.getVisibility() == STV_DEFAULT) 413 S->ExportDynamic = true; 414 415 if (WasInserted || isa<Undefined>(S->body())) { 416 replaceBody<SharedSymbol>(S, File, Name, Sym.st_other, Sym.getType(), &Sym, 417 Verdef); 418 if (!S->isWeak()) 419 File->IsUsed = true; 420 } 421 } 422 423 template <class ELFT> 424 Symbol *SymbolTable<ELFT>::addBitcode(StringRef Name, uint8_t Binding, 425 uint8_t StOther, uint8_t Type, 426 bool CanOmitFromDynSym, BitcodeFile *F) { 427 Symbol *S; 428 bool WasInserted; 429 std::tie(S, WasInserted) = 430 insert(Name, Type, getVisibility(StOther), CanOmitFromDynSym, F); 431 int Cmp = compareDefinedNonCommon<ELFT>(S, WasInserted, Binding, 432 /*IsAbs*/ false, /*Value*/ 0); 433 if (Cmp > 0) 434 replaceBody<DefinedRegular>(S, Name, /*IsLocal=*/false, StOther, Type, 0, 0, 435 nullptr, F); 436 else if (Cmp == 0) 437 reportDuplicate(S->body(), F); 438 return S; 439 } 440 441 template <class ELFT> SymbolBody *SymbolTable<ELFT>::find(StringRef Name) { 442 auto It = Symtab.find(CachedHashStringRef(Name)); 443 if (It == Symtab.end()) 444 return nullptr; 445 SymIndex V = It->second; 446 if (V.Idx == -1) 447 return nullptr; 448 return SymVector[V.Idx]->body(); 449 } 450 451 template <class ELFT> 452 SymbolBody *SymbolTable<ELFT>::findInCurrentDSO(StringRef Name) { 453 if (SymbolBody *S = find(Name)) 454 if (S->isInCurrentDSO()) 455 return S; 456 return nullptr; 457 } 458 459 template <class ELFT> 460 void SymbolTable<ELFT>::addLazyArchive(ArchiveFile *F, 461 const object::Archive::Symbol Sym) { 462 Symbol *S; 463 bool WasInserted; 464 StringRef Name = Sym.getName(); 465 std::tie(S, WasInserted) = insert(Name); 466 if (WasInserted) { 467 replaceBody<LazyArchive>(S, *F, Sym, SymbolBody::UnknownType); 468 return; 469 } 470 if (!S->body()->isUndefined()) 471 return; 472 473 // Weak undefined symbols should not fetch members from archives. If we were 474 // to keep old symbol we would not know that an archive member was available 475 // if a strong undefined symbol shows up afterwards in the link. If a strong 476 // undefined symbol never shows up, this lazy symbol will get to the end of 477 // the link and must be treated as the weak undefined one. We already marked 478 // this symbol as used when we added it to the symbol table, but we also need 479 // to preserve its type. FIXME: Move the Type field to Symbol. 480 if (S->isWeak()) { 481 replaceBody<LazyArchive>(S, *F, Sym, S->body()->Type); 482 return; 483 } 484 std::pair<MemoryBufferRef, uint64_t> MBInfo = F->getMember(&Sym); 485 if (!MBInfo.first.getBuffer().empty()) 486 addFile(createObjectFile(MBInfo.first, F->getName(), MBInfo.second)); 487 } 488 489 template <class ELFT> 490 void SymbolTable<ELFT>::addLazyObject(StringRef Name, LazyObjectFile &Obj) { 491 Symbol *S; 492 bool WasInserted; 493 std::tie(S, WasInserted) = insert(Name); 494 if (WasInserted) { 495 replaceBody<LazyObject>(S, Name, Obj, SymbolBody::UnknownType); 496 return; 497 } 498 if (!S->body()->isUndefined()) 499 return; 500 501 // See comment for addLazyArchive above. 502 if (S->isWeak()) { 503 replaceBody<LazyObject>(S, Name, Obj, S->body()->Type); 504 } else { 505 MemoryBufferRef MBRef = Obj.getBuffer(); 506 if (!MBRef.getBuffer().empty()) 507 addFile(createObjectFile(MBRef)); 508 } 509 } 510 511 // Process undefined (-u) flags by loading lazy symbols named by those flags. 512 template <class ELFT> void SymbolTable<ELFT>::scanUndefinedFlags() { 513 for (StringRef S : Config->Undefined) 514 if (auto *L = dyn_cast_or_null<Lazy>(find(S))) 515 if (InputFile *File = L->fetch()) 516 addFile(File); 517 } 518 519 // This function takes care of the case in which shared libraries depend on 520 // the user program (not the other way, which is usual). Shared libraries 521 // may have undefined symbols, expecting that the user program provides 522 // the definitions for them. An example is BSD's __progname symbol. 523 // We need to put such symbols to the main program's .dynsym so that 524 // shared libraries can find them. 525 // Except this, we ignore undefined symbols in DSOs. 526 template <class ELFT> void SymbolTable<ELFT>::scanShlibUndefined() { 527 for (SharedFile<ELFT> *File : SharedFiles) 528 for (StringRef U : File->getUndefinedSymbols()) 529 if (SymbolBody *Sym = find(U)) 530 if (Sym->isDefined()) 531 Sym->symbol()->ExportDynamic = true; 532 } 533 534 // Initialize DemangledSyms with a map from demangled symbols to symbol 535 // objects. Used to handle "extern C++" directive in version scripts. 536 // 537 // The map will contain all demangled symbols. That can be very large, 538 // and in LLD we generally want to avoid do anything for each symbol. 539 // Then, why are we doing this? Here's why. 540 // 541 // Users can use "extern C++ {}" directive to match against demangled 542 // C++ symbols. For example, you can write a pattern such as 543 // "llvm::*::foo(int, ?)". Obviously, there's no way to handle this 544 // other than trying to match a pattern against all demangled symbols. 545 // So, if "extern C++" feature is used, we need to demangle all known 546 // symbols. 547 template <class ELFT> 548 StringMap<std::vector<SymbolBody *>> &SymbolTable<ELFT>::getDemangledSyms() { 549 if (!DemangledSyms) { 550 DemangledSyms.emplace(); 551 for (Symbol *Sym : SymVector) { 552 SymbolBody *B = Sym->body(); 553 if (B->isUndefined()) 554 continue; 555 if (Optional<std::string> S = demangle(B->getName())) 556 (*DemangledSyms)[*S].push_back(B); 557 else 558 (*DemangledSyms)[B->getName()].push_back(B); 559 } 560 } 561 return *DemangledSyms; 562 } 563 564 template <class ELFT> 565 std::vector<SymbolBody *> SymbolTable<ELFT>::findByVersion(SymbolVersion Ver) { 566 if (Ver.IsExternCpp) 567 return getDemangledSyms().lookup(Ver.Name); 568 if (SymbolBody *B = find(Ver.Name)) 569 if (!B->isUndefined()) 570 return {B}; 571 return {}; 572 } 573 574 template <class ELFT> 575 std::vector<SymbolBody *> 576 SymbolTable<ELFT>::findAllByVersion(SymbolVersion Ver) { 577 std::vector<SymbolBody *> Res; 578 StringMatcher M(Ver.Name); 579 580 if (Ver.IsExternCpp) { 581 for (auto &P : getDemangledSyms()) 582 if (M.match(P.first())) 583 Res.insert(Res.end(), P.second.begin(), P.second.end()); 584 return Res; 585 } 586 587 for (Symbol *Sym : SymVector) { 588 SymbolBody *B = Sym->body(); 589 if (!B->isUndefined() && M.match(B->getName())) 590 Res.push_back(B); 591 } 592 return Res; 593 } 594 595 // If there's only one anonymous version definition in a version 596 // script file, the script does not actually define any symbol version, 597 // but just specifies symbols visibilities. 598 template <class ELFT> void SymbolTable<ELFT>::handleAnonymousVersion() { 599 for (SymbolVersion &Ver : Config->VersionScriptGlobals) 600 assignExactVersion(Ver, VER_NDX_GLOBAL, "global"); 601 for (SymbolVersion &Ver : Config->VersionScriptGlobals) 602 assignWildcardVersion(Ver, VER_NDX_GLOBAL); 603 for (SymbolVersion &Ver : Config->VersionScriptLocals) 604 assignExactVersion(Ver, VER_NDX_LOCAL, "local"); 605 for (SymbolVersion &Ver : Config->VersionScriptLocals) 606 assignWildcardVersion(Ver, VER_NDX_LOCAL); 607 } 608 609 // Set symbol versions to symbols. This function handles patterns 610 // containing no wildcard characters. 611 template <class ELFT> 612 void SymbolTable<ELFT>::assignExactVersion(SymbolVersion Ver, uint16_t VersionId, 613 StringRef VersionName) { 614 if (Ver.HasWildcard) 615 return; 616 617 // Get a list of symbols which we need to assign the version to. 618 std::vector<SymbolBody *> Syms = findByVersion(Ver); 619 if (Syms.empty()) { 620 if (Config->NoUndefinedVersion) 621 error("version script assignment of '" + VersionName + "' to symbol '" + 622 Ver.Name + "' failed: symbol not defined"); 623 return; 624 } 625 626 // Assign the version. 627 for (SymbolBody *B : Syms) { 628 Symbol *Sym = B->symbol(); 629 if (Sym->InVersionScript) 630 warn("duplicate symbol '" + Ver.Name + "' in version script"); 631 Sym->VersionId = VersionId; 632 Sym->InVersionScript = true; 633 } 634 } 635 636 template <class ELFT> 637 void SymbolTable<ELFT>::assignWildcardVersion(SymbolVersion Ver, 638 uint16_t VersionId) { 639 if (!Ver.HasWildcard) 640 return; 641 std::vector<SymbolBody *> Syms = findAllByVersion(Ver); 642 643 // Exact matching takes precendence over fuzzy matching, 644 // so we set a version to a symbol only if no version has been assigned 645 // to the symbol. This behavior is compatible with GNU. 646 for (SymbolBody *B : Syms) 647 if (B->symbol()->VersionId == Config->DefaultSymbolVersion) 648 B->symbol()->VersionId = VersionId; 649 } 650 651 // This function processes version scripts by updating VersionId 652 // member of symbols. 653 template <class ELFT> void SymbolTable<ELFT>::scanVersionScript() { 654 // Symbol themselves might know their versions because symbols 655 // can contain versions in the form of <name>@<version>. 656 // Let them parse their names. 657 if (!Config->VersionDefinitions.empty()) 658 for (Symbol *Sym : SymVector) 659 Sym->body()->parseSymbolVersion(); 660 661 // Handle edge cases first. 662 handleAnonymousVersion(); 663 664 if (Config->VersionDefinitions.empty()) 665 return; 666 667 // Now we have version definitions, so we need to set version ids to symbols. 668 // Each version definition has a glob pattern, and all symbols that match 669 // with the pattern get that version. 670 671 // First, we assign versions to exact matching symbols, 672 // i.e. version definitions not containing any glob meta-characters. 673 for (VersionDefinition &V : Config->VersionDefinitions) 674 for (SymbolVersion &Ver : V.Globals) 675 assignExactVersion(Ver, V.Id, V.Name); 676 677 // Next, we assign versions to fuzzy matching symbols, 678 // i.e. version definitions containing glob meta-characters. 679 // Note that because the last match takes precedence over previous matches, 680 // we iterate over the definitions in the reverse order. 681 for (VersionDefinition &V : llvm::reverse(Config->VersionDefinitions)) 682 for (SymbolVersion &Ver : V.Globals) 683 assignWildcardVersion(Ver, V.Id); 684 } 685 686 template class elf::SymbolTable<ELF32LE>; 687 template class elf::SymbolTable<ELF32BE>; 688 template class elf::SymbolTable<ELF64LE>; 689 template class elf::SymbolTable<ELF64BE>; 690