1 //===- SymbolTable.cpp ----------------------------------------------------===//
2 //
3 //                             The LLVM Linker
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Symbol table is a bag of all known symbols. We put all symbols of
11 // all input files to the symbol table. The symbol table is basically
12 // a hash table with the logic to resolve symbol name conflicts using
13 // the symbol types.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "SymbolTable.h"
18 #include "Config.h"
19 #include "Error.h"
20 #include "Symbols.h"
21 #include "llvm/Bitcode/ReaderWriter.h"
22 #include "llvm/Support/StringSaver.h"
23 
24 using namespace llvm;
25 using namespace llvm::object;
26 using namespace llvm::ELF;
27 
28 using namespace lld;
29 using namespace lld::elf;
30 
31 // All input object files must be for the same architecture
32 // (e.g. it does not make sense to link x86 object files with
33 // MIPS object files.) This function checks for that error.
34 template <class ELFT> static bool isCompatible(InputFile *FileP) {
35   auto *F = dyn_cast<ELFFileBase<ELFT>>(FileP);
36   if (!F)
37     return true;
38   if (F->getELFKind() == Config->EKind && F->getEMachine() == Config->EMachine)
39     return true;
40   StringRef A = F->getName();
41   StringRef B = Config->Emulation;
42   if (B.empty())
43     B = Config->FirstElf->getName();
44   error(A + " is incompatible with " + B);
45   return false;
46 }
47 
48 // Add symbols in File to the symbol table.
49 template <class ELFT>
50 void SymbolTable<ELFT>::addFile(std::unique_ptr<InputFile> File) {
51   InputFile *FileP = File.get();
52   if (!isCompatible<ELFT>(FileP))
53     return;
54 
55   // .a file
56   if (auto *F = dyn_cast<ArchiveFile>(FileP)) {
57     ArchiveFiles.emplace_back(cast<ArchiveFile>(File.release()));
58     F->parse<ELFT>();
59     return;
60   }
61 
62   // Lazy object file
63   if (auto *F = dyn_cast<LazyObjectFile>(FileP)) {
64     LazyObjectFiles.emplace_back(cast<LazyObjectFile>(File.release()));
65     F->parse<ELFT>();
66     return;
67   }
68 
69   if (Config->Trace)
70     llvm::outs() << getFilename(FileP) << "\n";
71 
72   // .so file
73   if (auto *F = dyn_cast<SharedFile<ELFT>>(FileP)) {
74     // DSOs are uniquified not by filename but by soname.
75     F->parseSoName();
76     if (!SoNames.insert(F->getSoName()).second)
77       return;
78 
79     SharedFiles.emplace_back(cast<SharedFile<ELFT>>(File.release()));
80     F->parseRest();
81     return;
82   }
83 
84   // LLVM bitcode file
85   if (auto *F = dyn_cast<BitcodeFile>(FileP)) {
86     BitcodeFiles.emplace_back(cast<BitcodeFile>(File.release()));
87     F->parse<ELFT>(ComdatGroups);
88     return;
89   }
90 
91   // Regular object file
92   auto *F = cast<ObjectFile<ELFT>>(FileP);
93   ObjectFiles.emplace_back(cast<ObjectFile<ELFT>>(File.release()));
94   F->parse(ComdatGroups);
95 }
96 
97 // This function is where all the optimizations of link-time
98 // optimization happens. When LTO is in use, some input files are
99 // not in native object file format but in the LLVM bitcode format.
100 // This function compiles bitcode files into a few big native files
101 // using LLVM functions and replaces bitcode symbols with the results.
102 // Because all bitcode files that consist of a program are passed
103 // to the compiler at once, it can do whole-program optimization.
104 template <class ELFT> void SymbolTable<ELFT>::addCombinedLtoObject() {
105   if (BitcodeFiles.empty())
106     return;
107 
108   // Compile bitcode files.
109   Lto.reset(new BitcodeCompiler);
110   for (const std::unique_ptr<BitcodeFile> &F : BitcodeFiles)
111     Lto->add(*F);
112   std::vector<std::unique_ptr<InputFile>> IFs = Lto->compile();
113 
114   // Replace bitcode symbols.
115   for (auto &IF : IFs) {
116     ObjectFile<ELFT> *Obj = cast<ObjectFile<ELFT>>(IF.release());
117 
118     llvm::DenseSet<StringRef> DummyGroups;
119     Obj->parse(DummyGroups);
120     ObjectFiles.emplace_back(Obj);
121   }
122 }
123 
124 template <class ELFT>
125 DefinedRegular<ELFT> *SymbolTable<ELFT>::addAbsolute(StringRef Name,
126                                                      uint8_t Visibility) {
127   return cast<DefinedRegular<ELFT>>(
128       addRegular(Name, STB_GLOBAL, Visibility)->body());
129 }
130 
131 // Add Name as an "ignored" symbol. An ignored symbol is a regular
132 // linker-synthesized defined symbol, but is only defined if needed.
133 template <class ELFT>
134 DefinedRegular<ELFT> *SymbolTable<ELFT>::addIgnored(StringRef Name,
135                                                     uint8_t Visibility) {
136   if (!find(Name))
137     return nullptr;
138   return addAbsolute(Name, Visibility);
139 }
140 
141 // Rename SYM as __wrap_SYM. The original symbol is preserved as __real_SYM.
142 // Used to implement --wrap.
143 template <class ELFT> void SymbolTable<ELFT>::wrap(StringRef Name) {
144   SymbolBody *B = find(Name);
145   if (!B)
146     return;
147   StringSaver Saver(Alloc);
148   Symbol *Sym = B->symbol();
149   Symbol *Real = addUndefined(Saver.save("__real_" + Name));
150   Symbol *Wrap = addUndefined(Saver.save("__wrap_" + Name));
151   // We rename symbols by replacing the old symbol's SymbolBody with the new
152   // symbol's SymbolBody. This causes all SymbolBody pointers referring to the
153   // old symbol to instead refer to the new symbol.
154   memcpy(Real->Body.buffer, Sym->Body.buffer, sizeof(Sym->Body));
155   memcpy(Sym->Body.buffer, Wrap->Body.buffer, sizeof(Wrap->Body));
156 }
157 
158 static uint8_t getMinVisibility(uint8_t VA, uint8_t VB) {
159   if (VA == STV_DEFAULT)
160     return VB;
161   if (VB == STV_DEFAULT)
162     return VA;
163   return std::min(VA, VB);
164 }
165 
166 // Find an existing symbol or create and insert a new one.
167 template <class ELFT>
168 std::pair<Symbol *, bool> SymbolTable<ELFT>::insert(StringRef Name) {
169   unsigned NumSyms = SymVector.size();
170   auto P = Symtab.insert(std::make_pair(Name, NumSyms));
171   Symbol *Sym;
172   if (P.second) {
173     Sym = new (Alloc) Symbol;
174     Sym->Binding = STB_WEAK;
175     Sym->Visibility = STV_DEFAULT;
176     Sym->IsUsedInRegularObj = false;
177     Sym->ExportDynamic = false;
178     if (Config->VersionScriptGlobalByDefault)
179       Sym->VersionId = VER_NDX_GLOBAL;
180     else
181       Sym->VersionId = VER_NDX_LOCAL;
182     SymVector.push_back(Sym);
183   } else {
184     Sym = SymVector[P.first->second];
185   }
186   return {Sym, P.second};
187 }
188 
189 // Find an existing symbol or create and insert a new one, then apply the given
190 // attributes.
191 template <class ELFT>
192 std::pair<Symbol *, bool>
193 SymbolTable<ELFT>::insert(StringRef Name, uint8_t Type, uint8_t Visibility,
194                           bool CanOmitFromDynSym, bool IsUsedInRegularObj,
195                           InputFile *File) {
196   Symbol *S;
197   bool WasInserted;
198   std::tie(S, WasInserted) = insert(Name);
199 
200   // Merge in the new symbol's visibility.
201   S->Visibility = getMinVisibility(S->Visibility, Visibility);
202   if (!CanOmitFromDynSym && (Config->Shared || Config->ExportDynamic))
203     S->ExportDynamic = true;
204   if (IsUsedInRegularObj)
205     S->IsUsedInRegularObj = true;
206   if (!WasInserted && S->body()->Type != SymbolBody::UnknownType &&
207       ((Type == STT_TLS) != S->body()->isTls()))
208     error("TLS attribute mismatch for symbol: " +
209           conflictMsg(S->body(), File));
210 
211   return {S, WasInserted};
212 }
213 
214 // Construct a string in the form of "Sym in File1 and File2".
215 // Used to construct an error message.
216 template <typename ELFT>
217 std::string SymbolTable<ELFT>::conflictMsg(SymbolBody *Existing,
218                                            InputFile *NewFile) {
219   StringRef Sym = Existing->getName();
220   return demangle(Sym) + " in " + getFilename(Existing->getSourceFile<ELFT>()) +
221          " and " + getFilename(NewFile);
222 }
223 
224 template <class ELFT> Symbol *SymbolTable<ELFT>::addUndefined(StringRef Name) {
225   return addUndefined(Name, STB_GLOBAL, STV_DEFAULT, /*Type*/ 0,
226                       /*CanOmitFromDynSym*/ false, /*File*/ nullptr);
227 }
228 
229 template <class ELFT>
230 Symbol *SymbolTable<ELFT>::addUndefined(StringRef Name, uint8_t Binding,
231                                         uint8_t StOther, uint8_t Type,
232                                         bool CanOmitFromDynSym,
233                                         InputFile *File) {
234   Symbol *S;
235   bool WasInserted;
236   std::tie(S, WasInserted) =
237       insert(Name, Type, StOther & 3, CanOmitFromDynSym,
238              /*IsUsedInRegularObj*/ !File || !isa<BitcodeFile>(File), File);
239   if (WasInserted) {
240     S->Binding = Binding;
241     replaceBody<Undefined>(S, Name, StOther, Type);
242     cast<Undefined>(S->body())->File = File;
243     return S;
244   }
245   if (Binding != STB_WEAK) {
246     if (S->body()->isShared() || S->body()->isLazy())
247       S->Binding = Binding;
248     if (auto *SS = dyn_cast<SharedSymbol<ELFT>>(S->body()))
249       SS->File->IsUsed = true;
250   }
251   if (auto *L = dyn_cast<Lazy>(S->body())) {
252     // An undefined weak will not fetch archive members, but we have to remember
253     // its type. See also comment in addLazyArchive.
254     if (S->isWeak())
255       L->Type = Type;
256     else if (auto F = L->getFile())
257       addFile(std::move(F));
258   }
259   return S;
260 }
261 
262 // We have a new defined symbol with the specified binding. Return 1 if the new
263 // symbol should win, -1 if the new symbol should lose, or 0 if both symbols are
264 // strong defined symbols.
265 static int compareDefined(Symbol *S, bool WasInserted, uint8_t Binding) {
266   if (WasInserted)
267     return 1;
268   SymbolBody *Body = S->body();
269   if (Body->isLazy() || Body->isUndefined() || Body->isShared())
270     return 1;
271   if (Binding == STB_WEAK)
272     return -1;
273   if (S->isWeak())
274     return 1;
275   return 0;
276 }
277 
278 // We have a new non-common defined symbol with the specified binding. Return 1
279 // if the new symbol should win, -1 if the new symbol should lose, or 0 if there
280 // is a conflict. If the new symbol wins, also update the binding.
281 static int compareDefinedNonCommon(Symbol *S, bool WasInserted, uint8_t Binding) {
282   if (int Cmp = compareDefined(S, WasInserted, Binding)) {
283     if (Cmp > 0)
284       S->Binding = Binding;
285     return Cmp;
286   }
287   if (isa<DefinedCommon>(S->body())) {
288     // Non-common symbols take precedence over common symbols.
289     if (Config->WarnCommon)
290       warning("common " + S->body()->getName() + " is overridden");
291     return 1;
292   }
293   return 0;
294 }
295 
296 template <class ELFT>
297 Symbol *SymbolTable<ELFT>::addCommon(StringRef N, uint64_t Size,
298                                      uint64_t Alignment, uint8_t Binding,
299                                      uint8_t StOther, uint8_t Type,
300                                      InputFile *File) {
301   Symbol *S;
302   bool WasInserted;
303   std::tie(S, WasInserted) =
304       insert(N, Type, StOther & 3, /*CanOmitFromDynSym*/ false,
305              /*IsUsedInRegularObj*/ true, File);
306   int Cmp = compareDefined(S, WasInserted, Binding);
307   if (Cmp > 0) {
308     S->Binding = Binding;
309     replaceBody<DefinedCommon>(S, N, Size, Alignment, StOther, Type);
310   } else if (Cmp == 0) {
311     auto *C = dyn_cast<DefinedCommon>(S->body());
312     if (!C) {
313       // Non-common symbols take precedence over common symbols.
314       if (Config->WarnCommon)
315         warning("common " + S->body()->getName() + " is overridden");
316       return S;
317     }
318 
319     if (Config->WarnCommon)
320       warning("multiple common of " + S->body()->getName());
321 
322     C->Size = std::max(C->Size, Size);
323     C->Alignment = std::max(C->Alignment, Alignment);
324   }
325   return S;
326 }
327 
328 template <class ELFT>
329 void SymbolTable<ELFT>::reportDuplicate(SymbolBody *Existing,
330                                         InputFile *NewFile) {
331   std::string Msg = "duplicate symbol: " + conflictMsg(Existing, NewFile);
332   if (Config->AllowMultipleDefinition)
333     warning(Msg);
334   else
335     error(Msg);
336 }
337 
338 template <typename ELFT>
339 Symbol *SymbolTable<ELFT>::addRegular(StringRef Name, const Elf_Sym &Sym,
340                                       InputSectionBase<ELFT> *Section) {
341   Symbol *S;
342   bool WasInserted;
343   std::tie(S, WasInserted) =
344       insert(Name, Sym.getType(), Sym.getVisibility(),
345              /*CanOmitFromDynSym*/ false, /*IsUsedInRegularObj*/ true,
346              Section ? Section->getFile() : nullptr);
347   int Cmp = compareDefinedNonCommon(S, WasInserted, Sym.getBinding());
348   if (Cmp > 0)
349     replaceBody<DefinedRegular<ELFT>>(S, Name, Sym, Section);
350   else if (Cmp == 0)
351     reportDuplicate(S->body(), Section->getFile());
352   return S;
353 }
354 
355 template <typename ELFT>
356 Symbol *SymbolTable<ELFT>::addRegular(StringRef Name, uint8_t Binding,
357                                       uint8_t StOther) {
358   Symbol *S;
359   bool WasInserted;
360   std::tie(S, WasInserted) =
361       insert(Name, STT_NOTYPE, StOther & 3, /*CanOmitFromDynSym*/ false,
362              /*IsUsedInRegularObj*/ true, nullptr);
363   int Cmp = compareDefinedNonCommon(S, WasInserted, Binding);
364   if (Cmp > 0)
365     replaceBody<DefinedRegular<ELFT>>(S, Name, StOther);
366   else if (Cmp == 0)
367     reportDuplicate(S->body(), nullptr);
368   return S;
369 }
370 
371 template <typename ELFT>
372 Symbol *SymbolTable<ELFT>::addSynthetic(StringRef N,
373                                         OutputSectionBase<ELFT> *Section,
374                                         uintX_t Value) {
375   Symbol *S;
376   bool WasInserted;
377   std::tie(S, WasInserted) =
378       insert(N, STT_NOTYPE, STV_HIDDEN, /*CanOmitFromDynSym*/ false,
379              /*IsUsedInRegularObj*/ true, nullptr);
380   int Cmp = compareDefinedNonCommon(S, WasInserted, STB_GLOBAL);
381   if (Cmp > 0)
382     replaceBody<DefinedSynthetic<ELFT>>(S, N, Value, Section);
383   else if (Cmp == 0)
384     reportDuplicate(S->body(), nullptr);
385   return S;
386 }
387 
388 template <typename ELFT>
389 void SymbolTable<ELFT>::addShared(SharedFile<ELFT> *F, StringRef Name,
390                                   const Elf_Sym &Sym,
391                                   const typename ELFT::Verdef *Verdef) {
392   // DSO symbols do not affect visibility in the output, so we pass STV_DEFAULT
393   // as the visibility, which will leave the visibility in the symbol table
394   // unchanged.
395   Symbol *S;
396   bool WasInserted;
397   std::tie(S, WasInserted) =
398       insert(Name, Sym.getType(), STV_DEFAULT, /*CanOmitFromDynSym*/ true,
399              /*IsUsedInRegularObj*/ false, F);
400   // Make sure we preempt DSO symbols with default visibility.
401   if (Sym.getVisibility() == STV_DEFAULT)
402     S->ExportDynamic = true;
403   if (WasInserted || isa<Undefined>(S->body())) {
404     replaceBody<SharedSymbol<ELFT>>(S, F, Name, Sym, Verdef);
405     if (!S->isWeak())
406       F->IsUsed = true;
407   }
408 }
409 
410 template <class ELFT>
411 Symbol *SymbolTable<ELFT>::addBitcode(StringRef Name, bool IsWeak,
412                                       uint8_t StOther, uint8_t Type,
413                                       bool CanOmitFromDynSym, BitcodeFile *F) {
414   Symbol *S;
415   bool WasInserted;
416   std::tie(S, WasInserted) = insert(Name, Type, StOther & 3, CanOmitFromDynSym,
417                                     /*IsUsedInRegularObj*/ false, F);
418   int Cmp =
419       compareDefinedNonCommon(S, WasInserted, IsWeak ? STB_WEAK : STB_GLOBAL);
420   if (Cmp > 0)
421     replaceBody<DefinedBitcode>(S, Name, StOther, Type, F);
422   else if (Cmp == 0)
423     reportDuplicate(S->body(), F);
424   return S;
425 }
426 
427 template <class ELFT> SymbolBody *SymbolTable<ELFT>::find(StringRef Name) {
428   auto It = Symtab.find(Name);
429   if (It == Symtab.end())
430     return nullptr;
431   return SymVector[It->second]->body();
432 }
433 
434 template <class ELFT>
435 void SymbolTable<ELFT>::addLazyArchive(
436     ArchiveFile *F, const llvm::object::Archive::Symbol Sym) {
437   Symbol *S;
438   bool WasInserted;
439   std::tie(S, WasInserted) = insert(Sym.getName());
440   if (WasInserted) {
441     replaceBody<LazyArchive>(S, *F, Sym, SymbolBody::UnknownType);
442     return;
443   }
444   if (!S->body()->isUndefined())
445     return;
446 
447   // Weak undefined symbols should not fetch members from archives. If we were
448   // to keep old symbol we would not know that an archive member was available
449   // if a strong undefined symbol shows up afterwards in the link. If a strong
450   // undefined symbol never shows up, this lazy symbol will get to the end of
451   // the link and must be treated as the weak undefined one. We already marked
452   // this symbol as used when we added it to the symbol table, but we also need
453   // to preserve its type. FIXME: Move the Type field to Symbol.
454   if (S->isWeak()) {
455     replaceBody<LazyArchive>(S, *F, Sym, S->body()->Type);
456     return;
457   }
458   MemoryBufferRef MBRef = F->getMember(&Sym);
459   if (!MBRef.getBuffer().empty())
460     addFile(createObjectFile(MBRef, F->getName()));
461 }
462 
463 template <class ELFT>
464 void SymbolTable<ELFT>::addLazyObject(StringRef Name, LazyObjectFile &Obj) {
465   Symbol *S;
466   bool WasInserted;
467   std::tie(S, WasInserted) = insert(Name);
468   if (WasInserted) {
469     replaceBody<LazyObject>(S, Name, Obj, SymbolBody::UnknownType);
470     return;
471   }
472   if (!S->body()->isUndefined())
473     return;
474 
475   // See comment for addLazyArchive above.
476   if (S->isWeak()) {
477     replaceBody<LazyObject>(S, Name, Obj, S->body()->Type);
478   } else {
479     MemoryBufferRef MBRef = Obj.getBuffer();
480     if (!MBRef.getBuffer().empty())
481       addFile(createObjectFile(MBRef));
482   }
483 }
484 
485 // Process undefined (-u) flags by loading lazy symbols named by those flags.
486 template <class ELFT> void SymbolTable<ELFT>::scanUndefinedFlags() {
487   for (StringRef S : Config->Undefined)
488     if (auto *L = dyn_cast_or_null<Lazy>(find(S)))
489       if (std::unique_ptr<InputFile> File = L->getFile())
490         addFile(std::move(File));
491 }
492 
493 // This function takes care of the case in which shared libraries depend on
494 // the user program (not the other way, which is usual). Shared libraries
495 // may have undefined symbols, expecting that the user program provides
496 // the definitions for them. An example is BSD's __progname symbol.
497 // We need to put such symbols to the main program's .dynsym so that
498 // shared libraries can find them.
499 // Except this, we ignore undefined symbols in DSOs.
500 template <class ELFT> void SymbolTable<ELFT>::scanShlibUndefined() {
501   for (std::unique_ptr<SharedFile<ELFT>> &File : SharedFiles)
502     for (StringRef U : File->getUndefinedSymbols())
503       if (SymbolBody *Sym = find(U))
504         if (Sym->isDefined())
505           Sym->symbol()->ExportDynamic = true;
506 }
507 
508 // This function process the dynamic list option by marking all the symbols
509 // to be exported in the dynamic table.
510 template <class ELFT> void SymbolTable<ELFT>::scanDynamicList() {
511   for (StringRef S : Config->DynamicList)
512     if (SymbolBody *B = find(S))
513       B->symbol()->ExportDynamic = true;
514 }
515 
516 // This function processes the --version-script option by marking all global
517 // symbols with the VersionScriptGlobal flag, which acts as a filter on the
518 // dynamic symbol table.
519 template <class ELFT> void SymbolTable<ELFT>::scanVersionScript() {
520   // If version script does not contain versions declarations,
521   // we just should mark global symbols.
522   if (!Config->VersionScriptGlobals.empty()) {
523     for (StringRef S : Config->VersionScriptGlobals)
524       if (SymbolBody *B = find(S))
525         B->symbol()->VersionId = VER_NDX_GLOBAL;
526     return;
527   }
528 
529   // If we have symbols version declarations, we should
530   // assign version references for each symbol.
531   size_t I = 2;
532   for (Version &V : Config->SymbolVersions) {
533     for (StringRef Name : V.Globals)
534       if (SymbolBody *B = find(Name))
535         B->symbol()->VersionId = I;
536     ++I;
537   }
538 }
539 
540 template class elf::SymbolTable<ELF32LE>;
541 template class elf::SymbolTable<ELF32BE>;
542 template class elf::SymbolTable<ELF64LE>;
543 template class elf::SymbolTable<ELF64BE>;
544