1 //===- OutputSections.cpp -------------------------------------------------===//
2 //
3 //                             The LLVM Linker
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "OutputSections.h"
11 #include "Config.h"
12 #include "EhFrame.h"
13 #include "LinkerScript.h"
14 #include "Strings.h"
15 #include "SymbolTable.h"
16 #include "Target.h"
17 #include "lld/Core/Parallel.h"
18 #include "llvm/Support/Dwarf.h"
19 #include "llvm/Support/MD5.h"
20 #include "llvm/Support/MathExtras.h"
21 #include "llvm/Support/SHA1.h"
22 #include "llvm/Support/RandomNumberGenerator.h"
23 
24 using namespace llvm;
25 using namespace llvm::dwarf;
26 using namespace llvm::object;
27 using namespace llvm::support::endian;
28 using namespace llvm::ELF;
29 
30 using namespace lld;
31 using namespace lld::elf;
32 
33 template <class ELFT>
34 OutputSectionBase<ELFT>::OutputSectionBase(StringRef Name, uint32_t Type,
35                                            uintX_t Flags)
36     : Name(Name) {
37   memset(&Header, 0, sizeof(Elf_Shdr));
38   Header.sh_type = Type;
39   Header.sh_flags = Flags;
40   Header.sh_addralign = 1;
41 }
42 
43 template <class ELFT> uint32_t OutputSectionBase<ELFT>::getPhdrFlags() const {
44   uintX_t Flags = getFlags();
45   uint32_t Ret = PF_R;
46   if (Flags & SHF_WRITE)
47     Ret |= PF_W;
48   if (Flags & SHF_EXECINSTR)
49     Ret |= PF_X;
50   return Ret;
51 }
52 
53 template <class ELFT>
54 void OutputSectionBase<ELFT>::writeHeaderTo(Elf_Shdr *Shdr) {
55   *Shdr = Header;
56 }
57 
58 template <class ELFT>
59 GotPltSection<ELFT>::GotPltSection()
60     : OutputSectionBase<ELFT>(".got.plt", SHT_PROGBITS, SHF_ALLOC | SHF_WRITE) {
61   this->Header.sh_addralign = Target->GotPltEntrySize;
62 }
63 
64 template <class ELFT> void GotPltSection<ELFT>::addEntry(SymbolBody &Sym) {
65   Sym.GotPltIndex = Target->GotPltHeaderEntriesNum + Entries.size();
66   Entries.push_back(&Sym);
67 }
68 
69 template <class ELFT> bool GotPltSection<ELFT>::empty() const {
70   return Entries.empty();
71 }
72 
73 template <class ELFT> void GotPltSection<ELFT>::finalize() {
74   this->Header.sh_size = (Target->GotPltHeaderEntriesNum + Entries.size()) *
75                          Target->GotPltEntrySize;
76 }
77 
78 template <class ELFT> void GotPltSection<ELFT>::writeTo(uint8_t *Buf) {
79   Target->writeGotPltHeader(Buf);
80   Buf += Target->GotPltHeaderEntriesNum * Target->GotPltEntrySize;
81   for (const SymbolBody *B : Entries) {
82     Target->writeGotPlt(Buf, *B);
83     Buf += sizeof(uintX_t);
84   }
85 }
86 
87 template <class ELFT>
88 GotSection<ELFT>::GotSection()
89     : OutputSectionBase<ELFT>(".got", SHT_PROGBITS, SHF_ALLOC | SHF_WRITE) {
90   if (Config->EMachine == EM_MIPS)
91     this->Header.sh_flags |= SHF_MIPS_GPREL;
92   this->Header.sh_addralign = Target->GotEntrySize;
93 }
94 
95 template <class ELFT>
96 void GotSection<ELFT>::addEntry(SymbolBody &Sym) {
97   Sym.GotIndex = Entries.size();
98   Entries.push_back(&Sym);
99 }
100 
101 template <class ELFT>
102 void GotSection<ELFT>::addMipsEntry(SymbolBody &Sym, uintX_t Addend,
103                                     RelExpr Expr) {
104   // For "true" local symbols which can be referenced from the same module
105   // only compiler creates two instructions for address loading:
106   //
107   // lw   $8, 0($gp) # R_MIPS_GOT16
108   // addi $8, $8, 0  # R_MIPS_LO16
109   //
110   // The first instruction loads high 16 bits of the symbol address while
111   // the second adds an offset. That allows to reduce number of required
112   // GOT entries because only one global offset table entry is necessary
113   // for every 64 KBytes of local data. So for local symbols we need to
114   // allocate number of GOT entries to hold all required "page" addresses.
115   //
116   // All global symbols (hidden and regular) considered by compiler uniformly.
117   // It always generates a single `lw` instruction and R_MIPS_GOT16 relocation
118   // to load address of the symbol. So for each such symbol we need to
119   // allocate dedicated GOT entry to store its address.
120   //
121   // If a symbol is preemptible we need help of dynamic linker to get its
122   // final address. The corresponding GOT entries are allocated in the
123   // "global" part of GOT. Entries for non preemptible global symbol allocated
124   // in the "local" part of GOT.
125   //
126   // See "Global Offset Table" in Chapter 5:
127   // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
128   if (Expr == R_MIPS_GOT_LOCAL_PAGE) {
129     // At this point we do not know final symbol value so to reduce number
130     // of allocated GOT entries do the following trick. Save all output
131     // sections referenced by GOT relocations. Then later in the `finalize`
132     // method calculate number of "pages" required to cover all saved output
133     // section and allocate appropriate number of GOT entries.
134     auto *OutSec = cast<DefinedRegular<ELFT>>(&Sym)->Section->OutSec;
135     MipsOutSections.insert(OutSec);
136     return;
137   }
138   if (Sym.isTls()) {
139     // GOT entries created for MIPS TLS relocations behave like
140     // almost GOT entries from other ABIs. They go to the end
141     // of the global offset table.
142     Sym.GotIndex = Entries.size();
143     Entries.push_back(&Sym);
144     return;
145   }
146   auto AddEntry = [&](SymbolBody &S, uintX_t A, MipsGotEntries &Items) {
147     if (S.isInGot() && !A)
148       return;
149     size_t NewIndex = Items.size();
150     if (!MipsGotMap.insert({{&S, A}, NewIndex}).second)
151       return;
152     Items.emplace_back(&S, A);
153     if (!A)
154       S.GotIndex = NewIndex;
155   };
156   if (Sym.isPreemptible()) {
157     // Ignore addends for preemptible symbols. They got single GOT entry anyway.
158     AddEntry(Sym, 0, MipsGlobal);
159     Sym.IsInGlobalMipsGot = true;
160   } else
161     AddEntry(Sym, Addend, MipsLocal);
162 }
163 
164 template <class ELFT> bool GotSection<ELFT>::addDynTlsEntry(SymbolBody &Sym) {
165   if (Sym.GlobalDynIndex != -1U)
166     return false;
167   Sym.GlobalDynIndex = Entries.size();
168   // Global Dynamic TLS entries take two GOT slots.
169   Entries.push_back(nullptr);
170   Entries.push_back(&Sym);
171   return true;
172 }
173 
174 // Reserves TLS entries for a TLS module ID and a TLS block offset.
175 // In total it takes two GOT slots.
176 template <class ELFT> bool GotSection<ELFT>::addTlsIndex() {
177   if (TlsIndexOff != uint32_t(-1))
178     return false;
179   TlsIndexOff = Entries.size() * sizeof(uintX_t);
180   Entries.push_back(nullptr);
181   Entries.push_back(nullptr);
182   return true;
183 }
184 
185 template <class ELFT>
186 typename GotSection<ELFT>::uintX_t
187 GotSection<ELFT>::getMipsLocalPageOffset(uintX_t EntryValue) {
188   // Initialize the entry by the %hi(EntryValue) expression
189   // but without right-shifting.
190   EntryValue = (EntryValue + 0x8000) & ~0xffff;
191   // Take into account MIPS GOT header.
192   // See comment in the GotSection::writeTo.
193   size_t NewIndex = MipsLocalGotPos.size() + 2;
194   auto P = MipsLocalGotPos.insert(std::make_pair(EntryValue, NewIndex));
195   assert(!P.second || MipsLocalGotPos.size() <= MipsPageEntries);
196   return (uintX_t)P.first->second * sizeof(uintX_t) - MipsGPOffset;
197 }
198 
199 template <class ELFT>
200 typename GotSection<ELFT>::uintX_t
201 GotSection<ELFT>::getMipsGotOffset(const SymbolBody &B, uintX_t Addend) const {
202   uintX_t Off = MipsPageEntries;
203   if (B.isTls())
204     Off += MipsLocal.size() + MipsGlobal.size() + B.GotIndex;
205   else if (B.IsInGlobalMipsGot)
206     Off += MipsLocal.size() + B.GotIndex;
207   else if (B.isInGot())
208     Off += B.GotIndex;
209   else {
210     auto It = MipsGotMap.find({&B, Addend});
211     assert(It != MipsGotMap.end());
212     Off += It->second;
213   }
214   return Off * sizeof(uintX_t) - MipsGPOffset;
215 }
216 
217 template <class ELFT>
218 typename GotSection<ELFT>::uintX_t GotSection<ELFT>::getMipsTlsOffset() {
219   return (MipsPageEntries + MipsLocal.size() + MipsGlobal.size()) *
220          sizeof(uintX_t);
221 }
222 
223 template <class ELFT>
224 typename GotSection<ELFT>::uintX_t
225 GotSection<ELFT>::getGlobalDynAddr(const SymbolBody &B) const {
226   return this->getVA() + B.GlobalDynIndex * sizeof(uintX_t);
227 }
228 
229 template <class ELFT>
230 typename GotSection<ELFT>::uintX_t
231 GotSection<ELFT>::getGlobalDynOffset(const SymbolBody &B) const {
232   return B.GlobalDynIndex * sizeof(uintX_t);
233 }
234 
235 template <class ELFT>
236 const SymbolBody *GotSection<ELFT>::getMipsFirstGlobalEntry() const {
237   return MipsGlobal.empty() ? nullptr : MipsGlobal.front().first;
238 }
239 
240 template <class ELFT>
241 unsigned GotSection<ELFT>::getMipsLocalEntriesNum() const {
242   return MipsPageEntries + MipsLocal.size();
243 }
244 
245 template <class ELFT> void GotSection<ELFT>::finalize() {
246   size_t EntriesNum = Entries.size();
247   if (Config->EMachine == EM_MIPS) {
248     // Take into account MIPS GOT header.
249     // See comment in the GotSection::writeTo.
250     MipsPageEntries += 2;
251     for (const OutputSectionBase<ELFT> *OutSec : MipsOutSections) {
252       // Calculate an upper bound of MIPS GOT entries required to store page
253       // addresses of local symbols. We assume the worst case - each 64kb
254       // page of the output section has at least one GOT relocation against it.
255       // Add 0x8000 to the section's size because the page address stored
256       // in the GOT entry is calculated as (value + 0x8000) & ~0xffff.
257       MipsPageEntries += (OutSec->getSize() + 0x8000 + 0xfffe) / 0xffff;
258     }
259     EntriesNum += MipsPageEntries + MipsLocal.size() + MipsGlobal.size();
260   }
261   this->Header.sh_size = EntriesNum * sizeof(uintX_t);
262 }
263 
264 template <class ELFT>
265 static void writeUint(uint8_t *Buf, typename ELFT::uint Val) {
266   typedef typename ELFT::uint uintX_t;
267   write<uintX_t, ELFT::TargetEndianness, sizeof(uintX_t)>(Buf, Val);
268 }
269 
270 template <class ELFT> void GotSection<ELFT>::writeMipsGot(uint8_t *Buf) {
271   // Set the MSB of the second GOT slot. This is not required by any
272   // MIPS ABI documentation, though.
273   //
274   // There is a comment in glibc saying that "The MSB of got[1] of a
275   // gnu object is set to identify gnu objects," and in GNU gold it
276   // says "the second entry will be used by some runtime loaders".
277   // But how this field is being used is unclear.
278   //
279   // We are not really willing to mimic other linkers behaviors
280   // without understanding why they do that, but because all files
281   // generated by GNU tools have this special GOT value, and because
282   // we've been doing this for years, it is probably a safe bet to
283   // keep doing this for now. We really need to revisit this to see
284   // if we had to do this.
285   auto *P = reinterpret_cast<typename ELFT::Off *>(Buf);
286   P[1] = uintX_t(1) << (ELFT::Is64Bits ? 63 : 31);
287   // Write 'page address' entries to the local part of the GOT.
288   for (std::pair<uintX_t, size_t> &L : MipsLocalGotPos) {
289     uint8_t *Entry = Buf + L.second * sizeof(uintX_t);
290     writeUint<ELFT>(Entry, L.first);
291   }
292   Buf += MipsPageEntries * sizeof(uintX_t);
293   auto AddEntry = [&](const MipsGotEntry &SA) {
294     uint8_t *Entry = Buf;
295     Buf += sizeof(uintX_t);
296     const SymbolBody* Body = SA.first;
297     uintX_t VA = Body->template getVA<ELFT>(SA.second);
298     writeUint<ELFT>(Entry, VA);
299   };
300   std::for_each(std::begin(MipsLocal), std::end(MipsLocal), AddEntry);
301   std::for_each(std::begin(MipsGlobal), std::end(MipsGlobal), AddEntry);
302   // Initialize TLS-related GOT entries. If the entry has a corresponding
303   // dynamic relocations, leave it initialized by zero. Write down adjusted
304   // TLS symbol's values otherwise. To calculate the adjustments use offsets
305   // for thread-local storage.
306   // https://www.linux-mips.org/wiki/NPTL
307   if (TlsIndexOff != -1U && !Config->Pic)
308     writeUint<ELFT>(Buf + TlsIndexOff, 1);
309   for (const SymbolBody *B : Entries) {
310     if (!B || B->isPreemptible())
311       continue;
312     uintX_t VA = B->getVA<ELFT>();
313     if (B->GotIndex != -1U) {
314       uint8_t *Entry = Buf + B->GotIndex * sizeof(uintX_t);
315       writeUint<ELFT>(Entry, VA - 0x7000);
316     }
317     if (B->GlobalDynIndex != -1U) {
318       uint8_t *Entry = Buf + B->GlobalDynIndex * sizeof(uintX_t);
319       writeUint<ELFT>(Entry, 1);
320       Entry += sizeof(uintX_t);
321       writeUint<ELFT>(Entry, VA - 0x8000);
322     }
323   }
324 }
325 
326 template <class ELFT> void GotSection<ELFT>::writeTo(uint8_t *Buf) {
327   if (Config->EMachine == EM_MIPS) {
328     writeMipsGot(Buf);
329     return;
330   }
331   for (const SymbolBody *B : Entries) {
332     uint8_t *Entry = Buf;
333     Buf += sizeof(uintX_t);
334     if (!B)
335       continue;
336     if (B->isPreemptible())
337       continue; // The dynamic linker will take care of it.
338     uintX_t VA = B->getVA<ELFT>();
339     writeUint<ELFT>(Entry, VA);
340   }
341 }
342 
343 template <class ELFT>
344 PltSection<ELFT>::PltSection()
345     : OutputSectionBase<ELFT>(".plt", SHT_PROGBITS, SHF_ALLOC | SHF_EXECINSTR) {
346   this->Header.sh_addralign = 16;
347 }
348 
349 template <class ELFT> void PltSection<ELFT>::writeTo(uint8_t *Buf) {
350   // At beginning of PLT, we have code to call the dynamic linker
351   // to resolve dynsyms at runtime. Write such code.
352   Target->writePltHeader(Buf);
353   size_t Off = Target->PltHeaderSize;
354 
355   for (auto &I : Entries) {
356     const SymbolBody *B = I.first;
357     unsigned RelOff = I.second;
358     uint64_t Got = B->getGotPltVA<ELFT>();
359     uint64_t Plt = this->getVA() + Off;
360     Target->writePlt(Buf + Off, Got, Plt, B->PltIndex, RelOff);
361     Off += Target->PltEntrySize;
362   }
363 }
364 
365 template <class ELFT> void PltSection<ELFT>::addEntry(SymbolBody &Sym) {
366   Sym.PltIndex = Entries.size();
367   unsigned RelOff = Out<ELFT>::RelaPlt->getRelocOffset();
368   Entries.push_back(std::make_pair(&Sym, RelOff));
369 }
370 
371 template <class ELFT> void PltSection<ELFT>::finalize() {
372   this->Header.sh_size =
373       Target->PltHeaderSize + Entries.size() * Target->PltEntrySize;
374 }
375 
376 template <class ELFT>
377 RelocationSection<ELFT>::RelocationSection(StringRef Name, bool Sort)
378     : OutputSectionBase<ELFT>(Name, Config->Rela ? SHT_RELA : SHT_REL,
379                               SHF_ALLOC),
380       Sort(Sort) {
381   this->Header.sh_entsize = Config->Rela ? sizeof(Elf_Rela) : sizeof(Elf_Rel);
382   this->Header.sh_addralign = sizeof(uintX_t);
383 }
384 
385 template <class ELFT>
386 void RelocationSection<ELFT>::addReloc(const DynamicReloc<ELFT> &Reloc) {
387   if (Reloc.Type == Target->RelativeRel)
388     ++NumRelativeRelocs;
389   Relocs.push_back(Reloc);
390 }
391 
392 template <class ELFT, class RelTy>
393 static bool compRelocations(const RelTy &A, const RelTy &B) {
394   bool AIsRel = A.getType(Config->Mips64EL) == Target->RelativeRel;
395   bool BIsRel = B.getType(Config->Mips64EL) == Target->RelativeRel;
396   if (AIsRel != BIsRel)
397     return AIsRel;
398 
399   return A.getSymbol(Config->Mips64EL) < B.getSymbol(Config->Mips64EL);
400 }
401 
402 template <class ELFT> void RelocationSection<ELFT>::writeTo(uint8_t *Buf) {
403   uint8_t *BufBegin = Buf;
404   for (const DynamicReloc<ELFT> &Rel : Relocs) {
405     auto *P = reinterpret_cast<Elf_Rela *>(Buf);
406     Buf += Config->Rela ? sizeof(Elf_Rela) : sizeof(Elf_Rel);
407 
408     if (Config->Rela)
409       P->r_addend = Rel.getAddend();
410     P->r_offset = Rel.getOffset();
411     if (Config->EMachine == EM_MIPS && Rel.getOutputSec() == Out<ELFT>::Got)
412       // Dynamic relocation against MIPS GOT section make deal TLS entries
413       // allocated in the end of the GOT. We need to adjust the offset to take
414       // in account 'local' and 'global' GOT entries.
415       P->r_offset += Out<ELFT>::Got->getMipsTlsOffset();
416     P->setSymbolAndType(Rel.getSymIndex(), Rel.Type, Config->Mips64EL);
417   }
418 
419   if (Sort) {
420     if (Config->Rela)
421       std::stable_sort((Elf_Rela *)BufBegin,
422                        (Elf_Rela *)BufBegin + Relocs.size(),
423                        compRelocations<ELFT, Elf_Rela>);
424     else
425       std::stable_sort((Elf_Rel *)BufBegin, (Elf_Rel *)BufBegin + Relocs.size(),
426                        compRelocations<ELFT, Elf_Rel>);
427   }
428 }
429 
430 template <class ELFT> unsigned RelocationSection<ELFT>::getRelocOffset() {
431   return this->Header.sh_entsize * Relocs.size();
432 }
433 
434 template <class ELFT> void RelocationSection<ELFT>::finalize() {
435   this->Header.sh_link = Out<ELFT>::DynSymTab
436                              ? Out<ELFT>::DynSymTab->SectionIndex
437                              : Out<ELFT>::SymTab->SectionIndex;
438   this->Header.sh_size = Relocs.size() * this->Header.sh_entsize;
439 }
440 
441 template <class ELFT>
442 InterpSection<ELFT>::InterpSection()
443     : OutputSectionBase<ELFT>(".interp", SHT_PROGBITS, SHF_ALLOC) {
444   this->Header.sh_size = Config->DynamicLinker.size() + 1;
445 }
446 
447 template <class ELFT> void InterpSection<ELFT>::writeTo(uint8_t *Buf) {
448   StringRef S = Config->DynamicLinker;
449   memcpy(Buf, S.data(), S.size());
450 }
451 
452 template <class ELFT>
453 HashTableSection<ELFT>::HashTableSection()
454     : OutputSectionBase<ELFT>(".hash", SHT_HASH, SHF_ALLOC) {
455   this->Header.sh_entsize = sizeof(Elf_Word);
456   this->Header.sh_addralign = sizeof(Elf_Word);
457 }
458 
459 static uint32_t hashSysv(StringRef Name) {
460   uint32_t H = 0;
461   for (char C : Name) {
462     H = (H << 4) + C;
463     uint32_t G = H & 0xf0000000;
464     if (G)
465       H ^= G >> 24;
466     H &= ~G;
467   }
468   return H;
469 }
470 
471 template <class ELFT> void HashTableSection<ELFT>::finalize() {
472   this->Header.sh_link = Out<ELFT>::DynSymTab->SectionIndex;
473 
474   unsigned NumEntries = 2;                             // nbucket and nchain.
475   NumEntries += Out<ELFT>::DynSymTab->getNumSymbols(); // The chain entries.
476 
477   // Create as many buckets as there are symbols.
478   // FIXME: This is simplistic. We can try to optimize it, but implementing
479   // support for SHT_GNU_HASH is probably even more profitable.
480   NumEntries += Out<ELFT>::DynSymTab->getNumSymbols();
481   this->Header.sh_size = NumEntries * sizeof(Elf_Word);
482 }
483 
484 template <class ELFT> void HashTableSection<ELFT>::writeTo(uint8_t *Buf) {
485   unsigned NumSymbols = Out<ELFT>::DynSymTab->getNumSymbols();
486   auto *P = reinterpret_cast<Elf_Word *>(Buf);
487   *P++ = NumSymbols; // nbucket
488   *P++ = NumSymbols; // nchain
489 
490   Elf_Word *Buckets = P;
491   Elf_Word *Chains = P + NumSymbols;
492 
493   for (const std::pair<SymbolBody *, unsigned> &P :
494        Out<ELFT>::DynSymTab->getSymbols()) {
495     SymbolBody *Body = P.first;
496     StringRef Name = Body->getName();
497     unsigned I = Body->DynsymIndex;
498     uint32_t Hash = hashSysv(Name) % NumSymbols;
499     Chains[I] = Buckets[Hash];
500     Buckets[Hash] = I;
501   }
502 }
503 
504 static uint32_t hashGnu(StringRef Name) {
505   uint32_t H = 5381;
506   for (uint8_t C : Name)
507     H = (H << 5) + H + C;
508   return H;
509 }
510 
511 template <class ELFT>
512 GnuHashTableSection<ELFT>::GnuHashTableSection()
513     : OutputSectionBase<ELFT>(".gnu.hash", SHT_GNU_HASH, SHF_ALLOC) {
514   this->Header.sh_entsize = ELFT::Is64Bits ? 0 : 4;
515   this->Header.sh_addralign = sizeof(uintX_t);
516 }
517 
518 template <class ELFT>
519 unsigned GnuHashTableSection<ELFT>::calcNBuckets(unsigned NumHashed) {
520   if (!NumHashed)
521     return 0;
522 
523   // These values are prime numbers which are not greater than 2^(N-1) + 1.
524   // In result, for any particular NumHashed we return a prime number
525   // which is not greater than NumHashed.
526   static const unsigned Primes[] = {
527       1,   1,    3,    3,    7,    13,    31,    61,    127,   251,
528       509, 1021, 2039, 4093, 8191, 16381, 32749, 65521, 131071};
529 
530   return Primes[std::min<unsigned>(Log2_32_Ceil(NumHashed),
531                                    array_lengthof(Primes) - 1)];
532 }
533 
534 // Bloom filter estimation: at least 8 bits for each hashed symbol.
535 // GNU Hash table requirement: it should be a power of 2,
536 //   the minimum value is 1, even for an empty table.
537 // Expected results for a 32-bit target:
538 //   calcMaskWords(0..4)   = 1
539 //   calcMaskWords(5..8)   = 2
540 //   calcMaskWords(9..16)  = 4
541 // For a 64-bit target:
542 //   calcMaskWords(0..8)   = 1
543 //   calcMaskWords(9..16)  = 2
544 //   calcMaskWords(17..32) = 4
545 template <class ELFT>
546 unsigned GnuHashTableSection<ELFT>::calcMaskWords(unsigned NumHashed) {
547   if (!NumHashed)
548     return 1;
549   return NextPowerOf2((NumHashed - 1) / sizeof(Elf_Off));
550 }
551 
552 template <class ELFT> void GnuHashTableSection<ELFT>::finalize() {
553   unsigned NumHashed = Symbols.size();
554   NBuckets = calcNBuckets(NumHashed);
555   MaskWords = calcMaskWords(NumHashed);
556   // Second hash shift estimation: just predefined values.
557   Shift2 = ELFT::Is64Bits ? 6 : 5;
558 
559   this->Header.sh_link = Out<ELFT>::DynSymTab->SectionIndex;
560   this->Header.sh_size = sizeof(Elf_Word) * 4            // Header
561                          + sizeof(Elf_Off) * MaskWords   // Bloom Filter
562                          + sizeof(Elf_Word) * NBuckets   // Hash Buckets
563                          + sizeof(Elf_Word) * NumHashed; // Hash Values
564 }
565 
566 template <class ELFT> void GnuHashTableSection<ELFT>::writeTo(uint8_t *Buf) {
567   writeHeader(Buf);
568   if (Symbols.empty())
569     return;
570   writeBloomFilter(Buf);
571   writeHashTable(Buf);
572 }
573 
574 template <class ELFT>
575 void GnuHashTableSection<ELFT>::writeHeader(uint8_t *&Buf) {
576   auto *P = reinterpret_cast<Elf_Word *>(Buf);
577   *P++ = NBuckets;
578   *P++ = Out<ELFT>::DynSymTab->getNumSymbols() - Symbols.size();
579   *P++ = MaskWords;
580   *P++ = Shift2;
581   Buf = reinterpret_cast<uint8_t *>(P);
582 }
583 
584 template <class ELFT>
585 void GnuHashTableSection<ELFT>::writeBloomFilter(uint8_t *&Buf) {
586   unsigned C = sizeof(Elf_Off) * 8;
587 
588   auto *Masks = reinterpret_cast<Elf_Off *>(Buf);
589   for (const SymbolData &Sym : Symbols) {
590     size_t Pos = (Sym.Hash / C) & (MaskWords - 1);
591     uintX_t V = (uintX_t(1) << (Sym.Hash % C)) |
592                 (uintX_t(1) << ((Sym.Hash >> Shift2) % C));
593     Masks[Pos] |= V;
594   }
595   Buf += sizeof(Elf_Off) * MaskWords;
596 }
597 
598 template <class ELFT>
599 void GnuHashTableSection<ELFT>::writeHashTable(uint8_t *Buf) {
600   Elf_Word *Buckets = reinterpret_cast<Elf_Word *>(Buf);
601   Elf_Word *Values = Buckets + NBuckets;
602 
603   int PrevBucket = -1;
604   int I = 0;
605   for (const SymbolData &Sym : Symbols) {
606     int Bucket = Sym.Hash % NBuckets;
607     assert(PrevBucket <= Bucket);
608     if (Bucket != PrevBucket) {
609       Buckets[Bucket] = Sym.Body->DynsymIndex;
610       PrevBucket = Bucket;
611       if (I > 0)
612         Values[I - 1] |= 1;
613     }
614     Values[I] = Sym.Hash & ~1;
615     ++I;
616   }
617   if (I > 0)
618     Values[I - 1] |= 1;
619 }
620 
621 // Add symbols to this symbol hash table. Note that this function
622 // destructively sort a given vector -- which is needed because
623 // GNU-style hash table places some sorting requirements.
624 template <class ELFT>
625 void GnuHashTableSection<ELFT>::addSymbols(
626     std::vector<std::pair<SymbolBody *, size_t>> &V) {
627   // Ideally this will just be 'auto' but GCC 6.1 is not able
628   // to deduce it correctly.
629   std::vector<std::pair<SymbolBody *, size_t>>::iterator Mid =
630       std::stable_partition(V.begin(), V.end(),
631                             [](std::pair<SymbolBody *, size_t> &P) {
632                               return P.first->isUndefined();
633                             });
634   if (Mid == V.end())
635     return;
636   for (auto I = Mid, E = V.end(); I != E; ++I) {
637     SymbolBody *B = I->first;
638     size_t StrOff = I->second;
639     Symbols.push_back({B, StrOff, hashGnu(B->getName())});
640   }
641 
642   unsigned NBuckets = calcNBuckets(Symbols.size());
643   std::stable_sort(Symbols.begin(), Symbols.end(),
644                    [&](const SymbolData &L, const SymbolData &R) {
645                      return L.Hash % NBuckets < R.Hash % NBuckets;
646                    });
647 
648   V.erase(Mid, V.end());
649   for (const SymbolData &Sym : Symbols)
650     V.push_back({Sym.Body, Sym.STName});
651 }
652 
653 // Returns the number of version definition entries. Because the first entry
654 // is for the version definition itself, it is the number of versioned symbols
655 // plus one. Note that we don't support multiple versions yet.
656 static unsigned getVerDefNum() { return Config->VersionDefinitions.size() + 1; }
657 
658 template <class ELFT>
659 DynamicSection<ELFT>::DynamicSection()
660     : OutputSectionBase<ELFT>(".dynamic", SHT_DYNAMIC, SHF_ALLOC | SHF_WRITE) {
661   Elf_Shdr &Header = this->Header;
662   Header.sh_addralign = sizeof(uintX_t);
663   Header.sh_entsize = ELFT::Is64Bits ? 16 : 8;
664 
665   // .dynamic section is not writable on MIPS.
666   // See "Special Section" in Chapter 4 in the following document:
667   // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
668   if (Config->EMachine == EM_MIPS)
669     Header.sh_flags = SHF_ALLOC;
670 }
671 
672 template <class ELFT> void DynamicSection<ELFT>::finalize() {
673   if (this->Header.sh_size)
674     return; // Already finalized.
675 
676   Elf_Shdr &Header = this->Header;
677   Header.sh_link = Out<ELFT>::DynStrTab->SectionIndex;
678 
679   auto Add = [=](Entry E) { Entries.push_back(E); };
680 
681   // Add strings. We know that these are the last strings to be added to
682   // DynStrTab and doing this here allows this function to set DT_STRSZ.
683   for (StringRef S : Config->AuxiliaryList)
684     Add({DT_AUXILIARY, Out<ELFT>::DynStrTab->addString(S)});
685   if (!Config->RPath.empty())
686     Add({Config->EnableNewDtags ? DT_RUNPATH : DT_RPATH,
687          Out<ELFT>::DynStrTab->addString(Config->RPath)});
688   for (const std::unique_ptr<SharedFile<ELFT>> &F :
689        Symtab<ELFT>::X->getSharedFiles())
690     if (F->isNeeded())
691       Add({DT_NEEDED, Out<ELFT>::DynStrTab->addString(F->getSoName())});
692   if (!Config->SoName.empty())
693     Add({DT_SONAME, Out<ELFT>::DynStrTab->addString(Config->SoName)});
694 
695   Out<ELFT>::DynStrTab->finalize();
696 
697   if (Out<ELFT>::RelaDyn->hasRelocs()) {
698     bool IsRela = Config->Rela;
699     Add({IsRela ? DT_RELA : DT_REL, Out<ELFT>::RelaDyn});
700     Add({IsRela ? DT_RELASZ : DT_RELSZ, Out<ELFT>::RelaDyn->getSize()});
701     Add({IsRela ? DT_RELAENT : DT_RELENT,
702          uintX_t(IsRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel))});
703 
704     // MIPS dynamic loader does not support RELCOUNT tag.
705     // The problem is in the tight relation between dynamic
706     // relocations and GOT. So do not emit this tag on MIPS.
707     if (Config->EMachine != EM_MIPS) {
708       size_t NumRelativeRels = Out<ELFT>::RelaDyn->getRelativeRelocCount();
709       if (Config->ZCombreloc && NumRelativeRels)
710         Add({IsRela ? DT_RELACOUNT : DT_RELCOUNT, NumRelativeRels});
711     }
712   }
713   if (Out<ELFT>::RelaPlt && Out<ELFT>::RelaPlt->hasRelocs()) {
714     Add({DT_JMPREL, Out<ELFT>::RelaPlt});
715     Add({DT_PLTRELSZ, Out<ELFT>::RelaPlt->getSize()});
716     Add({Config->EMachine == EM_MIPS ? DT_MIPS_PLTGOT : DT_PLTGOT,
717          Out<ELFT>::GotPlt});
718     Add({DT_PLTREL, uint64_t(Config->Rela ? DT_RELA : DT_REL)});
719   }
720 
721   Add({DT_SYMTAB, Out<ELFT>::DynSymTab});
722   Add({DT_SYMENT, sizeof(Elf_Sym)});
723   Add({DT_STRTAB, Out<ELFT>::DynStrTab});
724   Add({DT_STRSZ, Out<ELFT>::DynStrTab->getSize()});
725   if (Out<ELFT>::GnuHashTab)
726     Add({DT_GNU_HASH, Out<ELFT>::GnuHashTab});
727   if (Out<ELFT>::HashTab)
728     Add({DT_HASH, Out<ELFT>::HashTab});
729 
730   if (Out<ELFT>::PreinitArray) {
731     Add({DT_PREINIT_ARRAY, Out<ELFT>::PreinitArray});
732     Add({DT_PREINIT_ARRAYSZ, Out<ELFT>::PreinitArray, Entry::SecSize});
733   }
734   if (Out<ELFT>::InitArray) {
735     Add({DT_INIT_ARRAY, Out<ELFT>::InitArray});
736     Add({DT_INIT_ARRAYSZ, Out<ELFT>::InitArray, Entry::SecSize});
737   }
738   if (Out<ELFT>::FiniArray) {
739     Add({DT_FINI_ARRAY, Out<ELFT>::FiniArray});
740     Add({DT_FINI_ARRAYSZ, Out<ELFT>::FiniArray, Entry::SecSize});
741   }
742 
743   if (SymbolBody *B = Symtab<ELFT>::X->find(Config->Init))
744     Add({DT_INIT, B});
745   if (SymbolBody *B = Symtab<ELFT>::X->find(Config->Fini))
746     Add({DT_FINI, B});
747 
748   uint32_t DtFlags = 0;
749   uint32_t DtFlags1 = 0;
750   if (Config->Bsymbolic)
751     DtFlags |= DF_SYMBOLIC;
752   if (Config->ZNodelete)
753     DtFlags1 |= DF_1_NODELETE;
754   if (Config->ZNow) {
755     DtFlags |= DF_BIND_NOW;
756     DtFlags1 |= DF_1_NOW;
757   }
758   if (Config->ZOrigin) {
759     DtFlags |= DF_ORIGIN;
760     DtFlags1 |= DF_1_ORIGIN;
761   }
762 
763   if (DtFlags)
764     Add({DT_FLAGS, DtFlags});
765   if (DtFlags1)
766     Add({DT_FLAGS_1, DtFlags1});
767 
768   if (!Config->Entry.empty())
769     Add({DT_DEBUG, (uint64_t)0});
770 
771   bool HasVerNeed = Out<ELFT>::VerNeed->getNeedNum() != 0;
772   if (HasVerNeed || Out<ELFT>::VerDef)
773     Add({DT_VERSYM, Out<ELFT>::VerSym});
774   if (Out<ELFT>::VerDef) {
775     Add({DT_VERDEF, Out<ELFT>::VerDef});
776     Add({DT_VERDEFNUM, getVerDefNum()});
777   }
778   if (HasVerNeed) {
779     Add({DT_VERNEED, Out<ELFT>::VerNeed});
780     Add({DT_VERNEEDNUM, Out<ELFT>::VerNeed->getNeedNum()});
781   }
782 
783   if (Config->EMachine == EM_MIPS) {
784     Add({DT_MIPS_RLD_VERSION, 1});
785     Add({DT_MIPS_FLAGS, RHF_NOTPOT});
786     Add({DT_MIPS_BASE_ADDRESS, Config->ImageBase});
787     Add({DT_MIPS_SYMTABNO, Out<ELFT>::DynSymTab->getNumSymbols()});
788     Add({DT_MIPS_LOCAL_GOTNO, Out<ELFT>::Got->getMipsLocalEntriesNum()});
789     if (const SymbolBody *B = Out<ELFT>::Got->getMipsFirstGlobalEntry())
790       Add({DT_MIPS_GOTSYM, B->DynsymIndex});
791     else
792       Add({DT_MIPS_GOTSYM, Out<ELFT>::DynSymTab->getNumSymbols()});
793     Add({DT_PLTGOT, Out<ELFT>::Got});
794     if (Out<ELFT>::MipsRldMap)
795       Add({DT_MIPS_RLD_MAP, Out<ELFT>::MipsRldMap});
796   }
797 
798   // +1 for DT_NULL
799   Header.sh_size = (Entries.size() + 1) * Header.sh_entsize;
800 }
801 
802 template <class ELFT> void DynamicSection<ELFT>::writeTo(uint8_t *Buf) {
803   auto *P = reinterpret_cast<Elf_Dyn *>(Buf);
804 
805   for (const Entry &E : Entries) {
806     P->d_tag = E.Tag;
807     switch (E.Kind) {
808     case Entry::SecAddr:
809       P->d_un.d_ptr = E.OutSec->getVA();
810       break;
811     case Entry::SecSize:
812       P->d_un.d_val = E.OutSec->getSize();
813       break;
814     case Entry::SymAddr:
815       P->d_un.d_ptr = E.Sym->template getVA<ELFT>();
816       break;
817     case Entry::PlainInt:
818       P->d_un.d_val = E.Val;
819       break;
820     }
821     ++P;
822   }
823 }
824 
825 template <class ELFT>
826 EhFrameHeader<ELFT>::EhFrameHeader()
827     : OutputSectionBase<ELFT>(".eh_frame_hdr", SHT_PROGBITS, SHF_ALLOC) {}
828 
829 // .eh_frame_hdr contains a binary search table of pointers to FDEs.
830 // Each entry of the search table consists of two values,
831 // the starting PC from where FDEs covers, and the FDE's address.
832 // It is sorted by PC.
833 template <class ELFT> void EhFrameHeader<ELFT>::writeTo(uint8_t *Buf) {
834   const endianness E = ELFT::TargetEndianness;
835 
836   // Sort the FDE list by their PC and uniqueify. Usually there is only
837   // one FDE for a PC (i.e. function), but if ICF merges two functions
838   // into one, there can be more than one FDEs pointing to the address.
839   auto Less = [](const FdeData &A, const FdeData &B) { return A.Pc < B.Pc; };
840   std::stable_sort(Fdes.begin(), Fdes.end(), Less);
841   auto Eq = [](const FdeData &A, const FdeData &B) { return A.Pc == B.Pc; };
842   Fdes.erase(std::unique(Fdes.begin(), Fdes.end(), Eq), Fdes.end());
843 
844   Buf[0] = 1;
845   Buf[1] = DW_EH_PE_pcrel | DW_EH_PE_sdata4;
846   Buf[2] = DW_EH_PE_udata4;
847   Buf[3] = DW_EH_PE_datarel | DW_EH_PE_sdata4;
848   write32<E>(Buf + 4, Out<ELFT>::EhFrame->getVA() - this->getVA() - 4);
849   write32<E>(Buf + 8, Fdes.size());
850   Buf += 12;
851 
852   uintX_t VA = this->getVA();
853   for (FdeData &Fde : Fdes) {
854     write32<E>(Buf, Fde.Pc - VA);
855     write32<E>(Buf + 4, Fde.FdeVA - VA);
856     Buf += 8;
857   }
858 }
859 
860 template <class ELFT> void EhFrameHeader<ELFT>::finalize() {
861   // .eh_frame_hdr has a 12 bytes header followed by an array of FDEs.
862   this->Header.sh_size = 12 + Out<ELFT>::EhFrame->NumFdes * 8;
863 }
864 
865 template <class ELFT>
866 void EhFrameHeader<ELFT>::addFde(uint32_t Pc, uint32_t FdeVA) {
867   Fdes.push_back({Pc, FdeVA});
868 }
869 
870 template <class ELFT>
871 OutputSection<ELFT>::OutputSection(StringRef Name, uint32_t Type, uintX_t Flags)
872     : OutputSectionBase<ELFT>(Name, Type, Flags) {
873   if (Type == SHT_RELA)
874     this->Header.sh_entsize = sizeof(Elf_Rela);
875   else if (Type == SHT_REL)
876     this->Header.sh_entsize = sizeof(Elf_Rel);
877 }
878 
879 template <class ELFT> void OutputSection<ELFT>::finalize() {
880   uint32_t Type = this->Header.sh_type;
881   if (Type != SHT_RELA && Type != SHT_REL)
882     return;
883   this->Header.sh_link = Out<ELFT>::SymTab->SectionIndex;
884   // sh_info for SHT_REL[A] sections should contain the section header index of
885   // the section to which the relocation applies.
886   InputSectionBase<ELFT> *S = Sections[0]->getRelocatedSection();
887   this->Header.sh_info = S->OutSec->SectionIndex;
888 }
889 
890 template <class ELFT>
891 void OutputSection<ELFT>::addSection(InputSectionBase<ELFT> *C) {
892   assert(C->Live);
893   auto *S = cast<InputSection<ELFT>>(C);
894   Sections.push_back(S);
895   S->OutSec = this;
896   this->updateAlignment(S->Alignment);
897 }
898 
899 // If an input string is in the form of "foo.N" where N is a number,
900 // return N. Otherwise, returns 65536, which is one greater than the
901 // lowest priority.
902 static int getPriority(StringRef S) {
903   size_t Pos = S.rfind('.');
904   if (Pos == StringRef::npos)
905     return 65536;
906   int V;
907   if (S.substr(Pos + 1).getAsInteger(10, V))
908     return 65536;
909   return V;
910 }
911 
912 // This function is called after we sort input sections
913 // and scan relocations to setup sections' offsets.
914 template <class ELFT> void OutputSection<ELFT>::assignOffsets() {
915   uintX_t Off = this->Header.sh_size;
916   for (InputSection<ELFT> *S : Sections) {
917     Off = alignTo(Off, S->Alignment);
918     S->OutSecOff = Off;
919     Off += S->getSize();
920   }
921   this->Header.sh_size = Off;
922 }
923 
924 // Sorts input sections by section name suffixes, so that .foo.N comes
925 // before .foo.M if N < M. Used to sort .{init,fini}_array.N sections.
926 // We want to keep the original order if the priorities are the same
927 // because the compiler keeps the original initialization order in a
928 // translation unit and we need to respect that.
929 // For more detail, read the section of the GCC's manual about init_priority.
930 template <class ELFT> void OutputSection<ELFT>::sortInitFini() {
931   // Sort sections by priority.
932   typedef std::pair<int, InputSection<ELFT> *> Pair;
933   auto Comp = [](const Pair &A, const Pair &B) { return A.first < B.first; };
934 
935   std::vector<Pair> V;
936   for (InputSection<ELFT> *S : Sections)
937     V.push_back({getPriority(S->Name), S});
938   std::stable_sort(V.begin(), V.end(), Comp);
939   Sections.clear();
940   for (Pair &P : V)
941     Sections.push_back(P.second);
942 }
943 
944 // Returns true if S matches /Filename.?\.o$/.
945 static bool isCrtBeginEnd(StringRef S, StringRef Filename) {
946   if (!S.endswith(".o"))
947     return false;
948   S = S.drop_back(2);
949   if (S.endswith(Filename))
950     return true;
951   return !S.empty() && S.drop_back().endswith(Filename);
952 }
953 
954 static bool isCrtbegin(StringRef S) { return isCrtBeginEnd(S, "crtbegin"); }
955 static bool isCrtend(StringRef S) { return isCrtBeginEnd(S, "crtend"); }
956 
957 // .ctors and .dtors are sorted by this priority from highest to lowest.
958 //
959 //  1. The section was contained in crtbegin (crtbegin contains
960 //     some sentinel value in its .ctors and .dtors so that the runtime
961 //     can find the beginning of the sections.)
962 //
963 //  2. The section has an optional priority value in the form of ".ctors.N"
964 //     or ".dtors.N" where N is a number. Unlike .{init,fini}_array,
965 //     they are compared as string rather than number.
966 //
967 //  3. The section is just ".ctors" or ".dtors".
968 //
969 //  4. The section was contained in crtend, which contains an end marker.
970 //
971 // In an ideal world, we don't need this function because .init_array and
972 // .ctors are duplicate features (and .init_array is newer.) However, there
973 // are too many real-world use cases of .ctors, so we had no choice to
974 // support that with this rather ad-hoc semantics.
975 template <class ELFT>
976 static bool compCtors(const InputSection<ELFT> *A,
977                       const InputSection<ELFT> *B) {
978   bool BeginA = isCrtbegin(A->getFile()->getName());
979   bool BeginB = isCrtbegin(B->getFile()->getName());
980   if (BeginA != BeginB)
981     return BeginA;
982   bool EndA = isCrtend(A->getFile()->getName());
983   bool EndB = isCrtend(B->getFile()->getName());
984   if (EndA != EndB)
985     return EndB;
986   StringRef X = A->Name;
987   StringRef Y = B->Name;
988   assert(X.startswith(".ctors") || X.startswith(".dtors"));
989   assert(Y.startswith(".ctors") || Y.startswith(".dtors"));
990   X = X.substr(6);
991   Y = Y.substr(6);
992   if (X.empty() && Y.empty())
993     return false;
994   return X < Y;
995 }
996 
997 // Sorts input sections by the special rules for .ctors and .dtors.
998 // Unfortunately, the rules are different from the one for .{init,fini}_array.
999 // Read the comment above.
1000 template <class ELFT> void OutputSection<ELFT>::sortCtorsDtors() {
1001   std::stable_sort(Sections.begin(), Sections.end(), compCtors<ELFT>);
1002 }
1003 
1004 static void fill(uint8_t *Buf, size_t Size, ArrayRef<uint8_t> A) {
1005   size_t I = 0;
1006   for (; I + A.size() < Size; I += A.size())
1007     memcpy(Buf + I, A.data(), A.size());
1008   memcpy(Buf + I, A.data(), Size - I);
1009 }
1010 
1011 template <class ELFT> void OutputSection<ELFT>::writeTo(uint8_t *Buf) {
1012   ArrayRef<uint8_t> Filler = Script<ELFT>::X->getFiller(this->Name);
1013   if (!Filler.empty())
1014     fill(Buf, this->getSize(), Filler);
1015   if (Config->Threads) {
1016     parallel_for_each(Sections.begin(), Sections.end(),
1017                       [=](InputSection<ELFT> *C) { C->writeTo(Buf); });
1018   } else {
1019     for (InputSection<ELFT> *C : Sections)
1020       C->writeTo(Buf);
1021   }
1022 }
1023 
1024 template <class ELFT>
1025 EhOutputSection<ELFT>::EhOutputSection()
1026     : OutputSectionBase<ELFT>(".eh_frame", SHT_PROGBITS, SHF_ALLOC) {}
1027 
1028 // Search for an existing CIE record or create a new one.
1029 // CIE records from input object files are uniquified by their contents
1030 // and where their relocations point to.
1031 template <class ELFT>
1032 template <class RelTy>
1033 CieRecord *EhOutputSection<ELFT>::addCie(EhSectionPiece &Piece,
1034                                          EhInputSection<ELFT> *Sec,
1035                                          ArrayRef<RelTy> Rels) {
1036   const endianness E = ELFT::TargetEndianness;
1037   if (read32<E>(Piece.data().data() + 4) != 0)
1038     fatal("CIE expected at beginning of .eh_frame: " + Sec->Name);
1039 
1040   SymbolBody *Personality = nullptr;
1041   unsigned FirstRelI = Piece.FirstRelocation;
1042   if (FirstRelI != (unsigned)-1)
1043     Personality = &Sec->getFile()->getRelocTargetSym(Rels[FirstRelI]);
1044 
1045   // Search for an existing CIE by CIE contents/relocation target pair.
1046   CieRecord *Cie = &CieMap[{Piece.data(), Personality}];
1047 
1048   // If not found, create a new one.
1049   if (Cie->Piece == nullptr) {
1050     Cie->Piece = &Piece;
1051     Cies.push_back(Cie);
1052   }
1053   return Cie;
1054 }
1055 
1056 // There is one FDE per function. Returns true if a given FDE
1057 // points to a live function.
1058 template <class ELFT>
1059 template <class RelTy>
1060 bool EhOutputSection<ELFT>::isFdeLive(EhSectionPiece &Piece,
1061                                       EhInputSection<ELFT> *Sec,
1062                                       ArrayRef<RelTy> Rels) {
1063   unsigned FirstRelI = Piece.FirstRelocation;
1064   if (FirstRelI == (unsigned)-1)
1065     fatal("FDE doesn't reference another section");
1066   const RelTy &Rel = Rels[FirstRelI];
1067   SymbolBody &B = Sec->getFile()->getRelocTargetSym(Rel);
1068   auto *D = dyn_cast<DefinedRegular<ELFT>>(&B);
1069   if (!D || !D->Section)
1070     return false;
1071   InputSectionBase<ELFT> *Target = D->Section->Repl;
1072   return Target && Target->Live;
1073 }
1074 
1075 // .eh_frame is a sequence of CIE or FDE records. In general, there
1076 // is one CIE record per input object file which is followed by
1077 // a list of FDEs. This function searches an existing CIE or create a new
1078 // one and associates FDEs to the CIE.
1079 template <class ELFT>
1080 template <class RelTy>
1081 void EhOutputSection<ELFT>::addSectionAux(EhInputSection<ELFT> *Sec,
1082                                           ArrayRef<RelTy> Rels) {
1083   const endianness E = ELFT::TargetEndianness;
1084 
1085   DenseMap<size_t, CieRecord *> OffsetToCie;
1086   for (EhSectionPiece &Piece : Sec->Pieces) {
1087     // The empty record is the end marker.
1088     if (Piece.size() == 4)
1089       return;
1090 
1091     size_t Offset = Piece.InputOff;
1092     uint32_t ID = read32<E>(Piece.data().data() + 4);
1093     if (ID == 0) {
1094       OffsetToCie[Offset] = addCie(Piece, Sec, Rels);
1095       continue;
1096     }
1097 
1098     uint32_t CieOffset = Offset + 4 - ID;
1099     CieRecord *Cie = OffsetToCie[CieOffset];
1100     if (!Cie)
1101       fatal("invalid CIE reference");
1102 
1103     if (!isFdeLive(Piece, Sec, Rels))
1104       continue;
1105     Cie->FdePieces.push_back(&Piece);
1106     NumFdes++;
1107   }
1108 }
1109 
1110 template <class ELFT>
1111 void EhOutputSection<ELFT>::addSection(InputSectionBase<ELFT> *C) {
1112   auto *Sec = cast<EhInputSection<ELFT>>(C);
1113   Sec->OutSec = this;
1114   this->updateAlignment(Sec->Alignment);
1115   Sections.push_back(Sec);
1116 
1117   // .eh_frame is a sequence of CIE or FDE records. This function
1118   // splits it into pieces so that we can call
1119   // SplitInputSection::getSectionPiece on the section.
1120   Sec->split();
1121   if (Sec->Pieces.empty())
1122     return;
1123 
1124   if (const Elf_Shdr *RelSec = Sec->RelocSection) {
1125     ELFFile<ELFT> &Obj = Sec->getFile()->getObj();
1126     if (RelSec->sh_type == SHT_RELA)
1127       addSectionAux(Sec, Obj.relas(RelSec));
1128     else
1129       addSectionAux(Sec, Obj.rels(RelSec));
1130     return;
1131   }
1132   addSectionAux(Sec, makeArrayRef<Elf_Rela>(nullptr, nullptr));
1133 }
1134 
1135 template <class ELFT>
1136 static void writeCieFde(uint8_t *Buf, ArrayRef<uint8_t> D) {
1137   memcpy(Buf, D.data(), D.size());
1138 
1139   // Fix the size field. -4 since size does not include the size field itself.
1140   const endianness E = ELFT::TargetEndianness;
1141   write32<E>(Buf, alignTo(D.size(), sizeof(typename ELFT::uint)) - 4);
1142 }
1143 
1144 template <class ELFT> void EhOutputSection<ELFT>::finalize() {
1145   if (this->Header.sh_size)
1146     return; // Already finalized.
1147 
1148   size_t Off = 0;
1149   for (CieRecord *Cie : Cies) {
1150     Cie->Piece->OutputOff = Off;
1151     Off += alignTo(Cie->Piece->size(), sizeof(uintX_t));
1152 
1153     for (SectionPiece *Fde : Cie->FdePieces) {
1154       Fde->OutputOff = Off;
1155       Off += alignTo(Fde->size(), sizeof(uintX_t));
1156     }
1157   }
1158   this->Header.sh_size = Off;
1159 }
1160 
1161 template <class ELFT> static uint64_t readFdeAddr(uint8_t *Buf, int Size) {
1162   const endianness E = ELFT::TargetEndianness;
1163   switch (Size) {
1164   case DW_EH_PE_udata2:
1165     return read16<E>(Buf);
1166   case DW_EH_PE_udata4:
1167     return read32<E>(Buf);
1168   case DW_EH_PE_udata8:
1169     return read64<E>(Buf);
1170   case DW_EH_PE_absptr:
1171     if (ELFT::Is64Bits)
1172       return read64<E>(Buf);
1173     return read32<E>(Buf);
1174   }
1175   fatal("unknown FDE size encoding");
1176 }
1177 
1178 // Returns the VA to which a given FDE (on a mmap'ed buffer) is applied to.
1179 // We need it to create .eh_frame_hdr section.
1180 template <class ELFT>
1181 typename ELFT::uint EhOutputSection<ELFT>::getFdePc(uint8_t *Buf, size_t FdeOff,
1182                                                     uint8_t Enc) {
1183   // The starting address to which this FDE applies is
1184   // stored at FDE + 8 byte.
1185   size_t Off = FdeOff + 8;
1186   uint64_t Addr = readFdeAddr<ELFT>(Buf + Off, Enc & 0x7);
1187   if ((Enc & 0x70) == DW_EH_PE_absptr)
1188     return Addr;
1189   if ((Enc & 0x70) == DW_EH_PE_pcrel)
1190     return Addr + this->getVA() + Off;
1191   fatal("unknown FDE size relative encoding");
1192 }
1193 
1194 template <class ELFT> void EhOutputSection<ELFT>::writeTo(uint8_t *Buf) {
1195   const endianness E = ELFT::TargetEndianness;
1196   for (CieRecord *Cie : Cies) {
1197     size_t CieOffset = Cie->Piece->OutputOff;
1198     writeCieFde<ELFT>(Buf + CieOffset, Cie->Piece->data());
1199 
1200     for (SectionPiece *Fde : Cie->FdePieces) {
1201       size_t Off = Fde->OutputOff;
1202       writeCieFde<ELFT>(Buf + Off, Fde->data());
1203 
1204       // FDE's second word should have the offset to an associated CIE.
1205       // Write it.
1206       write32<E>(Buf + Off + 4, Off + 4 - CieOffset);
1207     }
1208   }
1209 
1210   for (EhInputSection<ELFT> *S : Sections)
1211     S->relocate(Buf, nullptr);
1212 
1213   // Construct .eh_frame_hdr. .eh_frame_hdr is a binary search table
1214   // to get a FDE from an address to which FDE is applied. So here
1215   // we obtain two addresses and pass them to EhFrameHdr object.
1216   if (Out<ELFT>::EhFrameHdr) {
1217     for (CieRecord *Cie : Cies) {
1218       uint8_t Enc = getFdeEncoding<ELFT>(Cie->Piece->data());
1219       for (SectionPiece *Fde : Cie->FdePieces) {
1220         uintX_t Pc = getFdePc(Buf, Fde->OutputOff, Enc);
1221         uintX_t FdeVA = this->getVA() + Fde->OutputOff;
1222         Out<ELFT>::EhFrameHdr->addFde(Pc, FdeVA);
1223       }
1224     }
1225   }
1226 }
1227 
1228 template <class ELFT>
1229 MergeOutputSection<ELFT>::MergeOutputSection(StringRef Name, uint32_t Type,
1230                                              uintX_t Flags, uintX_t Alignment)
1231     : OutputSectionBase<ELFT>(Name, Type, Flags),
1232       Builder(StringTableBuilder::RAW, Alignment) {}
1233 
1234 template <class ELFT> void MergeOutputSection<ELFT>::writeTo(uint8_t *Buf) {
1235   if (shouldTailMerge()) {
1236     StringRef Data = Builder.data();
1237     memcpy(Buf, Data.data(), Data.size());
1238     return;
1239   }
1240   for (const std::pair<CachedHash<StringRef>, size_t> &P : Builder.getMap()) {
1241     StringRef Data = P.first.Val;
1242     memcpy(Buf + P.second, Data.data(), Data.size());
1243   }
1244 }
1245 
1246 static StringRef toStringRef(ArrayRef<uint8_t> A) {
1247   return {(const char *)A.data(), A.size()};
1248 }
1249 
1250 template <class ELFT>
1251 void MergeOutputSection<ELFT>::addSection(InputSectionBase<ELFT> *C) {
1252   auto *Sec = cast<MergeInputSection<ELFT>>(C);
1253   Sec->OutSec = this;
1254   this->updateAlignment(Sec->Alignment);
1255   this->Header.sh_entsize = Sec->getSectionHdr()->sh_entsize;
1256   Sections.push_back(Sec);
1257 
1258   bool IsString = this->Header.sh_flags & SHF_STRINGS;
1259 
1260   for (SectionPiece &Piece : Sec->Pieces) {
1261     if (!Piece.Live)
1262       continue;
1263     uintX_t OutputOffset = Builder.add(toStringRef(Piece.data()));
1264     if (!IsString || !shouldTailMerge())
1265       Piece.OutputOff = OutputOffset;
1266   }
1267 }
1268 
1269 template <class ELFT>
1270 unsigned MergeOutputSection<ELFT>::getOffset(StringRef Val) {
1271   return Builder.getOffset(Val);
1272 }
1273 
1274 template <class ELFT> bool MergeOutputSection<ELFT>::shouldTailMerge() const {
1275   return Config->Optimize >= 2 && this->Header.sh_flags & SHF_STRINGS;
1276 }
1277 
1278 template <class ELFT> void MergeOutputSection<ELFT>::finalize() {
1279   if (shouldTailMerge())
1280     Builder.finalize();
1281   this->Header.sh_size = Builder.getSize();
1282 }
1283 
1284 template <class ELFT> void MergeOutputSection<ELFT>::finalizePieces() {
1285   for (MergeInputSection<ELFT> *Sec : Sections)
1286     Sec->finalizePieces();
1287 }
1288 
1289 template <class ELFT>
1290 StringTableSection<ELFT>::StringTableSection(StringRef Name, bool Dynamic)
1291     : OutputSectionBase<ELFT>(Name, SHT_STRTAB,
1292                               Dynamic ? (uintX_t)SHF_ALLOC : 0),
1293       Dynamic(Dynamic) {}
1294 
1295 // Adds a string to the string table. If HashIt is true we hash and check for
1296 // duplicates. It is optional because the name of global symbols are already
1297 // uniqued and hashing them again has a big cost for a small value: uniquing
1298 // them with some other string that happens to be the same.
1299 template <class ELFT>
1300 unsigned StringTableSection<ELFT>::addString(StringRef S, bool HashIt) {
1301   if (HashIt) {
1302     auto R = StringMap.insert(std::make_pair(S, Size));
1303     if (!R.second)
1304       return R.first->second;
1305   }
1306   unsigned Ret = Size;
1307   Size += S.size() + 1;
1308   Strings.push_back(S);
1309   return Ret;
1310 }
1311 
1312 template <class ELFT> void StringTableSection<ELFT>::writeTo(uint8_t *Buf) {
1313   // ELF string tables start with NUL byte, so advance the pointer by one.
1314   ++Buf;
1315   for (StringRef S : Strings) {
1316     memcpy(Buf, S.data(), S.size());
1317     Buf += S.size() + 1;
1318   }
1319 }
1320 
1321 template <class ELFT>
1322 typename ELFT::uint DynamicReloc<ELFT>::getOffset() const {
1323   if (OutputSec)
1324     return OutputSec->getVA() + OffsetInSec;
1325   return InputSec->OutSec->getVA() + InputSec->getOffset(OffsetInSec);
1326 }
1327 
1328 template <class ELFT>
1329 typename ELFT::uint DynamicReloc<ELFT>::getAddend() const {
1330   if (UseSymVA)
1331     return Sym->getVA<ELFT>(Addend);
1332   return Addend;
1333 }
1334 
1335 template <class ELFT> uint32_t DynamicReloc<ELFT>::getSymIndex() const {
1336   if (Sym && !UseSymVA)
1337     return Sym->DynsymIndex;
1338   return 0;
1339 }
1340 
1341 template <class ELFT>
1342 SymbolTableSection<ELFT>::SymbolTableSection(
1343     StringTableSection<ELFT> &StrTabSec)
1344     : OutputSectionBase<ELFT>(StrTabSec.isDynamic() ? ".dynsym" : ".symtab",
1345                               StrTabSec.isDynamic() ? SHT_DYNSYM : SHT_SYMTAB,
1346                               StrTabSec.isDynamic() ? (uintX_t)SHF_ALLOC : 0),
1347       StrTabSec(StrTabSec) {
1348   this->Header.sh_entsize = sizeof(Elf_Sym);
1349   this->Header.sh_addralign = sizeof(uintX_t);
1350 }
1351 
1352 // Orders symbols according to their positions in the GOT,
1353 // in compliance with MIPS ABI rules.
1354 // See "Global Offset Table" in Chapter 5 in the following document
1355 // for detailed description:
1356 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
1357 static bool sortMipsSymbols(const std::pair<SymbolBody *, unsigned> &L,
1358                             const std::pair<SymbolBody *, unsigned> &R) {
1359   // Sort entries related to non-local preemptible symbols by GOT indexes.
1360   // All other entries go to the first part of GOT in arbitrary order.
1361   bool LIsInLocalGot = !L.first->IsInGlobalMipsGot;
1362   bool RIsInLocalGot = !R.first->IsInGlobalMipsGot;
1363   if (LIsInLocalGot || RIsInLocalGot)
1364     return !RIsInLocalGot;
1365   return L.first->GotIndex < R.first->GotIndex;
1366 }
1367 
1368 static uint8_t getSymbolBinding(SymbolBody *Body) {
1369   Symbol *S = Body->symbol();
1370   if (Config->Relocatable)
1371     return S->Binding;
1372   uint8_t Visibility = S->Visibility;
1373   if (Visibility != STV_DEFAULT && Visibility != STV_PROTECTED)
1374     return STB_LOCAL;
1375   if (Config->NoGnuUnique && S->Binding == STB_GNU_UNIQUE)
1376     return STB_GLOBAL;
1377   return S->Binding;
1378 }
1379 
1380 template <class ELFT> void SymbolTableSection<ELFT>::finalize() {
1381   if (this->Header.sh_size)
1382     return; // Already finalized.
1383 
1384   this->Header.sh_size = getNumSymbols() * sizeof(Elf_Sym);
1385   this->Header.sh_link = StrTabSec.SectionIndex;
1386   this->Header.sh_info = NumLocals + 1;
1387 
1388   if (Config->Relocatable) {
1389     size_t I = NumLocals;
1390     for (const std::pair<SymbolBody *, size_t> &P : Symbols)
1391       P.first->DynsymIndex = ++I;
1392     return;
1393   }
1394 
1395   if (!StrTabSec.isDynamic()) {
1396     std::stable_sort(Symbols.begin(), Symbols.end(),
1397                      [](const std::pair<SymbolBody *, unsigned> &L,
1398                         const std::pair<SymbolBody *, unsigned> &R) {
1399                        return getSymbolBinding(L.first) == STB_LOCAL &&
1400                               getSymbolBinding(R.first) != STB_LOCAL;
1401                      });
1402     return;
1403   }
1404   if (Out<ELFT>::GnuHashTab)
1405     // NB: It also sorts Symbols to meet the GNU hash table requirements.
1406     Out<ELFT>::GnuHashTab->addSymbols(Symbols);
1407   else if (Config->EMachine == EM_MIPS)
1408     std::stable_sort(Symbols.begin(), Symbols.end(), sortMipsSymbols);
1409   size_t I = 0;
1410   for (const std::pair<SymbolBody *, size_t> &P : Symbols)
1411     P.first->DynsymIndex = ++I;
1412 }
1413 
1414 template <class ELFT>
1415 void SymbolTableSection<ELFT>::addSymbol(SymbolBody *B) {
1416   Symbols.push_back({B, StrTabSec.addString(B->getName(), false)});
1417 }
1418 
1419 template <class ELFT> void SymbolTableSection<ELFT>::writeTo(uint8_t *Buf) {
1420   Buf += sizeof(Elf_Sym);
1421 
1422   // All symbols with STB_LOCAL binding precede the weak and global symbols.
1423   // .dynsym only contains global symbols.
1424   if (Config->Discard != DiscardPolicy::All && !StrTabSec.isDynamic())
1425     writeLocalSymbols(Buf);
1426 
1427   writeGlobalSymbols(Buf);
1428 }
1429 
1430 template <class ELFT>
1431 void SymbolTableSection<ELFT>::writeLocalSymbols(uint8_t *&Buf) {
1432   // Iterate over all input object files to copy their local symbols
1433   // to the output symbol table pointed by Buf.
1434   for (const std::unique_ptr<ObjectFile<ELFT>> &File :
1435        Symtab<ELFT>::X->getObjectFiles()) {
1436     for (const std::pair<const DefinedRegular<ELFT> *, size_t> &P :
1437          File->KeptLocalSyms) {
1438       const DefinedRegular<ELFT> &Body = *P.first;
1439       InputSectionBase<ELFT> *Section = Body.Section;
1440       auto *ESym = reinterpret_cast<Elf_Sym *>(Buf);
1441 
1442       if (!Section) {
1443         ESym->st_shndx = SHN_ABS;
1444         ESym->st_value = Body.Value;
1445       } else {
1446         const OutputSectionBase<ELFT> *OutSec = Section->OutSec;
1447         ESym->st_shndx = OutSec->SectionIndex;
1448         ESym->st_value = OutSec->getVA() + Section->getOffset(Body);
1449       }
1450       ESym->st_name = P.second;
1451       ESym->st_size = Body.template getSize<ELFT>();
1452       ESym->setBindingAndType(STB_LOCAL, Body.Type);
1453       Buf += sizeof(*ESym);
1454     }
1455   }
1456 }
1457 
1458 template <class ELFT>
1459 void SymbolTableSection<ELFT>::writeGlobalSymbols(uint8_t *Buf) {
1460   // Write the internal symbol table contents to the output symbol table
1461   // pointed by Buf.
1462   auto *ESym = reinterpret_cast<Elf_Sym *>(Buf);
1463   for (const std::pair<SymbolBody *, size_t> &P : Symbols) {
1464     SymbolBody *Body = P.first;
1465     size_t StrOff = P.second;
1466 
1467     uint8_t Type = Body->Type;
1468     uintX_t Size = Body->getSize<ELFT>();
1469 
1470     ESym->setBindingAndType(getSymbolBinding(Body), Type);
1471     ESym->st_size = Size;
1472     ESym->st_name = StrOff;
1473     ESym->setVisibility(Body->symbol()->Visibility);
1474     ESym->st_value = Body->getVA<ELFT>();
1475 
1476     if (const OutputSectionBase<ELFT> *OutSec = getOutputSection(Body))
1477       ESym->st_shndx = OutSec->SectionIndex;
1478     else if (isa<DefinedRegular<ELFT>>(Body))
1479       ESym->st_shndx = SHN_ABS;
1480 
1481     // On MIPS we need to mark symbol which has a PLT entry and requires pointer
1482     // equality by STO_MIPS_PLT flag. That is necessary to help dynamic linker
1483     // distinguish such symbols and MIPS lazy-binding stubs.
1484     // https://sourceware.org/ml/binutils/2008-07/txt00000.txt
1485     if (Config->EMachine == EM_MIPS && Body->isInPlt() &&
1486         Body->NeedsCopyOrPltAddr)
1487       ESym->st_other |= STO_MIPS_PLT;
1488     ++ESym;
1489   }
1490 }
1491 
1492 template <class ELFT>
1493 const OutputSectionBase<ELFT> *
1494 SymbolTableSection<ELFT>::getOutputSection(SymbolBody *Sym) {
1495   switch (Sym->kind()) {
1496   case SymbolBody::DefinedSyntheticKind:
1497     return cast<DefinedSynthetic<ELFT>>(Sym)->Section;
1498   case SymbolBody::DefinedRegularKind: {
1499     auto &D = cast<DefinedRegular<ELFT>>(*Sym);
1500     if (D.Section)
1501       return D.Section->OutSec;
1502     break;
1503   }
1504   case SymbolBody::DefinedCommonKind:
1505     return CommonInputSection<ELFT>::X->OutSec;
1506   case SymbolBody::SharedKind:
1507     if (cast<SharedSymbol<ELFT>>(Sym)->needsCopy())
1508       return Out<ELFT>::Bss;
1509     break;
1510   case SymbolBody::UndefinedKind:
1511   case SymbolBody::LazyArchiveKind:
1512   case SymbolBody::LazyObjectKind:
1513     break;
1514   }
1515   return nullptr;
1516 }
1517 
1518 template <class ELFT>
1519 VersionDefinitionSection<ELFT>::VersionDefinitionSection()
1520     : OutputSectionBase<ELFT>(".gnu.version_d", SHT_GNU_verdef, SHF_ALLOC) {
1521   this->Header.sh_addralign = sizeof(uint32_t);
1522 }
1523 
1524 static StringRef getFileDefName() {
1525   if (!Config->SoName.empty())
1526     return Config->SoName;
1527   return Config->OutputFile;
1528 }
1529 
1530 template <class ELFT> void VersionDefinitionSection<ELFT>::finalize() {
1531   FileDefNameOff = Out<ELFT>::DynStrTab->addString(getFileDefName());
1532   for (VersionDefinition &V : Config->VersionDefinitions)
1533     V.NameOff = Out<ELFT>::DynStrTab->addString(V.Name);
1534 
1535   this->Header.sh_size =
1536       (sizeof(Elf_Verdef) + sizeof(Elf_Verdaux)) * getVerDefNum();
1537   this->Header.sh_link = Out<ELFT>::DynStrTab->SectionIndex;
1538 
1539   // sh_info should be set to the number of definitions. This fact is missed in
1540   // documentation, but confirmed by binutils community:
1541   // https://sourceware.org/ml/binutils/2014-11/msg00355.html
1542   this->Header.sh_info = getVerDefNum();
1543 }
1544 
1545 template <class ELFT>
1546 void VersionDefinitionSection<ELFT>::writeOne(uint8_t *Buf, uint32_t Index,
1547                                               StringRef Name, size_t NameOff) {
1548   auto *Verdef = reinterpret_cast<Elf_Verdef *>(Buf);
1549   Verdef->vd_version = 1;
1550   Verdef->vd_cnt = 1;
1551   Verdef->vd_aux = sizeof(Elf_Verdef);
1552   Verdef->vd_next = sizeof(Elf_Verdef) + sizeof(Elf_Verdaux);
1553   Verdef->vd_flags = (Index == 1 ? VER_FLG_BASE : 0);
1554   Verdef->vd_ndx = Index;
1555   Verdef->vd_hash = hashSysv(Name);
1556 
1557   auto *Verdaux = reinterpret_cast<Elf_Verdaux *>(Buf + sizeof(Elf_Verdef));
1558   Verdaux->vda_name = NameOff;
1559   Verdaux->vda_next = 0;
1560 }
1561 
1562 template <class ELFT>
1563 void VersionDefinitionSection<ELFT>::writeTo(uint8_t *Buf) {
1564   writeOne(Buf, 1, getFileDefName(), FileDefNameOff);
1565 
1566   for (VersionDefinition &V : Config->VersionDefinitions) {
1567     Buf += sizeof(Elf_Verdef) + sizeof(Elf_Verdaux);
1568     writeOne(Buf, V.Id, V.Name, V.NameOff);
1569   }
1570 
1571   // Need to terminate the last version definition.
1572   Elf_Verdef *Verdef = reinterpret_cast<Elf_Verdef *>(Buf);
1573   Verdef->vd_next = 0;
1574 }
1575 
1576 template <class ELFT>
1577 VersionTableSection<ELFT>::VersionTableSection()
1578     : OutputSectionBase<ELFT>(".gnu.version", SHT_GNU_versym, SHF_ALLOC) {
1579   this->Header.sh_addralign = sizeof(uint16_t);
1580 }
1581 
1582 template <class ELFT> void VersionTableSection<ELFT>::finalize() {
1583   this->Header.sh_size =
1584       sizeof(Elf_Versym) * (Out<ELFT>::DynSymTab->getSymbols().size() + 1);
1585   this->Header.sh_entsize = sizeof(Elf_Versym);
1586   // At the moment of june 2016 GNU docs does not mention that sh_link field
1587   // should be set, but Sun docs do. Also readelf relies on this field.
1588   this->Header.sh_link = Out<ELFT>::DynSymTab->SectionIndex;
1589 }
1590 
1591 template <class ELFT> void VersionTableSection<ELFT>::writeTo(uint8_t *Buf) {
1592   auto *OutVersym = reinterpret_cast<Elf_Versym *>(Buf) + 1;
1593   for (const std::pair<SymbolBody *, size_t> &P :
1594        Out<ELFT>::DynSymTab->getSymbols()) {
1595     OutVersym->vs_index = P.first->symbol()->VersionId;
1596     ++OutVersym;
1597   }
1598 }
1599 
1600 template <class ELFT>
1601 VersionNeedSection<ELFT>::VersionNeedSection()
1602     : OutputSectionBase<ELFT>(".gnu.version_r", SHT_GNU_verneed, SHF_ALLOC) {
1603   this->Header.sh_addralign = sizeof(uint32_t);
1604 
1605   // Identifiers in verneed section start at 2 because 0 and 1 are reserved
1606   // for VER_NDX_LOCAL and VER_NDX_GLOBAL.
1607   // First identifiers are reserved by verdef section if it exist.
1608   NextIndex = getVerDefNum() + 1;
1609 }
1610 
1611 template <class ELFT>
1612 void VersionNeedSection<ELFT>::addSymbol(SharedSymbol<ELFT> *SS) {
1613   if (!SS->Verdef) {
1614     SS->symbol()->VersionId = VER_NDX_GLOBAL;
1615     return;
1616   }
1617   SharedFile<ELFT> *F = SS->file();
1618   // If we don't already know that we need an Elf_Verneed for this DSO, prepare
1619   // to create one by adding it to our needed list and creating a dynstr entry
1620   // for the soname.
1621   if (F->VerdefMap.empty())
1622     Needed.push_back({F, Out<ELFT>::DynStrTab->addString(F->getSoName())});
1623   typename SharedFile<ELFT>::NeededVer &NV = F->VerdefMap[SS->Verdef];
1624   // If we don't already know that we need an Elf_Vernaux for this Elf_Verdef,
1625   // prepare to create one by allocating a version identifier and creating a
1626   // dynstr entry for the version name.
1627   if (NV.Index == 0) {
1628     NV.StrTab = Out<ELFT>::DynStrTab->addString(
1629         SS->file()->getStringTable().data() + SS->Verdef->getAux()->vda_name);
1630     NV.Index = NextIndex++;
1631   }
1632   SS->symbol()->VersionId = NV.Index;
1633 }
1634 
1635 template <class ELFT> void VersionNeedSection<ELFT>::writeTo(uint8_t *Buf) {
1636   // The Elf_Verneeds need to appear first, followed by the Elf_Vernauxs.
1637   auto *Verneed = reinterpret_cast<Elf_Verneed *>(Buf);
1638   auto *Vernaux = reinterpret_cast<Elf_Vernaux *>(Verneed + Needed.size());
1639 
1640   for (std::pair<SharedFile<ELFT> *, size_t> &P : Needed) {
1641     // Create an Elf_Verneed for this DSO.
1642     Verneed->vn_version = 1;
1643     Verneed->vn_cnt = P.first->VerdefMap.size();
1644     Verneed->vn_file = P.second;
1645     Verneed->vn_aux =
1646         reinterpret_cast<char *>(Vernaux) - reinterpret_cast<char *>(Verneed);
1647     Verneed->vn_next = sizeof(Elf_Verneed);
1648     ++Verneed;
1649 
1650     // Create the Elf_Vernauxs for this Elf_Verneed. The loop iterates over
1651     // VerdefMap, which will only contain references to needed version
1652     // definitions. Each Elf_Vernaux is based on the information contained in
1653     // the Elf_Verdef in the source DSO. This loop iterates over a std::map of
1654     // pointers, but is deterministic because the pointers refer to Elf_Verdef
1655     // data structures within a single input file.
1656     for (auto &NV : P.first->VerdefMap) {
1657       Vernaux->vna_hash = NV.first->vd_hash;
1658       Vernaux->vna_flags = 0;
1659       Vernaux->vna_other = NV.second.Index;
1660       Vernaux->vna_name = NV.second.StrTab;
1661       Vernaux->vna_next = sizeof(Elf_Vernaux);
1662       ++Vernaux;
1663     }
1664 
1665     Vernaux[-1].vna_next = 0;
1666   }
1667   Verneed[-1].vn_next = 0;
1668 }
1669 
1670 template <class ELFT> void VersionNeedSection<ELFT>::finalize() {
1671   this->Header.sh_link = Out<ELFT>::DynStrTab->SectionIndex;
1672   this->Header.sh_info = Needed.size();
1673   unsigned Size = Needed.size() * sizeof(Elf_Verneed);
1674   for (std::pair<SharedFile<ELFT> *, size_t> &P : Needed)
1675     Size += P.first->VerdefMap.size() * sizeof(Elf_Vernaux);
1676   this->Header.sh_size = Size;
1677 }
1678 
1679 template <class ELFT>
1680 BuildIdSection<ELFT>::BuildIdSection(size_t HashSize)
1681     : OutputSectionBase<ELFT>(".note.gnu.build-id", SHT_NOTE, SHF_ALLOC),
1682       HashSize(HashSize) {
1683   // 16 bytes for the note section header.
1684   this->Header.sh_size = 16 + HashSize;
1685 }
1686 
1687 template <class ELFT> void BuildIdSection<ELFT>::writeTo(uint8_t *Buf) {
1688   const endianness E = ELFT::TargetEndianness;
1689   write32<E>(Buf, 4);                   // Name size
1690   write32<E>(Buf + 4, HashSize);        // Content size
1691   write32<E>(Buf + 8, NT_GNU_BUILD_ID); // Type
1692   memcpy(Buf + 12, "GNU", 4);           // Name string
1693   HashBuf = Buf + 16;
1694 }
1695 
1696 template <class ELFT>
1697 void BuildIdFnv1<ELFT>::writeBuildId(ArrayRef<uint8_t> Buf) {
1698   const endianness E = ELFT::TargetEndianness;
1699 
1700   // 64-bit FNV-1 hash
1701   uint64_t Hash = 0xcbf29ce484222325;
1702   for (uint8_t B : Buf) {
1703     Hash *= 0x100000001b3;
1704     Hash ^= B;
1705   }
1706   write64<E>(this->HashBuf, Hash);
1707 }
1708 
1709 template <class ELFT>
1710 void BuildIdMd5<ELFT>::writeBuildId(ArrayRef<uint8_t> Buf) {
1711   MD5 Hash;
1712   Hash.update(Buf);
1713   MD5::MD5Result Res;
1714   Hash.final(Res);
1715   memcpy(this->HashBuf, Res, 16);
1716 }
1717 
1718 template <class ELFT>
1719 void BuildIdSha1<ELFT>::writeBuildId(ArrayRef<uint8_t> Buf) {
1720   SHA1 Hash;
1721   Hash.update(Buf);
1722   memcpy(this->HashBuf, Hash.final().data(), 20);
1723 }
1724 
1725 template <class ELFT>
1726 void BuildIdUuid<ELFT>::writeBuildId(ArrayRef<uint8_t> Buf) {
1727   if (getRandomBytes(this->HashBuf, 16))
1728     error("entropy source failure");
1729 }
1730 
1731 template <class ELFT>
1732 BuildIdHexstring<ELFT>::BuildIdHexstring()
1733     : BuildIdSection<ELFT>(Config->BuildIdVector.size()) {}
1734 
1735 template <class ELFT>
1736 void BuildIdHexstring<ELFT>::writeBuildId(ArrayRef<uint8_t> Buf) {
1737   memcpy(this->HashBuf, Config->BuildIdVector.data(),
1738          Config->BuildIdVector.size());
1739 }
1740 
1741 template <class ELFT>
1742 MipsReginfoOutputSection<ELFT>::MipsReginfoOutputSection()
1743     : OutputSectionBase<ELFT>(".reginfo", SHT_MIPS_REGINFO, SHF_ALLOC) {
1744   this->Header.sh_addralign = 4;
1745   this->Header.sh_entsize = sizeof(Elf_Mips_RegInfo);
1746   this->Header.sh_size = sizeof(Elf_Mips_RegInfo);
1747 }
1748 
1749 template <class ELFT>
1750 void MipsReginfoOutputSection<ELFT>::writeTo(uint8_t *Buf) {
1751   auto *R = reinterpret_cast<Elf_Mips_RegInfo *>(Buf);
1752   R->ri_gp_value = Out<ELFT>::Got->getVA() + MipsGPOffset;
1753   R->ri_gprmask = GprMask;
1754 }
1755 
1756 template <class ELFT>
1757 void MipsReginfoOutputSection<ELFT>::addSection(InputSectionBase<ELFT> *C) {
1758   // Copy input object file's .reginfo gprmask to output.
1759   auto *S = cast<MipsReginfoInputSection<ELFT>>(C);
1760   GprMask |= S->Reginfo->ri_gprmask;
1761   S->OutSec = this;
1762 }
1763 
1764 template <class ELFT>
1765 MipsOptionsOutputSection<ELFT>::MipsOptionsOutputSection()
1766     : OutputSectionBase<ELFT>(".MIPS.options", SHT_MIPS_OPTIONS,
1767                               SHF_ALLOC | SHF_MIPS_NOSTRIP) {
1768   this->Header.sh_addralign = 8;
1769   this->Header.sh_entsize = 1;
1770   this->Header.sh_size = sizeof(Elf_Mips_Options) + sizeof(Elf_Mips_RegInfo);
1771 }
1772 
1773 template <class ELFT>
1774 void MipsOptionsOutputSection<ELFT>::writeTo(uint8_t *Buf) {
1775   auto *Opt = reinterpret_cast<Elf_Mips_Options *>(Buf);
1776   Opt->kind = ODK_REGINFO;
1777   Opt->size = this->Header.sh_size;
1778   Opt->section = 0;
1779   Opt->info = 0;
1780   auto *Reg = reinterpret_cast<Elf_Mips_RegInfo *>(Buf + sizeof(*Opt));
1781   Reg->ri_gp_value = Out<ELFT>::Got->getVA() + MipsGPOffset;
1782   Reg->ri_gprmask = GprMask;
1783 }
1784 
1785 template <class ELFT>
1786 void MipsOptionsOutputSection<ELFT>::addSection(InputSectionBase<ELFT> *C) {
1787   auto *S = cast<MipsOptionsInputSection<ELFT>>(C);
1788   if (S->Reginfo)
1789     GprMask |= S->Reginfo->ri_gprmask;
1790   S->OutSec = this;
1791 }
1792 
1793 template <class ELFT>
1794 MipsAbiFlagsOutputSection<ELFT>::MipsAbiFlagsOutputSection()
1795     : OutputSectionBase<ELFT>(".MIPS.abiflags", SHT_MIPS_ABIFLAGS, SHF_ALLOC) {
1796   this->Header.sh_addralign = 8;
1797   this->Header.sh_entsize = sizeof(Elf_Mips_ABIFlags);
1798   this->Header.sh_size = sizeof(Elf_Mips_ABIFlags);
1799   memset(&Flags, 0, sizeof(Flags));
1800 }
1801 
1802 template <class ELFT>
1803 void MipsAbiFlagsOutputSection<ELFT>::writeTo(uint8_t *Buf) {
1804   memcpy(Buf, &Flags, sizeof(Flags));
1805 }
1806 
1807 template <class ELFT>
1808 void MipsAbiFlagsOutputSection<ELFT>::addSection(InputSectionBase<ELFT> *C) {
1809   // Check compatibility and merge fields from input .MIPS.abiflags
1810   // to the output one.
1811   auto *S = cast<MipsAbiFlagsInputSection<ELFT>>(C);
1812   S->OutSec = this;
1813   if (S->Flags->version != 0) {
1814     error(getFilename(S->getFile()) + ": unexpected .MIPS.abiflags version " +
1815           Twine(S->Flags->version));
1816     return;
1817   }
1818   // LLD checks ISA compatibility in getMipsEFlags(). Here we just
1819   // select the highest number of ISA/Rev/Ext.
1820   Flags.isa_level = std::max(Flags.isa_level, S->Flags->isa_level);
1821   Flags.isa_rev = std::max(Flags.isa_rev, S->Flags->isa_rev);
1822   Flags.isa_ext = std::max(Flags.isa_ext, S->Flags->isa_ext);
1823   Flags.gpr_size = std::max(Flags.gpr_size, S->Flags->gpr_size);
1824   Flags.cpr1_size = std::max(Flags.cpr1_size, S->Flags->cpr1_size);
1825   Flags.cpr2_size = std::max(Flags.cpr2_size, S->Flags->cpr2_size);
1826   Flags.ases |= S->Flags->ases;
1827   Flags.flags1 |= S->Flags->flags1;
1828   Flags.flags2 |= S->Flags->flags2;
1829   Flags.fp_abi = elf::getMipsFpAbiFlag(Flags.fp_abi, S->Flags->fp_abi,
1830                                        getFilename(S->getFile()));
1831 }
1832 
1833 template <class ELFT>
1834 std::pair<OutputSectionBase<ELFT> *, bool>
1835 OutputSectionFactory<ELFT>::create(InputSectionBase<ELFT> *C,
1836                                    StringRef OutsecName) {
1837   SectionKey<ELFT::Is64Bits> Key = createKey(C, OutsecName);
1838   OutputSectionBase<ELFT> *&Sec = Map[Key];
1839   if (Sec)
1840     return {Sec, false};
1841 
1842   switch (C->kind()) {
1843   case InputSectionBase<ELFT>::Regular:
1844     Sec = new OutputSection<ELFT>(Key.Name, Key.Type, Key.Flags);
1845     break;
1846   case InputSectionBase<ELFT>::EHFrame:
1847     return {Out<ELFT>::EhFrame, false};
1848   case InputSectionBase<ELFT>::Merge:
1849     Sec = new MergeOutputSection<ELFT>(Key.Name, Key.Type, Key.Flags,
1850                                        Key.Alignment);
1851     break;
1852   case InputSectionBase<ELFT>::MipsReginfo:
1853     Sec = new MipsReginfoOutputSection<ELFT>();
1854     break;
1855   case InputSectionBase<ELFT>::MipsOptions:
1856     Sec = new MipsOptionsOutputSection<ELFT>();
1857     break;
1858   case InputSectionBase<ELFT>::MipsAbiFlags:
1859     Sec = new MipsAbiFlagsOutputSection<ELFT>();
1860     break;
1861   }
1862   Out<ELFT>::Pool.emplace_back(Sec);
1863   return {Sec, true};
1864 }
1865 
1866 template <class ELFT>
1867 SectionKey<ELFT::Is64Bits>
1868 OutputSectionFactory<ELFT>::createKey(InputSectionBase<ELFT> *C,
1869                                       StringRef OutsecName) {
1870   const Elf_Shdr *H = C->getSectionHdr();
1871   uintX_t Flags = H->sh_flags & ~SHF_GROUP & ~SHF_COMPRESSED;
1872 
1873   // For SHF_MERGE we create different output sections for each alignment.
1874   // This makes each output section simple and keeps a single level mapping from
1875   // input to output.
1876   uintX_t Alignment = 0;
1877   if (isa<MergeInputSection<ELFT>>(C))
1878     Alignment = std::max(H->sh_addralign, H->sh_entsize);
1879 
1880   uint32_t Type = H->sh_type;
1881   return SectionKey<ELFT::Is64Bits>{OutsecName, Type, Flags, Alignment};
1882 }
1883 
1884 template <bool Is64Bits>
1885 typename lld::elf::SectionKey<Is64Bits>
1886 DenseMapInfo<lld::elf::SectionKey<Is64Bits>>::getEmptyKey() {
1887   return SectionKey<Is64Bits>{DenseMapInfo<StringRef>::getEmptyKey(), 0, 0, 0};
1888 }
1889 
1890 template <bool Is64Bits>
1891 typename lld::elf::SectionKey<Is64Bits>
1892 DenseMapInfo<lld::elf::SectionKey<Is64Bits>>::getTombstoneKey() {
1893   return SectionKey<Is64Bits>{DenseMapInfo<StringRef>::getTombstoneKey(), 0, 0,
1894                               0};
1895 }
1896 
1897 template <bool Is64Bits>
1898 unsigned
1899 DenseMapInfo<lld::elf::SectionKey<Is64Bits>>::getHashValue(const Key &Val) {
1900   return hash_combine(Val.Name, Val.Type, Val.Flags, Val.Alignment);
1901 }
1902 
1903 template <bool Is64Bits>
1904 bool DenseMapInfo<lld::elf::SectionKey<Is64Bits>>::isEqual(const Key &LHS,
1905                                                            const Key &RHS) {
1906   return DenseMapInfo<StringRef>::isEqual(LHS.Name, RHS.Name) &&
1907          LHS.Type == RHS.Type && LHS.Flags == RHS.Flags &&
1908          LHS.Alignment == RHS.Alignment;
1909 }
1910 
1911 namespace llvm {
1912 template struct DenseMapInfo<SectionKey<true>>;
1913 template struct DenseMapInfo<SectionKey<false>>;
1914 }
1915 
1916 namespace lld {
1917 namespace elf {
1918 template class OutputSectionBase<ELF32LE>;
1919 template class OutputSectionBase<ELF32BE>;
1920 template class OutputSectionBase<ELF64LE>;
1921 template class OutputSectionBase<ELF64BE>;
1922 
1923 template class EhFrameHeader<ELF32LE>;
1924 template class EhFrameHeader<ELF32BE>;
1925 template class EhFrameHeader<ELF64LE>;
1926 template class EhFrameHeader<ELF64BE>;
1927 
1928 template class GotPltSection<ELF32LE>;
1929 template class GotPltSection<ELF32BE>;
1930 template class GotPltSection<ELF64LE>;
1931 template class GotPltSection<ELF64BE>;
1932 
1933 template class GotSection<ELF32LE>;
1934 template class GotSection<ELF32BE>;
1935 template class GotSection<ELF64LE>;
1936 template class GotSection<ELF64BE>;
1937 
1938 template class PltSection<ELF32LE>;
1939 template class PltSection<ELF32BE>;
1940 template class PltSection<ELF64LE>;
1941 template class PltSection<ELF64BE>;
1942 
1943 template class RelocationSection<ELF32LE>;
1944 template class RelocationSection<ELF32BE>;
1945 template class RelocationSection<ELF64LE>;
1946 template class RelocationSection<ELF64BE>;
1947 
1948 template class InterpSection<ELF32LE>;
1949 template class InterpSection<ELF32BE>;
1950 template class InterpSection<ELF64LE>;
1951 template class InterpSection<ELF64BE>;
1952 
1953 template class GnuHashTableSection<ELF32LE>;
1954 template class GnuHashTableSection<ELF32BE>;
1955 template class GnuHashTableSection<ELF64LE>;
1956 template class GnuHashTableSection<ELF64BE>;
1957 
1958 template class HashTableSection<ELF32LE>;
1959 template class HashTableSection<ELF32BE>;
1960 template class HashTableSection<ELF64LE>;
1961 template class HashTableSection<ELF64BE>;
1962 
1963 template class DynamicSection<ELF32LE>;
1964 template class DynamicSection<ELF32BE>;
1965 template class DynamicSection<ELF64LE>;
1966 template class DynamicSection<ELF64BE>;
1967 
1968 template class OutputSection<ELF32LE>;
1969 template class OutputSection<ELF32BE>;
1970 template class OutputSection<ELF64LE>;
1971 template class OutputSection<ELF64BE>;
1972 
1973 template class EhOutputSection<ELF32LE>;
1974 template class EhOutputSection<ELF32BE>;
1975 template class EhOutputSection<ELF64LE>;
1976 template class EhOutputSection<ELF64BE>;
1977 
1978 template class MipsReginfoOutputSection<ELF32LE>;
1979 template class MipsReginfoOutputSection<ELF32BE>;
1980 template class MipsReginfoOutputSection<ELF64LE>;
1981 template class MipsReginfoOutputSection<ELF64BE>;
1982 
1983 template class MipsOptionsOutputSection<ELF32LE>;
1984 template class MipsOptionsOutputSection<ELF32BE>;
1985 template class MipsOptionsOutputSection<ELF64LE>;
1986 template class MipsOptionsOutputSection<ELF64BE>;
1987 
1988 template class MipsAbiFlagsOutputSection<ELF32LE>;
1989 template class MipsAbiFlagsOutputSection<ELF32BE>;
1990 template class MipsAbiFlagsOutputSection<ELF64LE>;
1991 template class MipsAbiFlagsOutputSection<ELF64BE>;
1992 
1993 template class MergeOutputSection<ELF32LE>;
1994 template class MergeOutputSection<ELF32BE>;
1995 template class MergeOutputSection<ELF64LE>;
1996 template class MergeOutputSection<ELF64BE>;
1997 
1998 template class StringTableSection<ELF32LE>;
1999 template class StringTableSection<ELF32BE>;
2000 template class StringTableSection<ELF64LE>;
2001 template class StringTableSection<ELF64BE>;
2002 
2003 template class SymbolTableSection<ELF32LE>;
2004 template class SymbolTableSection<ELF32BE>;
2005 template class SymbolTableSection<ELF64LE>;
2006 template class SymbolTableSection<ELF64BE>;
2007 
2008 template class VersionTableSection<ELF32LE>;
2009 template class VersionTableSection<ELF32BE>;
2010 template class VersionTableSection<ELF64LE>;
2011 template class VersionTableSection<ELF64BE>;
2012 
2013 template class VersionNeedSection<ELF32LE>;
2014 template class VersionNeedSection<ELF32BE>;
2015 template class VersionNeedSection<ELF64LE>;
2016 template class VersionNeedSection<ELF64BE>;
2017 
2018 template class VersionDefinitionSection<ELF32LE>;
2019 template class VersionDefinitionSection<ELF32BE>;
2020 template class VersionDefinitionSection<ELF64LE>;
2021 template class VersionDefinitionSection<ELF64BE>;
2022 
2023 template class BuildIdSection<ELF32LE>;
2024 template class BuildIdSection<ELF32BE>;
2025 template class BuildIdSection<ELF64LE>;
2026 template class BuildIdSection<ELF64BE>;
2027 
2028 template class BuildIdFnv1<ELF32LE>;
2029 template class BuildIdFnv1<ELF32BE>;
2030 template class BuildIdFnv1<ELF64LE>;
2031 template class BuildIdFnv1<ELF64BE>;
2032 
2033 template class BuildIdMd5<ELF32LE>;
2034 template class BuildIdMd5<ELF32BE>;
2035 template class BuildIdMd5<ELF64LE>;
2036 template class BuildIdMd5<ELF64BE>;
2037 
2038 template class BuildIdSha1<ELF32LE>;
2039 template class BuildIdSha1<ELF32BE>;
2040 template class BuildIdSha1<ELF64LE>;
2041 template class BuildIdSha1<ELF64BE>;
2042 
2043 template class BuildIdUuid<ELF32LE>;
2044 template class BuildIdUuid<ELF32BE>;
2045 template class BuildIdUuid<ELF64LE>;
2046 template class BuildIdUuid<ELF64BE>;
2047 
2048 template class BuildIdHexstring<ELF32LE>;
2049 template class BuildIdHexstring<ELF32BE>;
2050 template class BuildIdHexstring<ELF64LE>;
2051 template class BuildIdHexstring<ELF64BE>;
2052 
2053 template class OutputSectionFactory<ELF32LE>;
2054 template class OutputSectionFactory<ELF32BE>;
2055 template class OutputSectionFactory<ELF64LE>;
2056 template class OutputSectionFactory<ELF64BE>;
2057 }
2058 }
2059