1 //===- OutputSections.cpp -------------------------------------------------===// 2 // 3 // The LLVM Linker 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "OutputSections.h" 11 #include "Config.h" 12 #include "EhFrame.h" 13 #include "LinkerScript.h" 14 #include "Strings.h" 15 #include "SymbolTable.h" 16 #include "Target.h" 17 #include "lld/Core/Parallel.h" 18 #include "llvm/Support/Dwarf.h" 19 #include "llvm/Support/MD5.h" 20 #include "llvm/Support/MathExtras.h" 21 #include "llvm/Support/SHA1.h" 22 #include "llvm/Support/RandomNumberGenerator.h" 23 24 using namespace llvm; 25 using namespace llvm::dwarf; 26 using namespace llvm::object; 27 using namespace llvm::support::endian; 28 using namespace llvm::ELF; 29 30 using namespace lld; 31 using namespace lld::elf; 32 33 template <class ELFT> 34 OutputSectionBase<ELFT>::OutputSectionBase(StringRef Name, uint32_t Type, 35 uintX_t Flags) 36 : Name(Name) { 37 memset(&Header, 0, sizeof(Elf_Shdr)); 38 Header.sh_type = Type; 39 Header.sh_flags = Flags; 40 Header.sh_addralign = 1; 41 } 42 43 template <class ELFT> uint32_t OutputSectionBase<ELFT>::getPhdrFlags() const { 44 uintX_t Flags = getFlags(); 45 uint32_t Ret = PF_R; 46 if (Flags & SHF_WRITE) 47 Ret |= PF_W; 48 if (Flags & SHF_EXECINSTR) 49 Ret |= PF_X; 50 return Ret; 51 } 52 53 template <class ELFT> 54 void OutputSectionBase<ELFT>::writeHeaderTo(Elf_Shdr *Shdr) { 55 *Shdr = Header; 56 } 57 58 template <class ELFT> 59 GotPltSection<ELFT>::GotPltSection() 60 : OutputSectionBase<ELFT>(".got.plt", SHT_PROGBITS, SHF_ALLOC | SHF_WRITE) { 61 this->Header.sh_addralign = Target->GotPltEntrySize; 62 } 63 64 template <class ELFT> void GotPltSection<ELFT>::addEntry(SymbolBody &Sym) { 65 Sym.GotPltIndex = Target->GotPltHeaderEntriesNum + Entries.size(); 66 Entries.push_back(&Sym); 67 } 68 69 template <class ELFT> bool GotPltSection<ELFT>::empty() const { 70 return Entries.empty(); 71 } 72 73 template <class ELFT> void GotPltSection<ELFT>::finalize() { 74 this->Header.sh_size = (Target->GotPltHeaderEntriesNum + Entries.size()) * 75 Target->GotPltEntrySize; 76 } 77 78 template <class ELFT> void GotPltSection<ELFT>::writeTo(uint8_t *Buf) { 79 Target->writeGotPltHeader(Buf); 80 Buf += Target->GotPltHeaderEntriesNum * Target->GotPltEntrySize; 81 for (const SymbolBody *B : Entries) { 82 Target->writeGotPlt(Buf, *B); 83 Buf += sizeof(uintX_t); 84 } 85 } 86 87 template <class ELFT> 88 GotSection<ELFT>::GotSection() 89 : OutputSectionBase<ELFT>(".got", SHT_PROGBITS, SHF_ALLOC | SHF_WRITE) { 90 if (Config->EMachine == EM_MIPS) 91 this->Header.sh_flags |= SHF_MIPS_GPREL; 92 this->Header.sh_addralign = Target->GotEntrySize; 93 } 94 95 template <class ELFT> 96 void GotSection<ELFT>::addEntry(SymbolBody &Sym) { 97 Sym.GotIndex = Entries.size(); 98 Entries.push_back(&Sym); 99 } 100 101 template <class ELFT> 102 void GotSection<ELFT>::addMipsEntry(SymbolBody &Sym, uintX_t Addend, 103 RelExpr Expr) { 104 // For "true" local symbols which can be referenced from the same module 105 // only compiler creates two instructions for address loading: 106 // 107 // lw $8, 0($gp) # R_MIPS_GOT16 108 // addi $8, $8, 0 # R_MIPS_LO16 109 // 110 // The first instruction loads high 16 bits of the symbol address while 111 // the second adds an offset. That allows to reduce number of required 112 // GOT entries because only one global offset table entry is necessary 113 // for every 64 KBytes of local data. So for local symbols we need to 114 // allocate number of GOT entries to hold all required "page" addresses. 115 // 116 // All global symbols (hidden and regular) considered by compiler uniformly. 117 // It always generates a single `lw` instruction and R_MIPS_GOT16 relocation 118 // to load address of the symbol. So for each such symbol we need to 119 // allocate dedicated GOT entry to store its address. 120 // 121 // If a symbol is preemptible we need help of dynamic linker to get its 122 // final address. The corresponding GOT entries are allocated in the 123 // "global" part of GOT. Entries for non preemptible global symbol allocated 124 // in the "local" part of GOT. 125 // 126 // See "Global Offset Table" in Chapter 5: 127 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 128 if (Expr == R_MIPS_GOT_LOCAL_PAGE) { 129 // At this point we do not know final symbol value so to reduce number 130 // of allocated GOT entries do the following trick. Save all output 131 // sections referenced by GOT relocations. Then later in the `finalize` 132 // method calculate number of "pages" required to cover all saved output 133 // section and allocate appropriate number of GOT entries. 134 auto *OutSec = cast<DefinedRegular<ELFT>>(&Sym)->Section->OutSec; 135 MipsOutSections.insert(OutSec); 136 return; 137 } 138 if (Sym.isTls()) { 139 // GOT entries created for MIPS TLS relocations behave like 140 // almost GOT entries from other ABIs. They go to the end 141 // of the global offset table. 142 Sym.GotIndex = Entries.size(); 143 Entries.push_back(&Sym); 144 return; 145 } 146 auto AddEntry = [&](SymbolBody &S, uintX_t A, MipsGotEntries &Items) { 147 if (S.isInGot() && !A) 148 return; 149 size_t NewIndex = Items.size(); 150 if (!MipsGotMap.insert({{&S, A}, NewIndex}).second) 151 return; 152 Items.emplace_back(&S, A); 153 if (!A) 154 S.GotIndex = NewIndex; 155 }; 156 if (Sym.isPreemptible()) { 157 // Ignore addends for preemptible symbols. They got single GOT entry anyway. 158 AddEntry(Sym, 0, MipsGlobal); 159 Sym.IsInGlobalMipsGot = true; 160 } else 161 AddEntry(Sym, Addend, MipsLocal); 162 } 163 164 template <class ELFT> bool GotSection<ELFT>::addDynTlsEntry(SymbolBody &Sym) { 165 if (Sym.GlobalDynIndex != -1U) 166 return false; 167 Sym.GlobalDynIndex = Entries.size(); 168 // Global Dynamic TLS entries take two GOT slots. 169 Entries.push_back(nullptr); 170 Entries.push_back(&Sym); 171 return true; 172 } 173 174 // Reserves TLS entries for a TLS module ID and a TLS block offset. 175 // In total it takes two GOT slots. 176 template <class ELFT> bool GotSection<ELFT>::addTlsIndex() { 177 if (TlsIndexOff != uint32_t(-1)) 178 return false; 179 TlsIndexOff = Entries.size() * sizeof(uintX_t); 180 Entries.push_back(nullptr); 181 Entries.push_back(nullptr); 182 return true; 183 } 184 185 template <class ELFT> 186 typename GotSection<ELFT>::uintX_t 187 GotSection<ELFT>::getMipsLocalPageOffset(uintX_t EntryValue) { 188 // Initialize the entry by the %hi(EntryValue) expression 189 // but without right-shifting. 190 EntryValue = (EntryValue + 0x8000) & ~0xffff; 191 // Take into account MIPS GOT header. 192 // See comment in the GotSection::writeTo. 193 size_t NewIndex = MipsLocalGotPos.size() + 2; 194 auto P = MipsLocalGotPos.insert(std::make_pair(EntryValue, NewIndex)); 195 assert(!P.second || MipsLocalGotPos.size() <= MipsPageEntries); 196 return (uintX_t)P.first->second * sizeof(uintX_t) - MipsGPOffset; 197 } 198 199 template <class ELFT> 200 typename GotSection<ELFT>::uintX_t 201 GotSection<ELFT>::getMipsGotOffset(const SymbolBody &B, uintX_t Addend) const { 202 uintX_t Off = MipsPageEntries; 203 if (B.isTls()) 204 Off += MipsLocal.size() + MipsGlobal.size() + B.GotIndex; 205 else if (B.IsInGlobalMipsGot) 206 Off += MipsLocal.size() + B.GotIndex; 207 else if (B.isInGot()) 208 Off += B.GotIndex; 209 else { 210 auto It = MipsGotMap.find({&B, Addend}); 211 assert(It != MipsGotMap.end()); 212 Off += It->second; 213 } 214 return Off * sizeof(uintX_t) - MipsGPOffset; 215 } 216 217 template <class ELFT> 218 typename GotSection<ELFT>::uintX_t GotSection<ELFT>::getMipsTlsOffset() { 219 return (MipsPageEntries + MipsLocal.size() + MipsGlobal.size()) * 220 sizeof(uintX_t); 221 } 222 223 template <class ELFT> 224 typename GotSection<ELFT>::uintX_t 225 GotSection<ELFT>::getGlobalDynAddr(const SymbolBody &B) const { 226 return this->getVA() + B.GlobalDynIndex * sizeof(uintX_t); 227 } 228 229 template <class ELFT> 230 typename GotSection<ELFT>::uintX_t 231 GotSection<ELFT>::getGlobalDynOffset(const SymbolBody &B) const { 232 return B.GlobalDynIndex * sizeof(uintX_t); 233 } 234 235 template <class ELFT> 236 const SymbolBody *GotSection<ELFT>::getMipsFirstGlobalEntry() const { 237 return MipsGlobal.empty() ? nullptr : MipsGlobal.front().first; 238 } 239 240 template <class ELFT> 241 unsigned GotSection<ELFT>::getMipsLocalEntriesNum() const { 242 return MipsPageEntries + MipsLocal.size(); 243 } 244 245 template <class ELFT> void GotSection<ELFT>::finalize() { 246 size_t EntriesNum = Entries.size(); 247 if (Config->EMachine == EM_MIPS) { 248 // Take into account MIPS GOT header. 249 // See comment in the GotSection::writeTo. 250 MipsPageEntries += 2; 251 for (const OutputSectionBase<ELFT> *OutSec : MipsOutSections) { 252 // Calculate an upper bound of MIPS GOT entries required to store page 253 // addresses of local symbols. We assume the worst case - each 64kb 254 // page of the output section has at least one GOT relocation against it. 255 // Add 0x8000 to the section's size because the page address stored 256 // in the GOT entry is calculated as (value + 0x8000) & ~0xffff. 257 MipsPageEntries += (OutSec->getSize() + 0x8000 + 0xfffe) / 0xffff; 258 } 259 EntriesNum += MipsPageEntries + MipsLocal.size() + MipsGlobal.size(); 260 } 261 this->Header.sh_size = EntriesNum * sizeof(uintX_t); 262 } 263 264 template <class ELFT> 265 static void writeUint(uint8_t *Buf, typename ELFT::uint Val) { 266 typedef typename ELFT::uint uintX_t; 267 write<uintX_t, ELFT::TargetEndianness, sizeof(uintX_t)>(Buf, Val); 268 } 269 270 template <class ELFT> void GotSection<ELFT>::writeMipsGot(uint8_t *Buf) { 271 // Set the MSB of the second GOT slot. This is not required by any 272 // MIPS ABI documentation, though. 273 // 274 // There is a comment in glibc saying that "The MSB of got[1] of a 275 // gnu object is set to identify gnu objects," and in GNU gold it 276 // says "the second entry will be used by some runtime loaders". 277 // But how this field is being used is unclear. 278 // 279 // We are not really willing to mimic other linkers behaviors 280 // without understanding why they do that, but because all files 281 // generated by GNU tools have this special GOT value, and because 282 // we've been doing this for years, it is probably a safe bet to 283 // keep doing this for now. We really need to revisit this to see 284 // if we had to do this. 285 auto *P = reinterpret_cast<typename ELFT::Off *>(Buf); 286 P[1] = uintX_t(1) << (ELFT::Is64Bits ? 63 : 31); 287 // Write 'page address' entries to the local part of the GOT. 288 for (std::pair<uintX_t, size_t> &L : MipsLocalGotPos) { 289 uint8_t *Entry = Buf + L.second * sizeof(uintX_t); 290 writeUint<ELFT>(Entry, L.first); 291 } 292 Buf += MipsPageEntries * sizeof(uintX_t); 293 auto AddEntry = [&](const MipsGotEntry &SA) { 294 uint8_t *Entry = Buf; 295 Buf += sizeof(uintX_t); 296 const SymbolBody* Body = SA.first; 297 uintX_t VA = Body->template getVA<ELFT>(SA.second); 298 writeUint<ELFT>(Entry, VA); 299 }; 300 std::for_each(std::begin(MipsLocal), std::end(MipsLocal), AddEntry); 301 std::for_each(std::begin(MipsGlobal), std::end(MipsGlobal), AddEntry); 302 // Initialize TLS-related GOT entries. If the entry has a corresponding 303 // dynamic relocations, leave it initialized by zero. Write down adjusted 304 // TLS symbol's values otherwise. To calculate the adjustments use offsets 305 // for thread-local storage. 306 // https://www.linux-mips.org/wiki/NPTL 307 if (TlsIndexOff != -1U && !Config->Pic) 308 writeUint<ELFT>(Buf + TlsIndexOff, 1); 309 for (const SymbolBody *B : Entries) { 310 if (!B || B->isPreemptible()) 311 continue; 312 uintX_t VA = B->getVA<ELFT>(); 313 if (B->GotIndex != -1U) { 314 uint8_t *Entry = Buf + B->GotIndex * sizeof(uintX_t); 315 writeUint<ELFT>(Entry, VA - 0x7000); 316 } 317 if (B->GlobalDynIndex != -1U) { 318 uint8_t *Entry = Buf + B->GlobalDynIndex * sizeof(uintX_t); 319 writeUint<ELFT>(Entry, 1); 320 Entry += sizeof(uintX_t); 321 writeUint<ELFT>(Entry, VA - 0x8000); 322 } 323 } 324 } 325 326 template <class ELFT> void GotSection<ELFT>::writeTo(uint8_t *Buf) { 327 if (Config->EMachine == EM_MIPS) { 328 writeMipsGot(Buf); 329 return; 330 } 331 for (const SymbolBody *B : Entries) { 332 uint8_t *Entry = Buf; 333 Buf += sizeof(uintX_t); 334 if (!B) 335 continue; 336 if (B->isPreemptible()) 337 continue; // The dynamic linker will take care of it. 338 uintX_t VA = B->getVA<ELFT>(); 339 writeUint<ELFT>(Entry, VA); 340 } 341 } 342 343 template <class ELFT> 344 PltSection<ELFT>::PltSection() 345 : OutputSectionBase<ELFT>(".plt", SHT_PROGBITS, SHF_ALLOC | SHF_EXECINSTR) { 346 this->Header.sh_addralign = 16; 347 } 348 349 template <class ELFT> void PltSection<ELFT>::writeTo(uint8_t *Buf) { 350 // At beginning of PLT, we have code to call the dynamic linker 351 // to resolve dynsyms at runtime. Write such code. 352 Target->writePltHeader(Buf); 353 size_t Off = Target->PltHeaderSize; 354 355 for (auto &I : Entries) { 356 const SymbolBody *B = I.first; 357 unsigned RelOff = I.second; 358 uint64_t Got = B->getGotPltVA<ELFT>(); 359 uint64_t Plt = this->getVA() + Off; 360 Target->writePlt(Buf + Off, Got, Plt, B->PltIndex, RelOff); 361 Off += Target->PltEntrySize; 362 } 363 } 364 365 template <class ELFT> void PltSection<ELFT>::addEntry(SymbolBody &Sym) { 366 Sym.PltIndex = Entries.size(); 367 unsigned RelOff = Out<ELFT>::RelaPlt->getRelocOffset(); 368 Entries.push_back(std::make_pair(&Sym, RelOff)); 369 } 370 371 template <class ELFT> void PltSection<ELFT>::finalize() { 372 this->Header.sh_size = 373 Target->PltHeaderSize + Entries.size() * Target->PltEntrySize; 374 } 375 376 template <class ELFT> 377 RelocationSection<ELFT>::RelocationSection(StringRef Name, bool Sort) 378 : OutputSectionBase<ELFT>(Name, Config->Rela ? SHT_RELA : SHT_REL, 379 SHF_ALLOC), 380 Sort(Sort) { 381 this->Header.sh_entsize = Config->Rela ? sizeof(Elf_Rela) : sizeof(Elf_Rel); 382 this->Header.sh_addralign = sizeof(uintX_t); 383 } 384 385 template <class ELFT> 386 void RelocationSection<ELFT>::addReloc(const DynamicReloc<ELFT> &Reloc) { 387 if (Reloc.Type == Target->RelativeRel) 388 ++NumRelativeRelocs; 389 Relocs.push_back(Reloc); 390 } 391 392 template <class ELFT, class RelTy> 393 static bool compRelocations(const RelTy &A, const RelTy &B) { 394 bool AIsRel = A.getType(Config->Mips64EL) == Target->RelativeRel; 395 bool BIsRel = B.getType(Config->Mips64EL) == Target->RelativeRel; 396 if (AIsRel != BIsRel) 397 return AIsRel; 398 399 return A.getSymbol(Config->Mips64EL) < B.getSymbol(Config->Mips64EL); 400 } 401 402 template <class ELFT> void RelocationSection<ELFT>::writeTo(uint8_t *Buf) { 403 uint8_t *BufBegin = Buf; 404 for (const DynamicReloc<ELFT> &Rel : Relocs) { 405 auto *P = reinterpret_cast<Elf_Rela *>(Buf); 406 Buf += Config->Rela ? sizeof(Elf_Rela) : sizeof(Elf_Rel); 407 408 if (Config->Rela) 409 P->r_addend = Rel.getAddend(); 410 P->r_offset = Rel.getOffset(); 411 if (Config->EMachine == EM_MIPS && Rel.getOutputSec() == Out<ELFT>::Got) 412 // Dynamic relocation against MIPS GOT section make deal TLS entries 413 // allocated in the end of the GOT. We need to adjust the offset to take 414 // in account 'local' and 'global' GOT entries. 415 P->r_offset += Out<ELFT>::Got->getMipsTlsOffset(); 416 P->setSymbolAndType(Rel.getSymIndex(), Rel.Type, Config->Mips64EL); 417 } 418 419 if (Sort) { 420 if (Config->Rela) 421 std::stable_sort((Elf_Rela *)BufBegin, 422 (Elf_Rela *)BufBegin + Relocs.size(), 423 compRelocations<ELFT, Elf_Rela>); 424 else 425 std::stable_sort((Elf_Rel *)BufBegin, (Elf_Rel *)BufBegin + Relocs.size(), 426 compRelocations<ELFT, Elf_Rel>); 427 } 428 } 429 430 template <class ELFT> unsigned RelocationSection<ELFT>::getRelocOffset() { 431 return this->Header.sh_entsize * Relocs.size(); 432 } 433 434 template <class ELFT> void RelocationSection<ELFT>::finalize() { 435 this->Header.sh_link = Out<ELFT>::DynSymTab 436 ? Out<ELFT>::DynSymTab->SectionIndex 437 : Out<ELFT>::SymTab->SectionIndex; 438 this->Header.sh_size = Relocs.size() * this->Header.sh_entsize; 439 } 440 441 template <class ELFT> 442 InterpSection<ELFT>::InterpSection() 443 : OutputSectionBase<ELFT>(".interp", SHT_PROGBITS, SHF_ALLOC) { 444 this->Header.sh_size = Config->DynamicLinker.size() + 1; 445 } 446 447 template <class ELFT> void InterpSection<ELFT>::writeTo(uint8_t *Buf) { 448 StringRef S = Config->DynamicLinker; 449 memcpy(Buf, S.data(), S.size()); 450 } 451 452 template <class ELFT> 453 HashTableSection<ELFT>::HashTableSection() 454 : OutputSectionBase<ELFT>(".hash", SHT_HASH, SHF_ALLOC) { 455 this->Header.sh_entsize = sizeof(Elf_Word); 456 this->Header.sh_addralign = sizeof(Elf_Word); 457 } 458 459 static uint32_t hashSysv(StringRef Name) { 460 uint32_t H = 0; 461 for (char C : Name) { 462 H = (H << 4) + C; 463 uint32_t G = H & 0xf0000000; 464 if (G) 465 H ^= G >> 24; 466 H &= ~G; 467 } 468 return H; 469 } 470 471 template <class ELFT> void HashTableSection<ELFT>::finalize() { 472 this->Header.sh_link = Out<ELFT>::DynSymTab->SectionIndex; 473 474 unsigned NumEntries = 2; // nbucket and nchain. 475 NumEntries += Out<ELFT>::DynSymTab->getNumSymbols(); // The chain entries. 476 477 // Create as many buckets as there are symbols. 478 // FIXME: This is simplistic. We can try to optimize it, but implementing 479 // support for SHT_GNU_HASH is probably even more profitable. 480 NumEntries += Out<ELFT>::DynSymTab->getNumSymbols(); 481 this->Header.sh_size = NumEntries * sizeof(Elf_Word); 482 } 483 484 template <class ELFT> void HashTableSection<ELFT>::writeTo(uint8_t *Buf) { 485 unsigned NumSymbols = Out<ELFT>::DynSymTab->getNumSymbols(); 486 auto *P = reinterpret_cast<Elf_Word *>(Buf); 487 *P++ = NumSymbols; // nbucket 488 *P++ = NumSymbols; // nchain 489 490 Elf_Word *Buckets = P; 491 Elf_Word *Chains = P + NumSymbols; 492 493 for (const std::pair<SymbolBody *, unsigned> &P : 494 Out<ELFT>::DynSymTab->getSymbols()) { 495 SymbolBody *Body = P.first; 496 StringRef Name = Body->getName(); 497 unsigned I = Body->DynsymIndex; 498 uint32_t Hash = hashSysv(Name) % NumSymbols; 499 Chains[I] = Buckets[Hash]; 500 Buckets[Hash] = I; 501 } 502 } 503 504 static uint32_t hashGnu(StringRef Name) { 505 uint32_t H = 5381; 506 for (uint8_t C : Name) 507 H = (H << 5) + H + C; 508 return H; 509 } 510 511 template <class ELFT> 512 GnuHashTableSection<ELFT>::GnuHashTableSection() 513 : OutputSectionBase<ELFT>(".gnu.hash", SHT_GNU_HASH, SHF_ALLOC) { 514 this->Header.sh_entsize = ELFT::Is64Bits ? 0 : 4; 515 this->Header.sh_addralign = sizeof(uintX_t); 516 } 517 518 template <class ELFT> 519 unsigned GnuHashTableSection<ELFT>::calcNBuckets(unsigned NumHashed) { 520 if (!NumHashed) 521 return 0; 522 523 // These values are prime numbers which are not greater than 2^(N-1) + 1. 524 // In result, for any particular NumHashed we return a prime number 525 // which is not greater than NumHashed. 526 static const unsigned Primes[] = { 527 1, 1, 3, 3, 7, 13, 31, 61, 127, 251, 528 509, 1021, 2039, 4093, 8191, 16381, 32749, 65521, 131071}; 529 530 return Primes[std::min<unsigned>(Log2_32_Ceil(NumHashed), 531 array_lengthof(Primes) - 1)]; 532 } 533 534 // Bloom filter estimation: at least 8 bits for each hashed symbol. 535 // GNU Hash table requirement: it should be a power of 2, 536 // the minimum value is 1, even for an empty table. 537 // Expected results for a 32-bit target: 538 // calcMaskWords(0..4) = 1 539 // calcMaskWords(5..8) = 2 540 // calcMaskWords(9..16) = 4 541 // For a 64-bit target: 542 // calcMaskWords(0..8) = 1 543 // calcMaskWords(9..16) = 2 544 // calcMaskWords(17..32) = 4 545 template <class ELFT> 546 unsigned GnuHashTableSection<ELFT>::calcMaskWords(unsigned NumHashed) { 547 if (!NumHashed) 548 return 1; 549 return NextPowerOf2((NumHashed - 1) / sizeof(Elf_Off)); 550 } 551 552 template <class ELFT> void GnuHashTableSection<ELFT>::finalize() { 553 unsigned NumHashed = Symbols.size(); 554 NBuckets = calcNBuckets(NumHashed); 555 MaskWords = calcMaskWords(NumHashed); 556 // Second hash shift estimation: just predefined values. 557 Shift2 = ELFT::Is64Bits ? 6 : 5; 558 559 this->Header.sh_link = Out<ELFT>::DynSymTab->SectionIndex; 560 this->Header.sh_size = sizeof(Elf_Word) * 4 // Header 561 + sizeof(Elf_Off) * MaskWords // Bloom Filter 562 + sizeof(Elf_Word) * NBuckets // Hash Buckets 563 + sizeof(Elf_Word) * NumHashed; // Hash Values 564 } 565 566 template <class ELFT> void GnuHashTableSection<ELFT>::writeTo(uint8_t *Buf) { 567 writeHeader(Buf); 568 if (Symbols.empty()) 569 return; 570 writeBloomFilter(Buf); 571 writeHashTable(Buf); 572 } 573 574 template <class ELFT> 575 void GnuHashTableSection<ELFT>::writeHeader(uint8_t *&Buf) { 576 auto *P = reinterpret_cast<Elf_Word *>(Buf); 577 *P++ = NBuckets; 578 *P++ = Out<ELFT>::DynSymTab->getNumSymbols() - Symbols.size(); 579 *P++ = MaskWords; 580 *P++ = Shift2; 581 Buf = reinterpret_cast<uint8_t *>(P); 582 } 583 584 template <class ELFT> 585 void GnuHashTableSection<ELFT>::writeBloomFilter(uint8_t *&Buf) { 586 unsigned C = sizeof(Elf_Off) * 8; 587 588 auto *Masks = reinterpret_cast<Elf_Off *>(Buf); 589 for (const SymbolData &Sym : Symbols) { 590 size_t Pos = (Sym.Hash / C) & (MaskWords - 1); 591 uintX_t V = (uintX_t(1) << (Sym.Hash % C)) | 592 (uintX_t(1) << ((Sym.Hash >> Shift2) % C)); 593 Masks[Pos] |= V; 594 } 595 Buf += sizeof(Elf_Off) * MaskWords; 596 } 597 598 template <class ELFT> 599 void GnuHashTableSection<ELFT>::writeHashTable(uint8_t *Buf) { 600 Elf_Word *Buckets = reinterpret_cast<Elf_Word *>(Buf); 601 Elf_Word *Values = Buckets + NBuckets; 602 603 int PrevBucket = -1; 604 int I = 0; 605 for (const SymbolData &Sym : Symbols) { 606 int Bucket = Sym.Hash % NBuckets; 607 assert(PrevBucket <= Bucket); 608 if (Bucket != PrevBucket) { 609 Buckets[Bucket] = Sym.Body->DynsymIndex; 610 PrevBucket = Bucket; 611 if (I > 0) 612 Values[I - 1] |= 1; 613 } 614 Values[I] = Sym.Hash & ~1; 615 ++I; 616 } 617 if (I > 0) 618 Values[I - 1] |= 1; 619 } 620 621 // Add symbols to this symbol hash table. Note that this function 622 // destructively sort a given vector -- which is needed because 623 // GNU-style hash table places some sorting requirements. 624 template <class ELFT> 625 void GnuHashTableSection<ELFT>::addSymbols( 626 std::vector<std::pair<SymbolBody *, size_t>> &V) { 627 // Ideally this will just be 'auto' but GCC 6.1 is not able 628 // to deduce it correctly. 629 std::vector<std::pair<SymbolBody *, size_t>>::iterator Mid = 630 std::stable_partition(V.begin(), V.end(), 631 [](std::pair<SymbolBody *, size_t> &P) { 632 return P.first->isUndefined(); 633 }); 634 if (Mid == V.end()) 635 return; 636 for (auto I = Mid, E = V.end(); I != E; ++I) { 637 SymbolBody *B = I->first; 638 size_t StrOff = I->second; 639 Symbols.push_back({B, StrOff, hashGnu(B->getName())}); 640 } 641 642 unsigned NBuckets = calcNBuckets(Symbols.size()); 643 std::stable_sort(Symbols.begin(), Symbols.end(), 644 [&](const SymbolData &L, const SymbolData &R) { 645 return L.Hash % NBuckets < R.Hash % NBuckets; 646 }); 647 648 V.erase(Mid, V.end()); 649 for (const SymbolData &Sym : Symbols) 650 V.push_back({Sym.Body, Sym.STName}); 651 } 652 653 // Returns the number of version definition entries. Because the first entry 654 // is for the version definition itself, it is the number of versioned symbols 655 // plus one. Note that we don't support multiple versions yet. 656 static unsigned getVerDefNum() { return Config->VersionDefinitions.size() + 1; } 657 658 template <class ELFT> 659 DynamicSection<ELFT>::DynamicSection() 660 : OutputSectionBase<ELFT>(".dynamic", SHT_DYNAMIC, SHF_ALLOC | SHF_WRITE) { 661 Elf_Shdr &Header = this->Header; 662 Header.sh_addralign = sizeof(uintX_t); 663 Header.sh_entsize = ELFT::Is64Bits ? 16 : 8; 664 665 // .dynamic section is not writable on MIPS. 666 // See "Special Section" in Chapter 4 in the following document: 667 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 668 if (Config->EMachine == EM_MIPS) 669 Header.sh_flags = SHF_ALLOC; 670 } 671 672 template <class ELFT> void DynamicSection<ELFT>::finalize() { 673 if (this->Header.sh_size) 674 return; // Already finalized. 675 676 Elf_Shdr &Header = this->Header; 677 Header.sh_link = Out<ELFT>::DynStrTab->SectionIndex; 678 679 auto Add = [=](Entry E) { Entries.push_back(E); }; 680 681 // Add strings. We know that these are the last strings to be added to 682 // DynStrTab and doing this here allows this function to set DT_STRSZ. 683 for (StringRef S : Config->AuxiliaryList) 684 Add({DT_AUXILIARY, Out<ELFT>::DynStrTab->addString(S)}); 685 if (!Config->RPath.empty()) 686 Add({Config->EnableNewDtags ? DT_RUNPATH : DT_RPATH, 687 Out<ELFT>::DynStrTab->addString(Config->RPath)}); 688 for (const std::unique_ptr<SharedFile<ELFT>> &F : 689 Symtab<ELFT>::X->getSharedFiles()) 690 if (F->isNeeded()) 691 Add({DT_NEEDED, Out<ELFT>::DynStrTab->addString(F->getSoName())}); 692 if (!Config->SoName.empty()) 693 Add({DT_SONAME, Out<ELFT>::DynStrTab->addString(Config->SoName)}); 694 695 Out<ELFT>::DynStrTab->finalize(); 696 697 if (Out<ELFT>::RelaDyn->hasRelocs()) { 698 bool IsRela = Config->Rela; 699 Add({IsRela ? DT_RELA : DT_REL, Out<ELFT>::RelaDyn}); 700 Add({IsRela ? DT_RELASZ : DT_RELSZ, Out<ELFT>::RelaDyn->getSize()}); 701 Add({IsRela ? DT_RELAENT : DT_RELENT, 702 uintX_t(IsRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel))}); 703 704 // MIPS dynamic loader does not support RELCOUNT tag. 705 // The problem is in the tight relation between dynamic 706 // relocations and GOT. So do not emit this tag on MIPS. 707 if (Config->EMachine != EM_MIPS) { 708 size_t NumRelativeRels = Out<ELFT>::RelaDyn->getRelativeRelocCount(); 709 if (Config->ZCombreloc && NumRelativeRels) 710 Add({IsRela ? DT_RELACOUNT : DT_RELCOUNT, NumRelativeRels}); 711 } 712 } 713 if (Out<ELFT>::RelaPlt && Out<ELFT>::RelaPlt->hasRelocs()) { 714 Add({DT_JMPREL, Out<ELFT>::RelaPlt}); 715 Add({DT_PLTRELSZ, Out<ELFT>::RelaPlt->getSize()}); 716 Add({Config->EMachine == EM_MIPS ? DT_MIPS_PLTGOT : DT_PLTGOT, 717 Out<ELFT>::GotPlt}); 718 Add({DT_PLTREL, uint64_t(Config->Rela ? DT_RELA : DT_REL)}); 719 } 720 721 Add({DT_SYMTAB, Out<ELFT>::DynSymTab}); 722 Add({DT_SYMENT, sizeof(Elf_Sym)}); 723 Add({DT_STRTAB, Out<ELFT>::DynStrTab}); 724 Add({DT_STRSZ, Out<ELFT>::DynStrTab->getSize()}); 725 if (Out<ELFT>::GnuHashTab) 726 Add({DT_GNU_HASH, Out<ELFT>::GnuHashTab}); 727 if (Out<ELFT>::HashTab) 728 Add({DT_HASH, Out<ELFT>::HashTab}); 729 730 if (Out<ELFT>::PreinitArray) { 731 Add({DT_PREINIT_ARRAY, Out<ELFT>::PreinitArray}); 732 Add({DT_PREINIT_ARRAYSZ, Out<ELFT>::PreinitArray, Entry::SecSize}); 733 } 734 if (Out<ELFT>::InitArray) { 735 Add({DT_INIT_ARRAY, Out<ELFT>::InitArray}); 736 Add({DT_INIT_ARRAYSZ, Out<ELFT>::InitArray, Entry::SecSize}); 737 } 738 if (Out<ELFT>::FiniArray) { 739 Add({DT_FINI_ARRAY, Out<ELFT>::FiniArray}); 740 Add({DT_FINI_ARRAYSZ, Out<ELFT>::FiniArray, Entry::SecSize}); 741 } 742 743 if (SymbolBody *B = Symtab<ELFT>::X->find(Config->Init)) 744 Add({DT_INIT, B}); 745 if (SymbolBody *B = Symtab<ELFT>::X->find(Config->Fini)) 746 Add({DT_FINI, B}); 747 748 uint32_t DtFlags = 0; 749 uint32_t DtFlags1 = 0; 750 if (Config->Bsymbolic) 751 DtFlags |= DF_SYMBOLIC; 752 if (Config->ZNodelete) 753 DtFlags1 |= DF_1_NODELETE; 754 if (Config->ZNow) { 755 DtFlags |= DF_BIND_NOW; 756 DtFlags1 |= DF_1_NOW; 757 } 758 if (Config->ZOrigin) { 759 DtFlags |= DF_ORIGIN; 760 DtFlags1 |= DF_1_ORIGIN; 761 } 762 763 if (DtFlags) 764 Add({DT_FLAGS, DtFlags}); 765 if (DtFlags1) 766 Add({DT_FLAGS_1, DtFlags1}); 767 768 if (!Config->Entry.empty()) 769 Add({DT_DEBUG, (uint64_t)0}); 770 771 bool HasVerNeed = Out<ELFT>::VerNeed->getNeedNum() != 0; 772 if (HasVerNeed || Out<ELFT>::VerDef) 773 Add({DT_VERSYM, Out<ELFT>::VerSym}); 774 if (Out<ELFT>::VerDef) { 775 Add({DT_VERDEF, Out<ELFT>::VerDef}); 776 Add({DT_VERDEFNUM, getVerDefNum()}); 777 } 778 if (HasVerNeed) { 779 Add({DT_VERNEED, Out<ELFT>::VerNeed}); 780 Add({DT_VERNEEDNUM, Out<ELFT>::VerNeed->getNeedNum()}); 781 } 782 783 if (Config->EMachine == EM_MIPS) { 784 Add({DT_MIPS_RLD_VERSION, 1}); 785 Add({DT_MIPS_FLAGS, RHF_NOTPOT}); 786 Add({DT_MIPS_BASE_ADDRESS, Config->ImageBase}); 787 Add({DT_MIPS_SYMTABNO, Out<ELFT>::DynSymTab->getNumSymbols()}); 788 Add({DT_MIPS_LOCAL_GOTNO, Out<ELFT>::Got->getMipsLocalEntriesNum()}); 789 if (const SymbolBody *B = Out<ELFT>::Got->getMipsFirstGlobalEntry()) 790 Add({DT_MIPS_GOTSYM, B->DynsymIndex}); 791 else 792 Add({DT_MIPS_GOTSYM, Out<ELFT>::DynSymTab->getNumSymbols()}); 793 Add({DT_PLTGOT, Out<ELFT>::Got}); 794 if (Out<ELFT>::MipsRldMap) 795 Add({DT_MIPS_RLD_MAP, Out<ELFT>::MipsRldMap}); 796 } 797 798 // +1 for DT_NULL 799 Header.sh_size = (Entries.size() + 1) * Header.sh_entsize; 800 } 801 802 template <class ELFT> void DynamicSection<ELFT>::writeTo(uint8_t *Buf) { 803 auto *P = reinterpret_cast<Elf_Dyn *>(Buf); 804 805 for (const Entry &E : Entries) { 806 P->d_tag = E.Tag; 807 switch (E.Kind) { 808 case Entry::SecAddr: 809 P->d_un.d_ptr = E.OutSec->getVA(); 810 break; 811 case Entry::SecSize: 812 P->d_un.d_val = E.OutSec->getSize(); 813 break; 814 case Entry::SymAddr: 815 P->d_un.d_ptr = E.Sym->template getVA<ELFT>(); 816 break; 817 case Entry::PlainInt: 818 P->d_un.d_val = E.Val; 819 break; 820 } 821 ++P; 822 } 823 } 824 825 template <class ELFT> 826 EhFrameHeader<ELFT>::EhFrameHeader() 827 : OutputSectionBase<ELFT>(".eh_frame_hdr", SHT_PROGBITS, SHF_ALLOC) {} 828 829 // .eh_frame_hdr contains a binary search table of pointers to FDEs. 830 // Each entry of the search table consists of two values, 831 // the starting PC from where FDEs covers, and the FDE's address. 832 // It is sorted by PC. 833 template <class ELFT> void EhFrameHeader<ELFT>::writeTo(uint8_t *Buf) { 834 const endianness E = ELFT::TargetEndianness; 835 836 // Sort the FDE list by their PC and uniqueify. Usually there is only 837 // one FDE for a PC (i.e. function), but if ICF merges two functions 838 // into one, there can be more than one FDEs pointing to the address. 839 auto Less = [](const FdeData &A, const FdeData &B) { return A.Pc < B.Pc; }; 840 std::stable_sort(Fdes.begin(), Fdes.end(), Less); 841 auto Eq = [](const FdeData &A, const FdeData &B) { return A.Pc == B.Pc; }; 842 Fdes.erase(std::unique(Fdes.begin(), Fdes.end(), Eq), Fdes.end()); 843 844 Buf[0] = 1; 845 Buf[1] = DW_EH_PE_pcrel | DW_EH_PE_sdata4; 846 Buf[2] = DW_EH_PE_udata4; 847 Buf[3] = DW_EH_PE_datarel | DW_EH_PE_sdata4; 848 write32<E>(Buf + 4, Out<ELFT>::EhFrame->getVA() - this->getVA() - 4); 849 write32<E>(Buf + 8, Fdes.size()); 850 Buf += 12; 851 852 uintX_t VA = this->getVA(); 853 for (FdeData &Fde : Fdes) { 854 write32<E>(Buf, Fde.Pc - VA); 855 write32<E>(Buf + 4, Fde.FdeVA - VA); 856 Buf += 8; 857 } 858 } 859 860 template <class ELFT> void EhFrameHeader<ELFT>::finalize() { 861 // .eh_frame_hdr has a 12 bytes header followed by an array of FDEs. 862 this->Header.sh_size = 12 + Out<ELFT>::EhFrame->NumFdes * 8; 863 } 864 865 template <class ELFT> 866 void EhFrameHeader<ELFT>::addFde(uint32_t Pc, uint32_t FdeVA) { 867 Fdes.push_back({Pc, FdeVA}); 868 } 869 870 template <class ELFT> 871 OutputSection<ELFT>::OutputSection(StringRef Name, uint32_t Type, uintX_t Flags) 872 : OutputSectionBase<ELFT>(Name, Type, Flags) { 873 if (Type == SHT_RELA) 874 this->Header.sh_entsize = sizeof(Elf_Rela); 875 else if (Type == SHT_REL) 876 this->Header.sh_entsize = sizeof(Elf_Rel); 877 } 878 879 template <class ELFT> void OutputSection<ELFT>::finalize() { 880 uint32_t Type = this->Header.sh_type; 881 if (Type != SHT_RELA && Type != SHT_REL) 882 return; 883 this->Header.sh_link = Out<ELFT>::SymTab->SectionIndex; 884 // sh_info for SHT_REL[A] sections should contain the section header index of 885 // the section to which the relocation applies. 886 InputSectionBase<ELFT> *S = Sections[0]->getRelocatedSection(); 887 this->Header.sh_info = S->OutSec->SectionIndex; 888 } 889 890 template <class ELFT> 891 void OutputSection<ELFT>::addSection(InputSectionBase<ELFT> *C) { 892 assert(C->Live); 893 auto *S = cast<InputSection<ELFT>>(C); 894 Sections.push_back(S); 895 S->OutSec = this; 896 this->updateAlignment(S->Alignment); 897 } 898 899 // If an input string is in the form of "foo.N" where N is a number, 900 // return N. Otherwise, returns 65536, which is one greater than the 901 // lowest priority. 902 static int getPriority(StringRef S) { 903 size_t Pos = S.rfind('.'); 904 if (Pos == StringRef::npos) 905 return 65536; 906 int V; 907 if (S.substr(Pos + 1).getAsInteger(10, V)) 908 return 65536; 909 return V; 910 } 911 912 // This function is called after we sort input sections 913 // and scan relocations to setup sections' offsets. 914 template <class ELFT> void OutputSection<ELFT>::assignOffsets() { 915 uintX_t Off = this->Header.sh_size; 916 for (InputSection<ELFT> *S : Sections) { 917 Off = alignTo(Off, S->Alignment); 918 S->OutSecOff = Off; 919 Off += S->getSize(); 920 } 921 this->Header.sh_size = Off; 922 } 923 924 // Sorts input sections by section name suffixes, so that .foo.N comes 925 // before .foo.M if N < M. Used to sort .{init,fini}_array.N sections. 926 // We want to keep the original order if the priorities are the same 927 // because the compiler keeps the original initialization order in a 928 // translation unit and we need to respect that. 929 // For more detail, read the section of the GCC's manual about init_priority. 930 template <class ELFT> void OutputSection<ELFT>::sortInitFini() { 931 // Sort sections by priority. 932 typedef std::pair<int, InputSection<ELFT> *> Pair; 933 auto Comp = [](const Pair &A, const Pair &B) { return A.first < B.first; }; 934 935 std::vector<Pair> V; 936 for (InputSection<ELFT> *S : Sections) 937 V.push_back({getPriority(S->Name), S}); 938 std::stable_sort(V.begin(), V.end(), Comp); 939 Sections.clear(); 940 for (Pair &P : V) 941 Sections.push_back(P.second); 942 } 943 944 // Returns true if S matches /Filename.?\.o$/. 945 static bool isCrtBeginEnd(StringRef S, StringRef Filename) { 946 if (!S.endswith(".o")) 947 return false; 948 S = S.drop_back(2); 949 if (S.endswith(Filename)) 950 return true; 951 return !S.empty() && S.drop_back().endswith(Filename); 952 } 953 954 static bool isCrtbegin(StringRef S) { return isCrtBeginEnd(S, "crtbegin"); } 955 static bool isCrtend(StringRef S) { return isCrtBeginEnd(S, "crtend"); } 956 957 // .ctors and .dtors are sorted by this priority from highest to lowest. 958 // 959 // 1. The section was contained in crtbegin (crtbegin contains 960 // some sentinel value in its .ctors and .dtors so that the runtime 961 // can find the beginning of the sections.) 962 // 963 // 2. The section has an optional priority value in the form of ".ctors.N" 964 // or ".dtors.N" where N is a number. Unlike .{init,fini}_array, 965 // they are compared as string rather than number. 966 // 967 // 3. The section is just ".ctors" or ".dtors". 968 // 969 // 4. The section was contained in crtend, which contains an end marker. 970 // 971 // In an ideal world, we don't need this function because .init_array and 972 // .ctors are duplicate features (and .init_array is newer.) However, there 973 // are too many real-world use cases of .ctors, so we had no choice to 974 // support that with this rather ad-hoc semantics. 975 template <class ELFT> 976 static bool compCtors(const InputSection<ELFT> *A, 977 const InputSection<ELFT> *B) { 978 bool BeginA = isCrtbegin(A->getFile()->getName()); 979 bool BeginB = isCrtbegin(B->getFile()->getName()); 980 if (BeginA != BeginB) 981 return BeginA; 982 bool EndA = isCrtend(A->getFile()->getName()); 983 bool EndB = isCrtend(B->getFile()->getName()); 984 if (EndA != EndB) 985 return EndB; 986 StringRef X = A->Name; 987 StringRef Y = B->Name; 988 assert(X.startswith(".ctors") || X.startswith(".dtors")); 989 assert(Y.startswith(".ctors") || Y.startswith(".dtors")); 990 X = X.substr(6); 991 Y = Y.substr(6); 992 if (X.empty() && Y.empty()) 993 return false; 994 return X < Y; 995 } 996 997 // Sorts input sections by the special rules for .ctors and .dtors. 998 // Unfortunately, the rules are different from the one for .{init,fini}_array. 999 // Read the comment above. 1000 template <class ELFT> void OutputSection<ELFT>::sortCtorsDtors() { 1001 std::stable_sort(Sections.begin(), Sections.end(), compCtors<ELFT>); 1002 } 1003 1004 static void fill(uint8_t *Buf, size_t Size, ArrayRef<uint8_t> A) { 1005 size_t I = 0; 1006 for (; I + A.size() < Size; I += A.size()) 1007 memcpy(Buf + I, A.data(), A.size()); 1008 memcpy(Buf + I, A.data(), Size - I); 1009 } 1010 1011 template <class ELFT> void OutputSection<ELFT>::writeTo(uint8_t *Buf) { 1012 ArrayRef<uint8_t> Filler = Script<ELFT>::X->getFiller(this->Name); 1013 if (!Filler.empty()) 1014 fill(Buf, this->getSize(), Filler); 1015 if (Config->Threads) { 1016 parallel_for_each(Sections.begin(), Sections.end(), 1017 [=](InputSection<ELFT> *C) { C->writeTo(Buf); }); 1018 } else { 1019 for (InputSection<ELFT> *C : Sections) 1020 C->writeTo(Buf); 1021 } 1022 } 1023 1024 template <class ELFT> 1025 EhOutputSection<ELFT>::EhOutputSection() 1026 : OutputSectionBase<ELFT>(".eh_frame", SHT_PROGBITS, SHF_ALLOC) {} 1027 1028 // Search for an existing CIE record or create a new one. 1029 // CIE records from input object files are uniquified by their contents 1030 // and where their relocations point to. 1031 template <class ELFT> 1032 template <class RelTy> 1033 CieRecord *EhOutputSection<ELFT>::addCie(EhSectionPiece &Piece, 1034 EhInputSection<ELFT> *Sec, 1035 ArrayRef<RelTy> Rels) { 1036 const endianness E = ELFT::TargetEndianness; 1037 if (read32<E>(Piece.data().data() + 4) != 0) 1038 fatal("CIE expected at beginning of .eh_frame: " + Sec->Name); 1039 1040 SymbolBody *Personality = nullptr; 1041 unsigned FirstRelI = Piece.FirstRelocation; 1042 if (FirstRelI != (unsigned)-1) 1043 Personality = &Sec->getFile()->getRelocTargetSym(Rels[FirstRelI]); 1044 1045 // Search for an existing CIE by CIE contents/relocation target pair. 1046 CieRecord *Cie = &CieMap[{Piece.data(), Personality}]; 1047 1048 // If not found, create a new one. 1049 if (Cie->Piece == nullptr) { 1050 Cie->Piece = &Piece; 1051 Cies.push_back(Cie); 1052 } 1053 return Cie; 1054 } 1055 1056 // There is one FDE per function. Returns true if a given FDE 1057 // points to a live function. 1058 template <class ELFT> 1059 template <class RelTy> 1060 bool EhOutputSection<ELFT>::isFdeLive(EhSectionPiece &Piece, 1061 EhInputSection<ELFT> *Sec, 1062 ArrayRef<RelTy> Rels) { 1063 unsigned FirstRelI = Piece.FirstRelocation; 1064 if (FirstRelI == (unsigned)-1) 1065 fatal("FDE doesn't reference another section"); 1066 const RelTy &Rel = Rels[FirstRelI]; 1067 SymbolBody &B = Sec->getFile()->getRelocTargetSym(Rel); 1068 auto *D = dyn_cast<DefinedRegular<ELFT>>(&B); 1069 if (!D || !D->Section) 1070 return false; 1071 InputSectionBase<ELFT> *Target = D->Section->Repl; 1072 return Target && Target->Live; 1073 } 1074 1075 // .eh_frame is a sequence of CIE or FDE records. In general, there 1076 // is one CIE record per input object file which is followed by 1077 // a list of FDEs. This function searches an existing CIE or create a new 1078 // one and associates FDEs to the CIE. 1079 template <class ELFT> 1080 template <class RelTy> 1081 void EhOutputSection<ELFT>::addSectionAux(EhInputSection<ELFT> *Sec, 1082 ArrayRef<RelTy> Rels) { 1083 const endianness E = ELFT::TargetEndianness; 1084 1085 DenseMap<size_t, CieRecord *> OffsetToCie; 1086 for (EhSectionPiece &Piece : Sec->Pieces) { 1087 // The empty record is the end marker. 1088 if (Piece.size() == 4) 1089 return; 1090 1091 size_t Offset = Piece.InputOff; 1092 uint32_t ID = read32<E>(Piece.data().data() + 4); 1093 if (ID == 0) { 1094 OffsetToCie[Offset] = addCie(Piece, Sec, Rels); 1095 continue; 1096 } 1097 1098 uint32_t CieOffset = Offset + 4 - ID; 1099 CieRecord *Cie = OffsetToCie[CieOffset]; 1100 if (!Cie) 1101 fatal("invalid CIE reference"); 1102 1103 if (!isFdeLive(Piece, Sec, Rels)) 1104 continue; 1105 Cie->FdePieces.push_back(&Piece); 1106 NumFdes++; 1107 } 1108 } 1109 1110 template <class ELFT> 1111 void EhOutputSection<ELFT>::addSection(InputSectionBase<ELFT> *C) { 1112 auto *Sec = cast<EhInputSection<ELFT>>(C); 1113 Sec->OutSec = this; 1114 this->updateAlignment(Sec->Alignment); 1115 Sections.push_back(Sec); 1116 1117 // .eh_frame is a sequence of CIE or FDE records. This function 1118 // splits it into pieces so that we can call 1119 // SplitInputSection::getSectionPiece on the section. 1120 Sec->split(); 1121 if (Sec->Pieces.empty()) 1122 return; 1123 1124 if (const Elf_Shdr *RelSec = Sec->RelocSection) { 1125 ELFFile<ELFT> &Obj = Sec->getFile()->getObj(); 1126 if (RelSec->sh_type == SHT_RELA) 1127 addSectionAux(Sec, Obj.relas(RelSec)); 1128 else 1129 addSectionAux(Sec, Obj.rels(RelSec)); 1130 return; 1131 } 1132 addSectionAux(Sec, makeArrayRef<Elf_Rela>(nullptr, nullptr)); 1133 } 1134 1135 template <class ELFT> 1136 static void writeCieFde(uint8_t *Buf, ArrayRef<uint8_t> D) { 1137 memcpy(Buf, D.data(), D.size()); 1138 1139 // Fix the size field. -4 since size does not include the size field itself. 1140 const endianness E = ELFT::TargetEndianness; 1141 write32<E>(Buf, alignTo(D.size(), sizeof(typename ELFT::uint)) - 4); 1142 } 1143 1144 template <class ELFT> void EhOutputSection<ELFT>::finalize() { 1145 if (this->Header.sh_size) 1146 return; // Already finalized. 1147 1148 size_t Off = 0; 1149 for (CieRecord *Cie : Cies) { 1150 Cie->Piece->OutputOff = Off; 1151 Off += alignTo(Cie->Piece->size(), sizeof(uintX_t)); 1152 1153 for (SectionPiece *Fde : Cie->FdePieces) { 1154 Fde->OutputOff = Off; 1155 Off += alignTo(Fde->size(), sizeof(uintX_t)); 1156 } 1157 } 1158 this->Header.sh_size = Off; 1159 } 1160 1161 template <class ELFT> static uint64_t readFdeAddr(uint8_t *Buf, int Size) { 1162 const endianness E = ELFT::TargetEndianness; 1163 switch (Size) { 1164 case DW_EH_PE_udata2: 1165 return read16<E>(Buf); 1166 case DW_EH_PE_udata4: 1167 return read32<E>(Buf); 1168 case DW_EH_PE_udata8: 1169 return read64<E>(Buf); 1170 case DW_EH_PE_absptr: 1171 if (ELFT::Is64Bits) 1172 return read64<E>(Buf); 1173 return read32<E>(Buf); 1174 } 1175 fatal("unknown FDE size encoding"); 1176 } 1177 1178 // Returns the VA to which a given FDE (on a mmap'ed buffer) is applied to. 1179 // We need it to create .eh_frame_hdr section. 1180 template <class ELFT> 1181 typename ELFT::uint EhOutputSection<ELFT>::getFdePc(uint8_t *Buf, size_t FdeOff, 1182 uint8_t Enc) { 1183 // The starting address to which this FDE applies is 1184 // stored at FDE + 8 byte. 1185 size_t Off = FdeOff + 8; 1186 uint64_t Addr = readFdeAddr<ELFT>(Buf + Off, Enc & 0x7); 1187 if ((Enc & 0x70) == DW_EH_PE_absptr) 1188 return Addr; 1189 if ((Enc & 0x70) == DW_EH_PE_pcrel) 1190 return Addr + this->getVA() + Off; 1191 fatal("unknown FDE size relative encoding"); 1192 } 1193 1194 template <class ELFT> void EhOutputSection<ELFT>::writeTo(uint8_t *Buf) { 1195 const endianness E = ELFT::TargetEndianness; 1196 for (CieRecord *Cie : Cies) { 1197 size_t CieOffset = Cie->Piece->OutputOff; 1198 writeCieFde<ELFT>(Buf + CieOffset, Cie->Piece->data()); 1199 1200 for (SectionPiece *Fde : Cie->FdePieces) { 1201 size_t Off = Fde->OutputOff; 1202 writeCieFde<ELFT>(Buf + Off, Fde->data()); 1203 1204 // FDE's second word should have the offset to an associated CIE. 1205 // Write it. 1206 write32<E>(Buf + Off + 4, Off + 4 - CieOffset); 1207 } 1208 } 1209 1210 for (EhInputSection<ELFT> *S : Sections) 1211 S->relocate(Buf, nullptr); 1212 1213 // Construct .eh_frame_hdr. .eh_frame_hdr is a binary search table 1214 // to get a FDE from an address to which FDE is applied. So here 1215 // we obtain two addresses and pass them to EhFrameHdr object. 1216 if (Out<ELFT>::EhFrameHdr) { 1217 for (CieRecord *Cie : Cies) { 1218 uint8_t Enc = getFdeEncoding<ELFT>(Cie->Piece->data()); 1219 for (SectionPiece *Fde : Cie->FdePieces) { 1220 uintX_t Pc = getFdePc(Buf, Fde->OutputOff, Enc); 1221 uintX_t FdeVA = this->getVA() + Fde->OutputOff; 1222 Out<ELFT>::EhFrameHdr->addFde(Pc, FdeVA); 1223 } 1224 } 1225 } 1226 } 1227 1228 template <class ELFT> 1229 MergeOutputSection<ELFT>::MergeOutputSection(StringRef Name, uint32_t Type, 1230 uintX_t Flags, uintX_t Alignment) 1231 : OutputSectionBase<ELFT>(Name, Type, Flags), 1232 Builder(StringTableBuilder::RAW, Alignment) {} 1233 1234 template <class ELFT> void MergeOutputSection<ELFT>::writeTo(uint8_t *Buf) { 1235 if (shouldTailMerge()) { 1236 StringRef Data = Builder.data(); 1237 memcpy(Buf, Data.data(), Data.size()); 1238 return; 1239 } 1240 for (const std::pair<CachedHash<StringRef>, size_t> &P : Builder.getMap()) { 1241 StringRef Data = P.first.Val; 1242 memcpy(Buf + P.second, Data.data(), Data.size()); 1243 } 1244 } 1245 1246 static StringRef toStringRef(ArrayRef<uint8_t> A) { 1247 return {(const char *)A.data(), A.size()}; 1248 } 1249 1250 template <class ELFT> 1251 void MergeOutputSection<ELFT>::addSection(InputSectionBase<ELFT> *C) { 1252 auto *Sec = cast<MergeInputSection<ELFT>>(C); 1253 Sec->OutSec = this; 1254 this->updateAlignment(Sec->Alignment); 1255 this->Header.sh_entsize = Sec->getSectionHdr()->sh_entsize; 1256 Sections.push_back(Sec); 1257 1258 bool IsString = this->Header.sh_flags & SHF_STRINGS; 1259 1260 for (SectionPiece &Piece : Sec->Pieces) { 1261 if (!Piece.Live) 1262 continue; 1263 uintX_t OutputOffset = Builder.add(toStringRef(Piece.data())); 1264 if (!IsString || !shouldTailMerge()) 1265 Piece.OutputOff = OutputOffset; 1266 } 1267 } 1268 1269 template <class ELFT> 1270 unsigned MergeOutputSection<ELFT>::getOffset(StringRef Val) { 1271 return Builder.getOffset(Val); 1272 } 1273 1274 template <class ELFT> bool MergeOutputSection<ELFT>::shouldTailMerge() const { 1275 return Config->Optimize >= 2 && this->Header.sh_flags & SHF_STRINGS; 1276 } 1277 1278 template <class ELFT> void MergeOutputSection<ELFT>::finalize() { 1279 if (shouldTailMerge()) 1280 Builder.finalize(); 1281 this->Header.sh_size = Builder.getSize(); 1282 } 1283 1284 template <class ELFT> void MergeOutputSection<ELFT>::finalizePieces() { 1285 for (MergeInputSection<ELFT> *Sec : Sections) 1286 Sec->finalizePieces(); 1287 } 1288 1289 template <class ELFT> 1290 StringTableSection<ELFT>::StringTableSection(StringRef Name, bool Dynamic) 1291 : OutputSectionBase<ELFT>(Name, SHT_STRTAB, 1292 Dynamic ? (uintX_t)SHF_ALLOC : 0), 1293 Dynamic(Dynamic) {} 1294 1295 // Adds a string to the string table. If HashIt is true we hash and check for 1296 // duplicates. It is optional because the name of global symbols are already 1297 // uniqued and hashing them again has a big cost for a small value: uniquing 1298 // them with some other string that happens to be the same. 1299 template <class ELFT> 1300 unsigned StringTableSection<ELFT>::addString(StringRef S, bool HashIt) { 1301 if (HashIt) { 1302 auto R = StringMap.insert(std::make_pair(S, Size)); 1303 if (!R.second) 1304 return R.first->second; 1305 } 1306 unsigned Ret = Size; 1307 Size += S.size() + 1; 1308 Strings.push_back(S); 1309 return Ret; 1310 } 1311 1312 template <class ELFT> void StringTableSection<ELFT>::writeTo(uint8_t *Buf) { 1313 // ELF string tables start with NUL byte, so advance the pointer by one. 1314 ++Buf; 1315 for (StringRef S : Strings) { 1316 memcpy(Buf, S.data(), S.size()); 1317 Buf += S.size() + 1; 1318 } 1319 } 1320 1321 template <class ELFT> 1322 typename ELFT::uint DynamicReloc<ELFT>::getOffset() const { 1323 if (OutputSec) 1324 return OutputSec->getVA() + OffsetInSec; 1325 return InputSec->OutSec->getVA() + InputSec->getOffset(OffsetInSec); 1326 } 1327 1328 template <class ELFT> 1329 typename ELFT::uint DynamicReloc<ELFT>::getAddend() const { 1330 if (UseSymVA) 1331 return Sym->getVA<ELFT>(Addend); 1332 return Addend; 1333 } 1334 1335 template <class ELFT> uint32_t DynamicReloc<ELFT>::getSymIndex() const { 1336 if (Sym && !UseSymVA) 1337 return Sym->DynsymIndex; 1338 return 0; 1339 } 1340 1341 template <class ELFT> 1342 SymbolTableSection<ELFT>::SymbolTableSection( 1343 StringTableSection<ELFT> &StrTabSec) 1344 : OutputSectionBase<ELFT>(StrTabSec.isDynamic() ? ".dynsym" : ".symtab", 1345 StrTabSec.isDynamic() ? SHT_DYNSYM : SHT_SYMTAB, 1346 StrTabSec.isDynamic() ? (uintX_t)SHF_ALLOC : 0), 1347 StrTabSec(StrTabSec) { 1348 this->Header.sh_entsize = sizeof(Elf_Sym); 1349 this->Header.sh_addralign = sizeof(uintX_t); 1350 } 1351 1352 // Orders symbols according to their positions in the GOT, 1353 // in compliance with MIPS ABI rules. 1354 // See "Global Offset Table" in Chapter 5 in the following document 1355 // for detailed description: 1356 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 1357 static bool sortMipsSymbols(const std::pair<SymbolBody *, unsigned> &L, 1358 const std::pair<SymbolBody *, unsigned> &R) { 1359 // Sort entries related to non-local preemptible symbols by GOT indexes. 1360 // All other entries go to the first part of GOT in arbitrary order. 1361 bool LIsInLocalGot = !L.first->IsInGlobalMipsGot; 1362 bool RIsInLocalGot = !R.first->IsInGlobalMipsGot; 1363 if (LIsInLocalGot || RIsInLocalGot) 1364 return !RIsInLocalGot; 1365 return L.first->GotIndex < R.first->GotIndex; 1366 } 1367 1368 static uint8_t getSymbolBinding(SymbolBody *Body) { 1369 Symbol *S = Body->symbol(); 1370 if (Config->Relocatable) 1371 return S->Binding; 1372 uint8_t Visibility = S->Visibility; 1373 if (Visibility != STV_DEFAULT && Visibility != STV_PROTECTED) 1374 return STB_LOCAL; 1375 if (Config->NoGnuUnique && S->Binding == STB_GNU_UNIQUE) 1376 return STB_GLOBAL; 1377 return S->Binding; 1378 } 1379 1380 template <class ELFT> void SymbolTableSection<ELFT>::finalize() { 1381 if (this->Header.sh_size) 1382 return; // Already finalized. 1383 1384 this->Header.sh_size = getNumSymbols() * sizeof(Elf_Sym); 1385 this->Header.sh_link = StrTabSec.SectionIndex; 1386 this->Header.sh_info = NumLocals + 1; 1387 1388 if (Config->Relocatable) { 1389 size_t I = NumLocals; 1390 for (const std::pair<SymbolBody *, size_t> &P : Symbols) 1391 P.first->DynsymIndex = ++I; 1392 return; 1393 } 1394 1395 if (!StrTabSec.isDynamic()) { 1396 std::stable_sort(Symbols.begin(), Symbols.end(), 1397 [](const std::pair<SymbolBody *, unsigned> &L, 1398 const std::pair<SymbolBody *, unsigned> &R) { 1399 return getSymbolBinding(L.first) == STB_LOCAL && 1400 getSymbolBinding(R.first) != STB_LOCAL; 1401 }); 1402 return; 1403 } 1404 if (Out<ELFT>::GnuHashTab) 1405 // NB: It also sorts Symbols to meet the GNU hash table requirements. 1406 Out<ELFT>::GnuHashTab->addSymbols(Symbols); 1407 else if (Config->EMachine == EM_MIPS) 1408 std::stable_sort(Symbols.begin(), Symbols.end(), sortMipsSymbols); 1409 size_t I = 0; 1410 for (const std::pair<SymbolBody *, size_t> &P : Symbols) 1411 P.first->DynsymIndex = ++I; 1412 } 1413 1414 template <class ELFT> 1415 void SymbolTableSection<ELFT>::addSymbol(SymbolBody *B) { 1416 Symbols.push_back({B, StrTabSec.addString(B->getName(), false)}); 1417 } 1418 1419 template <class ELFT> void SymbolTableSection<ELFT>::writeTo(uint8_t *Buf) { 1420 Buf += sizeof(Elf_Sym); 1421 1422 // All symbols with STB_LOCAL binding precede the weak and global symbols. 1423 // .dynsym only contains global symbols. 1424 if (Config->Discard != DiscardPolicy::All && !StrTabSec.isDynamic()) 1425 writeLocalSymbols(Buf); 1426 1427 writeGlobalSymbols(Buf); 1428 } 1429 1430 template <class ELFT> 1431 void SymbolTableSection<ELFT>::writeLocalSymbols(uint8_t *&Buf) { 1432 // Iterate over all input object files to copy their local symbols 1433 // to the output symbol table pointed by Buf. 1434 for (const std::unique_ptr<ObjectFile<ELFT>> &File : 1435 Symtab<ELFT>::X->getObjectFiles()) { 1436 for (const std::pair<const DefinedRegular<ELFT> *, size_t> &P : 1437 File->KeptLocalSyms) { 1438 const DefinedRegular<ELFT> &Body = *P.first; 1439 InputSectionBase<ELFT> *Section = Body.Section; 1440 auto *ESym = reinterpret_cast<Elf_Sym *>(Buf); 1441 1442 if (!Section) { 1443 ESym->st_shndx = SHN_ABS; 1444 ESym->st_value = Body.Value; 1445 } else { 1446 const OutputSectionBase<ELFT> *OutSec = Section->OutSec; 1447 ESym->st_shndx = OutSec->SectionIndex; 1448 ESym->st_value = OutSec->getVA() + Section->getOffset(Body); 1449 } 1450 ESym->st_name = P.second; 1451 ESym->st_size = Body.template getSize<ELFT>(); 1452 ESym->setBindingAndType(STB_LOCAL, Body.Type); 1453 Buf += sizeof(*ESym); 1454 } 1455 } 1456 } 1457 1458 template <class ELFT> 1459 void SymbolTableSection<ELFT>::writeGlobalSymbols(uint8_t *Buf) { 1460 // Write the internal symbol table contents to the output symbol table 1461 // pointed by Buf. 1462 auto *ESym = reinterpret_cast<Elf_Sym *>(Buf); 1463 for (const std::pair<SymbolBody *, size_t> &P : Symbols) { 1464 SymbolBody *Body = P.first; 1465 size_t StrOff = P.second; 1466 1467 uint8_t Type = Body->Type; 1468 uintX_t Size = Body->getSize<ELFT>(); 1469 1470 ESym->setBindingAndType(getSymbolBinding(Body), Type); 1471 ESym->st_size = Size; 1472 ESym->st_name = StrOff; 1473 ESym->setVisibility(Body->symbol()->Visibility); 1474 ESym->st_value = Body->getVA<ELFT>(); 1475 1476 if (const OutputSectionBase<ELFT> *OutSec = getOutputSection(Body)) 1477 ESym->st_shndx = OutSec->SectionIndex; 1478 else if (isa<DefinedRegular<ELFT>>(Body)) 1479 ESym->st_shndx = SHN_ABS; 1480 1481 // On MIPS we need to mark symbol which has a PLT entry and requires pointer 1482 // equality by STO_MIPS_PLT flag. That is necessary to help dynamic linker 1483 // distinguish such symbols and MIPS lazy-binding stubs. 1484 // https://sourceware.org/ml/binutils/2008-07/txt00000.txt 1485 if (Config->EMachine == EM_MIPS && Body->isInPlt() && 1486 Body->NeedsCopyOrPltAddr) 1487 ESym->st_other |= STO_MIPS_PLT; 1488 ++ESym; 1489 } 1490 } 1491 1492 template <class ELFT> 1493 const OutputSectionBase<ELFT> * 1494 SymbolTableSection<ELFT>::getOutputSection(SymbolBody *Sym) { 1495 switch (Sym->kind()) { 1496 case SymbolBody::DefinedSyntheticKind: 1497 return cast<DefinedSynthetic<ELFT>>(Sym)->Section; 1498 case SymbolBody::DefinedRegularKind: { 1499 auto &D = cast<DefinedRegular<ELFT>>(*Sym); 1500 if (D.Section) 1501 return D.Section->OutSec; 1502 break; 1503 } 1504 case SymbolBody::DefinedCommonKind: 1505 return CommonInputSection<ELFT>::X->OutSec; 1506 case SymbolBody::SharedKind: 1507 if (cast<SharedSymbol<ELFT>>(Sym)->needsCopy()) 1508 return Out<ELFT>::Bss; 1509 break; 1510 case SymbolBody::UndefinedKind: 1511 case SymbolBody::LazyArchiveKind: 1512 case SymbolBody::LazyObjectKind: 1513 break; 1514 } 1515 return nullptr; 1516 } 1517 1518 template <class ELFT> 1519 VersionDefinitionSection<ELFT>::VersionDefinitionSection() 1520 : OutputSectionBase<ELFT>(".gnu.version_d", SHT_GNU_verdef, SHF_ALLOC) { 1521 this->Header.sh_addralign = sizeof(uint32_t); 1522 } 1523 1524 static StringRef getFileDefName() { 1525 if (!Config->SoName.empty()) 1526 return Config->SoName; 1527 return Config->OutputFile; 1528 } 1529 1530 template <class ELFT> void VersionDefinitionSection<ELFT>::finalize() { 1531 FileDefNameOff = Out<ELFT>::DynStrTab->addString(getFileDefName()); 1532 for (VersionDefinition &V : Config->VersionDefinitions) 1533 V.NameOff = Out<ELFT>::DynStrTab->addString(V.Name); 1534 1535 this->Header.sh_size = 1536 (sizeof(Elf_Verdef) + sizeof(Elf_Verdaux)) * getVerDefNum(); 1537 this->Header.sh_link = Out<ELFT>::DynStrTab->SectionIndex; 1538 1539 // sh_info should be set to the number of definitions. This fact is missed in 1540 // documentation, but confirmed by binutils community: 1541 // https://sourceware.org/ml/binutils/2014-11/msg00355.html 1542 this->Header.sh_info = getVerDefNum(); 1543 } 1544 1545 template <class ELFT> 1546 void VersionDefinitionSection<ELFT>::writeOne(uint8_t *Buf, uint32_t Index, 1547 StringRef Name, size_t NameOff) { 1548 auto *Verdef = reinterpret_cast<Elf_Verdef *>(Buf); 1549 Verdef->vd_version = 1; 1550 Verdef->vd_cnt = 1; 1551 Verdef->vd_aux = sizeof(Elf_Verdef); 1552 Verdef->vd_next = sizeof(Elf_Verdef) + sizeof(Elf_Verdaux); 1553 Verdef->vd_flags = (Index == 1 ? VER_FLG_BASE : 0); 1554 Verdef->vd_ndx = Index; 1555 Verdef->vd_hash = hashSysv(Name); 1556 1557 auto *Verdaux = reinterpret_cast<Elf_Verdaux *>(Buf + sizeof(Elf_Verdef)); 1558 Verdaux->vda_name = NameOff; 1559 Verdaux->vda_next = 0; 1560 } 1561 1562 template <class ELFT> 1563 void VersionDefinitionSection<ELFT>::writeTo(uint8_t *Buf) { 1564 writeOne(Buf, 1, getFileDefName(), FileDefNameOff); 1565 1566 for (VersionDefinition &V : Config->VersionDefinitions) { 1567 Buf += sizeof(Elf_Verdef) + sizeof(Elf_Verdaux); 1568 writeOne(Buf, V.Id, V.Name, V.NameOff); 1569 } 1570 1571 // Need to terminate the last version definition. 1572 Elf_Verdef *Verdef = reinterpret_cast<Elf_Verdef *>(Buf); 1573 Verdef->vd_next = 0; 1574 } 1575 1576 template <class ELFT> 1577 VersionTableSection<ELFT>::VersionTableSection() 1578 : OutputSectionBase<ELFT>(".gnu.version", SHT_GNU_versym, SHF_ALLOC) { 1579 this->Header.sh_addralign = sizeof(uint16_t); 1580 } 1581 1582 template <class ELFT> void VersionTableSection<ELFT>::finalize() { 1583 this->Header.sh_size = 1584 sizeof(Elf_Versym) * (Out<ELFT>::DynSymTab->getSymbols().size() + 1); 1585 this->Header.sh_entsize = sizeof(Elf_Versym); 1586 // At the moment of june 2016 GNU docs does not mention that sh_link field 1587 // should be set, but Sun docs do. Also readelf relies on this field. 1588 this->Header.sh_link = Out<ELFT>::DynSymTab->SectionIndex; 1589 } 1590 1591 template <class ELFT> void VersionTableSection<ELFT>::writeTo(uint8_t *Buf) { 1592 auto *OutVersym = reinterpret_cast<Elf_Versym *>(Buf) + 1; 1593 for (const std::pair<SymbolBody *, size_t> &P : 1594 Out<ELFT>::DynSymTab->getSymbols()) { 1595 OutVersym->vs_index = P.first->symbol()->VersionId; 1596 ++OutVersym; 1597 } 1598 } 1599 1600 template <class ELFT> 1601 VersionNeedSection<ELFT>::VersionNeedSection() 1602 : OutputSectionBase<ELFT>(".gnu.version_r", SHT_GNU_verneed, SHF_ALLOC) { 1603 this->Header.sh_addralign = sizeof(uint32_t); 1604 1605 // Identifiers in verneed section start at 2 because 0 and 1 are reserved 1606 // for VER_NDX_LOCAL and VER_NDX_GLOBAL. 1607 // First identifiers are reserved by verdef section if it exist. 1608 NextIndex = getVerDefNum() + 1; 1609 } 1610 1611 template <class ELFT> 1612 void VersionNeedSection<ELFT>::addSymbol(SharedSymbol<ELFT> *SS) { 1613 if (!SS->Verdef) { 1614 SS->symbol()->VersionId = VER_NDX_GLOBAL; 1615 return; 1616 } 1617 SharedFile<ELFT> *F = SS->file(); 1618 // If we don't already know that we need an Elf_Verneed for this DSO, prepare 1619 // to create one by adding it to our needed list and creating a dynstr entry 1620 // for the soname. 1621 if (F->VerdefMap.empty()) 1622 Needed.push_back({F, Out<ELFT>::DynStrTab->addString(F->getSoName())}); 1623 typename SharedFile<ELFT>::NeededVer &NV = F->VerdefMap[SS->Verdef]; 1624 // If we don't already know that we need an Elf_Vernaux for this Elf_Verdef, 1625 // prepare to create one by allocating a version identifier and creating a 1626 // dynstr entry for the version name. 1627 if (NV.Index == 0) { 1628 NV.StrTab = Out<ELFT>::DynStrTab->addString( 1629 SS->file()->getStringTable().data() + SS->Verdef->getAux()->vda_name); 1630 NV.Index = NextIndex++; 1631 } 1632 SS->symbol()->VersionId = NV.Index; 1633 } 1634 1635 template <class ELFT> void VersionNeedSection<ELFT>::writeTo(uint8_t *Buf) { 1636 // The Elf_Verneeds need to appear first, followed by the Elf_Vernauxs. 1637 auto *Verneed = reinterpret_cast<Elf_Verneed *>(Buf); 1638 auto *Vernaux = reinterpret_cast<Elf_Vernaux *>(Verneed + Needed.size()); 1639 1640 for (std::pair<SharedFile<ELFT> *, size_t> &P : Needed) { 1641 // Create an Elf_Verneed for this DSO. 1642 Verneed->vn_version = 1; 1643 Verneed->vn_cnt = P.first->VerdefMap.size(); 1644 Verneed->vn_file = P.second; 1645 Verneed->vn_aux = 1646 reinterpret_cast<char *>(Vernaux) - reinterpret_cast<char *>(Verneed); 1647 Verneed->vn_next = sizeof(Elf_Verneed); 1648 ++Verneed; 1649 1650 // Create the Elf_Vernauxs for this Elf_Verneed. The loop iterates over 1651 // VerdefMap, which will only contain references to needed version 1652 // definitions. Each Elf_Vernaux is based on the information contained in 1653 // the Elf_Verdef in the source DSO. This loop iterates over a std::map of 1654 // pointers, but is deterministic because the pointers refer to Elf_Verdef 1655 // data structures within a single input file. 1656 for (auto &NV : P.first->VerdefMap) { 1657 Vernaux->vna_hash = NV.first->vd_hash; 1658 Vernaux->vna_flags = 0; 1659 Vernaux->vna_other = NV.second.Index; 1660 Vernaux->vna_name = NV.second.StrTab; 1661 Vernaux->vna_next = sizeof(Elf_Vernaux); 1662 ++Vernaux; 1663 } 1664 1665 Vernaux[-1].vna_next = 0; 1666 } 1667 Verneed[-1].vn_next = 0; 1668 } 1669 1670 template <class ELFT> void VersionNeedSection<ELFT>::finalize() { 1671 this->Header.sh_link = Out<ELFT>::DynStrTab->SectionIndex; 1672 this->Header.sh_info = Needed.size(); 1673 unsigned Size = Needed.size() * sizeof(Elf_Verneed); 1674 for (std::pair<SharedFile<ELFT> *, size_t> &P : Needed) 1675 Size += P.first->VerdefMap.size() * sizeof(Elf_Vernaux); 1676 this->Header.sh_size = Size; 1677 } 1678 1679 template <class ELFT> 1680 BuildIdSection<ELFT>::BuildIdSection(size_t HashSize) 1681 : OutputSectionBase<ELFT>(".note.gnu.build-id", SHT_NOTE, SHF_ALLOC), 1682 HashSize(HashSize) { 1683 // 16 bytes for the note section header. 1684 this->Header.sh_size = 16 + HashSize; 1685 } 1686 1687 template <class ELFT> void BuildIdSection<ELFT>::writeTo(uint8_t *Buf) { 1688 const endianness E = ELFT::TargetEndianness; 1689 write32<E>(Buf, 4); // Name size 1690 write32<E>(Buf + 4, HashSize); // Content size 1691 write32<E>(Buf + 8, NT_GNU_BUILD_ID); // Type 1692 memcpy(Buf + 12, "GNU", 4); // Name string 1693 HashBuf = Buf + 16; 1694 } 1695 1696 template <class ELFT> 1697 void BuildIdFnv1<ELFT>::writeBuildId(ArrayRef<uint8_t> Buf) { 1698 const endianness E = ELFT::TargetEndianness; 1699 1700 // 64-bit FNV-1 hash 1701 uint64_t Hash = 0xcbf29ce484222325; 1702 for (uint8_t B : Buf) { 1703 Hash *= 0x100000001b3; 1704 Hash ^= B; 1705 } 1706 write64<E>(this->HashBuf, Hash); 1707 } 1708 1709 template <class ELFT> 1710 void BuildIdMd5<ELFT>::writeBuildId(ArrayRef<uint8_t> Buf) { 1711 MD5 Hash; 1712 Hash.update(Buf); 1713 MD5::MD5Result Res; 1714 Hash.final(Res); 1715 memcpy(this->HashBuf, Res, 16); 1716 } 1717 1718 template <class ELFT> 1719 void BuildIdSha1<ELFT>::writeBuildId(ArrayRef<uint8_t> Buf) { 1720 SHA1 Hash; 1721 Hash.update(Buf); 1722 memcpy(this->HashBuf, Hash.final().data(), 20); 1723 } 1724 1725 template <class ELFT> 1726 void BuildIdUuid<ELFT>::writeBuildId(ArrayRef<uint8_t> Buf) { 1727 if (getRandomBytes(this->HashBuf, 16)) 1728 error("entropy source failure"); 1729 } 1730 1731 template <class ELFT> 1732 BuildIdHexstring<ELFT>::BuildIdHexstring() 1733 : BuildIdSection<ELFT>(Config->BuildIdVector.size()) {} 1734 1735 template <class ELFT> 1736 void BuildIdHexstring<ELFT>::writeBuildId(ArrayRef<uint8_t> Buf) { 1737 memcpy(this->HashBuf, Config->BuildIdVector.data(), 1738 Config->BuildIdVector.size()); 1739 } 1740 1741 template <class ELFT> 1742 MipsReginfoOutputSection<ELFT>::MipsReginfoOutputSection() 1743 : OutputSectionBase<ELFT>(".reginfo", SHT_MIPS_REGINFO, SHF_ALLOC) { 1744 this->Header.sh_addralign = 4; 1745 this->Header.sh_entsize = sizeof(Elf_Mips_RegInfo); 1746 this->Header.sh_size = sizeof(Elf_Mips_RegInfo); 1747 } 1748 1749 template <class ELFT> 1750 void MipsReginfoOutputSection<ELFT>::writeTo(uint8_t *Buf) { 1751 auto *R = reinterpret_cast<Elf_Mips_RegInfo *>(Buf); 1752 R->ri_gp_value = Out<ELFT>::Got->getVA() + MipsGPOffset; 1753 R->ri_gprmask = GprMask; 1754 } 1755 1756 template <class ELFT> 1757 void MipsReginfoOutputSection<ELFT>::addSection(InputSectionBase<ELFT> *C) { 1758 // Copy input object file's .reginfo gprmask to output. 1759 auto *S = cast<MipsReginfoInputSection<ELFT>>(C); 1760 GprMask |= S->Reginfo->ri_gprmask; 1761 S->OutSec = this; 1762 } 1763 1764 template <class ELFT> 1765 MipsOptionsOutputSection<ELFT>::MipsOptionsOutputSection() 1766 : OutputSectionBase<ELFT>(".MIPS.options", SHT_MIPS_OPTIONS, 1767 SHF_ALLOC | SHF_MIPS_NOSTRIP) { 1768 this->Header.sh_addralign = 8; 1769 this->Header.sh_entsize = 1; 1770 this->Header.sh_size = sizeof(Elf_Mips_Options) + sizeof(Elf_Mips_RegInfo); 1771 } 1772 1773 template <class ELFT> 1774 void MipsOptionsOutputSection<ELFT>::writeTo(uint8_t *Buf) { 1775 auto *Opt = reinterpret_cast<Elf_Mips_Options *>(Buf); 1776 Opt->kind = ODK_REGINFO; 1777 Opt->size = this->Header.sh_size; 1778 Opt->section = 0; 1779 Opt->info = 0; 1780 auto *Reg = reinterpret_cast<Elf_Mips_RegInfo *>(Buf + sizeof(*Opt)); 1781 Reg->ri_gp_value = Out<ELFT>::Got->getVA() + MipsGPOffset; 1782 Reg->ri_gprmask = GprMask; 1783 } 1784 1785 template <class ELFT> 1786 void MipsOptionsOutputSection<ELFT>::addSection(InputSectionBase<ELFT> *C) { 1787 auto *S = cast<MipsOptionsInputSection<ELFT>>(C); 1788 if (S->Reginfo) 1789 GprMask |= S->Reginfo->ri_gprmask; 1790 S->OutSec = this; 1791 } 1792 1793 template <class ELFT> 1794 MipsAbiFlagsOutputSection<ELFT>::MipsAbiFlagsOutputSection() 1795 : OutputSectionBase<ELFT>(".MIPS.abiflags", SHT_MIPS_ABIFLAGS, SHF_ALLOC) { 1796 this->Header.sh_addralign = 8; 1797 this->Header.sh_entsize = sizeof(Elf_Mips_ABIFlags); 1798 this->Header.sh_size = sizeof(Elf_Mips_ABIFlags); 1799 memset(&Flags, 0, sizeof(Flags)); 1800 } 1801 1802 template <class ELFT> 1803 void MipsAbiFlagsOutputSection<ELFT>::writeTo(uint8_t *Buf) { 1804 memcpy(Buf, &Flags, sizeof(Flags)); 1805 } 1806 1807 template <class ELFT> 1808 void MipsAbiFlagsOutputSection<ELFT>::addSection(InputSectionBase<ELFT> *C) { 1809 // Check compatibility and merge fields from input .MIPS.abiflags 1810 // to the output one. 1811 auto *S = cast<MipsAbiFlagsInputSection<ELFT>>(C); 1812 S->OutSec = this; 1813 if (S->Flags->version != 0) { 1814 error(getFilename(S->getFile()) + ": unexpected .MIPS.abiflags version " + 1815 Twine(S->Flags->version)); 1816 return; 1817 } 1818 // LLD checks ISA compatibility in getMipsEFlags(). Here we just 1819 // select the highest number of ISA/Rev/Ext. 1820 Flags.isa_level = std::max(Flags.isa_level, S->Flags->isa_level); 1821 Flags.isa_rev = std::max(Flags.isa_rev, S->Flags->isa_rev); 1822 Flags.isa_ext = std::max(Flags.isa_ext, S->Flags->isa_ext); 1823 Flags.gpr_size = std::max(Flags.gpr_size, S->Flags->gpr_size); 1824 Flags.cpr1_size = std::max(Flags.cpr1_size, S->Flags->cpr1_size); 1825 Flags.cpr2_size = std::max(Flags.cpr2_size, S->Flags->cpr2_size); 1826 Flags.ases |= S->Flags->ases; 1827 Flags.flags1 |= S->Flags->flags1; 1828 Flags.flags2 |= S->Flags->flags2; 1829 Flags.fp_abi = elf::getMipsFpAbiFlag(Flags.fp_abi, S->Flags->fp_abi, 1830 getFilename(S->getFile())); 1831 } 1832 1833 template <class ELFT> 1834 std::pair<OutputSectionBase<ELFT> *, bool> 1835 OutputSectionFactory<ELFT>::create(InputSectionBase<ELFT> *C, 1836 StringRef OutsecName) { 1837 SectionKey<ELFT::Is64Bits> Key = createKey(C, OutsecName); 1838 OutputSectionBase<ELFT> *&Sec = Map[Key]; 1839 if (Sec) 1840 return {Sec, false}; 1841 1842 switch (C->kind()) { 1843 case InputSectionBase<ELFT>::Regular: 1844 Sec = new OutputSection<ELFT>(Key.Name, Key.Type, Key.Flags); 1845 break; 1846 case InputSectionBase<ELFT>::EHFrame: 1847 return {Out<ELFT>::EhFrame, false}; 1848 case InputSectionBase<ELFT>::Merge: 1849 Sec = new MergeOutputSection<ELFT>(Key.Name, Key.Type, Key.Flags, 1850 Key.Alignment); 1851 break; 1852 case InputSectionBase<ELFT>::MipsReginfo: 1853 Sec = new MipsReginfoOutputSection<ELFT>(); 1854 break; 1855 case InputSectionBase<ELFT>::MipsOptions: 1856 Sec = new MipsOptionsOutputSection<ELFT>(); 1857 break; 1858 case InputSectionBase<ELFT>::MipsAbiFlags: 1859 Sec = new MipsAbiFlagsOutputSection<ELFT>(); 1860 break; 1861 } 1862 Out<ELFT>::Pool.emplace_back(Sec); 1863 return {Sec, true}; 1864 } 1865 1866 template <class ELFT> 1867 SectionKey<ELFT::Is64Bits> 1868 OutputSectionFactory<ELFT>::createKey(InputSectionBase<ELFT> *C, 1869 StringRef OutsecName) { 1870 const Elf_Shdr *H = C->getSectionHdr(); 1871 uintX_t Flags = H->sh_flags & ~SHF_GROUP & ~SHF_COMPRESSED; 1872 1873 // For SHF_MERGE we create different output sections for each alignment. 1874 // This makes each output section simple and keeps a single level mapping from 1875 // input to output. 1876 uintX_t Alignment = 0; 1877 if (isa<MergeInputSection<ELFT>>(C)) 1878 Alignment = std::max(H->sh_addralign, H->sh_entsize); 1879 1880 uint32_t Type = H->sh_type; 1881 return SectionKey<ELFT::Is64Bits>{OutsecName, Type, Flags, Alignment}; 1882 } 1883 1884 template <bool Is64Bits> 1885 typename lld::elf::SectionKey<Is64Bits> 1886 DenseMapInfo<lld::elf::SectionKey<Is64Bits>>::getEmptyKey() { 1887 return SectionKey<Is64Bits>{DenseMapInfo<StringRef>::getEmptyKey(), 0, 0, 0}; 1888 } 1889 1890 template <bool Is64Bits> 1891 typename lld::elf::SectionKey<Is64Bits> 1892 DenseMapInfo<lld::elf::SectionKey<Is64Bits>>::getTombstoneKey() { 1893 return SectionKey<Is64Bits>{DenseMapInfo<StringRef>::getTombstoneKey(), 0, 0, 1894 0}; 1895 } 1896 1897 template <bool Is64Bits> 1898 unsigned 1899 DenseMapInfo<lld::elf::SectionKey<Is64Bits>>::getHashValue(const Key &Val) { 1900 return hash_combine(Val.Name, Val.Type, Val.Flags, Val.Alignment); 1901 } 1902 1903 template <bool Is64Bits> 1904 bool DenseMapInfo<lld::elf::SectionKey<Is64Bits>>::isEqual(const Key &LHS, 1905 const Key &RHS) { 1906 return DenseMapInfo<StringRef>::isEqual(LHS.Name, RHS.Name) && 1907 LHS.Type == RHS.Type && LHS.Flags == RHS.Flags && 1908 LHS.Alignment == RHS.Alignment; 1909 } 1910 1911 namespace llvm { 1912 template struct DenseMapInfo<SectionKey<true>>; 1913 template struct DenseMapInfo<SectionKey<false>>; 1914 } 1915 1916 namespace lld { 1917 namespace elf { 1918 template class OutputSectionBase<ELF32LE>; 1919 template class OutputSectionBase<ELF32BE>; 1920 template class OutputSectionBase<ELF64LE>; 1921 template class OutputSectionBase<ELF64BE>; 1922 1923 template class EhFrameHeader<ELF32LE>; 1924 template class EhFrameHeader<ELF32BE>; 1925 template class EhFrameHeader<ELF64LE>; 1926 template class EhFrameHeader<ELF64BE>; 1927 1928 template class GotPltSection<ELF32LE>; 1929 template class GotPltSection<ELF32BE>; 1930 template class GotPltSection<ELF64LE>; 1931 template class GotPltSection<ELF64BE>; 1932 1933 template class GotSection<ELF32LE>; 1934 template class GotSection<ELF32BE>; 1935 template class GotSection<ELF64LE>; 1936 template class GotSection<ELF64BE>; 1937 1938 template class PltSection<ELF32LE>; 1939 template class PltSection<ELF32BE>; 1940 template class PltSection<ELF64LE>; 1941 template class PltSection<ELF64BE>; 1942 1943 template class RelocationSection<ELF32LE>; 1944 template class RelocationSection<ELF32BE>; 1945 template class RelocationSection<ELF64LE>; 1946 template class RelocationSection<ELF64BE>; 1947 1948 template class InterpSection<ELF32LE>; 1949 template class InterpSection<ELF32BE>; 1950 template class InterpSection<ELF64LE>; 1951 template class InterpSection<ELF64BE>; 1952 1953 template class GnuHashTableSection<ELF32LE>; 1954 template class GnuHashTableSection<ELF32BE>; 1955 template class GnuHashTableSection<ELF64LE>; 1956 template class GnuHashTableSection<ELF64BE>; 1957 1958 template class HashTableSection<ELF32LE>; 1959 template class HashTableSection<ELF32BE>; 1960 template class HashTableSection<ELF64LE>; 1961 template class HashTableSection<ELF64BE>; 1962 1963 template class DynamicSection<ELF32LE>; 1964 template class DynamicSection<ELF32BE>; 1965 template class DynamicSection<ELF64LE>; 1966 template class DynamicSection<ELF64BE>; 1967 1968 template class OutputSection<ELF32LE>; 1969 template class OutputSection<ELF32BE>; 1970 template class OutputSection<ELF64LE>; 1971 template class OutputSection<ELF64BE>; 1972 1973 template class EhOutputSection<ELF32LE>; 1974 template class EhOutputSection<ELF32BE>; 1975 template class EhOutputSection<ELF64LE>; 1976 template class EhOutputSection<ELF64BE>; 1977 1978 template class MipsReginfoOutputSection<ELF32LE>; 1979 template class MipsReginfoOutputSection<ELF32BE>; 1980 template class MipsReginfoOutputSection<ELF64LE>; 1981 template class MipsReginfoOutputSection<ELF64BE>; 1982 1983 template class MipsOptionsOutputSection<ELF32LE>; 1984 template class MipsOptionsOutputSection<ELF32BE>; 1985 template class MipsOptionsOutputSection<ELF64LE>; 1986 template class MipsOptionsOutputSection<ELF64BE>; 1987 1988 template class MipsAbiFlagsOutputSection<ELF32LE>; 1989 template class MipsAbiFlagsOutputSection<ELF32BE>; 1990 template class MipsAbiFlagsOutputSection<ELF64LE>; 1991 template class MipsAbiFlagsOutputSection<ELF64BE>; 1992 1993 template class MergeOutputSection<ELF32LE>; 1994 template class MergeOutputSection<ELF32BE>; 1995 template class MergeOutputSection<ELF64LE>; 1996 template class MergeOutputSection<ELF64BE>; 1997 1998 template class StringTableSection<ELF32LE>; 1999 template class StringTableSection<ELF32BE>; 2000 template class StringTableSection<ELF64LE>; 2001 template class StringTableSection<ELF64BE>; 2002 2003 template class SymbolTableSection<ELF32LE>; 2004 template class SymbolTableSection<ELF32BE>; 2005 template class SymbolTableSection<ELF64LE>; 2006 template class SymbolTableSection<ELF64BE>; 2007 2008 template class VersionTableSection<ELF32LE>; 2009 template class VersionTableSection<ELF32BE>; 2010 template class VersionTableSection<ELF64LE>; 2011 template class VersionTableSection<ELF64BE>; 2012 2013 template class VersionNeedSection<ELF32LE>; 2014 template class VersionNeedSection<ELF32BE>; 2015 template class VersionNeedSection<ELF64LE>; 2016 template class VersionNeedSection<ELF64BE>; 2017 2018 template class VersionDefinitionSection<ELF32LE>; 2019 template class VersionDefinitionSection<ELF32BE>; 2020 template class VersionDefinitionSection<ELF64LE>; 2021 template class VersionDefinitionSection<ELF64BE>; 2022 2023 template class BuildIdSection<ELF32LE>; 2024 template class BuildIdSection<ELF32BE>; 2025 template class BuildIdSection<ELF64LE>; 2026 template class BuildIdSection<ELF64BE>; 2027 2028 template class BuildIdFnv1<ELF32LE>; 2029 template class BuildIdFnv1<ELF32BE>; 2030 template class BuildIdFnv1<ELF64LE>; 2031 template class BuildIdFnv1<ELF64BE>; 2032 2033 template class BuildIdMd5<ELF32LE>; 2034 template class BuildIdMd5<ELF32BE>; 2035 template class BuildIdMd5<ELF64LE>; 2036 template class BuildIdMd5<ELF64BE>; 2037 2038 template class BuildIdSha1<ELF32LE>; 2039 template class BuildIdSha1<ELF32BE>; 2040 template class BuildIdSha1<ELF64LE>; 2041 template class BuildIdSha1<ELF64BE>; 2042 2043 template class BuildIdUuid<ELF32LE>; 2044 template class BuildIdUuid<ELF32BE>; 2045 template class BuildIdUuid<ELF64LE>; 2046 template class BuildIdUuid<ELF64BE>; 2047 2048 template class BuildIdHexstring<ELF32LE>; 2049 template class BuildIdHexstring<ELF32BE>; 2050 template class BuildIdHexstring<ELF64LE>; 2051 template class BuildIdHexstring<ELF64BE>; 2052 2053 template class OutputSectionFactory<ELF32LE>; 2054 template class OutputSectionFactory<ELF32BE>; 2055 template class OutputSectionFactory<ELF64LE>; 2056 template class OutputSectionFactory<ELF64BE>; 2057 } 2058 } 2059