1 //===- OutputSections.cpp -------------------------------------------------===// 2 // 3 // The LLVM Linker 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "OutputSections.h" 11 #include "Config.h" 12 #include "EhFrame.h" 13 #include "LinkerScript.h" 14 #include "GdbIndex.h" 15 #include "Strings.h" 16 #include "SymbolTable.h" 17 #include "Target.h" 18 #include "lld/Core/Parallel.h" 19 #include "llvm/Support/Dwarf.h" 20 #include "llvm/Support/MD5.h" 21 #include "llvm/Support/MathExtras.h" 22 #include "llvm/Support/RandomNumberGenerator.h" 23 #include "llvm/Support/SHA1.h" 24 #include "llvm/Support/xxhash.h" 25 26 using namespace llvm; 27 using namespace llvm::dwarf; 28 using namespace llvm::object; 29 using namespace llvm::support::endian; 30 using namespace llvm::ELF; 31 32 using namespace lld; 33 using namespace lld::elf; 34 35 template <class ELFT> 36 OutputSectionBase<ELFT>::OutputSectionBase(StringRef Name, uint32_t Type, 37 uintX_t Flags) 38 : Name(Name) { 39 memset(&Header, 0, sizeof(Elf_Shdr)); 40 Header.sh_type = Type; 41 Header.sh_flags = Flags; 42 Header.sh_addralign = 1; 43 } 44 45 template <class ELFT> uint32_t OutputSectionBase<ELFT>::getPhdrFlags() const { 46 uintX_t Flags = getFlags(); 47 uint32_t Ret = PF_R; 48 if (Flags & SHF_WRITE) 49 Ret |= PF_W; 50 if (Flags & SHF_EXECINSTR) 51 Ret |= PF_X; 52 return Ret; 53 } 54 55 template <class ELFT> 56 void OutputSectionBase<ELFT>::writeHeaderTo(Elf_Shdr *Shdr) { 57 *Shdr = Header; 58 } 59 60 template <class ELFT> 61 GdbIndexSection<ELFT>::GdbIndexSection() 62 : OutputSectionBase<ELFT>(".gdb_index", SHT_PROGBITS, 0) {} 63 64 template <class ELFT> void GdbIndexSection<ELFT>::parseDebugSections() { 65 std::vector<InputSection<ELFT> *> &IS = 66 static_cast<OutputSection<ELFT> *>(Out<ELFT>::DebugInfo)->Sections; 67 68 for (InputSection<ELFT> *I : IS) 69 readDwarf(I); 70 } 71 72 template <class ELFT> 73 void GdbIndexSection<ELFT>::readDwarf(InputSection<ELFT> *I) { 74 std::vector<std::pair<uintX_t, uintX_t>> CuList = readCuList(I); 75 CompilationUnits.insert(CompilationUnits.end(), CuList.begin(), CuList.end()); 76 } 77 78 template <class ELFT> void GdbIndexSection<ELFT>::finalize() { 79 parseDebugSections(); 80 81 // GdbIndex header consist from version fields 82 // and 5 more fields with different kinds of offsets. 83 CuTypesOffset = CuListOffset + CompilationUnits.size() * CompilationUnitSize; 84 this->Header.sh_size = CuTypesOffset; 85 } 86 87 template <class ELFT> void GdbIndexSection<ELFT>::writeTo(uint8_t *Buf) { 88 write32le(Buf, 7); // Write Version 89 write32le(Buf + 4, CuListOffset); // CU list offset 90 write32le(Buf + 8, CuTypesOffset); // Types CU list offset 91 write32le(Buf + 12, CuTypesOffset); // Address area offset 92 write32le(Buf + 16, CuTypesOffset); // Symbol table offset 93 write32le(Buf + 20, CuTypesOffset); // Constant pool offset 94 Buf += 24; 95 96 // Write the CU list. 97 for (std::pair<uintX_t, uintX_t> CU : CompilationUnits) { 98 write64le(Buf, CU.first); 99 write64le(Buf + 8, CU.second); 100 Buf += 16; 101 } 102 } 103 104 template <class ELFT> 105 GotPltSection<ELFT>::GotPltSection() 106 : OutputSectionBase<ELFT>(".got.plt", SHT_PROGBITS, SHF_ALLOC | SHF_WRITE) { 107 this->Header.sh_addralign = Target->GotPltEntrySize; 108 } 109 110 template <class ELFT> void GotPltSection<ELFT>::addEntry(SymbolBody &Sym) { 111 Sym.GotPltIndex = Target->GotPltHeaderEntriesNum + Entries.size(); 112 Entries.push_back(&Sym); 113 } 114 115 template <class ELFT> bool GotPltSection<ELFT>::empty() const { 116 return Entries.empty(); 117 } 118 119 template <class ELFT> void GotPltSection<ELFT>::finalize() { 120 this->Header.sh_size = (Target->GotPltHeaderEntriesNum + Entries.size()) * 121 Target->GotPltEntrySize; 122 } 123 124 template <class ELFT> void GotPltSection<ELFT>::writeTo(uint8_t *Buf) { 125 Target->writeGotPltHeader(Buf); 126 Buf += Target->GotPltHeaderEntriesNum * Target->GotPltEntrySize; 127 for (const SymbolBody *B : Entries) { 128 Target->writeGotPlt(Buf, *B); 129 Buf += sizeof(uintX_t); 130 } 131 } 132 133 template <class ELFT> 134 GotSection<ELFT>::GotSection() 135 : OutputSectionBase<ELFT>(".got", SHT_PROGBITS, SHF_ALLOC | SHF_WRITE) { 136 if (Config->EMachine == EM_MIPS) 137 this->Header.sh_flags |= SHF_MIPS_GPREL; 138 this->Header.sh_addralign = Target->GotEntrySize; 139 } 140 141 template <class ELFT> void GotSection<ELFT>::addEntry(SymbolBody &Sym) { 142 Sym.GotIndex = Entries.size(); 143 Entries.push_back(&Sym); 144 } 145 146 template <class ELFT> 147 void GotSection<ELFT>::addMipsEntry(SymbolBody &Sym, uintX_t Addend, 148 RelExpr Expr) { 149 // For "true" local symbols which can be referenced from the same module 150 // only compiler creates two instructions for address loading: 151 // 152 // lw $8, 0($gp) # R_MIPS_GOT16 153 // addi $8, $8, 0 # R_MIPS_LO16 154 // 155 // The first instruction loads high 16 bits of the symbol address while 156 // the second adds an offset. That allows to reduce number of required 157 // GOT entries because only one global offset table entry is necessary 158 // for every 64 KBytes of local data. So for local symbols we need to 159 // allocate number of GOT entries to hold all required "page" addresses. 160 // 161 // All global symbols (hidden and regular) considered by compiler uniformly. 162 // It always generates a single `lw` instruction and R_MIPS_GOT16 relocation 163 // to load address of the symbol. So for each such symbol we need to 164 // allocate dedicated GOT entry to store its address. 165 // 166 // If a symbol is preemptible we need help of dynamic linker to get its 167 // final address. The corresponding GOT entries are allocated in the 168 // "global" part of GOT. Entries for non preemptible global symbol allocated 169 // in the "local" part of GOT. 170 // 171 // See "Global Offset Table" in Chapter 5: 172 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 173 if (Expr == R_MIPS_GOT_LOCAL_PAGE) { 174 // At this point we do not know final symbol value so to reduce number 175 // of allocated GOT entries do the following trick. Save all output 176 // sections referenced by GOT relocations. Then later in the `finalize` 177 // method calculate number of "pages" required to cover all saved output 178 // section and allocate appropriate number of GOT entries. 179 auto *OutSec = cast<DefinedRegular<ELFT>>(&Sym)->Section->OutSec; 180 MipsOutSections.insert(OutSec); 181 return; 182 } 183 if (Sym.isTls()) { 184 // GOT entries created for MIPS TLS relocations behave like 185 // almost GOT entries from other ABIs. They go to the end 186 // of the global offset table. 187 Sym.GotIndex = Entries.size(); 188 Entries.push_back(&Sym); 189 return; 190 } 191 auto AddEntry = [&](SymbolBody &S, uintX_t A, MipsGotEntries &Items) { 192 if (S.isInGot() && !A) 193 return; 194 size_t NewIndex = Items.size(); 195 if (!MipsGotMap.insert({{&S, A}, NewIndex}).second) 196 return; 197 Items.emplace_back(&S, A); 198 if (!A) 199 S.GotIndex = NewIndex; 200 }; 201 if (Sym.isPreemptible()) { 202 // Ignore addends for preemptible symbols. They got single GOT entry anyway. 203 AddEntry(Sym, 0, MipsGlobal); 204 Sym.IsInGlobalMipsGot = true; 205 } else 206 AddEntry(Sym, Addend, MipsLocal); 207 } 208 209 template <class ELFT> bool GotSection<ELFT>::addDynTlsEntry(SymbolBody &Sym) { 210 if (Sym.GlobalDynIndex != -1U) 211 return false; 212 Sym.GlobalDynIndex = Entries.size(); 213 // Global Dynamic TLS entries take two GOT slots. 214 Entries.push_back(nullptr); 215 Entries.push_back(&Sym); 216 return true; 217 } 218 219 // Reserves TLS entries for a TLS module ID and a TLS block offset. 220 // In total it takes two GOT slots. 221 template <class ELFT> bool GotSection<ELFT>::addTlsIndex() { 222 if (TlsIndexOff != uint32_t(-1)) 223 return false; 224 TlsIndexOff = Entries.size() * sizeof(uintX_t); 225 Entries.push_back(nullptr); 226 Entries.push_back(nullptr); 227 return true; 228 } 229 230 template <class ELFT> 231 typename GotSection<ELFT>::uintX_t 232 GotSection<ELFT>::getMipsLocalPageOffset(uintX_t EntryValue) { 233 // Initialize the entry by the %hi(EntryValue) expression 234 // but without right-shifting. 235 EntryValue = (EntryValue + 0x8000) & ~0xffff; 236 // Take into account MIPS GOT header. 237 // See comment in the GotSection::writeTo. 238 size_t NewIndex = MipsLocalGotPos.size() + 2; 239 auto P = MipsLocalGotPos.insert(std::make_pair(EntryValue, NewIndex)); 240 assert(!P.second || MipsLocalGotPos.size() <= MipsPageEntries); 241 return (uintX_t)P.first->second * sizeof(uintX_t) - MipsGPOffset; 242 } 243 244 template <class ELFT> 245 typename GotSection<ELFT>::uintX_t 246 GotSection<ELFT>::getMipsGotOffset(const SymbolBody &B, uintX_t Addend) const { 247 // Calculate offset of the GOT entries block: TLS, global, local. 248 uintX_t GotBlockOff; 249 if (B.isTls()) 250 GotBlockOff = getMipsTlsOffset(); 251 else if (B.IsInGlobalMipsGot) 252 GotBlockOff = getMipsLocalEntriesNum() * sizeof(uintX_t); 253 else 254 GotBlockOff = MipsPageEntries * sizeof(uintX_t); 255 // Calculate index of the GOT entry in the block. 256 uintX_t GotIndex; 257 if (B.isInGot()) 258 GotIndex = B.GotIndex; 259 else { 260 auto It = MipsGotMap.find({&B, Addend}); 261 assert(It != MipsGotMap.end()); 262 GotIndex = It->second; 263 } 264 return GotBlockOff + GotIndex * sizeof(uintX_t) - MipsGPOffset; 265 } 266 267 template <class ELFT> 268 typename GotSection<ELFT>::uintX_t GotSection<ELFT>::getMipsTlsOffset() const { 269 return (getMipsLocalEntriesNum() + MipsGlobal.size()) * sizeof(uintX_t); 270 } 271 272 template <class ELFT> 273 typename GotSection<ELFT>::uintX_t 274 GotSection<ELFT>::getGlobalDynAddr(const SymbolBody &B) const { 275 return this->getVA() + B.GlobalDynIndex * sizeof(uintX_t); 276 } 277 278 template <class ELFT> 279 typename GotSection<ELFT>::uintX_t 280 GotSection<ELFT>::getGlobalDynOffset(const SymbolBody &B) const { 281 return B.GlobalDynIndex * sizeof(uintX_t); 282 } 283 284 template <class ELFT> 285 const SymbolBody *GotSection<ELFT>::getMipsFirstGlobalEntry() const { 286 return MipsGlobal.empty() ? nullptr : MipsGlobal.front().first; 287 } 288 289 template <class ELFT> 290 unsigned GotSection<ELFT>::getMipsLocalEntriesNum() const { 291 return MipsPageEntries + MipsLocal.size(); 292 } 293 294 template <class ELFT> void GotSection<ELFT>::finalize() { 295 size_t EntriesNum = Entries.size(); 296 if (Config->EMachine == EM_MIPS) { 297 // Take into account MIPS GOT header. 298 // See comment in the GotSection::writeTo. 299 MipsPageEntries += 2; 300 for (const OutputSectionBase<ELFT> *OutSec : MipsOutSections) { 301 // Calculate an upper bound of MIPS GOT entries required to store page 302 // addresses of local symbols. We assume the worst case - each 64kb 303 // page of the output section has at least one GOT relocation against it. 304 // Add 0x8000 to the section's size because the page address stored 305 // in the GOT entry is calculated as (value + 0x8000) & ~0xffff. 306 MipsPageEntries += (OutSec->getSize() + 0x8000 + 0xfffe) / 0xffff; 307 } 308 EntriesNum += getMipsLocalEntriesNum() + MipsGlobal.size(); 309 } 310 this->Header.sh_size = EntriesNum * sizeof(uintX_t); 311 } 312 313 template <class ELFT> 314 static void writeUint(uint8_t *Buf, typename ELFT::uint Val) { 315 typedef typename ELFT::uint uintX_t; 316 write<uintX_t, ELFT::TargetEndianness, sizeof(uintX_t)>(Buf, Val); 317 } 318 319 template <class ELFT> void GotSection<ELFT>::writeMipsGot(uint8_t *Buf) { 320 // Set the MSB of the second GOT slot. This is not required by any 321 // MIPS ABI documentation, though. 322 // 323 // There is a comment in glibc saying that "The MSB of got[1] of a 324 // gnu object is set to identify gnu objects," and in GNU gold it 325 // says "the second entry will be used by some runtime loaders". 326 // But how this field is being used is unclear. 327 // 328 // We are not really willing to mimic other linkers behaviors 329 // without understanding why they do that, but because all files 330 // generated by GNU tools have this special GOT value, and because 331 // we've been doing this for years, it is probably a safe bet to 332 // keep doing this for now. We really need to revisit this to see 333 // if we had to do this. 334 auto *P = reinterpret_cast<typename ELFT::Off *>(Buf); 335 P[1] = uintX_t(1) << (ELFT::Is64Bits ? 63 : 31); 336 // Write 'page address' entries to the local part of the GOT. 337 for (std::pair<uintX_t, size_t> &L : MipsLocalGotPos) { 338 uint8_t *Entry = Buf + L.second * sizeof(uintX_t); 339 writeUint<ELFT>(Entry, L.first); 340 } 341 Buf += MipsPageEntries * sizeof(uintX_t); 342 auto AddEntry = [&](const MipsGotEntry &SA) { 343 uint8_t *Entry = Buf; 344 Buf += sizeof(uintX_t); 345 const SymbolBody *Body = SA.first; 346 uintX_t VA = Body->template getVA<ELFT>(SA.second); 347 writeUint<ELFT>(Entry, VA); 348 }; 349 std::for_each(std::begin(MipsLocal), std::end(MipsLocal), AddEntry); 350 std::for_each(std::begin(MipsGlobal), std::end(MipsGlobal), AddEntry); 351 // Initialize TLS-related GOT entries. If the entry has a corresponding 352 // dynamic relocations, leave it initialized by zero. Write down adjusted 353 // TLS symbol's values otherwise. To calculate the adjustments use offsets 354 // for thread-local storage. 355 // https://www.linux-mips.org/wiki/NPTL 356 if (TlsIndexOff != -1U && !Config->Pic) 357 writeUint<ELFT>(Buf + TlsIndexOff, 1); 358 for (const SymbolBody *B : Entries) { 359 if (!B || B->isPreemptible()) 360 continue; 361 uintX_t VA = B->getVA<ELFT>(); 362 if (B->GotIndex != -1U) { 363 uint8_t *Entry = Buf + B->GotIndex * sizeof(uintX_t); 364 writeUint<ELFT>(Entry, VA - 0x7000); 365 } 366 if (B->GlobalDynIndex != -1U) { 367 uint8_t *Entry = Buf + B->GlobalDynIndex * sizeof(uintX_t); 368 writeUint<ELFT>(Entry, 1); 369 Entry += sizeof(uintX_t); 370 writeUint<ELFT>(Entry, VA - 0x8000); 371 } 372 } 373 } 374 375 template <class ELFT> void GotSection<ELFT>::writeTo(uint8_t *Buf) { 376 if (Config->EMachine == EM_MIPS) { 377 writeMipsGot(Buf); 378 return; 379 } 380 for (const SymbolBody *B : Entries) { 381 uint8_t *Entry = Buf; 382 Buf += sizeof(uintX_t); 383 if (!B) 384 continue; 385 if (B->isPreemptible()) 386 continue; // The dynamic linker will take care of it. 387 uintX_t VA = B->getVA<ELFT>(); 388 writeUint<ELFT>(Entry, VA); 389 } 390 } 391 392 template <class ELFT> 393 PltSection<ELFT>::PltSection() 394 : OutputSectionBase<ELFT>(".plt", SHT_PROGBITS, SHF_ALLOC | SHF_EXECINSTR) { 395 this->Header.sh_addralign = 16; 396 } 397 398 template <class ELFT> void PltSection<ELFT>::writeTo(uint8_t *Buf) { 399 // At beginning of PLT, we have code to call the dynamic linker 400 // to resolve dynsyms at runtime. Write such code. 401 Target->writePltHeader(Buf); 402 size_t Off = Target->PltHeaderSize; 403 404 for (auto &I : Entries) { 405 const SymbolBody *B = I.first; 406 unsigned RelOff = I.second; 407 uint64_t Got = B->getGotPltVA<ELFT>(); 408 uint64_t Plt = this->getVA() + Off; 409 Target->writePlt(Buf + Off, Got, Plt, B->PltIndex, RelOff); 410 Off += Target->PltEntrySize; 411 } 412 } 413 414 template <class ELFT> void PltSection<ELFT>::addEntry(SymbolBody &Sym) { 415 Sym.PltIndex = Entries.size(); 416 unsigned RelOff = Out<ELFT>::RelaPlt->getRelocOffset(); 417 Entries.push_back(std::make_pair(&Sym, RelOff)); 418 } 419 420 template <class ELFT> void PltSection<ELFT>::finalize() { 421 this->Header.sh_size = 422 Target->PltHeaderSize + Entries.size() * Target->PltEntrySize; 423 } 424 425 template <class ELFT> 426 RelocationSection<ELFT>::RelocationSection(StringRef Name, bool Sort) 427 : OutputSectionBase<ELFT>(Name, Config->Rela ? SHT_RELA : SHT_REL, 428 SHF_ALLOC), 429 Sort(Sort) { 430 this->Header.sh_entsize = Config->Rela ? sizeof(Elf_Rela) : sizeof(Elf_Rel); 431 this->Header.sh_addralign = sizeof(uintX_t); 432 } 433 434 template <class ELFT> 435 void RelocationSection<ELFT>::addReloc(const DynamicReloc<ELFT> &Reloc) { 436 if (Reloc.Type == Target->RelativeRel) 437 ++NumRelativeRelocs; 438 Relocs.push_back(Reloc); 439 } 440 441 template <class ELFT, class RelTy> 442 static bool compRelocations(const RelTy &A, const RelTy &B) { 443 bool AIsRel = A.getType(Config->Mips64EL) == Target->RelativeRel; 444 bool BIsRel = B.getType(Config->Mips64EL) == Target->RelativeRel; 445 if (AIsRel != BIsRel) 446 return AIsRel; 447 448 return A.getSymbol(Config->Mips64EL) < B.getSymbol(Config->Mips64EL); 449 } 450 451 template <class ELFT> void RelocationSection<ELFT>::writeTo(uint8_t *Buf) { 452 uint8_t *BufBegin = Buf; 453 for (const DynamicReloc<ELFT> &Rel : Relocs) { 454 auto *P = reinterpret_cast<Elf_Rela *>(Buf); 455 Buf += Config->Rela ? sizeof(Elf_Rela) : sizeof(Elf_Rel); 456 457 if (Config->Rela) 458 P->r_addend = Rel.getAddend(); 459 P->r_offset = Rel.getOffset(); 460 if (Config->EMachine == EM_MIPS && Rel.getOutputSec() == Out<ELFT>::Got) 461 // Dynamic relocation against MIPS GOT section make deal TLS entries 462 // allocated in the end of the GOT. We need to adjust the offset to take 463 // in account 'local' and 'global' GOT entries. 464 P->r_offset += Out<ELFT>::Got->getMipsTlsOffset(); 465 P->setSymbolAndType(Rel.getSymIndex(), Rel.Type, Config->Mips64EL); 466 } 467 468 if (Sort) { 469 if (Config->Rela) 470 std::stable_sort((Elf_Rela *)BufBegin, 471 (Elf_Rela *)BufBegin + Relocs.size(), 472 compRelocations<ELFT, Elf_Rela>); 473 else 474 std::stable_sort((Elf_Rel *)BufBegin, (Elf_Rel *)BufBegin + Relocs.size(), 475 compRelocations<ELFT, Elf_Rel>); 476 } 477 } 478 479 template <class ELFT> unsigned RelocationSection<ELFT>::getRelocOffset() { 480 return this->Header.sh_entsize * Relocs.size(); 481 } 482 483 template <class ELFT> void RelocationSection<ELFT>::finalize() { 484 this->Header.sh_link = Out<ELFT>::DynSymTab 485 ? Out<ELFT>::DynSymTab->SectionIndex 486 : Out<ELFT>::SymTab->SectionIndex; 487 this->Header.sh_size = Relocs.size() * this->Header.sh_entsize; 488 } 489 490 template <class ELFT> 491 InterpSection<ELFT>::InterpSection() 492 : OutputSectionBase<ELFT>(".interp", SHT_PROGBITS, SHF_ALLOC) { 493 this->Header.sh_size = Config->DynamicLinker.size() + 1; 494 } 495 496 template <class ELFT> void InterpSection<ELFT>::writeTo(uint8_t *Buf) { 497 StringRef S = Config->DynamicLinker; 498 memcpy(Buf, S.data(), S.size()); 499 } 500 501 template <class ELFT> 502 HashTableSection<ELFT>::HashTableSection() 503 : OutputSectionBase<ELFT>(".hash", SHT_HASH, SHF_ALLOC) { 504 this->Header.sh_entsize = sizeof(Elf_Word); 505 this->Header.sh_addralign = sizeof(Elf_Word); 506 } 507 508 static uint32_t hashSysv(StringRef Name) { 509 uint32_t H = 0; 510 for (char C : Name) { 511 H = (H << 4) + C; 512 uint32_t G = H & 0xf0000000; 513 if (G) 514 H ^= G >> 24; 515 H &= ~G; 516 } 517 return H; 518 } 519 520 template <class ELFT> void HashTableSection<ELFT>::finalize() { 521 this->Header.sh_link = Out<ELFT>::DynSymTab->SectionIndex; 522 523 unsigned NumEntries = 2; // nbucket and nchain. 524 NumEntries += Out<ELFT>::DynSymTab->getNumSymbols(); // The chain entries. 525 526 // Create as many buckets as there are symbols. 527 // FIXME: This is simplistic. We can try to optimize it, but implementing 528 // support for SHT_GNU_HASH is probably even more profitable. 529 NumEntries += Out<ELFT>::DynSymTab->getNumSymbols(); 530 this->Header.sh_size = NumEntries * sizeof(Elf_Word); 531 } 532 533 template <class ELFT> void HashTableSection<ELFT>::writeTo(uint8_t *Buf) { 534 unsigned NumSymbols = Out<ELFT>::DynSymTab->getNumSymbols(); 535 auto *P = reinterpret_cast<Elf_Word *>(Buf); 536 *P++ = NumSymbols; // nbucket 537 *P++ = NumSymbols; // nchain 538 539 Elf_Word *Buckets = P; 540 Elf_Word *Chains = P + NumSymbols; 541 542 for (const SymbolTableEntry &S : Out<ELFT>::DynSymTab->getSymbols()) { 543 SymbolBody *Body = S.Symbol; 544 StringRef Name = Body->getName(); 545 unsigned I = Body->DynsymIndex; 546 uint32_t Hash = hashSysv(Name) % NumSymbols; 547 Chains[I] = Buckets[Hash]; 548 Buckets[Hash] = I; 549 } 550 } 551 552 static uint32_t hashGnu(StringRef Name) { 553 uint32_t H = 5381; 554 for (uint8_t C : Name) 555 H = (H << 5) + H + C; 556 return H; 557 } 558 559 template <class ELFT> 560 GnuHashTableSection<ELFT>::GnuHashTableSection() 561 : OutputSectionBase<ELFT>(".gnu.hash", SHT_GNU_HASH, SHF_ALLOC) { 562 this->Header.sh_entsize = ELFT::Is64Bits ? 0 : 4; 563 this->Header.sh_addralign = sizeof(uintX_t); 564 } 565 566 template <class ELFT> 567 unsigned GnuHashTableSection<ELFT>::calcNBuckets(unsigned NumHashed) { 568 if (!NumHashed) 569 return 0; 570 571 // These values are prime numbers which are not greater than 2^(N-1) + 1. 572 // In result, for any particular NumHashed we return a prime number 573 // which is not greater than NumHashed. 574 static const unsigned Primes[] = { 575 1, 1, 3, 3, 7, 13, 31, 61, 127, 251, 576 509, 1021, 2039, 4093, 8191, 16381, 32749, 65521, 131071}; 577 578 return Primes[std::min<unsigned>(Log2_32_Ceil(NumHashed), 579 array_lengthof(Primes) - 1)]; 580 } 581 582 // Bloom filter estimation: at least 8 bits for each hashed symbol. 583 // GNU Hash table requirement: it should be a power of 2, 584 // the minimum value is 1, even for an empty table. 585 // Expected results for a 32-bit target: 586 // calcMaskWords(0..4) = 1 587 // calcMaskWords(5..8) = 2 588 // calcMaskWords(9..16) = 4 589 // For a 64-bit target: 590 // calcMaskWords(0..8) = 1 591 // calcMaskWords(9..16) = 2 592 // calcMaskWords(17..32) = 4 593 template <class ELFT> 594 unsigned GnuHashTableSection<ELFT>::calcMaskWords(unsigned NumHashed) { 595 if (!NumHashed) 596 return 1; 597 return NextPowerOf2((NumHashed - 1) / sizeof(Elf_Off)); 598 } 599 600 template <class ELFT> void GnuHashTableSection<ELFT>::finalize() { 601 unsigned NumHashed = Symbols.size(); 602 NBuckets = calcNBuckets(NumHashed); 603 MaskWords = calcMaskWords(NumHashed); 604 // Second hash shift estimation: just predefined values. 605 Shift2 = ELFT::Is64Bits ? 6 : 5; 606 607 this->Header.sh_link = Out<ELFT>::DynSymTab->SectionIndex; 608 this->Header.sh_size = sizeof(Elf_Word) * 4 // Header 609 + sizeof(Elf_Off) * MaskWords // Bloom Filter 610 + sizeof(Elf_Word) * NBuckets // Hash Buckets 611 + sizeof(Elf_Word) * NumHashed; // Hash Values 612 } 613 614 template <class ELFT> void GnuHashTableSection<ELFT>::writeTo(uint8_t *Buf) { 615 writeHeader(Buf); 616 if (Symbols.empty()) 617 return; 618 writeBloomFilter(Buf); 619 writeHashTable(Buf); 620 } 621 622 template <class ELFT> 623 void GnuHashTableSection<ELFT>::writeHeader(uint8_t *&Buf) { 624 auto *P = reinterpret_cast<Elf_Word *>(Buf); 625 *P++ = NBuckets; 626 *P++ = Out<ELFT>::DynSymTab->getNumSymbols() - Symbols.size(); 627 *P++ = MaskWords; 628 *P++ = Shift2; 629 Buf = reinterpret_cast<uint8_t *>(P); 630 } 631 632 template <class ELFT> 633 void GnuHashTableSection<ELFT>::writeBloomFilter(uint8_t *&Buf) { 634 unsigned C = sizeof(Elf_Off) * 8; 635 636 auto *Masks = reinterpret_cast<Elf_Off *>(Buf); 637 for (const SymbolData &Sym : Symbols) { 638 size_t Pos = (Sym.Hash / C) & (MaskWords - 1); 639 uintX_t V = (uintX_t(1) << (Sym.Hash % C)) | 640 (uintX_t(1) << ((Sym.Hash >> Shift2) % C)); 641 Masks[Pos] |= V; 642 } 643 Buf += sizeof(Elf_Off) * MaskWords; 644 } 645 646 template <class ELFT> 647 void GnuHashTableSection<ELFT>::writeHashTable(uint8_t *Buf) { 648 Elf_Word *Buckets = reinterpret_cast<Elf_Word *>(Buf); 649 Elf_Word *Values = Buckets + NBuckets; 650 651 int PrevBucket = -1; 652 int I = 0; 653 for (const SymbolData &Sym : Symbols) { 654 int Bucket = Sym.Hash % NBuckets; 655 assert(PrevBucket <= Bucket); 656 if (Bucket != PrevBucket) { 657 Buckets[Bucket] = Sym.Body->DynsymIndex; 658 PrevBucket = Bucket; 659 if (I > 0) 660 Values[I - 1] |= 1; 661 } 662 Values[I] = Sym.Hash & ~1; 663 ++I; 664 } 665 if (I > 0) 666 Values[I - 1] |= 1; 667 } 668 669 // Add symbols to this symbol hash table. Note that this function 670 // destructively sort a given vector -- which is needed because 671 // GNU-style hash table places some sorting requirements. 672 template <class ELFT> 673 void GnuHashTableSection<ELFT>::addSymbols(std::vector<SymbolTableEntry> &V) { 674 // Ideally this will just be 'auto' but GCC 6.1 is not able 675 // to deduce it correctly. 676 std::vector<SymbolTableEntry>::iterator Mid = 677 std::stable_partition(V.begin(), V.end(), [](const SymbolTableEntry &S) { 678 return S.Symbol->isUndefined(); 679 }); 680 if (Mid == V.end()) 681 return; 682 for (auto I = Mid, E = V.end(); I != E; ++I) { 683 SymbolBody *B = I->Symbol; 684 size_t StrOff = I->StrTabOffset; 685 Symbols.push_back({B, StrOff, hashGnu(B->getName())}); 686 } 687 688 unsigned NBuckets = calcNBuckets(Symbols.size()); 689 std::stable_sort(Symbols.begin(), Symbols.end(), 690 [&](const SymbolData &L, const SymbolData &R) { 691 return L.Hash % NBuckets < R.Hash % NBuckets; 692 }); 693 694 V.erase(Mid, V.end()); 695 for (const SymbolData &Sym : Symbols) 696 V.push_back({Sym.Body, Sym.STName}); 697 } 698 699 // Returns the number of version definition entries. Because the first entry 700 // is for the version definition itself, it is the number of versioned symbols 701 // plus one. Note that we don't support multiple versions yet. 702 static unsigned getVerDefNum() { return Config->VersionDefinitions.size() + 1; } 703 704 template <class ELFT> 705 DynamicSection<ELFT>::DynamicSection() 706 : OutputSectionBase<ELFT>(".dynamic", SHT_DYNAMIC, SHF_ALLOC | SHF_WRITE) { 707 Elf_Shdr &Header = this->Header; 708 Header.sh_addralign = sizeof(uintX_t); 709 Header.sh_entsize = ELFT::Is64Bits ? 16 : 8; 710 711 // .dynamic section is not writable on MIPS. 712 // See "Special Section" in Chapter 4 in the following document: 713 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 714 if (Config->EMachine == EM_MIPS) 715 Header.sh_flags = SHF_ALLOC; 716 } 717 718 template <class ELFT> void DynamicSection<ELFT>::finalize() { 719 if (this->Header.sh_size) 720 return; // Already finalized. 721 722 Elf_Shdr &Header = this->Header; 723 Header.sh_link = Out<ELFT>::DynStrTab->SectionIndex; 724 725 auto Add = [=](Entry E) { Entries.push_back(E); }; 726 727 // Add strings. We know that these are the last strings to be added to 728 // DynStrTab and doing this here allows this function to set DT_STRSZ. 729 for (StringRef S : Config->AuxiliaryList) 730 Add({DT_AUXILIARY, Out<ELFT>::DynStrTab->addString(S)}); 731 if (!Config->RPath.empty()) 732 Add({Config->EnableNewDtags ? DT_RUNPATH : DT_RPATH, 733 Out<ELFT>::DynStrTab->addString(Config->RPath)}); 734 for (SharedFile<ELFT> *F : Symtab<ELFT>::X->getSharedFiles()) 735 if (F->isNeeded()) 736 Add({DT_NEEDED, Out<ELFT>::DynStrTab->addString(F->getSoName())}); 737 if (!Config->SoName.empty()) 738 Add({DT_SONAME, Out<ELFT>::DynStrTab->addString(Config->SoName)}); 739 740 Out<ELFT>::DynStrTab->finalize(); 741 742 if (Out<ELFT>::RelaDyn->hasRelocs()) { 743 bool IsRela = Config->Rela; 744 Add({IsRela ? DT_RELA : DT_REL, Out<ELFT>::RelaDyn}); 745 Add({IsRela ? DT_RELASZ : DT_RELSZ, Out<ELFT>::RelaDyn->getSize()}); 746 Add({IsRela ? DT_RELAENT : DT_RELENT, 747 uintX_t(IsRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel))}); 748 749 // MIPS dynamic loader does not support RELCOUNT tag. 750 // The problem is in the tight relation between dynamic 751 // relocations and GOT. So do not emit this tag on MIPS. 752 if (Config->EMachine != EM_MIPS) { 753 size_t NumRelativeRels = Out<ELFT>::RelaDyn->getRelativeRelocCount(); 754 if (Config->ZCombreloc && NumRelativeRels) 755 Add({IsRela ? DT_RELACOUNT : DT_RELCOUNT, NumRelativeRels}); 756 } 757 } 758 if (Out<ELFT>::RelaPlt && Out<ELFT>::RelaPlt->hasRelocs()) { 759 Add({DT_JMPREL, Out<ELFT>::RelaPlt}); 760 Add({DT_PLTRELSZ, Out<ELFT>::RelaPlt->getSize()}); 761 Add({Config->EMachine == EM_MIPS ? DT_MIPS_PLTGOT : DT_PLTGOT, 762 Out<ELFT>::GotPlt}); 763 Add({DT_PLTREL, uint64_t(Config->Rela ? DT_RELA : DT_REL)}); 764 } 765 766 Add({DT_SYMTAB, Out<ELFT>::DynSymTab}); 767 Add({DT_SYMENT, sizeof(Elf_Sym)}); 768 Add({DT_STRTAB, Out<ELFT>::DynStrTab}); 769 Add({DT_STRSZ, Out<ELFT>::DynStrTab->getSize()}); 770 if (Out<ELFT>::GnuHashTab) 771 Add({DT_GNU_HASH, Out<ELFT>::GnuHashTab}); 772 if (Out<ELFT>::HashTab) 773 Add({DT_HASH, Out<ELFT>::HashTab}); 774 775 if (Out<ELFT>::PreinitArray) { 776 Add({DT_PREINIT_ARRAY, Out<ELFT>::PreinitArray}); 777 Add({DT_PREINIT_ARRAYSZ, Out<ELFT>::PreinitArray, Entry::SecSize}); 778 } 779 if (Out<ELFT>::InitArray) { 780 Add({DT_INIT_ARRAY, Out<ELFT>::InitArray}); 781 Add({DT_INIT_ARRAYSZ, Out<ELFT>::InitArray, Entry::SecSize}); 782 } 783 if (Out<ELFT>::FiniArray) { 784 Add({DT_FINI_ARRAY, Out<ELFT>::FiniArray}); 785 Add({DT_FINI_ARRAYSZ, Out<ELFT>::FiniArray, Entry::SecSize}); 786 } 787 788 if (SymbolBody *B = Symtab<ELFT>::X->find(Config->Init)) 789 Add({DT_INIT, B}); 790 if (SymbolBody *B = Symtab<ELFT>::X->find(Config->Fini)) 791 Add({DT_FINI, B}); 792 793 uint32_t DtFlags = 0; 794 uint32_t DtFlags1 = 0; 795 if (Config->Bsymbolic) 796 DtFlags |= DF_SYMBOLIC; 797 if (Config->ZNodelete) 798 DtFlags1 |= DF_1_NODELETE; 799 if (Config->ZNow) { 800 DtFlags |= DF_BIND_NOW; 801 DtFlags1 |= DF_1_NOW; 802 } 803 if (Config->ZOrigin) { 804 DtFlags |= DF_ORIGIN; 805 DtFlags1 |= DF_1_ORIGIN; 806 } 807 808 if (DtFlags) 809 Add({DT_FLAGS, DtFlags}); 810 if (DtFlags1) 811 Add({DT_FLAGS_1, DtFlags1}); 812 813 if (!Config->Entry.empty()) 814 Add({DT_DEBUG, (uint64_t)0}); 815 816 bool HasVerNeed = Out<ELFT>::VerNeed->getNeedNum() != 0; 817 if (HasVerNeed || Out<ELFT>::VerDef) 818 Add({DT_VERSYM, Out<ELFT>::VerSym}); 819 if (Out<ELFT>::VerDef) { 820 Add({DT_VERDEF, Out<ELFT>::VerDef}); 821 Add({DT_VERDEFNUM, getVerDefNum()}); 822 } 823 if (HasVerNeed) { 824 Add({DT_VERNEED, Out<ELFT>::VerNeed}); 825 Add({DT_VERNEEDNUM, Out<ELFT>::VerNeed->getNeedNum()}); 826 } 827 828 if (Config->EMachine == EM_MIPS) { 829 Add({DT_MIPS_RLD_VERSION, 1}); 830 Add({DT_MIPS_FLAGS, RHF_NOTPOT}); 831 Add({DT_MIPS_BASE_ADDRESS, Config->ImageBase}); 832 Add({DT_MIPS_SYMTABNO, Out<ELFT>::DynSymTab->getNumSymbols()}); 833 Add({DT_MIPS_LOCAL_GOTNO, Out<ELFT>::Got->getMipsLocalEntriesNum()}); 834 if (const SymbolBody *B = Out<ELFT>::Got->getMipsFirstGlobalEntry()) 835 Add({DT_MIPS_GOTSYM, B->DynsymIndex}); 836 else 837 Add({DT_MIPS_GOTSYM, Out<ELFT>::DynSymTab->getNumSymbols()}); 838 Add({DT_PLTGOT, Out<ELFT>::Got}); 839 if (Out<ELFT>::MipsRldMap) 840 Add({DT_MIPS_RLD_MAP, Out<ELFT>::MipsRldMap}); 841 } 842 843 // +1 for DT_NULL 844 Header.sh_size = (Entries.size() + 1) * Header.sh_entsize; 845 } 846 847 template <class ELFT> void DynamicSection<ELFT>::writeTo(uint8_t *Buf) { 848 auto *P = reinterpret_cast<Elf_Dyn *>(Buf); 849 850 for (const Entry &E : Entries) { 851 P->d_tag = E.Tag; 852 switch (E.Kind) { 853 case Entry::SecAddr: 854 P->d_un.d_ptr = E.OutSec->getVA(); 855 break; 856 case Entry::SecSize: 857 P->d_un.d_val = E.OutSec->getSize(); 858 break; 859 case Entry::SymAddr: 860 P->d_un.d_ptr = E.Sym->template getVA<ELFT>(); 861 break; 862 case Entry::PlainInt: 863 P->d_un.d_val = E.Val; 864 break; 865 } 866 ++P; 867 } 868 } 869 870 template <class ELFT> 871 EhFrameHeader<ELFT>::EhFrameHeader() 872 : OutputSectionBase<ELFT>(".eh_frame_hdr", SHT_PROGBITS, SHF_ALLOC) {} 873 874 // .eh_frame_hdr contains a binary search table of pointers to FDEs. 875 // Each entry of the search table consists of two values, 876 // the starting PC from where FDEs covers, and the FDE's address. 877 // It is sorted by PC. 878 template <class ELFT> void EhFrameHeader<ELFT>::writeTo(uint8_t *Buf) { 879 const endianness E = ELFT::TargetEndianness; 880 881 // Sort the FDE list by their PC and uniqueify. Usually there is only 882 // one FDE for a PC (i.e. function), but if ICF merges two functions 883 // into one, there can be more than one FDEs pointing to the address. 884 auto Less = [](const FdeData &A, const FdeData &B) { return A.Pc < B.Pc; }; 885 std::stable_sort(Fdes.begin(), Fdes.end(), Less); 886 auto Eq = [](const FdeData &A, const FdeData &B) { return A.Pc == B.Pc; }; 887 Fdes.erase(std::unique(Fdes.begin(), Fdes.end(), Eq), Fdes.end()); 888 889 Buf[0] = 1; 890 Buf[1] = DW_EH_PE_pcrel | DW_EH_PE_sdata4; 891 Buf[2] = DW_EH_PE_udata4; 892 Buf[3] = DW_EH_PE_datarel | DW_EH_PE_sdata4; 893 write32<E>(Buf + 4, Out<ELFT>::EhFrame->getVA() - this->getVA() - 4); 894 write32<E>(Buf + 8, Fdes.size()); 895 Buf += 12; 896 897 uintX_t VA = this->getVA(); 898 for (FdeData &Fde : Fdes) { 899 write32<E>(Buf, Fde.Pc - VA); 900 write32<E>(Buf + 4, Fde.FdeVA - VA); 901 Buf += 8; 902 } 903 } 904 905 template <class ELFT> void EhFrameHeader<ELFT>::finalize() { 906 // .eh_frame_hdr has a 12 bytes header followed by an array of FDEs. 907 this->Header.sh_size = 12 + Out<ELFT>::EhFrame->NumFdes * 8; 908 } 909 910 template <class ELFT> 911 void EhFrameHeader<ELFT>::addFde(uint32_t Pc, uint32_t FdeVA) { 912 Fdes.push_back({Pc, FdeVA}); 913 } 914 915 template <class ELFT> 916 OutputSection<ELFT>::OutputSection(StringRef Name, uint32_t Type, uintX_t Flags) 917 : OutputSectionBase<ELFT>(Name, Type, Flags) { 918 if (Type == SHT_RELA) 919 this->Header.sh_entsize = sizeof(Elf_Rela); 920 else if (Type == SHT_REL) 921 this->Header.sh_entsize = sizeof(Elf_Rel); 922 } 923 924 template <class ELFT> void OutputSection<ELFT>::finalize() { 925 uint32_t Type = this->Header.sh_type; 926 // SHF_LINK_ORDER only has meaning in relocatable objects 927 if (!Config->Relocatable) 928 this->Header.sh_flags &= ~SHF_LINK_ORDER; 929 if (Type != SHT_RELA && Type != SHT_REL) 930 return; 931 this->Header.sh_link = Out<ELFT>::SymTab->SectionIndex; 932 // sh_info for SHT_REL[A] sections should contain the section header index of 933 // the section to which the relocation applies. 934 InputSectionBase<ELFT> *S = Sections[0]->getRelocatedSection(); 935 this->Header.sh_info = S->OutSec->SectionIndex; 936 } 937 938 template <class ELFT> 939 void OutputSection<ELFT>::addSection(InputSectionBase<ELFT> *C) { 940 assert(C->Live); 941 auto *S = cast<InputSection<ELFT>>(C); 942 Sections.push_back(S); 943 S->OutSec = this; 944 this->updateAlignment(S->Alignment); 945 // Keep sh_entsize value of the input section to be able to perform merging 946 // later during a final linking using the generated relocatable object. 947 if (Config->Relocatable && (S->getSectionHdr()->sh_flags & SHF_MERGE)) 948 this->Header.sh_entsize = S->getSectionHdr()->sh_entsize; 949 } 950 951 // This function is called after we sort input sections 952 // and scan relocations to setup sections' offsets. 953 template <class ELFT> void OutputSection<ELFT>::assignOffsets() { 954 uintX_t Off = this->Header.sh_size; 955 for (InputSection<ELFT> *S : Sections) { 956 Off = alignTo(Off, S->Alignment); 957 S->OutSecOff = Off; 958 Off += S->getSize(); 959 } 960 this->Header.sh_size = Off; 961 } 962 963 // Sorts input sections by section name suffixes, so that .foo.N comes 964 // before .foo.M if N < M. Used to sort .{init,fini}_array.N sections. 965 // We want to keep the original order if the priorities are the same 966 // because the compiler keeps the original initialization order in a 967 // translation unit and we need to respect that. 968 // For more detail, read the section of the GCC's manual about init_priority. 969 template <class ELFT> void OutputSection<ELFT>::sortInitFini() { 970 // Sort sections by priority. 971 typedef std::pair<int, InputSection<ELFT> *> Pair; 972 auto Comp = [](const Pair &A, const Pair &B) { return A.first < B.first; }; 973 974 std::vector<Pair> V; 975 for (InputSection<ELFT> *S : Sections) 976 V.push_back({getPriority(S->Name), S}); 977 std::stable_sort(V.begin(), V.end(), Comp); 978 Sections.clear(); 979 for (Pair &P : V) 980 Sections.push_back(P.second); 981 } 982 983 // Returns true if S matches /Filename.?\.o$/. 984 static bool isCrtBeginEnd(StringRef S, StringRef Filename) { 985 if (!S.endswith(".o")) 986 return false; 987 S = S.drop_back(2); 988 if (S.endswith(Filename)) 989 return true; 990 return !S.empty() && S.drop_back().endswith(Filename); 991 } 992 993 static bool isCrtbegin(StringRef S) { return isCrtBeginEnd(S, "crtbegin"); } 994 static bool isCrtend(StringRef S) { return isCrtBeginEnd(S, "crtend"); } 995 996 // .ctors and .dtors are sorted by this priority from highest to lowest. 997 // 998 // 1. The section was contained in crtbegin (crtbegin contains 999 // some sentinel value in its .ctors and .dtors so that the runtime 1000 // can find the beginning of the sections.) 1001 // 1002 // 2. The section has an optional priority value in the form of ".ctors.N" 1003 // or ".dtors.N" where N is a number. Unlike .{init,fini}_array, 1004 // they are compared as string rather than number. 1005 // 1006 // 3. The section is just ".ctors" or ".dtors". 1007 // 1008 // 4. The section was contained in crtend, which contains an end marker. 1009 // 1010 // In an ideal world, we don't need this function because .init_array and 1011 // .ctors are duplicate features (and .init_array is newer.) However, there 1012 // are too many real-world use cases of .ctors, so we had no choice to 1013 // support that with this rather ad-hoc semantics. 1014 template <class ELFT> 1015 static bool compCtors(const InputSection<ELFT> *A, 1016 const InputSection<ELFT> *B) { 1017 bool BeginA = isCrtbegin(A->getFile()->getName()); 1018 bool BeginB = isCrtbegin(B->getFile()->getName()); 1019 if (BeginA != BeginB) 1020 return BeginA; 1021 bool EndA = isCrtend(A->getFile()->getName()); 1022 bool EndB = isCrtend(B->getFile()->getName()); 1023 if (EndA != EndB) 1024 return EndB; 1025 StringRef X = A->Name; 1026 StringRef Y = B->Name; 1027 assert(X.startswith(".ctors") || X.startswith(".dtors")); 1028 assert(Y.startswith(".ctors") || Y.startswith(".dtors")); 1029 X = X.substr(6); 1030 Y = Y.substr(6); 1031 if (X.empty() && Y.empty()) 1032 return false; 1033 return X < Y; 1034 } 1035 1036 // Sorts input sections by the special rules for .ctors and .dtors. 1037 // Unfortunately, the rules are different from the one for .{init,fini}_array. 1038 // Read the comment above. 1039 template <class ELFT> void OutputSection<ELFT>::sortCtorsDtors() { 1040 std::stable_sort(Sections.begin(), Sections.end(), compCtors<ELFT>); 1041 } 1042 1043 static void fill(uint8_t *Buf, size_t Size, ArrayRef<uint8_t> A) { 1044 size_t I = 0; 1045 for (; I + A.size() < Size; I += A.size()) 1046 memcpy(Buf + I, A.data(), A.size()); 1047 memcpy(Buf + I, A.data(), Size - I); 1048 } 1049 1050 template <class ELFT> void OutputSection<ELFT>::writeTo(uint8_t *Buf) { 1051 ArrayRef<uint8_t> Filler = Script<ELFT>::X->getFiller(this->Name); 1052 if (!Filler.empty()) 1053 fill(Buf, this->getSize(), Filler); 1054 if (Config->Threads) { 1055 parallel_for_each(Sections.begin(), Sections.end(), 1056 [=](InputSection<ELFT> *C) { C->writeTo(Buf); }); 1057 } else { 1058 for (InputSection<ELFT> *C : Sections) 1059 C->writeTo(Buf); 1060 } 1061 // Linker scripts may have BYTE()-family commands with which you 1062 // can write arbitrary bytes to the output. Process them if any. 1063 Script<ELFT>::X->writeDataBytes(this->Name, Buf); 1064 } 1065 1066 template <class ELFT> 1067 EhOutputSection<ELFT>::EhOutputSection() 1068 : OutputSectionBase<ELFT>(".eh_frame", SHT_PROGBITS, SHF_ALLOC) {} 1069 1070 // Search for an existing CIE record or create a new one. 1071 // CIE records from input object files are uniquified by their contents 1072 // and where their relocations point to. 1073 template <class ELFT> 1074 template <class RelTy> 1075 CieRecord *EhOutputSection<ELFT>::addCie(EhSectionPiece &Piece, 1076 EhInputSection<ELFT> *Sec, 1077 ArrayRef<RelTy> Rels) { 1078 const endianness E = ELFT::TargetEndianness; 1079 if (read32<E>(Piece.data().data() + 4) != 0) 1080 fatal("CIE expected at beginning of .eh_frame: " + Sec->Name); 1081 1082 SymbolBody *Personality = nullptr; 1083 unsigned FirstRelI = Piece.FirstRelocation; 1084 if (FirstRelI != (unsigned)-1) 1085 Personality = &Sec->getFile()->getRelocTargetSym(Rels[FirstRelI]); 1086 1087 // Search for an existing CIE by CIE contents/relocation target pair. 1088 CieRecord *Cie = &CieMap[{Piece.data(), Personality}]; 1089 1090 // If not found, create a new one. 1091 if (Cie->Piece == nullptr) { 1092 Cie->Piece = &Piece; 1093 Cies.push_back(Cie); 1094 } 1095 return Cie; 1096 } 1097 1098 // There is one FDE per function. Returns true if a given FDE 1099 // points to a live function. 1100 template <class ELFT> 1101 template <class RelTy> 1102 bool EhOutputSection<ELFT>::isFdeLive(EhSectionPiece &Piece, 1103 EhInputSection<ELFT> *Sec, 1104 ArrayRef<RelTy> Rels) { 1105 unsigned FirstRelI = Piece.FirstRelocation; 1106 if (FirstRelI == (unsigned)-1) 1107 fatal("FDE doesn't reference another section"); 1108 const RelTy &Rel = Rels[FirstRelI]; 1109 SymbolBody &B = Sec->getFile()->getRelocTargetSym(Rel); 1110 auto *D = dyn_cast<DefinedRegular<ELFT>>(&B); 1111 if (!D || !D->Section) 1112 return false; 1113 InputSectionBase<ELFT> *Target = D->Section->Repl; 1114 return Target && Target->Live; 1115 } 1116 1117 // .eh_frame is a sequence of CIE or FDE records. In general, there 1118 // is one CIE record per input object file which is followed by 1119 // a list of FDEs. This function searches an existing CIE or create a new 1120 // one and associates FDEs to the CIE. 1121 template <class ELFT> 1122 template <class RelTy> 1123 void EhOutputSection<ELFT>::addSectionAux(EhInputSection<ELFT> *Sec, 1124 ArrayRef<RelTy> Rels) { 1125 const endianness E = ELFT::TargetEndianness; 1126 1127 DenseMap<size_t, CieRecord *> OffsetToCie; 1128 for (EhSectionPiece &Piece : Sec->Pieces) { 1129 // The empty record is the end marker. 1130 if (Piece.size() == 4) 1131 return; 1132 1133 size_t Offset = Piece.InputOff; 1134 uint32_t ID = read32<E>(Piece.data().data() + 4); 1135 if (ID == 0) { 1136 OffsetToCie[Offset] = addCie(Piece, Sec, Rels); 1137 continue; 1138 } 1139 1140 uint32_t CieOffset = Offset + 4 - ID; 1141 CieRecord *Cie = OffsetToCie[CieOffset]; 1142 if (!Cie) 1143 fatal("invalid CIE reference"); 1144 1145 if (!isFdeLive(Piece, Sec, Rels)) 1146 continue; 1147 Cie->FdePieces.push_back(&Piece); 1148 NumFdes++; 1149 } 1150 } 1151 1152 template <class ELFT> 1153 void EhOutputSection<ELFT>::addSection(InputSectionBase<ELFT> *C) { 1154 auto *Sec = cast<EhInputSection<ELFT>>(C); 1155 Sec->OutSec = this; 1156 this->updateAlignment(Sec->Alignment); 1157 Sections.push_back(Sec); 1158 1159 // .eh_frame is a sequence of CIE or FDE records. This function 1160 // splits it into pieces so that we can call 1161 // SplitInputSection::getSectionPiece on the section. 1162 Sec->split(); 1163 if (Sec->Pieces.empty()) 1164 return; 1165 1166 if (const Elf_Shdr *RelSec = Sec->RelocSection) { 1167 ELFFile<ELFT> &Obj = Sec->getFile()->getObj(); 1168 if (RelSec->sh_type == SHT_RELA) 1169 addSectionAux(Sec, Obj.relas(RelSec)); 1170 else 1171 addSectionAux(Sec, Obj.rels(RelSec)); 1172 return; 1173 } 1174 addSectionAux(Sec, makeArrayRef<Elf_Rela>(nullptr, nullptr)); 1175 } 1176 1177 template <class ELFT> 1178 static void writeCieFde(uint8_t *Buf, ArrayRef<uint8_t> D) { 1179 memcpy(Buf, D.data(), D.size()); 1180 1181 // Fix the size field. -4 since size does not include the size field itself. 1182 const endianness E = ELFT::TargetEndianness; 1183 write32<E>(Buf, alignTo(D.size(), sizeof(typename ELFT::uint)) - 4); 1184 } 1185 1186 template <class ELFT> void EhOutputSection<ELFT>::finalize() { 1187 if (this->Header.sh_size) 1188 return; // Already finalized. 1189 1190 size_t Off = 0; 1191 for (CieRecord *Cie : Cies) { 1192 Cie->Piece->OutputOff = Off; 1193 Off += alignTo(Cie->Piece->size(), sizeof(uintX_t)); 1194 1195 for (EhSectionPiece *Fde : Cie->FdePieces) { 1196 Fde->OutputOff = Off; 1197 Off += alignTo(Fde->size(), sizeof(uintX_t)); 1198 } 1199 } 1200 this->Header.sh_size = Off; 1201 } 1202 1203 template <class ELFT> static uint64_t readFdeAddr(uint8_t *Buf, int Size) { 1204 const endianness E = ELFT::TargetEndianness; 1205 switch (Size) { 1206 case DW_EH_PE_udata2: 1207 return read16<E>(Buf); 1208 case DW_EH_PE_udata4: 1209 return read32<E>(Buf); 1210 case DW_EH_PE_udata8: 1211 return read64<E>(Buf); 1212 case DW_EH_PE_absptr: 1213 if (ELFT::Is64Bits) 1214 return read64<E>(Buf); 1215 return read32<E>(Buf); 1216 } 1217 fatal("unknown FDE size encoding"); 1218 } 1219 1220 // Returns the VA to which a given FDE (on a mmap'ed buffer) is applied to. 1221 // We need it to create .eh_frame_hdr section. 1222 template <class ELFT> 1223 typename ELFT::uint EhOutputSection<ELFT>::getFdePc(uint8_t *Buf, size_t FdeOff, 1224 uint8_t Enc) { 1225 // The starting address to which this FDE applies is 1226 // stored at FDE + 8 byte. 1227 size_t Off = FdeOff + 8; 1228 uint64_t Addr = readFdeAddr<ELFT>(Buf + Off, Enc & 0x7); 1229 if ((Enc & 0x70) == DW_EH_PE_absptr) 1230 return Addr; 1231 if ((Enc & 0x70) == DW_EH_PE_pcrel) 1232 return Addr + this->getVA() + Off; 1233 fatal("unknown FDE size relative encoding"); 1234 } 1235 1236 template <class ELFT> void EhOutputSection<ELFT>::writeTo(uint8_t *Buf) { 1237 const endianness E = ELFT::TargetEndianness; 1238 for (CieRecord *Cie : Cies) { 1239 size_t CieOffset = Cie->Piece->OutputOff; 1240 writeCieFde<ELFT>(Buf + CieOffset, Cie->Piece->data()); 1241 1242 for (EhSectionPiece *Fde : Cie->FdePieces) { 1243 size_t Off = Fde->OutputOff; 1244 writeCieFde<ELFT>(Buf + Off, Fde->data()); 1245 1246 // FDE's second word should have the offset to an associated CIE. 1247 // Write it. 1248 write32<E>(Buf + Off + 4, Off + 4 - CieOffset); 1249 } 1250 } 1251 1252 for (EhInputSection<ELFT> *S : Sections) 1253 S->relocate(Buf, nullptr); 1254 1255 // Construct .eh_frame_hdr. .eh_frame_hdr is a binary search table 1256 // to get a FDE from an address to which FDE is applied. So here 1257 // we obtain two addresses and pass them to EhFrameHdr object. 1258 if (Out<ELFT>::EhFrameHdr) { 1259 for (CieRecord *Cie : Cies) { 1260 uint8_t Enc = getFdeEncoding<ELFT>(Cie->Piece->data()); 1261 for (SectionPiece *Fde : Cie->FdePieces) { 1262 uintX_t Pc = getFdePc(Buf, Fde->OutputOff, Enc); 1263 uintX_t FdeVA = this->getVA() + Fde->OutputOff; 1264 Out<ELFT>::EhFrameHdr->addFde(Pc, FdeVA); 1265 } 1266 } 1267 } 1268 } 1269 1270 template <class ELFT> 1271 MergeOutputSection<ELFT>::MergeOutputSection(StringRef Name, uint32_t Type, 1272 uintX_t Flags, uintX_t Alignment) 1273 : OutputSectionBase<ELFT>(Name, Type, Flags), 1274 Builder(StringTableBuilder::RAW, Alignment) {} 1275 1276 template <class ELFT> void MergeOutputSection<ELFT>::writeTo(uint8_t *Buf) { 1277 Builder.write(Buf); 1278 } 1279 1280 template <class ELFT> 1281 void MergeOutputSection<ELFT>::addSection(InputSectionBase<ELFT> *C) { 1282 auto *Sec = cast<MergeInputSection<ELFT>>(C); 1283 Sec->OutSec = this; 1284 this->updateAlignment(Sec->Alignment); 1285 this->Header.sh_entsize = Sec->getSectionHdr()->sh_entsize; 1286 Sections.push_back(Sec); 1287 1288 auto HashI = Sec->Hashes.begin(); 1289 for (auto I = Sec->Pieces.begin(), E = Sec->Pieces.end(); I != E; ++I) { 1290 SectionPiece &Piece = *I; 1291 uint32_t Hash = *HashI; 1292 ++HashI; 1293 if (!Piece.Live) 1294 continue; 1295 StringRef Data = toStringRef(Sec->getData(I)); 1296 CachedHashStringRef V(Data, Hash); 1297 uintX_t OutputOffset = Builder.add(V); 1298 if (!shouldTailMerge()) 1299 Piece.OutputOff = OutputOffset; 1300 } 1301 } 1302 1303 template <class ELFT> 1304 unsigned MergeOutputSection<ELFT>::getOffset(CachedHashStringRef Val) { 1305 return Builder.getOffset(Val); 1306 } 1307 1308 template <class ELFT> bool MergeOutputSection<ELFT>::shouldTailMerge() const { 1309 return Config->Optimize >= 2 && this->Header.sh_flags & SHF_STRINGS; 1310 } 1311 1312 template <class ELFT> void MergeOutputSection<ELFT>::finalize() { 1313 if (shouldTailMerge()) 1314 Builder.finalize(); 1315 else 1316 Builder.finalizeInOrder(); 1317 this->Header.sh_size = Builder.getSize(); 1318 } 1319 1320 template <class ELFT> void MergeOutputSection<ELFT>::finalizePieces() { 1321 for (MergeInputSection<ELFT> *Sec : Sections) 1322 Sec->finalizePieces(); 1323 } 1324 1325 template <class ELFT> 1326 StringTableSection<ELFT>::StringTableSection(StringRef Name, bool Dynamic) 1327 : OutputSectionBase<ELFT>(Name, SHT_STRTAB, 1328 Dynamic ? (uintX_t)SHF_ALLOC : 0), 1329 Dynamic(Dynamic) {} 1330 1331 // Adds a string to the string table. If HashIt is true we hash and check for 1332 // duplicates. It is optional because the name of global symbols are already 1333 // uniqued and hashing them again has a big cost for a small value: uniquing 1334 // them with some other string that happens to be the same. 1335 template <class ELFT> 1336 unsigned StringTableSection<ELFT>::addString(StringRef S, bool HashIt) { 1337 if (HashIt) { 1338 auto R = StringMap.insert(std::make_pair(S, Size)); 1339 if (!R.second) 1340 return R.first->second; 1341 } 1342 unsigned Ret = Size; 1343 Size += S.size() + 1; 1344 Strings.push_back(S); 1345 return Ret; 1346 } 1347 1348 template <class ELFT> void StringTableSection<ELFT>::writeTo(uint8_t *Buf) { 1349 // ELF string tables start with NUL byte, so advance the pointer by one. 1350 ++Buf; 1351 for (StringRef S : Strings) { 1352 memcpy(Buf, S.data(), S.size()); 1353 Buf += S.size() + 1; 1354 } 1355 } 1356 1357 template <class ELFT> 1358 typename ELFT::uint DynamicReloc<ELFT>::getOffset() const { 1359 if (OutputSec) 1360 return OutputSec->getVA() + OffsetInSec; 1361 return InputSec->OutSec->getVA() + InputSec->getOffset(OffsetInSec); 1362 } 1363 1364 template <class ELFT> 1365 typename ELFT::uint DynamicReloc<ELFT>::getAddend() const { 1366 if (UseSymVA) 1367 return Sym->getVA<ELFT>(Addend); 1368 return Addend; 1369 } 1370 1371 template <class ELFT> uint32_t DynamicReloc<ELFT>::getSymIndex() const { 1372 if (Sym && !UseSymVA) 1373 return Sym->DynsymIndex; 1374 return 0; 1375 } 1376 1377 template <class ELFT> 1378 SymbolTableSection<ELFT>::SymbolTableSection( 1379 StringTableSection<ELFT> &StrTabSec) 1380 : OutputSectionBase<ELFT>(StrTabSec.isDynamic() ? ".dynsym" : ".symtab", 1381 StrTabSec.isDynamic() ? SHT_DYNSYM : SHT_SYMTAB, 1382 StrTabSec.isDynamic() ? (uintX_t)SHF_ALLOC : 0), 1383 StrTabSec(StrTabSec) { 1384 this->Header.sh_entsize = sizeof(Elf_Sym); 1385 this->Header.sh_addralign = sizeof(uintX_t); 1386 } 1387 1388 // Orders symbols according to their positions in the GOT, 1389 // in compliance with MIPS ABI rules. 1390 // See "Global Offset Table" in Chapter 5 in the following document 1391 // for detailed description: 1392 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 1393 static bool sortMipsSymbols(const SymbolBody *L, const SymbolBody *R) { 1394 // Sort entries related to non-local preemptible symbols by GOT indexes. 1395 // All other entries go to the first part of GOT in arbitrary order. 1396 bool LIsInLocalGot = !L->IsInGlobalMipsGot; 1397 bool RIsInLocalGot = !R->IsInGlobalMipsGot; 1398 if (LIsInLocalGot || RIsInLocalGot) 1399 return !RIsInLocalGot; 1400 return L->GotIndex < R->GotIndex; 1401 } 1402 1403 static uint8_t getSymbolBinding(SymbolBody *Body) { 1404 Symbol *S = Body->symbol(); 1405 if (Config->Relocatable) 1406 return S->Binding; 1407 uint8_t Visibility = S->Visibility; 1408 if (Visibility != STV_DEFAULT && Visibility != STV_PROTECTED) 1409 return STB_LOCAL; 1410 if (Config->NoGnuUnique && S->Binding == STB_GNU_UNIQUE) 1411 return STB_GLOBAL; 1412 return S->Binding; 1413 } 1414 1415 template <class ELFT> void SymbolTableSection<ELFT>::finalize() { 1416 if (this->Header.sh_size) 1417 return; // Already finalized. 1418 1419 this->Header.sh_size = getNumSymbols() * sizeof(Elf_Sym); 1420 this->Header.sh_link = StrTabSec.SectionIndex; 1421 this->Header.sh_info = NumLocals + 1; 1422 1423 if (Config->Relocatable) { 1424 size_t I = NumLocals; 1425 for (const SymbolTableEntry &S : Symbols) 1426 S.Symbol->DynsymIndex = ++I; 1427 return; 1428 } 1429 1430 if (!StrTabSec.isDynamic()) { 1431 std::stable_sort(Symbols.begin(), Symbols.end(), 1432 [](const SymbolTableEntry &L, const SymbolTableEntry &R) { 1433 return getSymbolBinding(L.Symbol) == STB_LOCAL && 1434 getSymbolBinding(R.Symbol) != STB_LOCAL; 1435 }); 1436 return; 1437 } 1438 if (Out<ELFT>::GnuHashTab) 1439 // NB: It also sorts Symbols to meet the GNU hash table requirements. 1440 Out<ELFT>::GnuHashTab->addSymbols(Symbols); 1441 else if (Config->EMachine == EM_MIPS) 1442 std::stable_sort(Symbols.begin(), Symbols.end(), 1443 [](const SymbolTableEntry &L, const SymbolTableEntry &R) { 1444 return sortMipsSymbols(L.Symbol, R.Symbol); 1445 }); 1446 size_t I = 0; 1447 for (const SymbolTableEntry &S : Symbols) 1448 S.Symbol->DynsymIndex = ++I; 1449 } 1450 1451 template <class ELFT> void SymbolTableSection<ELFT>::addSymbol(SymbolBody *B) { 1452 Symbols.push_back({B, StrTabSec.addString(B->getName(), false)}); 1453 } 1454 1455 template <class ELFT> void SymbolTableSection<ELFT>::writeTo(uint8_t *Buf) { 1456 Buf += sizeof(Elf_Sym); 1457 1458 // All symbols with STB_LOCAL binding precede the weak and global symbols. 1459 // .dynsym only contains global symbols. 1460 if (Config->Discard != DiscardPolicy::All && !StrTabSec.isDynamic()) 1461 writeLocalSymbols(Buf); 1462 1463 writeGlobalSymbols(Buf); 1464 } 1465 1466 template <class ELFT> 1467 void SymbolTableSection<ELFT>::writeLocalSymbols(uint8_t *&Buf) { 1468 // Iterate over all input object files to copy their local symbols 1469 // to the output symbol table pointed by Buf. 1470 for (ObjectFile<ELFT> *File : Symtab<ELFT>::X->getObjectFiles()) { 1471 for (const std::pair<const DefinedRegular<ELFT> *, size_t> &P : 1472 File->KeptLocalSyms) { 1473 const DefinedRegular<ELFT> &Body = *P.first; 1474 InputSectionBase<ELFT> *Section = Body.Section; 1475 auto *ESym = reinterpret_cast<Elf_Sym *>(Buf); 1476 1477 if (!Section) { 1478 ESym->st_shndx = SHN_ABS; 1479 ESym->st_value = Body.Value; 1480 } else { 1481 const OutputSectionBase<ELFT> *OutSec = Section->OutSec; 1482 ESym->st_shndx = OutSec->SectionIndex; 1483 ESym->st_value = OutSec->getVA() + Section->getOffset(Body); 1484 } 1485 ESym->st_name = P.second; 1486 ESym->st_size = Body.template getSize<ELFT>(); 1487 ESym->setBindingAndType(STB_LOCAL, Body.Type); 1488 Buf += sizeof(*ESym); 1489 } 1490 } 1491 } 1492 1493 template <class ELFT> 1494 void SymbolTableSection<ELFT>::writeGlobalSymbols(uint8_t *Buf) { 1495 // Write the internal symbol table contents to the output symbol table 1496 // pointed by Buf. 1497 auto *ESym = reinterpret_cast<Elf_Sym *>(Buf); 1498 for (const SymbolTableEntry &S : Symbols) { 1499 SymbolBody *Body = S.Symbol; 1500 size_t StrOff = S.StrTabOffset; 1501 1502 uint8_t Type = Body->Type; 1503 uintX_t Size = Body->getSize<ELFT>(); 1504 1505 ESym->setBindingAndType(getSymbolBinding(Body), Type); 1506 ESym->st_size = Size; 1507 ESym->st_name = StrOff; 1508 ESym->setVisibility(Body->symbol()->Visibility); 1509 ESym->st_value = Body->getVA<ELFT>(); 1510 1511 if (const OutputSectionBase<ELFT> *OutSec = getOutputSection(Body)) 1512 ESym->st_shndx = OutSec->SectionIndex; 1513 else if (isa<DefinedRegular<ELFT>>(Body)) 1514 ESym->st_shndx = SHN_ABS; 1515 1516 if (Config->EMachine == EM_MIPS) { 1517 // On MIPS we need to mark symbol which has a PLT entry and requires 1518 // pointer equality by STO_MIPS_PLT flag. That is necessary to help 1519 // dynamic linker distinguish such symbols and MIPS lazy-binding stubs. 1520 // https://sourceware.org/ml/binutils/2008-07/txt00000.txt 1521 if (Body->isInPlt() && Body->NeedsCopyOrPltAddr) 1522 ESym->st_other |= STO_MIPS_PLT; 1523 if (Config->Relocatable) { 1524 auto *D = dyn_cast<DefinedRegular<ELFT>>(Body); 1525 if (D && D->isMipsPIC()) 1526 ESym->st_other |= STO_MIPS_PIC; 1527 } 1528 } 1529 ++ESym; 1530 } 1531 } 1532 1533 template <class ELFT> 1534 const OutputSectionBase<ELFT> * 1535 SymbolTableSection<ELFT>::getOutputSection(SymbolBody *Sym) { 1536 switch (Sym->kind()) { 1537 case SymbolBody::DefinedSyntheticKind: 1538 return cast<DefinedSynthetic<ELFT>>(Sym)->Section; 1539 case SymbolBody::DefinedRegularKind: { 1540 auto &D = cast<DefinedRegular<ELFT>>(*Sym); 1541 if (D.Section) 1542 return D.Section->OutSec; 1543 break; 1544 } 1545 case SymbolBody::DefinedCommonKind: 1546 return CommonInputSection<ELFT>::X->OutSec; 1547 case SymbolBody::SharedKind: 1548 if (cast<SharedSymbol<ELFT>>(Sym)->needsCopy()) 1549 return Out<ELFT>::Bss; 1550 break; 1551 case SymbolBody::UndefinedKind: 1552 case SymbolBody::LazyArchiveKind: 1553 case SymbolBody::LazyObjectKind: 1554 break; 1555 } 1556 return nullptr; 1557 } 1558 1559 template <class ELFT> 1560 VersionDefinitionSection<ELFT>::VersionDefinitionSection() 1561 : OutputSectionBase<ELFT>(".gnu.version_d", SHT_GNU_verdef, SHF_ALLOC) { 1562 this->Header.sh_addralign = sizeof(uint32_t); 1563 } 1564 1565 static StringRef getFileDefName() { 1566 if (!Config->SoName.empty()) 1567 return Config->SoName; 1568 return Config->OutputFile; 1569 } 1570 1571 template <class ELFT> void VersionDefinitionSection<ELFT>::finalize() { 1572 FileDefNameOff = Out<ELFT>::DynStrTab->addString(getFileDefName()); 1573 for (VersionDefinition &V : Config->VersionDefinitions) 1574 V.NameOff = Out<ELFT>::DynStrTab->addString(V.Name); 1575 1576 this->Header.sh_size = 1577 (sizeof(Elf_Verdef) + sizeof(Elf_Verdaux)) * getVerDefNum(); 1578 this->Header.sh_link = Out<ELFT>::DynStrTab->SectionIndex; 1579 1580 // sh_info should be set to the number of definitions. This fact is missed in 1581 // documentation, but confirmed by binutils community: 1582 // https://sourceware.org/ml/binutils/2014-11/msg00355.html 1583 this->Header.sh_info = getVerDefNum(); 1584 } 1585 1586 template <class ELFT> 1587 void VersionDefinitionSection<ELFT>::writeOne(uint8_t *Buf, uint32_t Index, 1588 StringRef Name, size_t NameOff) { 1589 auto *Verdef = reinterpret_cast<Elf_Verdef *>(Buf); 1590 Verdef->vd_version = 1; 1591 Verdef->vd_cnt = 1; 1592 Verdef->vd_aux = sizeof(Elf_Verdef); 1593 Verdef->vd_next = sizeof(Elf_Verdef) + sizeof(Elf_Verdaux); 1594 Verdef->vd_flags = (Index == 1 ? VER_FLG_BASE : 0); 1595 Verdef->vd_ndx = Index; 1596 Verdef->vd_hash = hashSysv(Name); 1597 1598 auto *Verdaux = reinterpret_cast<Elf_Verdaux *>(Buf + sizeof(Elf_Verdef)); 1599 Verdaux->vda_name = NameOff; 1600 Verdaux->vda_next = 0; 1601 } 1602 1603 template <class ELFT> 1604 void VersionDefinitionSection<ELFT>::writeTo(uint8_t *Buf) { 1605 writeOne(Buf, 1, getFileDefName(), FileDefNameOff); 1606 1607 for (VersionDefinition &V : Config->VersionDefinitions) { 1608 Buf += sizeof(Elf_Verdef) + sizeof(Elf_Verdaux); 1609 writeOne(Buf, V.Id, V.Name, V.NameOff); 1610 } 1611 1612 // Need to terminate the last version definition. 1613 Elf_Verdef *Verdef = reinterpret_cast<Elf_Verdef *>(Buf); 1614 Verdef->vd_next = 0; 1615 } 1616 1617 template <class ELFT> 1618 VersionTableSection<ELFT>::VersionTableSection() 1619 : OutputSectionBase<ELFT>(".gnu.version", SHT_GNU_versym, SHF_ALLOC) { 1620 this->Header.sh_addralign = sizeof(uint16_t); 1621 } 1622 1623 template <class ELFT> void VersionTableSection<ELFT>::finalize() { 1624 this->Header.sh_size = 1625 sizeof(Elf_Versym) * (Out<ELFT>::DynSymTab->getSymbols().size() + 1); 1626 this->Header.sh_entsize = sizeof(Elf_Versym); 1627 // At the moment of june 2016 GNU docs does not mention that sh_link field 1628 // should be set, but Sun docs do. Also readelf relies on this field. 1629 this->Header.sh_link = Out<ELFT>::DynSymTab->SectionIndex; 1630 } 1631 1632 template <class ELFT> void VersionTableSection<ELFT>::writeTo(uint8_t *Buf) { 1633 auto *OutVersym = reinterpret_cast<Elf_Versym *>(Buf) + 1; 1634 for (const SymbolTableEntry &S : Out<ELFT>::DynSymTab->getSymbols()) { 1635 OutVersym->vs_index = S.Symbol->symbol()->VersionId; 1636 ++OutVersym; 1637 } 1638 } 1639 1640 template <class ELFT> 1641 VersionNeedSection<ELFT>::VersionNeedSection() 1642 : OutputSectionBase<ELFT>(".gnu.version_r", SHT_GNU_verneed, SHF_ALLOC) { 1643 this->Header.sh_addralign = sizeof(uint32_t); 1644 1645 // Identifiers in verneed section start at 2 because 0 and 1 are reserved 1646 // for VER_NDX_LOCAL and VER_NDX_GLOBAL. 1647 // First identifiers are reserved by verdef section if it exist. 1648 NextIndex = getVerDefNum() + 1; 1649 } 1650 1651 template <class ELFT> 1652 void VersionNeedSection<ELFT>::addSymbol(SharedSymbol<ELFT> *SS) { 1653 if (!SS->Verdef) { 1654 SS->symbol()->VersionId = VER_NDX_GLOBAL; 1655 return; 1656 } 1657 SharedFile<ELFT> *F = SS->file(); 1658 // If we don't already know that we need an Elf_Verneed for this DSO, prepare 1659 // to create one by adding it to our needed list and creating a dynstr entry 1660 // for the soname. 1661 if (F->VerdefMap.empty()) 1662 Needed.push_back({F, Out<ELFT>::DynStrTab->addString(F->getSoName())}); 1663 typename SharedFile<ELFT>::NeededVer &NV = F->VerdefMap[SS->Verdef]; 1664 // If we don't already know that we need an Elf_Vernaux for this Elf_Verdef, 1665 // prepare to create one by allocating a version identifier and creating a 1666 // dynstr entry for the version name. 1667 if (NV.Index == 0) { 1668 NV.StrTab = Out<ELFT>::DynStrTab->addString( 1669 SS->file()->getStringTable().data() + SS->Verdef->getAux()->vda_name); 1670 NV.Index = NextIndex++; 1671 } 1672 SS->symbol()->VersionId = NV.Index; 1673 } 1674 1675 template <class ELFT> void VersionNeedSection<ELFT>::writeTo(uint8_t *Buf) { 1676 // The Elf_Verneeds need to appear first, followed by the Elf_Vernauxs. 1677 auto *Verneed = reinterpret_cast<Elf_Verneed *>(Buf); 1678 auto *Vernaux = reinterpret_cast<Elf_Vernaux *>(Verneed + Needed.size()); 1679 1680 for (std::pair<SharedFile<ELFT> *, size_t> &P : Needed) { 1681 // Create an Elf_Verneed for this DSO. 1682 Verneed->vn_version = 1; 1683 Verneed->vn_cnt = P.first->VerdefMap.size(); 1684 Verneed->vn_file = P.second; 1685 Verneed->vn_aux = 1686 reinterpret_cast<char *>(Vernaux) - reinterpret_cast<char *>(Verneed); 1687 Verneed->vn_next = sizeof(Elf_Verneed); 1688 ++Verneed; 1689 1690 // Create the Elf_Vernauxs for this Elf_Verneed. The loop iterates over 1691 // VerdefMap, which will only contain references to needed version 1692 // definitions. Each Elf_Vernaux is based on the information contained in 1693 // the Elf_Verdef in the source DSO. This loop iterates over a std::map of 1694 // pointers, but is deterministic because the pointers refer to Elf_Verdef 1695 // data structures within a single input file. 1696 for (auto &NV : P.first->VerdefMap) { 1697 Vernaux->vna_hash = NV.first->vd_hash; 1698 Vernaux->vna_flags = 0; 1699 Vernaux->vna_other = NV.second.Index; 1700 Vernaux->vna_name = NV.second.StrTab; 1701 Vernaux->vna_next = sizeof(Elf_Vernaux); 1702 ++Vernaux; 1703 } 1704 1705 Vernaux[-1].vna_next = 0; 1706 } 1707 Verneed[-1].vn_next = 0; 1708 } 1709 1710 template <class ELFT> void VersionNeedSection<ELFT>::finalize() { 1711 this->Header.sh_link = Out<ELFT>::DynStrTab->SectionIndex; 1712 this->Header.sh_info = Needed.size(); 1713 unsigned Size = Needed.size() * sizeof(Elf_Verneed); 1714 for (std::pair<SharedFile<ELFT> *, size_t> &P : Needed) 1715 Size += P.first->VerdefMap.size() * sizeof(Elf_Vernaux); 1716 this->Header.sh_size = Size; 1717 } 1718 1719 template <class ELFT> 1720 BuildIdSection<ELFT>::BuildIdSection(size_t HashSize) 1721 : OutputSectionBase<ELFT>(".note.gnu.build-id", SHT_NOTE, SHF_ALLOC), 1722 HashSize(HashSize) { 1723 // 16 bytes for the note section header. 1724 this->Header.sh_size = 16 + HashSize; 1725 } 1726 1727 template <class ELFT> void BuildIdSection<ELFT>::writeTo(uint8_t *Buf) { 1728 const endianness E = ELFT::TargetEndianness; 1729 write32<E>(Buf, 4); // Name size 1730 write32<E>(Buf + 4, HashSize); // Content size 1731 write32<E>(Buf + 8, NT_GNU_BUILD_ID); // Type 1732 memcpy(Buf + 12, "GNU", 4); // Name string 1733 HashBuf = Buf + 16; 1734 } 1735 1736 template <class ELFT> 1737 void BuildIdFastHash<ELFT>::writeBuildId(ArrayRef<uint8_t> Buf) { 1738 const endianness E = ELFT::TargetEndianness; 1739 1740 // 64-bit xxhash 1741 uint64_t Hash = xxHash64(toStringRef(Buf)); 1742 write64<E>(this->HashBuf, Hash); 1743 } 1744 1745 template <class ELFT> 1746 void BuildIdMd5<ELFT>::writeBuildId(ArrayRef<uint8_t> Buf) { 1747 MD5 Hash; 1748 Hash.update(Buf); 1749 MD5::MD5Result Res; 1750 Hash.final(Res); 1751 memcpy(this->HashBuf, Res, 16); 1752 } 1753 1754 template <class ELFT> 1755 void BuildIdSha1<ELFT>::writeBuildId(ArrayRef<uint8_t> Buf) { 1756 SHA1 Hash; 1757 Hash.update(Buf); 1758 memcpy(this->HashBuf, Hash.final().data(), 20); 1759 } 1760 1761 template <class ELFT> 1762 void BuildIdUuid<ELFT>::writeBuildId(ArrayRef<uint8_t> Buf) { 1763 if (getRandomBytes(this->HashBuf, 16)) 1764 error("entropy source failure"); 1765 } 1766 1767 template <class ELFT> 1768 BuildIdHexstring<ELFT>::BuildIdHexstring() 1769 : BuildIdSection<ELFT>(Config->BuildIdVector.size()) {} 1770 1771 template <class ELFT> 1772 void BuildIdHexstring<ELFT>::writeBuildId(ArrayRef<uint8_t> Buf) { 1773 memcpy(this->HashBuf, Config->BuildIdVector.data(), 1774 Config->BuildIdVector.size()); 1775 } 1776 1777 template <class ELFT> 1778 MipsReginfoOutputSection<ELFT>::MipsReginfoOutputSection() 1779 : OutputSectionBase<ELFT>(".reginfo", SHT_MIPS_REGINFO, SHF_ALLOC) { 1780 this->Header.sh_addralign = 4; 1781 this->Header.sh_entsize = sizeof(Elf_Mips_RegInfo); 1782 this->Header.sh_size = sizeof(Elf_Mips_RegInfo); 1783 } 1784 1785 template <class ELFT> 1786 void MipsReginfoOutputSection<ELFT>::writeTo(uint8_t *Buf) { 1787 auto *R = reinterpret_cast<Elf_Mips_RegInfo *>(Buf); 1788 if (Config->Relocatable) 1789 R->ri_gp_value = 0; 1790 else 1791 R->ri_gp_value = Out<ELFT>::Got->getVA() + MipsGPOffset; 1792 R->ri_gprmask = GprMask; 1793 } 1794 1795 template <class ELFT> 1796 void MipsReginfoOutputSection<ELFT>::addSection(InputSectionBase<ELFT> *C) { 1797 // Copy input object file's .reginfo gprmask to output. 1798 auto *S = cast<MipsReginfoInputSection<ELFT>>(C); 1799 GprMask |= S->Reginfo->ri_gprmask; 1800 S->OutSec = this; 1801 } 1802 1803 template <class ELFT> 1804 MipsOptionsOutputSection<ELFT>::MipsOptionsOutputSection() 1805 : OutputSectionBase<ELFT>(".MIPS.options", SHT_MIPS_OPTIONS, 1806 SHF_ALLOC | SHF_MIPS_NOSTRIP) { 1807 this->Header.sh_addralign = 8; 1808 this->Header.sh_entsize = 1; 1809 this->Header.sh_size = sizeof(Elf_Mips_Options) + sizeof(Elf_Mips_RegInfo); 1810 } 1811 1812 template <class ELFT> 1813 void MipsOptionsOutputSection<ELFT>::writeTo(uint8_t *Buf) { 1814 auto *Opt = reinterpret_cast<Elf_Mips_Options *>(Buf); 1815 Opt->kind = ODK_REGINFO; 1816 Opt->size = this->Header.sh_size; 1817 Opt->section = 0; 1818 Opt->info = 0; 1819 auto *Reg = reinterpret_cast<Elf_Mips_RegInfo *>(Buf + sizeof(*Opt)); 1820 if (Config->Relocatable) 1821 Reg->ri_gp_value = 0; 1822 else 1823 Reg->ri_gp_value = Out<ELFT>::Got->getVA() + MipsGPOffset; 1824 Reg->ri_gprmask = GprMask; 1825 } 1826 1827 template <class ELFT> 1828 void MipsOptionsOutputSection<ELFT>::addSection(InputSectionBase<ELFT> *C) { 1829 auto *S = cast<MipsOptionsInputSection<ELFT>>(C); 1830 if (S->Reginfo) 1831 GprMask |= S->Reginfo->ri_gprmask; 1832 S->OutSec = this; 1833 } 1834 1835 template <class ELFT> 1836 MipsAbiFlagsOutputSection<ELFT>::MipsAbiFlagsOutputSection() 1837 : OutputSectionBase<ELFT>(".MIPS.abiflags", SHT_MIPS_ABIFLAGS, SHF_ALLOC) { 1838 this->Header.sh_addralign = 8; 1839 this->Header.sh_entsize = sizeof(Elf_Mips_ABIFlags); 1840 this->Header.sh_size = sizeof(Elf_Mips_ABIFlags); 1841 memset(&Flags, 0, sizeof(Flags)); 1842 } 1843 1844 template <class ELFT> 1845 void MipsAbiFlagsOutputSection<ELFT>::writeTo(uint8_t *Buf) { 1846 memcpy(Buf, &Flags, sizeof(Flags)); 1847 } 1848 1849 template <class ELFT> 1850 void MipsAbiFlagsOutputSection<ELFT>::addSection(InputSectionBase<ELFT> *C) { 1851 // Check compatibility and merge fields from input .MIPS.abiflags 1852 // to the output one. 1853 auto *S = cast<MipsAbiFlagsInputSection<ELFT>>(C); 1854 S->OutSec = this; 1855 if (S->Flags->version != 0) { 1856 error(getFilename(S->getFile()) + ": unexpected .MIPS.abiflags version " + 1857 Twine(S->Flags->version)); 1858 return; 1859 } 1860 // LLD checks ISA compatibility in getMipsEFlags(). Here we just 1861 // select the highest number of ISA/Rev/Ext. 1862 Flags.isa_level = std::max(Flags.isa_level, S->Flags->isa_level); 1863 Flags.isa_rev = std::max(Flags.isa_rev, S->Flags->isa_rev); 1864 Flags.isa_ext = std::max(Flags.isa_ext, S->Flags->isa_ext); 1865 Flags.gpr_size = std::max(Flags.gpr_size, S->Flags->gpr_size); 1866 Flags.cpr1_size = std::max(Flags.cpr1_size, S->Flags->cpr1_size); 1867 Flags.cpr2_size = std::max(Flags.cpr2_size, S->Flags->cpr2_size); 1868 Flags.ases |= S->Flags->ases; 1869 Flags.flags1 |= S->Flags->flags1; 1870 Flags.flags2 |= S->Flags->flags2; 1871 Flags.fp_abi = elf::getMipsFpAbiFlag(Flags.fp_abi, S->Flags->fp_abi, 1872 getFilename(S->getFile())); 1873 } 1874 1875 template <class ELFT> 1876 static typename ELFT::uint getOutFlags(InputSectionBase<ELFT> *S) { 1877 return S->getSectionHdr()->sh_flags & ~SHF_GROUP & ~SHF_COMPRESSED; 1878 } 1879 1880 template <class ELFT> 1881 static SectionKey<ELFT::Is64Bits> createKey(InputSectionBase<ELFT> *C, 1882 StringRef OutsecName) { 1883 const typename ELFT::Shdr *H = C->getSectionHdr(); 1884 typedef typename ELFT::uint uintX_t; 1885 uintX_t Flags = getOutFlags(C); 1886 1887 // For SHF_MERGE we create different output sections for each alignment. 1888 // This makes each output section simple and keeps a single level mapping from 1889 // input to output. 1890 // In case of relocatable object generation we do not try to perform merging 1891 // and treat SHF_MERGE sections as regular ones, but also create different 1892 // output sections for them to allow merging at final linking stage. 1893 uintX_t Alignment = 0; 1894 if (isa<MergeInputSection<ELFT>>(C) || 1895 (Config->Relocatable && (H->sh_flags & SHF_MERGE))) 1896 Alignment = std::max(H->sh_addralign, H->sh_entsize); 1897 1898 uint32_t Type = H->sh_type; 1899 return SectionKey<ELFT::Is64Bits>{OutsecName, Type, Flags, Alignment}; 1900 } 1901 1902 template <class ELFT> 1903 std::pair<OutputSectionBase<ELFT> *, bool> 1904 OutputSectionFactory<ELFT>::create(InputSectionBase<ELFT> *C, 1905 StringRef OutsecName) { 1906 SectionKey<ELFT::Is64Bits> Key = createKey(C, OutsecName); 1907 return create(Key, C); 1908 } 1909 1910 template <class ELFT> 1911 std::pair<OutputSectionBase<ELFT> *, bool> 1912 OutputSectionFactory<ELFT>::create(const SectionKey<ELFT::Is64Bits> &Key, 1913 InputSectionBase<ELFT> *C) { 1914 uintX_t Flags = getOutFlags(C); 1915 OutputSectionBase<ELFT> *&Sec = Map[Key]; 1916 if (Sec) { 1917 Sec->updateFlags(Flags); 1918 return {Sec, false}; 1919 } 1920 1921 uint32_t Type = C->getSectionHdr()->sh_type; 1922 switch (C->kind()) { 1923 case InputSectionBase<ELFT>::Regular: 1924 Sec = new OutputSection<ELFT>(Key.Name, Type, Flags); 1925 break; 1926 case InputSectionBase<ELFT>::EHFrame: 1927 return {Out<ELFT>::EhFrame, false}; 1928 case InputSectionBase<ELFT>::Merge: 1929 Sec = new MergeOutputSection<ELFT>(Key.Name, Type, Flags, Key.Alignment); 1930 break; 1931 case InputSectionBase<ELFT>::MipsReginfo: 1932 Sec = new MipsReginfoOutputSection<ELFT>(); 1933 break; 1934 case InputSectionBase<ELFT>::MipsOptions: 1935 Sec = new MipsOptionsOutputSection<ELFT>(); 1936 break; 1937 case InputSectionBase<ELFT>::MipsAbiFlags: 1938 Sec = new MipsAbiFlagsOutputSection<ELFT>(); 1939 break; 1940 } 1941 Out<ELFT>::Pool.emplace_back(Sec); 1942 return {Sec, true}; 1943 } 1944 1945 template <bool Is64Bits> 1946 typename lld::elf::SectionKey<Is64Bits> 1947 DenseMapInfo<lld::elf::SectionKey<Is64Bits>>::getEmptyKey() { 1948 return SectionKey<Is64Bits>{DenseMapInfo<StringRef>::getEmptyKey(), 0, 0, 0}; 1949 } 1950 1951 template <bool Is64Bits> 1952 typename lld::elf::SectionKey<Is64Bits> 1953 DenseMapInfo<lld::elf::SectionKey<Is64Bits>>::getTombstoneKey() { 1954 return SectionKey<Is64Bits>{DenseMapInfo<StringRef>::getTombstoneKey(), 0, 0, 1955 0}; 1956 } 1957 1958 template <bool Is64Bits> 1959 unsigned 1960 DenseMapInfo<lld::elf::SectionKey<Is64Bits>>::getHashValue(const Key &Val) { 1961 return hash_combine(Val.Name, Val.Type, Val.Flags, Val.Alignment); 1962 } 1963 1964 template <bool Is64Bits> 1965 bool DenseMapInfo<lld::elf::SectionKey<Is64Bits>>::isEqual(const Key &LHS, 1966 const Key &RHS) { 1967 return DenseMapInfo<StringRef>::isEqual(LHS.Name, RHS.Name) && 1968 LHS.Type == RHS.Type && LHS.Flags == RHS.Flags && 1969 LHS.Alignment == RHS.Alignment; 1970 } 1971 1972 namespace llvm { 1973 template struct DenseMapInfo<SectionKey<true>>; 1974 template struct DenseMapInfo<SectionKey<false>>; 1975 } 1976 1977 namespace lld { 1978 namespace elf { 1979 template class OutputSectionBase<ELF32LE>; 1980 template class OutputSectionBase<ELF32BE>; 1981 template class OutputSectionBase<ELF64LE>; 1982 template class OutputSectionBase<ELF64BE>; 1983 1984 template class EhFrameHeader<ELF32LE>; 1985 template class EhFrameHeader<ELF32BE>; 1986 template class EhFrameHeader<ELF64LE>; 1987 template class EhFrameHeader<ELF64BE>; 1988 1989 template class GotPltSection<ELF32LE>; 1990 template class GotPltSection<ELF32BE>; 1991 template class GotPltSection<ELF64LE>; 1992 template class GotPltSection<ELF64BE>; 1993 1994 template class GotSection<ELF32LE>; 1995 template class GotSection<ELF32BE>; 1996 template class GotSection<ELF64LE>; 1997 template class GotSection<ELF64BE>; 1998 1999 template class PltSection<ELF32LE>; 2000 template class PltSection<ELF32BE>; 2001 template class PltSection<ELF64LE>; 2002 template class PltSection<ELF64BE>; 2003 2004 template class RelocationSection<ELF32LE>; 2005 template class RelocationSection<ELF32BE>; 2006 template class RelocationSection<ELF64LE>; 2007 template class RelocationSection<ELF64BE>; 2008 2009 template class InterpSection<ELF32LE>; 2010 template class InterpSection<ELF32BE>; 2011 template class InterpSection<ELF64LE>; 2012 template class InterpSection<ELF64BE>; 2013 2014 template class GnuHashTableSection<ELF32LE>; 2015 template class GnuHashTableSection<ELF32BE>; 2016 template class GnuHashTableSection<ELF64LE>; 2017 template class GnuHashTableSection<ELF64BE>; 2018 2019 template class HashTableSection<ELF32LE>; 2020 template class HashTableSection<ELF32BE>; 2021 template class HashTableSection<ELF64LE>; 2022 template class HashTableSection<ELF64BE>; 2023 2024 template class DynamicSection<ELF32LE>; 2025 template class DynamicSection<ELF32BE>; 2026 template class DynamicSection<ELF64LE>; 2027 template class DynamicSection<ELF64BE>; 2028 2029 template class OutputSection<ELF32LE>; 2030 template class OutputSection<ELF32BE>; 2031 template class OutputSection<ELF64LE>; 2032 template class OutputSection<ELF64BE>; 2033 2034 template class EhOutputSection<ELF32LE>; 2035 template class EhOutputSection<ELF32BE>; 2036 template class EhOutputSection<ELF64LE>; 2037 template class EhOutputSection<ELF64BE>; 2038 2039 template class MipsReginfoOutputSection<ELF32LE>; 2040 template class MipsReginfoOutputSection<ELF32BE>; 2041 template class MipsReginfoOutputSection<ELF64LE>; 2042 template class MipsReginfoOutputSection<ELF64BE>; 2043 2044 template class MipsOptionsOutputSection<ELF32LE>; 2045 template class MipsOptionsOutputSection<ELF32BE>; 2046 template class MipsOptionsOutputSection<ELF64LE>; 2047 template class MipsOptionsOutputSection<ELF64BE>; 2048 2049 template class MipsAbiFlagsOutputSection<ELF32LE>; 2050 template class MipsAbiFlagsOutputSection<ELF32BE>; 2051 template class MipsAbiFlagsOutputSection<ELF64LE>; 2052 template class MipsAbiFlagsOutputSection<ELF64BE>; 2053 2054 template class MergeOutputSection<ELF32LE>; 2055 template class MergeOutputSection<ELF32BE>; 2056 template class MergeOutputSection<ELF64LE>; 2057 template class MergeOutputSection<ELF64BE>; 2058 2059 template class StringTableSection<ELF32LE>; 2060 template class StringTableSection<ELF32BE>; 2061 template class StringTableSection<ELF64LE>; 2062 template class StringTableSection<ELF64BE>; 2063 2064 template class SymbolTableSection<ELF32LE>; 2065 template class SymbolTableSection<ELF32BE>; 2066 template class SymbolTableSection<ELF64LE>; 2067 template class SymbolTableSection<ELF64BE>; 2068 2069 template class VersionTableSection<ELF32LE>; 2070 template class VersionTableSection<ELF32BE>; 2071 template class VersionTableSection<ELF64LE>; 2072 template class VersionTableSection<ELF64BE>; 2073 2074 template class VersionNeedSection<ELF32LE>; 2075 template class VersionNeedSection<ELF32BE>; 2076 template class VersionNeedSection<ELF64LE>; 2077 template class VersionNeedSection<ELF64BE>; 2078 2079 template class VersionDefinitionSection<ELF32LE>; 2080 template class VersionDefinitionSection<ELF32BE>; 2081 template class VersionDefinitionSection<ELF64LE>; 2082 template class VersionDefinitionSection<ELF64BE>; 2083 2084 template class BuildIdSection<ELF32LE>; 2085 template class BuildIdSection<ELF32BE>; 2086 template class BuildIdSection<ELF64LE>; 2087 template class BuildIdSection<ELF64BE>; 2088 2089 template class BuildIdFastHash<ELF32LE>; 2090 template class BuildIdFastHash<ELF32BE>; 2091 template class BuildIdFastHash<ELF64LE>; 2092 template class BuildIdFastHash<ELF64BE>; 2093 2094 template class BuildIdMd5<ELF32LE>; 2095 template class BuildIdMd5<ELF32BE>; 2096 template class BuildIdMd5<ELF64LE>; 2097 template class BuildIdMd5<ELF64BE>; 2098 2099 template class BuildIdSha1<ELF32LE>; 2100 template class BuildIdSha1<ELF32BE>; 2101 template class BuildIdSha1<ELF64LE>; 2102 template class BuildIdSha1<ELF64BE>; 2103 2104 template class BuildIdUuid<ELF32LE>; 2105 template class BuildIdUuid<ELF32BE>; 2106 template class BuildIdUuid<ELF64LE>; 2107 template class BuildIdUuid<ELF64BE>; 2108 2109 template class BuildIdHexstring<ELF32LE>; 2110 template class BuildIdHexstring<ELF32BE>; 2111 template class BuildIdHexstring<ELF64LE>; 2112 template class BuildIdHexstring<ELF64BE>; 2113 2114 template class GdbIndexSection<ELF32LE>; 2115 template class GdbIndexSection<ELF32BE>; 2116 template class GdbIndexSection<ELF64LE>; 2117 template class GdbIndexSection<ELF64BE>; 2118 2119 template class OutputSectionFactory<ELF32LE>; 2120 template class OutputSectionFactory<ELF32BE>; 2121 template class OutputSectionFactory<ELF64LE>; 2122 template class OutputSectionFactory<ELF64BE>; 2123 } 2124 } 2125