1 //===- OutputSections.cpp -------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "OutputSections.h" 10 #include "Config.h" 11 #include "InputFiles.h" 12 #include "LinkerScript.h" 13 #include "Symbols.h" 14 #include "SyntheticSections.h" 15 #include "Target.h" 16 #include "lld/Common/Arrays.h" 17 #include "lld/Common/Memory.h" 18 #include "llvm/BinaryFormat/Dwarf.h" 19 #include "llvm/Config/llvm-config.h" // LLVM_ENABLE_ZLIB 20 #include "llvm/Support/Parallel.h" 21 #include "llvm/Support/Path.h" 22 #include "llvm/Support/TimeProfiler.h" 23 #if LLVM_ENABLE_ZLIB 24 #include <zlib.h> 25 #endif 26 27 using namespace llvm; 28 using namespace llvm::dwarf; 29 using namespace llvm::object; 30 using namespace llvm::support::endian; 31 using namespace llvm::ELF; 32 using namespace lld; 33 using namespace lld::elf; 34 35 uint8_t *Out::bufferStart; 36 PhdrEntry *Out::tlsPhdr; 37 OutputSection *Out::elfHeader; 38 OutputSection *Out::programHeaders; 39 OutputSection *Out::preinitArray; 40 OutputSection *Out::initArray; 41 OutputSection *Out::finiArray; 42 43 SmallVector<OutputSection *, 0> elf::outputSections; 44 45 uint32_t OutputSection::getPhdrFlags() const { 46 uint32_t ret = 0; 47 if (config->emachine != EM_ARM || !(flags & SHF_ARM_PURECODE)) 48 ret |= PF_R; 49 if (flags & SHF_WRITE) 50 ret |= PF_W; 51 if (flags & SHF_EXECINSTR) 52 ret |= PF_X; 53 return ret; 54 } 55 56 template <class ELFT> 57 void OutputSection::writeHeaderTo(typename ELFT::Shdr *shdr) { 58 shdr->sh_entsize = entsize; 59 shdr->sh_addralign = alignment; 60 shdr->sh_type = type; 61 shdr->sh_offset = offset; 62 shdr->sh_flags = flags; 63 shdr->sh_info = info; 64 shdr->sh_link = link; 65 shdr->sh_addr = addr; 66 shdr->sh_size = size; 67 shdr->sh_name = shName; 68 } 69 70 OutputSection::OutputSection(StringRef name, uint32_t type, uint64_t flags) 71 : SectionBase(Output, name, flags, /*Entsize*/ 0, /*Alignment*/ 1, type, 72 /*Info*/ 0, /*Link*/ 0) {} 73 74 // We allow sections of types listed below to merged into a 75 // single progbits section. This is typically done by linker 76 // scripts. Merging nobits and progbits will force disk space 77 // to be allocated for nobits sections. Other ones don't require 78 // any special treatment on top of progbits, so there doesn't 79 // seem to be a harm in merging them. 80 // 81 // NOTE: clang since rL252300 emits SHT_X86_64_UNWIND .eh_frame sections. Allow 82 // them to be merged into SHT_PROGBITS .eh_frame (GNU as .cfi_*). 83 static bool canMergeToProgbits(unsigned type) { 84 return type == SHT_NOBITS || type == SHT_PROGBITS || type == SHT_INIT_ARRAY || 85 type == SHT_PREINIT_ARRAY || type == SHT_FINI_ARRAY || 86 type == SHT_NOTE || 87 (type == SHT_X86_64_UNWIND && config->emachine == EM_X86_64); 88 } 89 90 // Record that isec will be placed in the OutputSection. isec does not become 91 // permanent until finalizeInputSections() is called. The function should not be 92 // used after finalizeInputSections() is called. If you need to add an 93 // InputSection post finalizeInputSections(), then you must do the following: 94 // 95 // 1. Find or create an InputSectionDescription to hold InputSection. 96 // 2. Add the InputSection to the InputSectionDescription::sections. 97 // 3. Call commitSection(isec). 98 void OutputSection::recordSection(InputSectionBase *isec) { 99 partition = isec->partition; 100 isec->parent = this; 101 if (commands.empty() || !isa<InputSectionDescription>(commands.back())) 102 commands.push_back(make<InputSectionDescription>("")); 103 auto *isd = cast<InputSectionDescription>(commands.back()); 104 isd->sectionBases.push_back(isec); 105 } 106 107 // Update fields (type, flags, alignment, etc) according to the InputSection 108 // isec. Also check whether the InputSection flags and type are consistent with 109 // other InputSections. 110 void OutputSection::commitSection(InputSection *isec) { 111 if (LLVM_UNLIKELY(type != isec->type)) { 112 if (hasInputSections || typeIsSet) { 113 if (typeIsSet || !canMergeToProgbits(type) || 114 !canMergeToProgbits(isec->type)) { 115 // Changing the type of a (NOLOAD) section is fishy, but some projects 116 // (e.g. https://github.com/ClangBuiltLinux/linux/issues/1597) 117 // traditionally rely on the behavior. Issue a warning to not break 118 // them. Other types get an error. 119 auto diagnose = type == SHT_NOBITS ? warn : errorOrWarn; 120 diagnose("section type mismatch for " + isec->name + "\n>>> " + 121 toString(isec) + ": " + 122 getELFSectionTypeName(config->emachine, isec->type) + 123 "\n>>> output section " + name + ": " + 124 getELFSectionTypeName(config->emachine, type)); 125 } 126 type = SHT_PROGBITS; 127 } else { 128 type = isec->type; 129 } 130 } 131 if (!hasInputSections) { 132 // If IS is the first section to be added to this section, 133 // initialize type, entsize and flags from isec. 134 hasInputSections = true; 135 entsize = isec->entsize; 136 flags = isec->flags; 137 } else { 138 // Otherwise, check if new type or flags are compatible with existing ones. 139 if ((flags ^ isec->flags) & SHF_TLS) 140 error("incompatible section flags for " + name + "\n>>> " + 141 toString(isec) + ": 0x" + utohexstr(isec->flags) + 142 "\n>>> output section " + name + ": 0x" + utohexstr(flags)); 143 } 144 145 isec->parent = this; 146 uint64_t andMask = 147 config->emachine == EM_ARM ? (uint64_t)SHF_ARM_PURECODE : 0; 148 uint64_t orMask = ~andMask; 149 uint64_t andFlags = (flags & isec->flags) & andMask; 150 uint64_t orFlags = (flags | isec->flags) & orMask; 151 flags = andFlags | orFlags; 152 if (nonAlloc) 153 flags &= ~(uint64_t)SHF_ALLOC; 154 155 alignment = std::max(alignment, isec->alignment); 156 157 // If this section contains a table of fixed-size entries, sh_entsize 158 // holds the element size. If it contains elements of different size we 159 // set sh_entsize to 0. 160 if (entsize != isec->entsize) 161 entsize = 0; 162 } 163 164 static MergeSyntheticSection *createMergeSynthetic(StringRef name, 165 uint32_t type, 166 uint64_t flags, 167 uint32_t alignment) { 168 if ((flags & SHF_STRINGS) && config->optimize >= 2) 169 return make<MergeTailSection>(name, type, flags, alignment); 170 return make<MergeNoTailSection>(name, type, flags, alignment); 171 } 172 173 // This function scans over the InputSectionBase list sectionBases to create 174 // InputSectionDescription::sections. 175 // 176 // It removes MergeInputSections from the input section array and adds 177 // new synthetic sections at the location of the first input section 178 // that it replaces. It then finalizes each synthetic section in order 179 // to compute an output offset for each piece of each input section. 180 void OutputSection::finalizeInputSections() { 181 std::vector<MergeSyntheticSection *> mergeSections; 182 for (SectionCommand *cmd : commands) { 183 auto *isd = dyn_cast<InputSectionDescription>(cmd); 184 if (!isd) 185 continue; 186 isd->sections.reserve(isd->sectionBases.size()); 187 for (InputSectionBase *s : isd->sectionBases) { 188 MergeInputSection *ms = dyn_cast<MergeInputSection>(s); 189 if (!ms) { 190 isd->sections.push_back(cast<InputSection>(s)); 191 continue; 192 } 193 194 // We do not want to handle sections that are not alive, so just remove 195 // them instead of trying to merge. 196 if (!ms->isLive()) 197 continue; 198 199 auto i = llvm::find_if(mergeSections, [=](MergeSyntheticSection *sec) { 200 // While we could create a single synthetic section for two different 201 // values of Entsize, it is better to take Entsize into consideration. 202 // 203 // With a single synthetic section no two pieces with different Entsize 204 // could be equal, so we may as well have two sections. 205 // 206 // Using Entsize in here also allows us to propagate it to the synthetic 207 // section. 208 // 209 // SHF_STRINGS section with different alignments should not be merged. 210 return sec->flags == ms->flags && sec->entsize == ms->entsize && 211 (sec->alignment == ms->alignment || !(sec->flags & SHF_STRINGS)); 212 }); 213 if (i == mergeSections.end()) { 214 MergeSyntheticSection *syn = 215 createMergeSynthetic(name, ms->type, ms->flags, ms->alignment); 216 mergeSections.push_back(syn); 217 i = std::prev(mergeSections.end()); 218 syn->entsize = ms->entsize; 219 isd->sections.push_back(syn); 220 } 221 (*i)->addSection(ms); 222 } 223 224 // sectionBases should not be used from this point onwards. Clear it to 225 // catch misuses. 226 isd->sectionBases.clear(); 227 228 // Some input sections may be removed from the list after ICF. 229 for (InputSection *s : isd->sections) 230 commitSection(s); 231 } 232 for (auto *ms : mergeSections) 233 ms->finalizeContents(); 234 } 235 236 static void sortByOrder(MutableArrayRef<InputSection *> in, 237 llvm::function_ref<int(InputSectionBase *s)> order) { 238 std::vector<std::pair<int, InputSection *>> v; 239 for (InputSection *s : in) 240 v.push_back({order(s), s}); 241 llvm::stable_sort(v, less_first()); 242 243 for (size_t i = 0; i < v.size(); ++i) 244 in[i] = v[i].second; 245 } 246 247 uint64_t elf::getHeaderSize() { 248 if (config->oFormatBinary) 249 return 0; 250 return Out::elfHeader->size + Out::programHeaders->size; 251 } 252 253 void OutputSection::sort(llvm::function_ref<int(InputSectionBase *s)> order) { 254 assert(isLive()); 255 for (SectionCommand *b : commands) 256 if (auto *isd = dyn_cast<InputSectionDescription>(b)) 257 sortByOrder(isd->sections, order); 258 } 259 260 static void nopInstrFill(uint8_t *buf, size_t size) { 261 if (size == 0) 262 return; 263 unsigned i = 0; 264 if (size == 0) 265 return; 266 std::vector<std::vector<uint8_t>> nopFiller = *target->nopInstrs; 267 unsigned num = size / nopFiller.back().size(); 268 for (unsigned c = 0; c < num; ++c) { 269 memcpy(buf + i, nopFiller.back().data(), nopFiller.back().size()); 270 i += nopFiller.back().size(); 271 } 272 unsigned remaining = size - i; 273 if (!remaining) 274 return; 275 assert(nopFiller[remaining - 1].size() == remaining); 276 memcpy(buf + i, nopFiller[remaining - 1].data(), remaining); 277 } 278 279 // Fill [Buf, Buf + Size) with Filler. 280 // This is used for linker script "=fillexp" command. 281 static void fill(uint8_t *buf, size_t size, 282 const std::array<uint8_t, 4> &filler) { 283 size_t i = 0; 284 for (; i + 4 < size; i += 4) 285 memcpy(buf + i, filler.data(), 4); 286 memcpy(buf + i, filler.data(), size - i); 287 } 288 289 #if LLVM_ENABLE_ZLIB 290 static SmallVector<uint8_t, 0> deflateShard(ArrayRef<uint8_t> in, int level, 291 int flush) { 292 // 15 and 8 are default. windowBits=-15 is negative to generate raw deflate 293 // data with no zlib header or trailer. 294 z_stream s = {}; 295 deflateInit2(&s, level, Z_DEFLATED, -15, 8, Z_DEFAULT_STRATEGY); 296 s.next_in = const_cast<uint8_t *>(in.data()); 297 s.avail_in = in.size(); 298 299 // Allocate a buffer of half of the input size, and grow it by 1.5x if 300 // insufficient. 301 SmallVector<uint8_t, 0> out; 302 size_t pos = 0; 303 out.resize_for_overwrite(std::max<size_t>(in.size() / 2, 64)); 304 do { 305 if (pos == out.size()) 306 out.resize_for_overwrite(out.size() * 3 / 2); 307 s.next_out = out.data() + pos; 308 s.avail_out = out.size() - pos; 309 (void)deflate(&s, flush); 310 pos = s.next_out - out.data(); 311 } while (s.avail_out == 0); 312 assert(s.avail_in == 0); 313 314 out.truncate(pos); 315 deflateEnd(&s); 316 return out; 317 } 318 #endif 319 320 // Compress section contents if this section contains debug info. 321 template <class ELFT> void OutputSection::maybeCompress() { 322 #if LLVM_ENABLE_ZLIB 323 using Elf_Chdr = typename ELFT::Chdr; 324 325 // Compress only DWARF debug sections. 326 if (!config->compressDebugSections || (flags & SHF_ALLOC) || 327 !name.startswith(".debug_") || size == 0) 328 return; 329 330 llvm::TimeTraceScope timeScope("Compress debug sections"); 331 332 // Write uncompressed data to a temporary zero-initialized buffer. 333 auto buf = std::make_unique<uint8_t[]>(size); 334 writeTo<ELFT>(buf.get()); 335 // We chose 1 (Z_BEST_SPEED) as the default compression level because it is 336 // the fastest. If -O2 is given, we use level 6 to compress debug info more by 337 // ~15%. We found that level 7 to 9 doesn't make much difference (~1% more 338 // compression) while they take significant amount of time (~2x), so level 6 339 // seems enough. 340 const int level = config->optimize >= 2 ? 6 : Z_BEST_SPEED; 341 342 // Split input into 1-MiB shards. 343 constexpr size_t shardSize = 1 << 20; 344 auto shardsIn = split(makeArrayRef<uint8_t>(buf.get(), size), shardSize); 345 const size_t numShards = shardsIn.size(); 346 347 // Compress shards and compute Alder-32 checksums. Use Z_SYNC_FLUSH for all 348 // shards but the last to flush the output to a byte boundary to be 349 // concatenated with the next shard. 350 auto shardsOut = std::make_unique<SmallVector<uint8_t, 0>[]>(numShards); 351 auto shardsAdler = std::make_unique<uint32_t[]>(numShards); 352 parallelForEachN(0, numShards, [&](size_t i) { 353 shardsOut[i] = deflateShard(shardsIn[i], level, 354 i != numShards - 1 ? Z_SYNC_FLUSH : Z_FINISH); 355 shardsAdler[i] = adler32(1, shardsIn[i].data(), shardsIn[i].size()); 356 }); 357 358 // Update section size and combine Alder-32 checksums. 359 uint32_t checksum = 1; // Initial Adler-32 value 360 compressed.uncompressedSize = size; 361 size = sizeof(Elf_Chdr) + 2; // Elf_Chdir and zlib header 362 for (size_t i = 0; i != numShards; ++i) { 363 size += shardsOut[i].size(); 364 checksum = adler32_combine(checksum, shardsAdler[i], shardsIn[i].size()); 365 } 366 size += 4; // checksum 367 368 compressed.shards = std::move(shardsOut); 369 compressed.numShards = numShards; 370 compressed.checksum = checksum; 371 flags |= SHF_COMPRESSED; 372 #endif 373 } 374 375 static void writeInt(uint8_t *buf, uint64_t data, uint64_t size) { 376 if (size == 1) 377 *buf = data; 378 else if (size == 2) 379 write16(buf, data); 380 else if (size == 4) 381 write32(buf, data); 382 else if (size == 8) 383 write64(buf, data); 384 else 385 llvm_unreachable("unsupported Size argument"); 386 } 387 388 template <class ELFT> void OutputSection::writeTo(uint8_t *buf) { 389 llvm::TimeTraceScope timeScope("Write sections", name); 390 if (type == SHT_NOBITS) 391 return; 392 393 // If --compress-debug-section is specified and if this is a debug section, 394 // we've already compressed section contents. If that's the case, 395 // just write it down. 396 if (compressed.shards) { 397 auto *chdr = reinterpret_cast<typename ELFT::Chdr *>(buf); 398 chdr->ch_type = ELFCOMPRESS_ZLIB; 399 chdr->ch_size = compressed.uncompressedSize; 400 chdr->ch_addralign = alignment; 401 buf += sizeof(*chdr); 402 403 // Compute shard offsets. 404 auto offsets = std::make_unique<size_t[]>(compressed.numShards); 405 offsets[0] = 2; // zlib header 406 for (size_t i = 1; i != compressed.numShards; ++i) 407 offsets[i] = offsets[i - 1] + compressed.shards[i - 1].size(); 408 409 buf[0] = 0x78; // CMF 410 buf[1] = 0x01; // FLG: best speed 411 parallelForEachN(0, compressed.numShards, [&](size_t i) { 412 memcpy(buf + offsets[i], compressed.shards[i].data(), 413 compressed.shards[i].size()); 414 }); 415 416 write32be(buf + (size - sizeof(*chdr) - 4), compressed.checksum); 417 return; 418 } 419 420 // Write leading padding. 421 SmallVector<InputSection *, 0> sections = getInputSections(*this); 422 std::array<uint8_t, 4> filler = getFiller(); 423 bool nonZeroFiller = read32(filler.data()) != 0; 424 if (nonZeroFiller) 425 fill(buf, sections.empty() ? size : sections[0]->outSecOff, filler); 426 427 parallelForEachN(0, sections.size(), [&](size_t i) { 428 InputSection *isec = sections[i]; 429 if (auto *s = dyn_cast<SyntheticSection>(isec)) 430 s->writeTo(buf + isec->outSecOff); 431 else 432 isec->writeTo<ELFT>(buf + isec->outSecOff); 433 434 // Fill gaps between sections. 435 if (nonZeroFiller) { 436 uint8_t *start = buf + isec->outSecOff + isec->getSize(); 437 uint8_t *end; 438 if (i + 1 == sections.size()) 439 end = buf + size; 440 else 441 end = buf + sections[i + 1]->outSecOff; 442 if (isec->nopFiller) { 443 assert(target->nopInstrs); 444 nopInstrFill(start, end - start); 445 } else 446 fill(start, end - start, filler); 447 } 448 }); 449 450 // Linker scripts may have BYTE()-family commands with which you 451 // can write arbitrary bytes to the output. Process them if any. 452 for (SectionCommand *cmd : commands) 453 if (auto *data = dyn_cast<ByteCommand>(cmd)) 454 writeInt(buf + data->offset, data->expression().getValue(), data->size); 455 } 456 457 static void finalizeShtGroup(OutputSection *os, InputSection *section) { 458 // sh_link field for SHT_GROUP sections should contain the section index of 459 // the symbol table. 460 os->link = in.symTab->getParent()->sectionIndex; 461 462 if (!section) 463 return; 464 465 // sh_info then contain index of an entry in symbol table section which 466 // provides signature of the section group. 467 ArrayRef<Symbol *> symbols = section->file->getSymbols(); 468 os->info = in.symTab->getSymbolIndex(symbols[section->info]); 469 470 // Some group members may be combined or discarded, so we need to compute the 471 // new size. The content will be rewritten in InputSection::copyShtGroup. 472 DenseSet<uint32_t> seen; 473 ArrayRef<InputSectionBase *> sections = section->file->getSections(); 474 for (const uint32_t &idx : section->getDataAs<uint32_t>().slice(1)) 475 if (OutputSection *osec = sections[read32(&idx)]->getOutputSection()) 476 seen.insert(osec->sectionIndex); 477 os->size = (1 + seen.size()) * sizeof(uint32_t); 478 } 479 480 void OutputSection::finalize() { 481 InputSection *first = getFirstInputSection(this); 482 483 if (flags & SHF_LINK_ORDER) { 484 // We must preserve the link order dependency of sections with the 485 // SHF_LINK_ORDER flag. The dependency is indicated by the sh_link field. We 486 // need to translate the InputSection sh_link to the OutputSection sh_link, 487 // all InputSections in the OutputSection have the same dependency. 488 if (auto *ex = dyn_cast<ARMExidxSyntheticSection>(first)) 489 link = ex->getLinkOrderDep()->getParent()->sectionIndex; 490 else if (first->flags & SHF_LINK_ORDER) 491 if (auto *d = first->getLinkOrderDep()) 492 link = d->getParent()->sectionIndex; 493 } 494 495 if (type == SHT_GROUP) { 496 finalizeShtGroup(this, first); 497 return; 498 } 499 500 if (!config->copyRelocs || (type != SHT_RELA && type != SHT_REL)) 501 return; 502 503 // Skip if 'first' is synthetic, i.e. not a section created by --emit-relocs. 504 // Normally 'type' was changed by 'first' so 'first' should be non-null. 505 // However, if the output section is .rela.dyn, 'type' can be set by the empty 506 // synthetic .rela.plt and first can be null. 507 if (!first || isa<SyntheticSection>(first)) 508 return; 509 510 link = in.symTab->getParent()->sectionIndex; 511 // sh_info for SHT_REL[A] sections should contain the section header index of 512 // the section to which the relocation applies. 513 InputSectionBase *s = first->getRelocatedSection(); 514 info = s->getOutputSection()->sectionIndex; 515 flags |= SHF_INFO_LINK; 516 } 517 518 // Returns true if S is in one of the many forms the compiler driver may pass 519 // crtbegin files. 520 // 521 // Gcc uses any of crtbegin[<empty>|S|T].o. 522 // Clang uses Gcc's plus clang_rt.crtbegin[-<arch>|<empty>].o. 523 524 static bool isCrt(StringRef s, StringRef beginEnd) { 525 s = sys::path::filename(s); 526 if (!s.consume_back(".o")) 527 return false; 528 if (s.consume_front("clang_rt.")) 529 return s.consume_front(beginEnd); 530 return s.consume_front(beginEnd) && s.size() <= 1; 531 } 532 533 // .ctors and .dtors are sorted by this order: 534 // 535 // 1. .ctors/.dtors in crtbegin (which contains a sentinel value -1). 536 // 2. The section is named ".ctors" or ".dtors" (priority: 65536). 537 // 3. The section has an optional priority value in the form of ".ctors.N" or 538 // ".dtors.N" where N is a number in the form of %05u (priority: 65535-N). 539 // 4. .ctors/.dtors in crtend (which contains a sentinel value 0). 540 // 541 // For 2 and 3, the sections are sorted by priority from high to low, e.g. 542 // .ctors (65536), .ctors.00100 (65436), .ctors.00200 (65336). In GNU ld's 543 // internal linker scripts, the sorting is by string comparison which can 544 // achieve the same goal given the optional priority values are of the same 545 // length. 546 // 547 // In an ideal world, we don't need this function because .init_array and 548 // .ctors are duplicate features (and .init_array is newer.) However, there 549 // are too many real-world use cases of .ctors, so we had no choice to 550 // support that with this rather ad-hoc semantics. 551 static bool compCtors(const InputSection *a, const InputSection *b) { 552 bool beginA = isCrt(a->file->getName(), "crtbegin"); 553 bool beginB = isCrt(b->file->getName(), "crtbegin"); 554 if (beginA != beginB) 555 return beginA; 556 bool endA = isCrt(a->file->getName(), "crtend"); 557 bool endB = isCrt(b->file->getName(), "crtend"); 558 if (endA != endB) 559 return endB; 560 return getPriority(a->name) > getPriority(b->name); 561 } 562 563 // Sorts input sections by the special rules for .ctors and .dtors. 564 // Unfortunately, the rules are different from the one for .{init,fini}_array. 565 // Read the comment above. 566 void OutputSection::sortCtorsDtors() { 567 assert(commands.size() == 1); 568 auto *isd = cast<InputSectionDescription>(commands[0]); 569 llvm::stable_sort(isd->sections, compCtors); 570 } 571 572 // If an input string is in the form of "foo.N" where N is a number, return N 573 // (65535-N if .ctors.N or .dtors.N). Otherwise, returns 65536, which is one 574 // greater than the lowest priority. 575 int elf::getPriority(StringRef s) { 576 size_t pos = s.rfind('.'); 577 if (pos == StringRef::npos) 578 return 65536; 579 int v = 65536; 580 if (to_integer(s.substr(pos + 1), v, 10) && 581 (pos == 6 && (s.startswith(".ctors") || s.startswith(".dtors")))) 582 v = 65535 - v; 583 return v; 584 } 585 586 InputSection *elf::getFirstInputSection(const OutputSection *os) { 587 for (SectionCommand *cmd : os->commands) 588 if (auto *isd = dyn_cast<InputSectionDescription>(cmd)) 589 if (!isd->sections.empty()) 590 return isd->sections[0]; 591 return nullptr; 592 } 593 594 SmallVector<InputSection *, 0> elf::getInputSections(const OutputSection &os) { 595 SmallVector<InputSection *, 0> ret; 596 for (SectionCommand *cmd : os.commands) 597 if (auto *isd = dyn_cast<InputSectionDescription>(cmd)) 598 ret.insert(ret.end(), isd->sections.begin(), isd->sections.end()); 599 return ret; 600 } 601 602 // Sorts input sections by section name suffixes, so that .foo.N comes 603 // before .foo.M if N < M. Used to sort .{init,fini}_array.N sections. 604 // We want to keep the original order if the priorities are the same 605 // because the compiler keeps the original initialization order in a 606 // translation unit and we need to respect that. 607 // For more detail, read the section of the GCC's manual about init_priority. 608 void OutputSection::sortInitFini() { 609 // Sort sections by priority. 610 sort([](InputSectionBase *s) { return getPriority(s->name); }); 611 } 612 613 std::array<uint8_t, 4> OutputSection::getFiller() { 614 if (filler) 615 return *filler; 616 if (flags & SHF_EXECINSTR) 617 return target->trapInstr; 618 return {0, 0, 0, 0}; 619 } 620 621 void OutputSection::checkDynRelAddends(const uint8_t *bufStart) { 622 assert(config->writeAddends && config->checkDynamicRelocs); 623 assert(type == SHT_REL || type == SHT_RELA); 624 SmallVector<InputSection *, 0> sections = getInputSections(*this); 625 parallelForEachN(0, sections.size(), [&](size_t i) { 626 // When linking with -r or --emit-relocs we might also call this function 627 // for input .rel[a].<sec> sections which we simply pass through to the 628 // output. We skip over those and only look at the synthetic relocation 629 // sections created during linking. 630 const auto *sec = dyn_cast<RelocationBaseSection>(sections[i]); 631 if (!sec) 632 return; 633 for (const DynamicReloc &rel : sec->relocs) { 634 int64_t addend = rel.addend; 635 const OutputSection *relOsec = rel.inputSec->getOutputSection(); 636 assert(relOsec != nullptr && "missing output section for relocation"); 637 const uint8_t *relocTarget = 638 bufStart + relOsec->offset + rel.inputSec->getOffset(rel.offsetInSec); 639 // For SHT_NOBITS the written addend is always zero. 640 int64_t writtenAddend = 641 relOsec->type == SHT_NOBITS 642 ? 0 643 : target->getImplicitAddend(relocTarget, rel.type); 644 if (addend != writtenAddend) 645 internalLinkerError( 646 getErrorLocation(relocTarget), 647 "wrote incorrect addend value 0x" + utohexstr(writtenAddend) + 648 " instead of 0x" + utohexstr(addend) + 649 " for dynamic relocation " + toString(rel.type) + 650 " at offset 0x" + utohexstr(rel.getOffset()) + 651 (rel.sym ? " against symbol " + toString(*rel.sym) : "")); 652 } 653 }); 654 } 655 656 template void OutputSection::writeHeaderTo<ELF32LE>(ELF32LE::Shdr *Shdr); 657 template void OutputSection::writeHeaderTo<ELF32BE>(ELF32BE::Shdr *Shdr); 658 template void OutputSection::writeHeaderTo<ELF64LE>(ELF64LE::Shdr *Shdr); 659 template void OutputSection::writeHeaderTo<ELF64BE>(ELF64BE::Shdr *Shdr); 660 661 template void OutputSection::writeTo<ELF32LE>(uint8_t *Buf); 662 template void OutputSection::writeTo<ELF32BE>(uint8_t *Buf); 663 template void OutputSection::writeTo<ELF64LE>(uint8_t *Buf); 664 template void OutputSection::writeTo<ELF64BE>(uint8_t *Buf); 665 666 template void OutputSection::maybeCompress<ELF32LE>(); 667 template void OutputSection::maybeCompress<ELF32BE>(); 668 template void OutputSection::maybeCompress<ELF64LE>(); 669 template void OutputSection::maybeCompress<ELF64BE>(); 670