1 //===- OutputSections.cpp -------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "OutputSections.h" 10 #include "Config.h" 11 #include "InputFiles.h" 12 #include "LinkerScript.h" 13 #include "Symbols.h" 14 #include "SyntheticSections.h" 15 #include "Target.h" 16 #include "lld/Common/Arrays.h" 17 #include "lld/Common/Memory.h" 18 #include "llvm/BinaryFormat/Dwarf.h" 19 #include "llvm/Config/llvm-config.h" // LLVM_ENABLE_ZLIB 20 #include "llvm/Support/Parallel.h" 21 #include "llvm/Support/Path.h" 22 #include "llvm/Support/TimeProfiler.h" 23 #if LLVM_ENABLE_ZLIB 24 #include <zlib.h> 25 #endif 26 27 using namespace llvm; 28 using namespace llvm::dwarf; 29 using namespace llvm::object; 30 using namespace llvm::support::endian; 31 using namespace llvm::ELF; 32 using namespace lld; 33 using namespace lld::elf; 34 35 uint8_t *Out::bufferStart; 36 PhdrEntry *Out::tlsPhdr; 37 OutputSection *Out::elfHeader; 38 OutputSection *Out::programHeaders; 39 OutputSection *Out::preinitArray; 40 OutputSection *Out::initArray; 41 OutputSection *Out::finiArray; 42 43 SmallVector<OutputSection *, 0> elf::outputSections; 44 45 uint32_t OutputSection::getPhdrFlags() const { 46 uint32_t ret = 0; 47 if (config->emachine != EM_ARM || !(flags & SHF_ARM_PURECODE)) 48 ret |= PF_R; 49 if (flags & SHF_WRITE) 50 ret |= PF_W; 51 if (flags & SHF_EXECINSTR) 52 ret |= PF_X; 53 return ret; 54 } 55 56 template <class ELFT> 57 void OutputSection::writeHeaderTo(typename ELFT::Shdr *shdr) { 58 shdr->sh_entsize = entsize; 59 shdr->sh_addralign = alignment; 60 shdr->sh_type = type; 61 shdr->sh_offset = offset; 62 shdr->sh_flags = flags; 63 shdr->sh_info = info; 64 shdr->sh_link = link; 65 shdr->sh_addr = addr; 66 shdr->sh_size = size; 67 shdr->sh_name = shName; 68 } 69 70 OutputSection::OutputSection(StringRef name, uint32_t type, uint64_t flags) 71 : SectionBase(Output, name, flags, /*Entsize*/ 0, /*Alignment*/ 1, type, 72 /*Info*/ 0, /*Link*/ 0) {} 73 74 // We allow sections of types listed below to merged into a 75 // single progbits section. This is typically done by linker 76 // scripts. Merging nobits and progbits will force disk space 77 // to be allocated for nobits sections. Other ones don't require 78 // any special treatment on top of progbits, so there doesn't 79 // seem to be a harm in merging them. 80 // 81 // NOTE: clang since rL252300 emits SHT_X86_64_UNWIND .eh_frame sections. Allow 82 // them to be merged into SHT_PROGBITS .eh_frame (GNU as .cfi_*). 83 static bool canMergeToProgbits(unsigned type) { 84 return type == SHT_NOBITS || type == SHT_PROGBITS || type == SHT_INIT_ARRAY || 85 type == SHT_PREINIT_ARRAY || type == SHT_FINI_ARRAY || 86 type == SHT_NOTE || 87 (type == SHT_X86_64_UNWIND && config->emachine == EM_X86_64); 88 } 89 90 // Record that isec will be placed in the OutputSection. isec does not become 91 // permanent until finalizeInputSections() is called. The function should not be 92 // used after finalizeInputSections() is called. If you need to add an 93 // InputSection post finalizeInputSections(), then you must do the following: 94 // 95 // 1. Find or create an InputSectionDescription to hold InputSection. 96 // 2. Add the InputSection to the InputSectionDescription::sections. 97 // 3. Call commitSection(isec). 98 void OutputSection::recordSection(InputSectionBase *isec) { 99 partition = isec->partition; 100 isec->parent = this; 101 if (commands.empty() || !isa<InputSectionDescription>(commands.back())) 102 commands.push_back(make<InputSectionDescription>("")); 103 auto *isd = cast<InputSectionDescription>(commands.back()); 104 isd->sectionBases.push_back(isec); 105 } 106 107 // Update fields (type, flags, alignment, etc) according to the InputSection 108 // isec. Also check whether the InputSection flags and type are consistent with 109 // other InputSections. 110 void OutputSection::commitSection(InputSection *isec) { 111 if (LLVM_UNLIKELY(type != isec->type)) { 112 if (hasInputSections || typeIsSet) { 113 if (typeIsSet || !canMergeToProgbits(type) || 114 !canMergeToProgbits(isec->type)) { 115 // Changing the type of a (NOLOAD) section is fishy, but some projects 116 // (e.g. https://github.com/ClangBuiltLinux/linux/issues/1597) 117 // traditionally rely on the behavior. Issue a warning to not break 118 // them. Other types get an error. 119 auto diagnose = type == SHT_NOBITS ? warn : errorOrWarn; 120 diagnose("section type mismatch for " + isec->name + "\n>>> " + 121 toString(isec) + ": " + 122 getELFSectionTypeName(config->emachine, isec->type) + 123 "\n>>> output section " + name + ": " + 124 getELFSectionTypeName(config->emachine, type)); 125 } 126 if (!typeIsSet) 127 type = SHT_PROGBITS; 128 } else { 129 type = isec->type; 130 } 131 } 132 if (!hasInputSections) { 133 // If IS is the first section to be added to this section, 134 // initialize type, entsize and flags from isec. 135 hasInputSections = true; 136 entsize = isec->entsize; 137 flags = isec->flags; 138 } else { 139 // Otherwise, check if new type or flags are compatible with existing ones. 140 if ((flags ^ isec->flags) & SHF_TLS) 141 error("incompatible section flags for " + name + "\n>>> " + 142 toString(isec) + ": 0x" + utohexstr(isec->flags) + 143 "\n>>> output section " + name + ": 0x" + utohexstr(flags)); 144 } 145 146 isec->parent = this; 147 uint64_t andMask = 148 config->emachine == EM_ARM ? (uint64_t)SHF_ARM_PURECODE : 0; 149 uint64_t orMask = ~andMask; 150 uint64_t andFlags = (flags & isec->flags) & andMask; 151 uint64_t orFlags = (flags | isec->flags) & orMask; 152 flags = andFlags | orFlags; 153 if (nonAlloc) 154 flags &= ~(uint64_t)SHF_ALLOC; 155 156 alignment = std::max(alignment, isec->alignment); 157 158 // If this section contains a table of fixed-size entries, sh_entsize 159 // holds the element size. If it contains elements of different size we 160 // set sh_entsize to 0. 161 if (entsize != isec->entsize) 162 entsize = 0; 163 } 164 165 static MergeSyntheticSection *createMergeSynthetic(StringRef name, 166 uint32_t type, 167 uint64_t flags, 168 uint32_t alignment) { 169 if ((flags & SHF_STRINGS) && config->optimize >= 2) 170 return make<MergeTailSection>(name, type, flags, alignment); 171 return make<MergeNoTailSection>(name, type, flags, alignment); 172 } 173 174 // This function scans over the InputSectionBase list sectionBases to create 175 // InputSectionDescription::sections. 176 // 177 // It removes MergeInputSections from the input section array and adds 178 // new synthetic sections at the location of the first input section 179 // that it replaces. It then finalizes each synthetic section in order 180 // to compute an output offset for each piece of each input section. 181 void OutputSection::finalizeInputSections() { 182 std::vector<MergeSyntheticSection *> mergeSections; 183 for (SectionCommand *cmd : commands) { 184 auto *isd = dyn_cast<InputSectionDescription>(cmd); 185 if (!isd) 186 continue; 187 isd->sections.reserve(isd->sectionBases.size()); 188 for (InputSectionBase *s : isd->sectionBases) { 189 MergeInputSection *ms = dyn_cast<MergeInputSection>(s); 190 if (!ms) { 191 isd->sections.push_back(cast<InputSection>(s)); 192 continue; 193 } 194 195 // We do not want to handle sections that are not alive, so just remove 196 // them instead of trying to merge. 197 if (!ms->isLive()) 198 continue; 199 200 auto i = llvm::find_if(mergeSections, [=](MergeSyntheticSection *sec) { 201 // While we could create a single synthetic section for two different 202 // values of Entsize, it is better to take Entsize into consideration. 203 // 204 // With a single synthetic section no two pieces with different Entsize 205 // could be equal, so we may as well have two sections. 206 // 207 // Using Entsize in here also allows us to propagate it to the synthetic 208 // section. 209 // 210 // SHF_STRINGS section with different alignments should not be merged. 211 return sec->flags == ms->flags && sec->entsize == ms->entsize && 212 (sec->alignment == ms->alignment || !(sec->flags & SHF_STRINGS)); 213 }); 214 if (i == mergeSections.end()) { 215 MergeSyntheticSection *syn = 216 createMergeSynthetic(name, ms->type, ms->flags, ms->alignment); 217 mergeSections.push_back(syn); 218 i = std::prev(mergeSections.end()); 219 syn->entsize = ms->entsize; 220 isd->sections.push_back(syn); 221 } 222 (*i)->addSection(ms); 223 } 224 225 // sectionBases should not be used from this point onwards. Clear it to 226 // catch misuses. 227 isd->sectionBases.clear(); 228 229 // Some input sections may be removed from the list after ICF. 230 for (InputSection *s : isd->sections) 231 commitSection(s); 232 } 233 for (auto *ms : mergeSections) 234 ms->finalizeContents(); 235 } 236 237 static void sortByOrder(MutableArrayRef<InputSection *> in, 238 llvm::function_ref<int(InputSectionBase *s)> order) { 239 std::vector<std::pair<int, InputSection *>> v; 240 for (InputSection *s : in) 241 v.push_back({order(s), s}); 242 llvm::stable_sort(v, less_first()); 243 244 for (size_t i = 0; i < v.size(); ++i) 245 in[i] = v[i].second; 246 } 247 248 uint64_t elf::getHeaderSize() { 249 if (config->oFormatBinary) 250 return 0; 251 return Out::elfHeader->size + Out::programHeaders->size; 252 } 253 254 void OutputSection::sort(llvm::function_ref<int(InputSectionBase *s)> order) { 255 assert(isLive()); 256 for (SectionCommand *b : commands) 257 if (auto *isd = dyn_cast<InputSectionDescription>(b)) 258 sortByOrder(isd->sections, order); 259 } 260 261 static void nopInstrFill(uint8_t *buf, size_t size) { 262 if (size == 0) 263 return; 264 unsigned i = 0; 265 if (size == 0) 266 return; 267 std::vector<std::vector<uint8_t>> nopFiller = *target->nopInstrs; 268 unsigned num = size / nopFiller.back().size(); 269 for (unsigned c = 0; c < num; ++c) { 270 memcpy(buf + i, nopFiller.back().data(), nopFiller.back().size()); 271 i += nopFiller.back().size(); 272 } 273 unsigned remaining = size - i; 274 if (!remaining) 275 return; 276 assert(nopFiller[remaining - 1].size() == remaining); 277 memcpy(buf + i, nopFiller[remaining - 1].data(), remaining); 278 } 279 280 // Fill [Buf, Buf + Size) with Filler. 281 // This is used for linker script "=fillexp" command. 282 static void fill(uint8_t *buf, size_t size, 283 const std::array<uint8_t, 4> &filler) { 284 size_t i = 0; 285 for (; i + 4 < size; i += 4) 286 memcpy(buf + i, filler.data(), 4); 287 memcpy(buf + i, filler.data(), size - i); 288 } 289 290 #if LLVM_ENABLE_ZLIB 291 static SmallVector<uint8_t, 0> deflateShard(ArrayRef<uint8_t> in, int level, 292 int flush) { 293 // 15 and 8 are default. windowBits=-15 is negative to generate raw deflate 294 // data with no zlib header or trailer. 295 z_stream s = {}; 296 deflateInit2(&s, level, Z_DEFLATED, -15, 8, Z_DEFAULT_STRATEGY); 297 s.next_in = const_cast<uint8_t *>(in.data()); 298 s.avail_in = in.size(); 299 300 // Allocate a buffer of half of the input size, and grow it by 1.5x if 301 // insufficient. 302 SmallVector<uint8_t, 0> out; 303 size_t pos = 0; 304 out.resize_for_overwrite(std::max<size_t>(in.size() / 2, 64)); 305 do { 306 if (pos == out.size()) 307 out.resize_for_overwrite(out.size() * 3 / 2); 308 s.next_out = out.data() + pos; 309 s.avail_out = out.size() - pos; 310 (void)deflate(&s, flush); 311 pos = s.next_out - out.data(); 312 } while (s.avail_out == 0); 313 assert(s.avail_in == 0); 314 315 out.truncate(pos); 316 deflateEnd(&s); 317 return out; 318 } 319 #endif 320 321 // Compress section contents if this section contains debug info. 322 template <class ELFT> void OutputSection::maybeCompress() { 323 #if LLVM_ENABLE_ZLIB 324 using Elf_Chdr = typename ELFT::Chdr; 325 326 // Compress only DWARF debug sections. 327 if (!config->compressDebugSections || (flags & SHF_ALLOC) || 328 !name.startswith(".debug_") || size == 0) 329 return; 330 331 llvm::TimeTraceScope timeScope("Compress debug sections"); 332 333 // Write uncompressed data to a temporary zero-initialized buffer. 334 auto buf = std::make_unique<uint8_t[]>(size); 335 writeTo<ELFT>(buf.get()); 336 // We chose 1 (Z_BEST_SPEED) as the default compression level because it is 337 // the fastest. If -O2 is given, we use level 6 to compress debug info more by 338 // ~15%. We found that level 7 to 9 doesn't make much difference (~1% more 339 // compression) while they take significant amount of time (~2x), so level 6 340 // seems enough. 341 const int level = config->optimize >= 2 ? 6 : Z_BEST_SPEED; 342 343 // Split input into 1-MiB shards. 344 constexpr size_t shardSize = 1 << 20; 345 auto shardsIn = split(makeArrayRef<uint8_t>(buf.get(), size), shardSize); 346 const size_t numShards = shardsIn.size(); 347 348 // Compress shards and compute Alder-32 checksums. Use Z_SYNC_FLUSH for all 349 // shards but the last to flush the output to a byte boundary to be 350 // concatenated with the next shard. 351 auto shardsOut = std::make_unique<SmallVector<uint8_t, 0>[]>(numShards); 352 auto shardsAdler = std::make_unique<uint32_t[]>(numShards); 353 parallelFor(0, numShards, [&](size_t i) { 354 shardsOut[i] = deflateShard(shardsIn[i], level, 355 i != numShards - 1 ? Z_SYNC_FLUSH : Z_FINISH); 356 shardsAdler[i] = adler32(1, shardsIn[i].data(), shardsIn[i].size()); 357 }); 358 359 // Update section size and combine Alder-32 checksums. 360 uint32_t checksum = 1; // Initial Adler-32 value 361 compressed.uncompressedSize = size; 362 size = sizeof(Elf_Chdr) + 2; // Elf_Chdir and zlib header 363 for (size_t i = 0; i != numShards; ++i) { 364 size += shardsOut[i].size(); 365 checksum = adler32_combine(checksum, shardsAdler[i], shardsIn[i].size()); 366 } 367 size += 4; // checksum 368 369 compressed.shards = std::move(shardsOut); 370 compressed.numShards = numShards; 371 compressed.checksum = checksum; 372 flags |= SHF_COMPRESSED; 373 #endif 374 } 375 376 static void writeInt(uint8_t *buf, uint64_t data, uint64_t size) { 377 if (size == 1) 378 *buf = data; 379 else if (size == 2) 380 write16(buf, data); 381 else if (size == 4) 382 write32(buf, data); 383 else if (size == 8) 384 write64(buf, data); 385 else 386 llvm_unreachable("unsupported Size argument"); 387 } 388 389 template <class ELFT> void OutputSection::writeTo(uint8_t *buf) { 390 llvm::TimeTraceScope timeScope("Write sections", name); 391 if (type == SHT_NOBITS) 392 return; 393 394 // If --compress-debug-section is specified and if this is a debug section, 395 // we've already compressed section contents. If that's the case, 396 // just write it down. 397 if (compressed.shards) { 398 auto *chdr = reinterpret_cast<typename ELFT::Chdr *>(buf); 399 chdr->ch_type = ELFCOMPRESS_ZLIB; 400 chdr->ch_size = compressed.uncompressedSize; 401 chdr->ch_addralign = alignment; 402 buf += sizeof(*chdr); 403 404 // Compute shard offsets. 405 auto offsets = std::make_unique<size_t[]>(compressed.numShards); 406 offsets[0] = 2; // zlib header 407 for (size_t i = 1; i != compressed.numShards; ++i) 408 offsets[i] = offsets[i - 1] + compressed.shards[i - 1].size(); 409 410 buf[0] = 0x78; // CMF 411 buf[1] = 0x01; // FLG: best speed 412 parallelFor(0, compressed.numShards, [&](size_t i) { 413 memcpy(buf + offsets[i], compressed.shards[i].data(), 414 compressed.shards[i].size()); 415 }); 416 417 write32be(buf + (size - sizeof(*chdr) - 4), compressed.checksum); 418 return; 419 } 420 421 // Write leading padding. 422 SmallVector<InputSection *, 0> sections = getInputSections(*this); 423 std::array<uint8_t, 4> filler = getFiller(); 424 bool nonZeroFiller = read32(filler.data()) != 0; 425 if (nonZeroFiller) 426 fill(buf, sections.empty() ? size : sections[0]->outSecOff, filler); 427 428 parallelFor(0, sections.size(), [&](size_t i) { 429 InputSection *isec = sections[i]; 430 if (auto *s = dyn_cast<SyntheticSection>(isec)) 431 s->writeTo(buf + isec->outSecOff); 432 else 433 isec->writeTo<ELFT>(buf + isec->outSecOff); 434 435 // Fill gaps between sections. 436 if (nonZeroFiller) { 437 uint8_t *start = buf + isec->outSecOff + isec->getSize(); 438 uint8_t *end; 439 if (i + 1 == sections.size()) 440 end = buf + size; 441 else 442 end = buf + sections[i + 1]->outSecOff; 443 if (isec->nopFiller) { 444 assert(target->nopInstrs); 445 nopInstrFill(start, end - start); 446 } else 447 fill(start, end - start, filler); 448 } 449 }); 450 451 // Linker scripts may have BYTE()-family commands with which you 452 // can write arbitrary bytes to the output. Process them if any. 453 for (SectionCommand *cmd : commands) 454 if (auto *data = dyn_cast<ByteCommand>(cmd)) 455 writeInt(buf + data->offset, data->expression().getValue(), data->size); 456 } 457 458 static void finalizeShtGroup(OutputSection *os, InputSection *section) { 459 // sh_link field for SHT_GROUP sections should contain the section index of 460 // the symbol table. 461 os->link = in.symTab->getParent()->sectionIndex; 462 463 if (!section) 464 return; 465 466 // sh_info then contain index of an entry in symbol table section which 467 // provides signature of the section group. 468 ArrayRef<Symbol *> symbols = section->file->getSymbols(); 469 os->info = in.symTab->getSymbolIndex(symbols[section->info]); 470 471 // Some group members may be combined or discarded, so we need to compute the 472 // new size. The content will be rewritten in InputSection::copyShtGroup. 473 DenseSet<uint32_t> seen; 474 ArrayRef<InputSectionBase *> sections = section->file->getSections(); 475 for (const uint32_t &idx : section->getDataAs<uint32_t>().slice(1)) 476 if (OutputSection *osec = sections[read32(&idx)]->getOutputSection()) 477 seen.insert(osec->sectionIndex); 478 os->size = (1 + seen.size()) * sizeof(uint32_t); 479 } 480 481 void OutputSection::finalize() { 482 InputSection *first = getFirstInputSection(this); 483 484 if (flags & SHF_LINK_ORDER) { 485 // We must preserve the link order dependency of sections with the 486 // SHF_LINK_ORDER flag. The dependency is indicated by the sh_link field. We 487 // need to translate the InputSection sh_link to the OutputSection sh_link, 488 // all InputSections in the OutputSection have the same dependency. 489 if (auto *ex = dyn_cast<ARMExidxSyntheticSection>(first)) 490 link = ex->getLinkOrderDep()->getParent()->sectionIndex; 491 else if (first->flags & SHF_LINK_ORDER) 492 if (auto *d = first->getLinkOrderDep()) 493 link = d->getParent()->sectionIndex; 494 } 495 496 if (type == SHT_GROUP) { 497 finalizeShtGroup(this, first); 498 return; 499 } 500 501 if (!config->copyRelocs || (type != SHT_RELA && type != SHT_REL)) 502 return; 503 504 // Skip if 'first' is synthetic, i.e. not a section created by --emit-relocs. 505 // Normally 'type' was changed by 'first' so 'first' should be non-null. 506 // However, if the output section is .rela.dyn, 'type' can be set by the empty 507 // synthetic .rela.plt and first can be null. 508 if (!first || isa<SyntheticSection>(first)) 509 return; 510 511 link = in.symTab->getParent()->sectionIndex; 512 // sh_info for SHT_REL[A] sections should contain the section header index of 513 // the section to which the relocation applies. 514 InputSectionBase *s = first->getRelocatedSection(); 515 info = s->getOutputSection()->sectionIndex; 516 flags |= SHF_INFO_LINK; 517 } 518 519 // Returns true if S is in one of the many forms the compiler driver may pass 520 // crtbegin files. 521 // 522 // Gcc uses any of crtbegin[<empty>|S|T].o. 523 // Clang uses Gcc's plus clang_rt.crtbegin[-<arch>|<empty>].o. 524 525 static bool isCrt(StringRef s, StringRef beginEnd) { 526 s = sys::path::filename(s); 527 if (!s.consume_back(".o")) 528 return false; 529 if (s.consume_front("clang_rt.")) 530 return s.consume_front(beginEnd); 531 return s.consume_front(beginEnd) && s.size() <= 1; 532 } 533 534 // .ctors and .dtors are sorted by this order: 535 // 536 // 1. .ctors/.dtors in crtbegin (which contains a sentinel value -1). 537 // 2. The section is named ".ctors" or ".dtors" (priority: 65536). 538 // 3. The section has an optional priority value in the form of ".ctors.N" or 539 // ".dtors.N" where N is a number in the form of %05u (priority: 65535-N). 540 // 4. .ctors/.dtors in crtend (which contains a sentinel value 0). 541 // 542 // For 2 and 3, the sections are sorted by priority from high to low, e.g. 543 // .ctors (65536), .ctors.00100 (65436), .ctors.00200 (65336). In GNU ld's 544 // internal linker scripts, the sorting is by string comparison which can 545 // achieve the same goal given the optional priority values are of the same 546 // length. 547 // 548 // In an ideal world, we don't need this function because .init_array and 549 // .ctors are duplicate features (and .init_array is newer.) However, there 550 // are too many real-world use cases of .ctors, so we had no choice to 551 // support that with this rather ad-hoc semantics. 552 static bool compCtors(const InputSection *a, const InputSection *b) { 553 bool beginA = isCrt(a->file->getName(), "crtbegin"); 554 bool beginB = isCrt(b->file->getName(), "crtbegin"); 555 if (beginA != beginB) 556 return beginA; 557 bool endA = isCrt(a->file->getName(), "crtend"); 558 bool endB = isCrt(b->file->getName(), "crtend"); 559 if (endA != endB) 560 return endB; 561 return getPriority(a->name) > getPriority(b->name); 562 } 563 564 // Sorts input sections by the special rules for .ctors and .dtors. 565 // Unfortunately, the rules are different from the one for .{init,fini}_array. 566 // Read the comment above. 567 void OutputSection::sortCtorsDtors() { 568 assert(commands.size() == 1); 569 auto *isd = cast<InputSectionDescription>(commands[0]); 570 llvm::stable_sort(isd->sections, compCtors); 571 } 572 573 // If an input string is in the form of "foo.N" where N is a number, return N 574 // (65535-N if .ctors.N or .dtors.N). Otherwise, returns 65536, which is one 575 // greater than the lowest priority. 576 int elf::getPriority(StringRef s) { 577 size_t pos = s.rfind('.'); 578 if (pos == StringRef::npos) 579 return 65536; 580 int v = 65536; 581 if (to_integer(s.substr(pos + 1), v, 10) && 582 (pos == 6 && (s.startswith(".ctors") || s.startswith(".dtors")))) 583 v = 65535 - v; 584 return v; 585 } 586 587 InputSection *elf::getFirstInputSection(const OutputSection *os) { 588 for (SectionCommand *cmd : os->commands) 589 if (auto *isd = dyn_cast<InputSectionDescription>(cmd)) 590 if (!isd->sections.empty()) 591 return isd->sections[0]; 592 return nullptr; 593 } 594 595 SmallVector<InputSection *, 0> elf::getInputSections(const OutputSection &os) { 596 SmallVector<InputSection *, 0> ret; 597 for (SectionCommand *cmd : os.commands) 598 if (auto *isd = dyn_cast<InputSectionDescription>(cmd)) 599 ret.insert(ret.end(), isd->sections.begin(), isd->sections.end()); 600 return ret; 601 } 602 603 // Sorts input sections by section name suffixes, so that .foo.N comes 604 // before .foo.M if N < M. Used to sort .{init,fini}_array.N sections. 605 // We want to keep the original order if the priorities are the same 606 // because the compiler keeps the original initialization order in a 607 // translation unit and we need to respect that. 608 // For more detail, read the section of the GCC's manual about init_priority. 609 void OutputSection::sortInitFini() { 610 // Sort sections by priority. 611 sort([](InputSectionBase *s) { return getPriority(s->name); }); 612 } 613 614 std::array<uint8_t, 4> OutputSection::getFiller() { 615 if (filler) 616 return *filler; 617 if (flags & SHF_EXECINSTR) 618 return target->trapInstr; 619 return {0, 0, 0, 0}; 620 } 621 622 void OutputSection::checkDynRelAddends(const uint8_t *bufStart) { 623 assert(config->writeAddends && config->checkDynamicRelocs); 624 assert(type == SHT_REL || type == SHT_RELA); 625 SmallVector<InputSection *, 0> sections = getInputSections(*this); 626 parallelFor(0, sections.size(), [&](size_t i) { 627 // When linking with -r or --emit-relocs we might also call this function 628 // for input .rel[a].<sec> sections which we simply pass through to the 629 // output. We skip over those and only look at the synthetic relocation 630 // sections created during linking. 631 const auto *sec = dyn_cast<RelocationBaseSection>(sections[i]); 632 if (!sec) 633 return; 634 for (const DynamicReloc &rel : sec->relocs) { 635 int64_t addend = rel.addend; 636 const OutputSection *relOsec = rel.inputSec->getOutputSection(); 637 assert(relOsec != nullptr && "missing output section for relocation"); 638 const uint8_t *relocTarget = 639 bufStart + relOsec->offset + rel.inputSec->getOffset(rel.offsetInSec); 640 // For SHT_NOBITS the written addend is always zero. 641 int64_t writtenAddend = 642 relOsec->type == SHT_NOBITS 643 ? 0 644 : target->getImplicitAddend(relocTarget, rel.type); 645 if (addend != writtenAddend) 646 internalLinkerError( 647 getErrorLocation(relocTarget), 648 "wrote incorrect addend value 0x" + utohexstr(writtenAddend) + 649 " instead of 0x" + utohexstr(addend) + 650 " for dynamic relocation " + toString(rel.type) + 651 " at offset 0x" + utohexstr(rel.getOffset()) + 652 (rel.sym ? " against symbol " + toString(*rel.sym) : "")); 653 } 654 }); 655 } 656 657 template void OutputSection::writeHeaderTo<ELF32LE>(ELF32LE::Shdr *Shdr); 658 template void OutputSection::writeHeaderTo<ELF32BE>(ELF32BE::Shdr *Shdr); 659 template void OutputSection::writeHeaderTo<ELF64LE>(ELF64LE::Shdr *Shdr); 660 template void OutputSection::writeHeaderTo<ELF64BE>(ELF64BE::Shdr *Shdr); 661 662 template void OutputSection::writeTo<ELF32LE>(uint8_t *Buf); 663 template void OutputSection::writeTo<ELF32BE>(uint8_t *Buf); 664 template void OutputSection::writeTo<ELF64LE>(uint8_t *Buf); 665 template void OutputSection::writeTo<ELF64BE>(uint8_t *Buf); 666 667 template void OutputSection::maybeCompress<ELF32LE>(); 668 template void OutputSection::maybeCompress<ELF32BE>(); 669 template void OutputSection::maybeCompress<ELF64LE>(); 670 template void OutputSection::maybeCompress<ELF64BE>(); 671