1 //===- OutputSections.cpp -------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "OutputSections.h"
10 #include "Config.h"
11 #include "LinkerScript.h"
12 #include "Symbols.h"
13 #include "SyntheticSections.h"
14 #include "Target.h"
15 #include "lld/Common/Arrays.h"
16 #include "lld/Common/Memory.h"
17 #include "llvm/BinaryFormat/Dwarf.h"
18 #include "llvm/Config/llvm-config.h" // LLVM_ENABLE_ZLIB
19 #include "llvm/Support/Parallel.h"
20 #include "llvm/Support/Path.h"
21 #include "llvm/Support/TimeProfiler.h"
22 #if LLVM_ENABLE_ZLIB
23 #include <zlib.h>
24 #endif
25 
26 using namespace llvm;
27 using namespace llvm::dwarf;
28 using namespace llvm::object;
29 using namespace llvm::support::endian;
30 using namespace llvm::ELF;
31 using namespace lld;
32 using namespace lld::elf;
33 
34 uint8_t *Out::bufferStart;
35 PhdrEntry *Out::tlsPhdr;
36 OutputSection *Out::elfHeader;
37 OutputSection *Out::programHeaders;
38 OutputSection *Out::preinitArray;
39 OutputSection *Out::initArray;
40 OutputSection *Out::finiArray;
41 
42 SmallVector<OutputSection *, 0> elf::outputSections;
43 
44 uint32_t OutputSection::getPhdrFlags() const {
45   uint32_t ret = 0;
46   if (config->emachine != EM_ARM || !(flags & SHF_ARM_PURECODE))
47     ret |= PF_R;
48   if (flags & SHF_WRITE)
49     ret |= PF_W;
50   if (flags & SHF_EXECINSTR)
51     ret |= PF_X;
52   return ret;
53 }
54 
55 template <class ELFT>
56 void OutputSection::writeHeaderTo(typename ELFT::Shdr *shdr) {
57   shdr->sh_entsize = entsize;
58   shdr->sh_addralign = alignment;
59   shdr->sh_type = type;
60   shdr->sh_offset = offset;
61   shdr->sh_flags = flags;
62   shdr->sh_info = info;
63   shdr->sh_link = link;
64   shdr->sh_addr = addr;
65   shdr->sh_size = size;
66   shdr->sh_name = shName;
67 }
68 
69 OutputSection::OutputSection(StringRef name, uint32_t type, uint64_t flags)
70     : SectionCommand(OutputSectionKind),
71       SectionBase(Output, name, flags, /*Entsize*/ 0, /*Alignment*/ 1, type,
72                   /*Info*/ 0, /*Link*/ 0) {}
73 
74 // We allow sections of types listed below to merged into a
75 // single progbits section. This is typically done by linker
76 // scripts. Merging nobits and progbits will force disk space
77 // to be allocated for nobits sections. Other ones don't require
78 // any special treatment on top of progbits, so there doesn't
79 // seem to be a harm in merging them.
80 //
81 // NOTE: clang since rL252300 emits SHT_X86_64_UNWIND .eh_frame sections. Allow
82 // them to be merged into SHT_PROGBITS .eh_frame (GNU as .cfi_*).
83 static bool canMergeToProgbits(unsigned type) {
84   return type == SHT_NOBITS || type == SHT_PROGBITS || type == SHT_INIT_ARRAY ||
85          type == SHT_PREINIT_ARRAY || type == SHT_FINI_ARRAY ||
86          type == SHT_NOTE ||
87          (type == SHT_X86_64_UNWIND && config->emachine == EM_X86_64);
88 }
89 
90 // Record that isec will be placed in the OutputSection. isec does not become
91 // permanent until finalizeInputSections() is called. The function should not be
92 // used after finalizeInputSections() is called. If you need to add an
93 // InputSection post finalizeInputSections(), then you must do the following:
94 //
95 // 1. Find or create an InputSectionDescription to hold InputSection.
96 // 2. Add the InputSection to the InputSectionDescription::sections.
97 // 3. Call commitSection(isec).
98 void OutputSection::recordSection(InputSectionBase *isec) {
99   partition = isec->partition;
100   isec->parent = this;
101   if (commands.empty() || !isa<InputSectionDescription>(commands.back()))
102     commands.push_back(make<InputSectionDescription>(""));
103   auto *isd = cast<InputSectionDescription>(commands.back());
104   isd->sectionBases.push_back(isec);
105 }
106 
107 // Update fields (type, flags, alignment, etc) according to the InputSection
108 // isec. Also check whether the InputSection flags and type are consistent with
109 // other InputSections.
110 void OutputSection::commitSection(InputSection *isec) {
111   if (!hasInputSections) {
112     // If IS is the first section to be added to this section,
113     // initialize type, entsize and flags from isec.
114     hasInputSections = true;
115     type = isec->type;
116     entsize = isec->entsize;
117     flags = isec->flags;
118   } else {
119     // Otherwise, check if new type or flags are compatible with existing ones.
120     if ((flags ^ isec->flags) & SHF_TLS)
121       error("incompatible section flags for " + name + "\n>>> " + toString(isec) +
122             ": 0x" + utohexstr(isec->flags) + "\n>>> output section " + name +
123             ": 0x" + utohexstr(flags));
124 
125     if (type != isec->type) {
126       if (!canMergeToProgbits(type) || !canMergeToProgbits(isec->type))
127         error("section type mismatch for " + isec->name + "\n>>> " +
128               toString(isec) + ": " +
129               getELFSectionTypeName(config->emachine, isec->type) +
130               "\n>>> output section " + name + ": " +
131               getELFSectionTypeName(config->emachine, type));
132       type = SHT_PROGBITS;
133     }
134   }
135   if (noload)
136     type = SHT_NOBITS;
137 
138   isec->parent = this;
139   uint64_t andMask =
140       config->emachine == EM_ARM ? (uint64_t)SHF_ARM_PURECODE : 0;
141   uint64_t orMask = ~andMask;
142   uint64_t andFlags = (flags & isec->flags) & andMask;
143   uint64_t orFlags = (flags | isec->flags) & orMask;
144   flags = andFlags | orFlags;
145   if (nonAlloc)
146     flags &= ~(uint64_t)SHF_ALLOC;
147 
148   alignment = std::max(alignment, isec->alignment);
149 
150   // If this section contains a table of fixed-size entries, sh_entsize
151   // holds the element size. If it contains elements of different size we
152   // set sh_entsize to 0.
153   if (entsize != isec->entsize)
154     entsize = 0;
155 }
156 
157 static MergeSyntheticSection *createMergeSynthetic(StringRef name,
158                                                    uint32_t type,
159                                                    uint64_t flags,
160                                                    uint32_t alignment) {
161   if ((flags & SHF_STRINGS) && config->optimize >= 2)
162     return make<MergeTailSection>(name, type, flags, alignment);
163   return make<MergeNoTailSection>(name, type, flags, alignment);
164 }
165 
166 // This function scans over the InputSectionBase list sectionBases to create
167 // InputSectionDescription::sections.
168 //
169 // It removes MergeInputSections from the input section array and adds
170 // new synthetic sections at the location of the first input section
171 // that it replaces. It then finalizes each synthetic section in order
172 // to compute an output offset for each piece of each input section.
173 void OutputSection::finalizeInputSections() {
174   std::vector<MergeSyntheticSection *> mergeSections;
175   for (SectionCommand *cmd : commands) {
176     auto *isd = dyn_cast<InputSectionDescription>(cmd);
177     if (!isd)
178       continue;
179     isd->sections.reserve(isd->sectionBases.size());
180     for (InputSectionBase *s : isd->sectionBases) {
181       MergeInputSection *ms = dyn_cast<MergeInputSection>(s);
182       if (!ms) {
183         isd->sections.push_back(cast<InputSection>(s));
184         continue;
185       }
186 
187       // We do not want to handle sections that are not alive, so just remove
188       // them instead of trying to merge.
189       if (!ms->isLive())
190         continue;
191 
192       auto i = llvm::find_if(mergeSections, [=](MergeSyntheticSection *sec) {
193         // While we could create a single synthetic section for two different
194         // values of Entsize, it is better to take Entsize into consideration.
195         //
196         // With a single synthetic section no two pieces with different Entsize
197         // could be equal, so we may as well have two sections.
198         //
199         // Using Entsize in here also allows us to propagate it to the synthetic
200         // section.
201         //
202         // SHF_STRINGS section with different alignments should not be merged.
203         return sec->flags == ms->flags && sec->entsize == ms->entsize &&
204                (sec->alignment == ms->alignment || !(sec->flags & SHF_STRINGS));
205       });
206       if (i == mergeSections.end()) {
207         MergeSyntheticSection *syn =
208             createMergeSynthetic(name, ms->type, ms->flags, ms->alignment);
209         mergeSections.push_back(syn);
210         i = std::prev(mergeSections.end());
211         syn->entsize = ms->entsize;
212         isd->sections.push_back(syn);
213       }
214       (*i)->addSection(ms);
215     }
216 
217     // sectionBases should not be used from this point onwards. Clear it to
218     // catch misuses.
219     isd->sectionBases.clear();
220 
221     // Some input sections may be removed from the list after ICF.
222     for (InputSection *s : isd->sections)
223       commitSection(s);
224   }
225   for (auto *ms : mergeSections)
226     ms->finalizeContents();
227 }
228 
229 static void sortByOrder(MutableArrayRef<InputSection *> in,
230                         llvm::function_ref<int(InputSectionBase *s)> order) {
231   std::vector<std::pair<int, InputSection *>> v;
232   for (InputSection *s : in)
233     v.push_back({order(s), s});
234   llvm::stable_sort(v, less_first());
235 
236   for (size_t i = 0; i < v.size(); ++i)
237     in[i] = v[i].second;
238 }
239 
240 uint64_t elf::getHeaderSize() {
241   if (config->oFormatBinary)
242     return 0;
243   return Out::elfHeader->size + Out::programHeaders->size;
244 }
245 
246 bool OutputSection::classof(const SectionCommand *c) {
247   return c->kind == OutputSectionKind;
248 }
249 
250 void OutputSection::sort(llvm::function_ref<int(InputSectionBase *s)> order) {
251   assert(isLive());
252   for (SectionCommand *b : commands)
253     if (auto *isd = dyn_cast<InputSectionDescription>(b))
254       sortByOrder(isd->sections, order);
255 }
256 
257 static void nopInstrFill(uint8_t *buf, size_t size) {
258   if (size == 0)
259     return;
260   unsigned i = 0;
261   if (size == 0)
262     return;
263   std::vector<std::vector<uint8_t>> nopFiller = *target->nopInstrs;
264   unsigned num = size / nopFiller.back().size();
265   for (unsigned c = 0; c < num; ++c) {
266     memcpy(buf + i, nopFiller.back().data(), nopFiller.back().size());
267     i += nopFiller.back().size();
268   }
269   unsigned remaining = size - i;
270   if (!remaining)
271     return;
272   assert(nopFiller[remaining - 1].size() == remaining);
273   memcpy(buf + i, nopFiller[remaining - 1].data(), remaining);
274 }
275 
276 // Fill [Buf, Buf + Size) with Filler.
277 // This is used for linker script "=fillexp" command.
278 static void fill(uint8_t *buf, size_t size,
279                  const std::array<uint8_t, 4> &filler) {
280   size_t i = 0;
281   for (; i + 4 < size; i += 4)
282     memcpy(buf + i, filler.data(), 4);
283   memcpy(buf + i, filler.data(), size - i);
284 }
285 
286 #if LLVM_ENABLE_ZLIB
287 static SmallVector<uint8_t, 0> deflateShard(ArrayRef<uint8_t> in, int level,
288                                             int flush) {
289   // 15 and 8 are default. windowBits=-15 is negative to generate raw deflate
290   // data with no zlib header or trailer.
291   z_stream s = {};
292   deflateInit2(&s, level, Z_DEFLATED, -15, 8, Z_DEFAULT_STRATEGY);
293   s.next_in = const_cast<uint8_t *>(in.data());
294   s.avail_in = in.size();
295 
296   // Allocate a buffer of half of the input size, and grow it by 1.5x if
297   // insufficient.
298   SmallVector<uint8_t, 0> out;
299   size_t pos = 0;
300   out.resize_for_overwrite(std::max<size_t>(in.size() / 2, 64));
301   do {
302     if (pos == out.size())
303       out.resize_for_overwrite(out.size() * 3 / 2);
304     s.next_out = out.data() + pos;
305     s.avail_out = out.size() - pos;
306     (void)deflate(&s, flush);
307     pos = s.next_out - out.data();
308   } while (s.avail_out == 0);
309   assert(s.avail_in == 0);
310 
311   out.truncate(pos);
312   deflateEnd(&s);
313   return out;
314 }
315 #endif
316 
317 // Compress section contents if this section contains debug info.
318 template <class ELFT> void OutputSection::maybeCompress() {
319 #if LLVM_ENABLE_ZLIB
320   using Elf_Chdr = typename ELFT::Chdr;
321 
322   // Compress only DWARF debug sections.
323   if (!config->compressDebugSections || (flags & SHF_ALLOC) ||
324       !name.startswith(".debug_") || size == 0)
325     return;
326 
327   llvm::TimeTraceScope timeScope("Compress debug sections");
328 
329   // Write uncompressed data to a temporary zero-initialized buffer.
330   auto buf = std::make_unique<uint8_t[]>(size);
331   writeTo<ELFT>(buf.get());
332   // We chose 1 (Z_BEST_SPEED) as the default compression level because it is
333   // the fastest. If -O2 is given, we use level 6 to compress debug info more by
334   // ~15%. We found that level 7 to 9 doesn't make much difference (~1% more
335   // compression) while they take significant amount of time (~2x), so level 6
336   // seems enough.
337   const int level = config->optimize >= 2 ? 6 : Z_BEST_SPEED;
338 
339   // Split input into 1-MiB shards.
340   constexpr size_t shardSize = 1 << 20;
341   auto shardsIn = split(makeArrayRef<uint8_t>(buf.get(), size), shardSize);
342   const size_t numShards = shardsIn.size();
343 
344   // Compress shards and compute Alder-32 checksums. Use Z_SYNC_FLUSH for all
345   // shards but the last to flush the output to a byte boundary to be
346   // concatenated with the next shard.
347   auto shardsOut = std::make_unique<SmallVector<uint8_t, 0>[]>(numShards);
348   auto shardsAdler = std::make_unique<uint32_t[]>(numShards);
349   parallelForEachN(0, numShards, [&](size_t i) {
350     shardsOut[i] = deflateShard(shardsIn[i], level,
351                                 i != numShards - 1 ? Z_SYNC_FLUSH : Z_FINISH);
352     shardsAdler[i] = adler32(1, shardsIn[i].data(), shardsIn[i].size());
353   });
354 
355   // Update section size and combine Alder-32 checksums.
356   uint32_t checksum = 1;       // Initial Adler-32 value
357   compressed.uncompressedSize = size;
358   size = sizeof(Elf_Chdr) + 2; // Elf_Chdir and zlib header
359   for (size_t i = 0; i != numShards; ++i) {
360     size += shardsOut[i].size();
361     checksum = adler32_combine(checksum, shardsAdler[i], shardsIn[i].size());
362   }
363   size += 4; // checksum
364 
365   compressed.shards = std::move(shardsOut);
366   compressed.numShards = numShards;
367   compressed.checksum = checksum;
368   flags |= SHF_COMPRESSED;
369 #endif
370 }
371 
372 static void writeInt(uint8_t *buf, uint64_t data, uint64_t size) {
373   if (size == 1)
374     *buf = data;
375   else if (size == 2)
376     write16(buf, data);
377   else if (size == 4)
378     write32(buf, data);
379   else if (size == 8)
380     write64(buf, data);
381   else
382     llvm_unreachable("unsupported Size argument");
383 }
384 
385 template <class ELFT> void OutputSection::writeTo(uint8_t *buf) {
386   llvm::TimeTraceScope timeScope("Write sections", name);
387   if (type == SHT_NOBITS)
388     return;
389 
390   // If --compress-debug-section is specified and if this is a debug section,
391   // we've already compressed section contents. If that's the case,
392   // just write it down.
393   if (compressed.shards) {
394     auto *chdr = reinterpret_cast<typename ELFT::Chdr *>(buf);
395     chdr->ch_type = ELFCOMPRESS_ZLIB;
396     chdr->ch_size = compressed.uncompressedSize;
397     chdr->ch_addralign = alignment;
398     buf += sizeof(*chdr);
399 
400     // Compute shard offsets.
401     auto offsets = std::make_unique<size_t[]>(compressed.numShards);
402     offsets[0] = 2; // zlib header
403     for (size_t i = 1; i != compressed.numShards; ++i)
404       offsets[i] = offsets[i - 1] + compressed.shards[i - 1].size();
405 
406     buf[0] = 0x78; // CMF
407     buf[1] = 0x01; // FLG: best speed
408     parallelForEachN(0, compressed.numShards, [&](size_t i) {
409       memcpy(buf + offsets[i], compressed.shards[i].data(),
410              compressed.shards[i].size());
411     });
412 
413     write32be(buf + (size - sizeof(*chdr) - 4), compressed.checksum);
414     return;
415   }
416 
417   // Write leading padding.
418   SmallVector<InputSection *, 0> sections = getInputSections(*this);
419   std::array<uint8_t, 4> filler = getFiller();
420   bool nonZeroFiller = read32(filler.data()) != 0;
421   if (nonZeroFiller)
422     fill(buf, sections.empty() ? size : sections[0]->outSecOff, filler);
423 
424   parallelForEachN(0, sections.size(), [&](size_t i) {
425     InputSection *isec = sections[i];
426     isec->writeTo<ELFT>(buf + isec->outSecOff);
427 
428     // Fill gaps between sections.
429     if (nonZeroFiller) {
430       uint8_t *start = buf + isec->outSecOff + isec->getSize();
431       uint8_t *end;
432       if (i + 1 == sections.size())
433         end = buf + size;
434       else
435         end = buf + sections[i + 1]->outSecOff;
436       if (isec->nopFiller) {
437         assert(target->nopInstrs);
438         nopInstrFill(start, end - start);
439       } else
440         fill(start, end - start, filler);
441     }
442   });
443 
444   // Linker scripts may have BYTE()-family commands with which you
445   // can write arbitrary bytes to the output. Process them if any.
446   for (SectionCommand *cmd : commands)
447     if (auto *data = dyn_cast<ByteCommand>(cmd))
448       writeInt(buf + data->offset, data->expression().getValue(), data->size);
449 }
450 
451 static void finalizeShtGroup(OutputSection *os,
452                              InputSection *section) {
453   assert(config->relocatable);
454 
455   // sh_link field for SHT_GROUP sections should contain the section index of
456   // the symbol table.
457   os->link = in.symTab->getParent()->sectionIndex;
458 
459   // sh_info then contain index of an entry in symbol table section which
460   // provides signature of the section group.
461   ArrayRef<Symbol *> symbols = section->file->getSymbols();
462   os->info = in.symTab->getSymbolIndex(symbols[section->info]);
463 
464   // Some group members may be combined or discarded, so we need to compute the
465   // new size. The content will be rewritten in InputSection::copyShtGroup.
466   DenseSet<uint32_t> seen;
467   ArrayRef<InputSectionBase *> sections = section->file->getSections();
468   for (const uint32_t &idx : section->getDataAs<uint32_t>().slice(1))
469     if (OutputSection *osec = sections[read32(&idx)]->getOutputSection())
470       seen.insert(osec->sectionIndex);
471   os->size = (1 + seen.size()) * sizeof(uint32_t);
472 }
473 
474 void OutputSection::finalize() {
475   InputSection *first = getFirstInputSection(this);
476 
477   if (flags & SHF_LINK_ORDER) {
478     // We must preserve the link order dependency of sections with the
479     // SHF_LINK_ORDER flag. The dependency is indicated by the sh_link field. We
480     // need to translate the InputSection sh_link to the OutputSection sh_link,
481     // all InputSections in the OutputSection have the same dependency.
482     if (auto *ex = dyn_cast<ARMExidxSyntheticSection>(first))
483       link = ex->getLinkOrderDep()->getParent()->sectionIndex;
484     else if (first->flags & SHF_LINK_ORDER)
485       if (auto *d = first->getLinkOrderDep())
486         link = d->getParent()->sectionIndex;
487   }
488 
489   if (type == SHT_GROUP) {
490     finalizeShtGroup(this, first);
491     return;
492   }
493 
494   if (!config->copyRelocs || (type != SHT_RELA && type != SHT_REL))
495     return;
496 
497   // Skip if 'first' is synthetic, i.e. not a section created by --emit-relocs.
498   // Normally 'type' was changed by 'first' so 'first' should be non-null.
499   // However, if the output section is .rela.dyn, 'type' can be set by the empty
500   // synthetic .rela.plt and first can be null.
501   if (!first || isa<SyntheticSection>(first))
502     return;
503 
504   link = in.symTab->getParent()->sectionIndex;
505   // sh_info for SHT_REL[A] sections should contain the section header index of
506   // the section to which the relocation applies.
507   InputSectionBase *s = first->getRelocatedSection();
508   info = s->getOutputSection()->sectionIndex;
509   flags |= SHF_INFO_LINK;
510 }
511 
512 // Returns true if S is in one of the many forms the compiler driver may pass
513 // crtbegin files.
514 //
515 // Gcc uses any of crtbegin[<empty>|S|T].o.
516 // Clang uses Gcc's plus clang_rt.crtbegin[-<arch>|<empty>].o.
517 
518 static bool isCrt(StringRef s, StringRef beginEnd) {
519   s = sys::path::filename(s);
520   if (!s.consume_back(".o"))
521     return false;
522   if (s.consume_front("clang_rt."))
523     return s.consume_front(beginEnd);
524   return s.consume_front(beginEnd) && s.size() <= 1;
525 }
526 
527 // .ctors and .dtors are sorted by this order:
528 //
529 // 1. .ctors/.dtors in crtbegin (which contains a sentinel value -1).
530 // 2. The section is named ".ctors" or ".dtors" (priority: 65536).
531 // 3. The section has an optional priority value in the form of ".ctors.N" or
532 //    ".dtors.N" where N is a number in the form of %05u (priority: 65535-N).
533 // 4. .ctors/.dtors in crtend (which contains a sentinel value 0).
534 //
535 // For 2 and 3, the sections are sorted by priority from high to low, e.g.
536 // .ctors (65536), .ctors.00100 (65436), .ctors.00200 (65336).  In GNU ld's
537 // internal linker scripts, the sorting is by string comparison which can
538 // achieve the same goal given the optional priority values are of the same
539 // length.
540 //
541 // In an ideal world, we don't need this function because .init_array and
542 // .ctors are duplicate features (and .init_array is newer.) However, there
543 // are too many real-world use cases of .ctors, so we had no choice to
544 // support that with this rather ad-hoc semantics.
545 static bool compCtors(const InputSection *a, const InputSection *b) {
546   bool beginA = isCrt(a->file->getName(), "crtbegin");
547   bool beginB = isCrt(b->file->getName(), "crtbegin");
548   if (beginA != beginB)
549     return beginA;
550   bool endA = isCrt(a->file->getName(), "crtend");
551   bool endB = isCrt(b->file->getName(), "crtend");
552   if (endA != endB)
553     return endB;
554   return getPriority(a->name) > getPriority(b->name);
555 }
556 
557 // Sorts input sections by the special rules for .ctors and .dtors.
558 // Unfortunately, the rules are different from the one for .{init,fini}_array.
559 // Read the comment above.
560 void OutputSection::sortCtorsDtors() {
561   assert(commands.size() == 1);
562   auto *isd = cast<InputSectionDescription>(commands[0]);
563   llvm::stable_sort(isd->sections, compCtors);
564 }
565 
566 // If an input string is in the form of "foo.N" where N is a number, return N
567 // (65535-N if .ctors.N or .dtors.N). Otherwise, returns 65536, which is one
568 // greater than the lowest priority.
569 int elf::getPriority(StringRef s) {
570   size_t pos = s.rfind('.');
571   if (pos == StringRef::npos)
572     return 65536;
573   int v = 65536;
574   if (to_integer(s.substr(pos + 1), v, 10) &&
575       (pos == 6 && (s.startswith(".ctors") || s.startswith(".dtors"))))
576     v = 65535 - v;
577   return v;
578 }
579 
580 InputSection *elf::getFirstInputSection(const OutputSection *os) {
581   for (SectionCommand *cmd : os->commands)
582     if (auto *isd = dyn_cast<InputSectionDescription>(cmd))
583       if (!isd->sections.empty())
584         return isd->sections[0];
585   return nullptr;
586 }
587 
588 SmallVector<InputSection *, 0> elf::getInputSections(const OutputSection &os) {
589   SmallVector<InputSection *, 0> ret;
590   for (SectionCommand *cmd : os.commands)
591     if (auto *isd = dyn_cast<InputSectionDescription>(cmd))
592       ret.insert(ret.end(), isd->sections.begin(), isd->sections.end());
593   return ret;
594 }
595 
596 // Sorts input sections by section name suffixes, so that .foo.N comes
597 // before .foo.M if N < M. Used to sort .{init,fini}_array.N sections.
598 // We want to keep the original order if the priorities are the same
599 // because the compiler keeps the original initialization order in a
600 // translation unit and we need to respect that.
601 // For more detail, read the section of the GCC's manual about init_priority.
602 void OutputSection::sortInitFini() {
603   // Sort sections by priority.
604   sort([](InputSectionBase *s) { return getPriority(s->name); });
605 }
606 
607 std::array<uint8_t, 4> OutputSection::getFiller() {
608   if (filler)
609     return *filler;
610   if (flags & SHF_EXECINSTR)
611     return target->trapInstr;
612   return {0, 0, 0, 0};
613 }
614 
615 void OutputSection::checkDynRelAddends(const uint8_t *bufStart) {
616   assert(config->writeAddends && config->checkDynamicRelocs);
617   assert(type == SHT_REL || type == SHT_RELA);
618   SmallVector<InputSection *, 0> sections = getInputSections(*this);
619   parallelForEachN(0, sections.size(), [&](size_t i) {
620     // When linking with -r or --emit-relocs we might also call this function
621     // for input .rel[a].<sec> sections which we simply pass through to the
622     // output. We skip over those and only look at the synthetic relocation
623     // sections created during linking.
624     const auto *sec = dyn_cast<RelocationBaseSection>(sections[i]);
625     if (!sec)
626       return;
627     for (const DynamicReloc &rel : sec->relocs) {
628       int64_t addend = rel.addend;
629       const OutputSection *relOsec = rel.inputSec->getOutputSection();
630       assert(relOsec != nullptr && "missing output section for relocation");
631       const uint8_t *relocTarget =
632           bufStart + relOsec->offset + rel.inputSec->getOffset(rel.offsetInSec);
633       // For SHT_NOBITS the written addend is always zero.
634       int64_t writtenAddend =
635           relOsec->type == SHT_NOBITS
636               ? 0
637               : target->getImplicitAddend(relocTarget, rel.type);
638       if (addend != writtenAddend)
639         internalLinkerError(
640             getErrorLocation(relocTarget),
641             "wrote incorrect addend value 0x" + utohexstr(writtenAddend) +
642                 " instead of 0x" + utohexstr(addend) +
643                 " for dynamic relocation " + toString(rel.type) +
644                 " at offset 0x" + utohexstr(rel.getOffset()) +
645                 (rel.sym ? " against symbol " + toString(*rel.sym) : ""));
646     }
647   });
648 }
649 
650 template void OutputSection::writeHeaderTo<ELF32LE>(ELF32LE::Shdr *Shdr);
651 template void OutputSection::writeHeaderTo<ELF32BE>(ELF32BE::Shdr *Shdr);
652 template void OutputSection::writeHeaderTo<ELF64LE>(ELF64LE::Shdr *Shdr);
653 template void OutputSection::writeHeaderTo<ELF64BE>(ELF64BE::Shdr *Shdr);
654 
655 template void OutputSection::writeTo<ELF32LE>(uint8_t *Buf);
656 template void OutputSection::writeTo<ELF32BE>(uint8_t *Buf);
657 template void OutputSection::writeTo<ELF64LE>(uint8_t *Buf);
658 template void OutputSection::writeTo<ELF64BE>(uint8_t *Buf);
659 
660 template void OutputSection::maybeCompress<ELF32LE>();
661 template void OutputSection::maybeCompress<ELF32BE>();
662 template void OutputSection::maybeCompress<ELF64LE>();
663 template void OutputSection::maybeCompress<ELF64BE>();
664