1 //===- OutputSections.cpp -------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "OutputSections.h"
10 #include "Config.h"
11 #include "InputFiles.h"
12 #include "LinkerScript.h"
13 #include "Symbols.h"
14 #include "SyntheticSections.h"
15 #include "Target.h"
16 #include "lld/Common/Arrays.h"
17 #include "lld/Common/Memory.h"
18 #include "llvm/BinaryFormat/Dwarf.h"
19 #include "llvm/Config/llvm-config.h" // LLVM_ENABLE_ZLIB
20 #include "llvm/Support/Parallel.h"
21 #include "llvm/Support/Path.h"
22 #include "llvm/Support/TimeProfiler.h"
23 #if LLVM_ENABLE_ZLIB
24 #include <zlib.h>
25 #endif
26 
27 using namespace llvm;
28 using namespace llvm::dwarf;
29 using namespace llvm::object;
30 using namespace llvm::support::endian;
31 using namespace llvm::ELF;
32 using namespace lld;
33 using namespace lld::elf;
34 
35 uint8_t *Out::bufferStart;
36 PhdrEntry *Out::tlsPhdr;
37 OutputSection *Out::elfHeader;
38 OutputSection *Out::programHeaders;
39 OutputSection *Out::preinitArray;
40 OutputSection *Out::initArray;
41 OutputSection *Out::finiArray;
42 
43 SmallVector<OutputSection *, 0> elf::outputSections;
44 
45 uint32_t OutputSection::getPhdrFlags() const {
46   uint32_t ret = 0;
47   if (config->emachine != EM_ARM || !(flags & SHF_ARM_PURECODE))
48     ret |= PF_R;
49   if (flags & SHF_WRITE)
50     ret |= PF_W;
51   if (flags & SHF_EXECINSTR)
52     ret |= PF_X;
53   return ret;
54 }
55 
56 template <class ELFT>
57 void OutputSection::writeHeaderTo(typename ELFT::Shdr *shdr) {
58   shdr->sh_entsize = entsize;
59   shdr->sh_addralign = alignment;
60   shdr->sh_type = type;
61   shdr->sh_offset = offset;
62   shdr->sh_flags = flags;
63   shdr->sh_info = info;
64   shdr->sh_link = link;
65   shdr->sh_addr = addr;
66   shdr->sh_size = size;
67   shdr->sh_name = shName;
68 }
69 
70 OutputSection::OutputSection(StringRef name, uint32_t type, uint64_t flags)
71     : SectionCommand(OutputSectionKind),
72       SectionBase(Output, name, flags, /*Entsize*/ 0, /*Alignment*/ 1, type,
73                   /*Info*/ 0, /*Link*/ 0) {}
74 
75 // We allow sections of types listed below to merged into a
76 // single progbits section. This is typically done by linker
77 // scripts. Merging nobits and progbits will force disk space
78 // to be allocated for nobits sections. Other ones don't require
79 // any special treatment on top of progbits, so there doesn't
80 // seem to be a harm in merging them.
81 //
82 // NOTE: clang since rL252300 emits SHT_X86_64_UNWIND .eh_frame sections. Allow
83 // them to be merged into SHT_PROGBITS .eh_frame (GNU as .cfi_*).
84 static bool canMergeToProgbits(unsigned type) {
85   return type == SHT_NOBITS || type == SHT_PROGBITS || type == SHT_INIT_ARRAY ||
86          type == SHT_PREINIT_ARRAY || type == SHT_FINI_ARRAY ||
87          type == SHT_NOTE ||
88          (type == SHT_X86_64_UNWIND && config->emachine == EM_X86_64);
89 }
90 
91 // Record that isec will be placed in the OutputSection. isec does not become
92 // permanent until finalizeInputSections() is called. The function should not be
93 // used after finalizeInputSections() is called. If you need to add an
94 // InputSection post finalizeInputSections(), then you must do the following:
95 //
96 // 1. Find or create an InputSectionDescription to hold InputSection.
97 // 2. Add the InputSection to the InputSectionDescription::sections.
98 // 3. Call commitSection(isec).
99 void OutputSection::recordSection(InputSectionBase *isec) {
100   partition = isec->partition;
101   isec->parent = this;
102   if (commands.empty() || !isa<InputSectionDescription>(commands.back()))
103     commands.push_back(make<InputSectionDescription>(""));
104   auto *isd = cast<InputSectionDescription>(commands.back());
105   isd->sectionBases.push_back(isec);
106 }
107 
108 // Update fields (type, flags, alignment, etc) according to the InputSection
109 // isec. Also check whether the InputSection flags and type are consistent with
110 // other InputSections.
111 void OutputSection::commitSection(InputSection *isec) {
112   if (LLVM_UNLIKELY(type != isec->type)) {
113     if (hasInputSections || typeIsSet) {
114       if (typeIsSet || !canMergeToProgbits(type) ||
115           !canMergeToProgbits(isec->type)) {
116         // Changing the type of a (NOLOAD) section is fishy, but some projects
117         // (e.g. https://github.com/ClangBuiltLinux/linux/issues/1597)
118         // traditionally rely on the behavior. Issue a warning to not break
119         // them. Other types get an error.
120         auto diagnose = type == SHT_NOBITS ? warn : errorOrWarn;
121         diagnose("section type mismatch for " + isec->name + "\n>>> " +
122                  toString(isec) + ": " +
123                  getELFSectionTypeName(config->emachine, isec->type) +
124                  "\n>>> output section " + name + ": " +
125                  getELFSectionTypeName(config->emachine, type));
126       }
127       type = SHT_PROGBITS;
128     } else {
129       type = isec->type;
130     }
131   }
132   if (!hasInputSections) {
133     // If IS is the first section to be added to this section,
134     // initialize type, entsize and flags from isec.
135     hasInputSections = true;
136     entsize = isec->entsize;
137     flags = isec->flags;
138   } else {
139     // Otherwise, check if new type or flags are compatible with existing ones.
140     if ((flags ^ isec->flags) & SHF_TLS)
141       error("incompatible section flags for " + name + "\n>>> " +
142             toString(isec) + ": 0x" + utohexstr(isec->flags) +
143             "\n>>> output section " + name + ": 0x" + utohexstr(flags));
144   }
145 
146   isec->parent = this;
147   uint64_t andMask =
148       config->emachine == EM_ARM ? (uint64_t)SHF_ARM_PURECODE : 0;
149   uint64_t orMask = ~andMask;
150   uint64_t andFlags = (flags & isec->flags) & andMask;
151   uint64_t orFlags = (flags | isec->flags) & orMask;
152   flags = andFlags | orFlags;
153   if (nonAlloc)
154     flags &= ~(uint64_t)SHF_ALLOC;
155 
156   alignment = std::max(alignment, isec->alignment);
157 
158   // If this section contains a table of fixed-size entries, sh_entsize
159   // holds the element size. If it contains elements of different size we
160   // set sh_entsize to 0.
161   if (entsize != isec->entsize)
162     entsize = 0;
163 }
164 
165 static MergeSyntheticSection *createMergeSynthetic(StringRef name,
166                                                    uint32_t type,
167                                                    uint64_t flags,
168                                                    uint32_t alignment) {
169   if ((flags & SHF_STRINGS) && config->optimize >= 2)
170     return make<MergeTailSection>(name, type, flags, alignment);
171   return make<MergeNoTailSection>(name, type, flags, alignment);
172 }
173 
174 // This function scans over the InputSectionBase list sectionBases to create
175 // InputSectionDescription::sections.
176 //
177 // It removes MergeInputSections from the input section array and adds
178 // new synthetic sections at the location of the first input section
179 // that it replaces. It then finalizes each synthetic section in order
180 // to compute an output offset for each piece of each input section.
181 void OutputSection::finalizeInputSections() {
182   std::vector<MergeSyntheticSection *> mergeSections;
183   for (SectionCommand *cmd : commands) {
184     auto *isd = dyn_cast<InputSectionDescription>(cmd);
185     if (!isd)
186       continue;
187     isd->sections.reserve(isd->sectionBases.size());
188     for (InputSectionBase *s : isd->sectionBases) {
189       MergeInputSection *ms = dyn_cast<MergeInputSection>(s);
190       if (!ms) {
191         isd->sections.push_back(cast<InputSection>(s));
192         continue;
193       }
194 
195       // We do not want to handle sections that are not alive, so just remove
196       // them instead of trying to merge.
197       if (!ms->isLive())
198         continue;
199 
200       auto i = llvm::find_if(mergeSections, [=](MergeSyntheticSection *sec) {
201         // While we could create a single synthetic section for two different
202         // values of Entsize, it is better to take Entsize into consideration.
203         //
204         // With a single synthetic section no two pieces with different Entsize
205         // could be equal, so we may as well have two sections.
206         //
207         // Using Entsize in here also allows us to propagate it to the synthetic
208         // section.
209         //
210         // SHF_STRINGS section with different alignments should not be merged.
211         return sec->flags == ms->flags && sec->entsize == ms->entsize &&
212                (sec->alignment == ms->alignment || !(sec->flags & SHF_STRINGS));
213       });
214       if (i == mergeSections.end()) {
215         MergeSyntheticSection *syn =
216             createMergeSynthetic(name, ms->type, ms->flags, ms->alignment);
217         mergeSections.push_back(syn);
218         i = std::prev(mergeSections.end());
219         syn->entsize = ms->entsize;
220         isd->sections.push_back(syn);
221       }
222       (*i)->addSection(ms);
223     }
224 
225     // sectionBases should not be used from this point onwards. Clear it to
226     // catch misuses.
227     isd->sectionBases.clear();
228 
229     // Some input sections may be removed from the list after ICF.
230     for (InputSection *s : isd->sections)
231       commitSection(s);
232   }
233   for (auto *ms : mergeSections)
234     ms->finalizeContents();
235 }
236 
237 static void sortByOrder(MutableArrayRef<InputSection *> in,
238                         llvm::function_ref<int(InputSectionBase *s)> order) {
239   std::vector<std::pair<int, InputSection *>> v;
240   for (InputSection *s : in)
241     v.push_back({order(s), s});
242   llvm::stable_sort(v, less_first());
243 
244   for (size_t i = 0; i < v.size(); ++i)
245     in[i] = v[i].second;
246 }
247 
248 uint64_t elf::getHeaderSize() {
249   if (config->oFormatBinary)
250     return 0;
251   return Out::elfHeader->size + Out::programHeaders->size;
252 }
253 
254 bool OutputSection::classof(const SectionCommand *c) {
255   return c->kind == OutputSectionKind;
256 }
257 
258 void OutputSection::sort(llvm::function_ref<int(InputSectionBase *s)> order) {
259   assert(isLive());
260   for (SectionCommand *b : commands)
261     if (auto *isd = dyn_cast<InputSectionDescription>(b))
262       sortByOrder(isd->sections, order);
263 }
264 
265 static void nopInstrFill(uint8_t *buf, size_t size) {
266   if (size == 0)
267     return;
268   unsigned i = 0;
269   if (size == 0)
270     return;
271   std::vector<std::vector<uint8_t>> nopFiller = *target->nopInstrs;
272   unsigned num = size / nopFiller.back().size();
273   for (unsigned c = 0; c < num; ++c) {
274     memcpy(buf + i, nopFiller.back().data(), nopFiller.back().size());
275     i += nopFiller.back().size();
276   }
277   unsigned remaining = size - i;
278   if (!remaining)
279     return;
280   assert(nopFiller[remaining - 1].size() == remaining);
281   memcpy(buf + i, nopFiller[remaining - 1].data(), remaining);
282 }
283 
284 // Fill [Buf, Buf + Size) with Filler.
285 // This is used for linker script "=fillexp" command.
286 static void fill(uint8_t *buf, size_t size,
287                  const std::array<uint8_t, 4> &filler) {
288   size_t i = 0;
289   for (; i + 4 < size; i += 4)
290     memcpy(buf + i, filler.data(), 4);
291   memcpy(buf + i, filler.data(), size - i);
292 }
293 
294 #if LLVM_ENABLE_ZLIB
295 static SmallVector<uint8_t, 0> deflateShard(ArrayRef<uint8_t> in, int level,
296                                             int flush) {
297   // 15 and 8 are default. windowBits=-15 is negative to generate raw deflate
298   // data with no zlib header or trailer.
299   z_stream s = {};
300   deflateInit2(&s, level, Z_DEFLATED, -15, 8, Z_DEFAULT_STRATEGY);
301   s.next_in = const_cast<uint8_t *>(in.data());
302   s.avail_in = in.size();
303 
304   // Allocate a buffer of half of the input size, and grow it by 1.5x if
305   // insufficient.
306   SmallVector<uint8_t, 0> out;
307   size_t pos = 0;
308   out.resize_for_overwrite(std::max<size_t>(in.size() / 2, 64));
309   do {
310     if (pos == out.size())
311       out.resize_for_overwrite(out.size() * 3 / 2);
312     s.next_out = out.data() + pos;
313     s.avail_out = out.size() - pos;
314     (void)deflate(&s, flush);
315     pos = s.next_out - out.data();
316   } while (s.avail_out == 0);
317   assert(s.avail_in == 0);
318 
319   out.truncate(pos);
320   deflateEnd(&s);
321   return out;
322 }
323 #endif
324 
325 // Compress section contents if this section contains debug info.
326 template <class ELFT> void OutputSection::maybeCompress() {
327 #if LLVM_ENABLE_ZLIB
328   using Elf_Chdr = typename ELFT::Chdr;
329 
330   // Compress only DWARF debug sections.
331   if (!config->compressDebugSections || (flags & SHF_ALLOC) ||
332       !name.startswith(".debug_") || size == 0)
333     return;
334 
335   llvm::TimeTraceScope timeScope("Compress debug sections");
336 
337   // Write uncompressed data to a temporary zero-initialized buffer.
338   auto buf = std::make_unique<uint8_t[]>(size);
339   writeTo<ELFT>(buf.get());
340   // We chose 1 (Z_BEST_SPEED) as the default compression level because it is
341   // the fastest. If -O2 is given, we use level 6 to compress debug info more by
342   // ~15%. We found that level 7 to 9 doesn't make much difference (~1% more
343   // compression) while they take significant amount of time (~2x), so level 6
344   // seems enough.
345   const int level = config->optimize >= 2 ? 6 : Z_BEST_SPEED;
346 
347   // Split input into 1-MiB shards.
348   constexpr size_t shardSize = 1 << 20;
349   auto shardsIn = split(makeArrayRef<uint8_t>(buf.get(), size), shardSize);
350   const size_t numShards = shardsIn.size();
351 
352   // Compress shards and compute Alder-32 checksums. Use Z_SYNC_FLUSH for all
353   // shards but the last to flush the output to a byte boundary to be
354   // concatenated with the next shard.
355   auto shardsOut = std::make_unique<SmallVector<uint8_t, 0>[]>(numShards);
356   auto shardsAdler = std::make_unique<uint32_t[]>(numShards);
357   parallelForEachN(0, numShards, [&](size_t i) {
358     shardsOut[i] = deflateShard(shardsIn[i], level,
359                                 i != numShards - 1 ? Z_SYNC_FLUSH : Z_FINISH);
360     shardsAdler[i] = adler32(1, shardsIn[i].data(), shardsIn[i].size());
361   });
362 
363   // Update section size and combine Alder-32 checksums.
364   uint32_t checksum = 1;       // Initial Adler-32 value
365   compressed.uncompressedSize = size;
366   size = sizeof(Elf_Chdr) + 2; // Elf_Chdir and zlib header
367   for (size_t i = 0; i != numShards; ++i) {
368     size += shardsOut[i].size();
369     checksum = adler32_combine(checksum, shardsAdler[i], shardsIn[i].size());
370   }
371   size += 4; // checksum
372 
373   compressed.shards = std::move(shardsOut);
374   compressed.numShards = numShards;
375   compressed.checksum = checksum;
376   flags |= SHF_COMPRESSED;
377 #endif
378 }
379 
380 static void writeInt(uint8_t *buf, uint64_t data, uint64_t size) {
381   if (size == 1)
382     *buf = data;
383   else if (size == 2)
384     write16(buf, data);
385   else if (size == 4)
386     write32(buf, data);
387   else if (size == 8)
388     write64(buf, data);
389   else
390     llvm_unreachable("unsupported Size argument");
391 }
392 
393 template <class ELFT> void OutputSection::writeTo(uint8_t *buf) {
394   llvm::TimeTraceScope timeScope("Write sections", name);
395   if (type == SHT_NOBITS)
396     return;
397 
398   // If --compress-debug-section is specified and if this is a debug section,
399   // we've already compressed section contents. If that's the case,
400   // just write it down.
401   if (compressed.shards) {
402     auto *chdr = reinterpret_cast<typename ELFT::Chdr *>(buf);
403     chdr->ch_type = ELFCOMPRESS_ZLIB;
404     chdr->ch_size = compressed.uncompressedSize;
405     chdr->ch_addralign = alignment;
406     buf += sizeof(*chdr);
407 
408     // Compute shard offsets.
409     auto offsets = std::make_unique<size_t[]>(compressed.numShards);
410     offsets[0] = 2; // zlib header
411     for (size_t i = 1; i != compressed.numShards; ++i)
412       offsets[i] = offsets[i - 1] + compressed.shards[i - 1].size();
413 
414     buf[0] = 0x78; // CMF
415     buf[1] = 0x01; // FLG: best speed
416     parallelForEachN(0, compressed.numShards, [&](size_t i) {
417       memcpy(buf + offsets[i], compressed.shards[i].data(),
418              compressed.shards[i].size());
419     });
420 
421     write32be(buf + (size - sizeof(*chdr) - 4), compressed.checksum);
422     return;
423   }
424 
425   // Write leading padding.
426   SmallVector<InputSection *, 0> sections = getInputSections(*this);
427   std::array<uint8_t, 4> filler = getFiller();
428   bool nonZeroFiller = read32(filler.data()) != 0;
429   if (nonZeroFiller)
430     fill(buf, sections.empty() ? size : sections[0]->outSecOff, filler);
431 
432   parallelForEachN(0, sections.size(), [&](size_t i) {
433     InputSection *isec = sections[i];
434     if (auto *s = dyn_cast<SyntheticSection>(isec))
435       s->writeTo(buf + isec->outSecOff);
436     else
437       isec->writeTo<ELFT>(buf + isec->outSecOff);
438 
439     // Fill gaps between sections.
440     if (nonZeroFiller) {
441       uint8_t *start = buf + isec->outSecOff + isec->getSize();
442       uint8_t *end;
443       if (i + 1 == sections.size())
444         end = buf + size;
445       else
446         end = buf + sections[i + 1]->outSecOff;
447       if (isec->nopFiller) {
448         assert(target->nopInstrs);
449         nopInstrFill(start, end - start);
450       } else
451         fill(start, end - start, filler);
452     }
453   });
454 
455   // Linker scripts may have BYTE()-family commands with which you
456   // can write arbitrary bytes to the output. Process them if any.
457   for (SectionCommand *cmd : commands)
458     if (auto *data = dyn_cast<ByteCommand>(cmd))
459       writeInt(buf + data->offset, data->expression().getValue(), data->size);
460 }
461 
462 static void finalizeShtGroup(OutputSection *os, InputSection *section) {
463   // sh_link field for SHT_GROUP sections should contain the section index of
464   // the symbol table.
465   os->link = in.symTab->getParent()->sectionIndex;
466 
467   if (!section)
468     return;
469 
470   // sh_info then contain index of an entry in symbol table section which
471   // provides signature of the section group.
472   ArrayRef<Symbol *> symbols = section->file->getSymbols();
473   os->info = in.symTab->getSymbolIndex(symbols[section->info]);
474 
475   // Some group members may be combined or discarded, so we need to compute the
476   // new size. The content will be rewritten in InputSection::copyShtGroup.
477   DenseSet<uint32_t> seen;
478   ArrayRef<InputSectionBase *> sections = section->file->getSections();
479   for (const uint32_t &idx : section->getDataAs<uint32_t>().slice(1))
480     if (OutputSection *osec = sections[read32(&idx)]->getOutputSection())
481       seen.insert(osec->sectionIndex);
482   os->size = (1 + seen.size()) * sizeof(uint32_t);
483 }
484 
485 void OutputSection::finalize() {
486   InputSection *first = getFirstInputSection(this);
487 
488   if (flags & SHF_LINK_ORDER) {
489     // We must preserve the link order dependency of sections with the
490     // SHF_LINK_ORDER flag. The dependency is indicated by the sh_link field. We
491     // need to translate the InputSection sh_link to the OutputSection sh_link,
492     // all InputSections in the OutputSection have the same dependency.
493     if (auto *ex = dyn_cast<ARMExidxSyntheticSection>(first))
494       link = ex->getLinkOrderDep()->getParent()->sectionIndex;
495     else if (first->flags & SHF_LINK_ORDER)
496       if (auto *d = first->getLinkOrderDep())
497         link = d->getParent()->sectionIndex;
498   }
499 
500   if (type == SHT_GROUP) {
501     finalizeShtGroup(this, first);
502     return;
503   }
504 
505   if (!config->copyRelocs || (type != SHT_RELA && type != SHT_REL))
506     return;
507 
508   // Skip if 'first' is synthetic, i.e. not a section created by --emit-relocs.
509   // Normally 'type' was changed by 'first' so 'first' should be non-null.
510   // However, if the output section is .rela.dyn, 'type' can be set by the empty
511   // synthetic .rela.plt and first can be null.
512   if (!first || isa<SyntheticSection>(first))
513     return;
514 
515   link = in.symTab->getParent()->sectionIndex;
516   // sh_info for SHT_REL[A] sections should contain the section header index of
517   // the section to which the relocation applies.
518   InputSectionBase *s = first->getRelocatedSection();
519   info = s->getOutputSection()->sectionIndex;
520   flags |= SHF_INFO_LINK;
521 }
522 
523 // Returns true if S is in one of the many forms the compiler driver may pass
524 // crtbegin files.
525 //
526 // Gcc uses any of crtbegin[<empty>|S|T].o.
527 // Clang uses Gcc's plus clang_rt.crtbegin[-<arch>|<empty>].o.
528 
529 static bool isCrt(StringRef s, StringRef beginEnd) {
530   s = sys::path::filename(s);
531   if (!s.consume_back(".o"))
532     return false;
533   if (s.consume_front("clang_rt."))
534     return s.consume_front(beginEnd);
535   return s.consume_front(beginEnd) && s.size() <= 1;
536 }
537 
538 // .ctors and .dtors are sorted by this order:
539 //
540 // 1. .ctors/.dtors in crtbegin (which contains a sentinel value -1).
541 // 2. The section is named ".ctors" or ".dtors" (priority: 65536).
542 // 3. The section has an optional priority value in the form of ".ctors.N" or
543 //    ".dtors.N" where N is a number in the form of %05u (priority: 65535-N).
544 // 4. .ctors/.dtors in crtend (which contains a sentinel value 0).
545 //
546 // For 2 and 3, the sections are sorted by priority from high to low, e.g.
547 // .ctors (65536), .ctors.00100 (65436), .ctors.00200 (65336).  In GNU ld's
548 // internal linker scripts, the sorting is by string comparison which can
549 // achieve the same goal given the optional priority values are of the same
550 // length.
551 //
552 // In an ideal world, we don't need this function because .init_array and
553 // .ctors are duplicate features (and .init_array is newer.) However, there
554 // are too many real-world use cases of .ctors, so we had no choice to
555 // support that with this rather ad-hoc semantics.
556 static bool compCtors(const InputSection *a, const InputSection *b) {
557   bool beginA = isCrt(a->file->getName(), "crtbegin");
558   bool beginB = isCrt(b->file->getName(), "crtbegin");
559   if (beginA != beginB)
560     return beginA;
561   bool endA = isCrt(a->file->getName(), "crtend");
562   bool endB = isCrt(b->file->getName(), "crtend");
563   if (endA != endB)
564     return endB;
565   return getPriority(a->name) > getPriority(b->name);
566 }
567 
568 // Sorts input sections by the special rules for .ctors and .dtors.
569 // Unfortunately, the rules are different from the one for .{init,fini}_array.
570 // Read the comment above.
571 void OutputSection::sortCtorsDtors() {
572   assert(commands.size() == 1);
573   auto *isd = cast<InputSectionDescription>(commands[0]);
574   llvm::stable_sort(isd->sections, compCtors);
575 }
576 
577 // If an input string is in the form of "foo.N" where N is a number, return N
578 // (65535-N if .ctors.N or .dtors.N). Otherwise, returns 65536, which is one
579 // greater than the lowest priority.
580 int elf::getPriority(StringRef s) {
581   size_t pos = s.rfind('.');
582   if (pos == StringRef::npos)
583     return 65536;
584   int v = 65536;
585   if (to_integer(s.substr(pos + 1), v, 10) &&
586       (pos == 6 && (s.startswith(".ctors") || s.startswith(".dtors"))))
587     v = 65535 - v;
588   return v;
589 }
590 
591 InputSection *elf::getFirstInputSection(const OutputSection *os) {
592   for (SectionCommand *cmd : os->commands)
593     if (auto *isd = dyn_cast<InputSectionDescription>(cmd))
594       if (!isd->sections.empty())
595         return isd->sections[0];
596   return nullptr;
597 }
598 
599 SmallVector<InputSection *, 0> elf::getInputSections(const OutputSection &os) {
600   SmallVector<InputSection *, 0> ret;
601   for (SectionCommand *cmd : os.commands)
602     if (auto *isd = dyn_cast<InputSectionDescription>(cmd))
603       ret.insert(ret.end(), isd->sections.begin(), isd->sections.end());
604   return ret;
605 }
606 
607 // Sorts input sections by section name suffixes, so that .foo.N comes
608 // before .foo.M if N < M. Used to sort .{init,fini}_array.N sections.
609 // We want to keep the original order if the priorities are the same
610 // because the compiler keeps the original initialization order in a
611 // translation unit and we need to respect that.
612 // For more detail, read the section of the GCC's manual about init_priority.
613 void OutputSection::sortInitFini() {
614   // Sort sections by priority.
615   sort([](InputSectionBase *s) { return getPriority(s->name); });
616 }
617 
618 std::array<uint8_t, 4> OutputSection::getFiller() {
619   if (filler)
620     return *filler;
621   if (flags & SHF_EXECINSTR)
622     return target->trapInstr;
623   return {0, 0, 0, 0};
624 }
625 
626 void OutputSection::checkDynRelAddends(const uint8_t *bufStart) {
627   assert(config->writeAddends && config->checkDynamicRelocs);
628   assert(type == SHT_REL || type == SHT_RELA);
629   SmallVector<InputSection *, 0> sections = getInputSections(*this);
630   parallelForEachN(0, sections.size(), [&](size_t i) {
631     // When linking with -r or --emit-relocs we might also call this function
632     // for input .rel[a].<sec> sections which we simply pass through to the
633     // output. We skip over those and only look at the synthetic relocation
634     // sections created during linking.
635     const auto *sec = dyn_cast<RelocationBaseSection>(sections[i]);
636     if (!sec)
637       return;
638     for (const DynamicReloc &rel : sec->relocs) {
639       int64_t addend = rel.addend;
640       const OutputSection *relOsec = rel.inputSec->getOutputSection();
641       assert(relOsec != nullptr && "missing output section for relocation");
642       const uint8_t *relocTarget =
643           bufStart + relOsec->offset + rel.inputSec->getOffset(rel.offsetInSec);
644       // For SHT_NOBITS the written addend is always zero.
645       int64_t writtenAddend =
646           relOsec->type == SHT_NOBITS
647               ? 0
648               : target->getImplicitAddend(relocTarget, rel.type);
649       if (addend != writtenAddend)
650         internalLinkerError(
651             getErrorLocation(relocTarget),
652             "wrote incorrect addend value 0x" + utohexstr(writtenAddend) +
653                 " instead of 0x" + utohexstr(addend) +
654                 " for dynamic relocation " + toString(rel.type) +
655                 " at offset 0x" + utohexstr(rel.getOffset()) +
656                 (rel.sym ? " against symbol " + toString(*rel.sym) : ""));
657     }
658   });
659 }
660 
661 template void OutputSection::writeHeaderTo<ELF32LE>(ELF32LE::Shdr *Shdr);
662 template void OutputSection::writeHeaderTo<ELF32BE>(ELF32BE::Shdr *Shdr);
663 template void OutputSection::writeHeaderTo<ELF64LE>(ELF64LE::Shdr *Shdr);
664 template void OutputSection::writeHeaderTo<ELF64BE>(ELF64BE::Shdr *Shdr);
665 
666 template void OutputSection::writeTo<ELF32LE>(uint8_t *Buf);
667 template void OutputSection::writeTo<ELF32BE>(uint8_t *Buf);
668 template void OutputSection::writeTo<ELF64LE>(uint8_t *Buf);
669 template void OutputSection::writeTo<ELF64BE>(uint8_t *Buf);
670 
671 template void OutputSection::maybeCompress<ELF32LE>();
672 template void OutputSection::maybeCompress<ELF32BE>();
673 template void OutputSection::maybeCompress<ELF64LE>();
674 template void OutputSection::maybeCompress<ELF64BE>();
675