1 //===- OutputSections.cpp -------------------------------------------------===// 2 // 3 // The LLVM Linker 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "OutputSections.h" 11 #include "Config.h" 12 #include "LinkerScript.h" 13 #include "Memory.h" 14 #include "Strings.h" 15 #include "SymbolTable.h" 16 #include "SyntheticSections.h" 17 #include "Target.h" 18 #include "Threads.h" 19 #include "llvm/BinaryFormat/Dwarf.h" 20 #include "llvm/Support/MD5.h" 21 #include "llvm/Support/MathExtras.h" 22 #include "llvm/Support/SHA1.h" 23 24 using namespace llvm; 25 using namespace llvm::dwarf; 26 using namespace llvm::object; 27 using namespace llvm::support::endian; 28 using namespace llvm::ELF; 29 30 using namespace lld; 31 using namespace lld::elf; 32 33 uint8_t Out::First; 34 OutputSection *Out::Opd; 35 uint8_t *Out::OpdBuf; 36 PhdrEntry *Out::TlsPhdr; 37 OutputSection *Out::DebugInfo; 38 OutputSection *Out::ElfHeader; 39 OutputSection *Out::ProgramHeaders; 40 OutputSection *Out::PreinitArray; 41 OutputSection *Out::InitArray; 42 OutputSection *Out::FiniArray; 43 44 uint32_t OutputSection::getPhdrFlags() const { 45 uint32_t Ret = PF_R; 46 if (Flags & SHF_WRITE) 47 Ret |= PF_W; 48 if (Flags & SHF_EXECINSTR) 49 Ret |= PF_X; 50 return Ret; 51 } 52 53 template <class ELFT> 54 void OutputSection::writeHeaderTo(typename ELFT::Shdr *Shdr) { 55 Shdr->sh_entsize = Entsize; 56 Shdr->sh_addralign = Alignment; 57 Shdr->sh_type = Type; 58 Shdr->sh_offset = Offset; 59 Shdr->sh_flags = Flags; 60 Shdr->sh_info = Info; 61 Shdr->sh_link = Link; 62 Shdr->sh_addr = Addr; 63 Shdr->sh_size = Size; 64 Shdr->sh_name = ShName; 65 } 66 67 OutputSection::OutputSection(StringRef Name, uint32_t Type, uint64_t Flags) 68 : SectionBase(Output, Name, Flags, /*Entsize*/ 0, /*Alignment*/ 1, Type, 69 /*Info*/ 0, 70 /*Link*/ 0), 71 SectionIndex(INT_MAX) {} 72 73 static uint64_t updateOffset(uint64_t Off, InputSection *S) { 74 Off = alignTo(Off, S->Alignment); 75 S->OutSecOff = Off; 76 return Off + S->getSize(); 77 } 78 79 void OutputSection::addSection(InputSection *S) { 80 assert(S->Live); 81 Sections.push_back(S); 82 S->Parent = this; 83 this->updateAlignment(S->Alignment); 84 85 // The actual offsets will be computed by assignAddresses. For now, use 86 // crude approximation so that it is at least easy for other code to know the 87 // section order. It is also used to calculate the output section size early 88 // for compressed debug sections. 89 this->Size = updateOffset(Size, S); 90 91 // If this section contains a table of fixed-size entries, sh_entsize 92 // holds the element size. Consequently, if this contains two or more 93 // input sections, all of them must have the same sh_entsize. However, 94 // you can put different types of input sections into one output 95 // sectin by using linker scripts. I don't know what to do here. 96 // Probably we sholuld handle that as an error. But for now we just 97 // pick the largest sh_entsize. 98 this->Entsize = std::max(this->Entsize, S->Entsize); 99 } 100 101 // This function is called after we sort input sections 102 // and scan relocations to setup sections' offsets. 103 void OutputSection::assignOffsets() { 104 OutputSectionCommand *Cmd = Script->getCmd(this); 105 uint64_t Off = 0; 106 for (BaseCommand *Base : Cmd->Commands) 107 if (auto *ISD = dyn_cast<InputSectionDescription>(Base)) 108 for (InputSection *S : ISD->Sections) 109 Off = updateOffset(Off, S); 110 this->Size = Off; 111 } 112 113 void OutputSection::sort(std::function<int(InputSectionBase *S)> Order) { 114 typedef std::pair<unsigned, InputSection *> Pair; 115 auto Comp = [](const Pair &A, const Pair &B) { return A.first < B.first; }; 116 117 std::vector<Pair> V; 118 for (InputSection *S : Sections) 119 V.push_back({Order(S), S}); 120 std::stable_sort(V.begin(), V.end(), Comp); 121 Sections.clear(); 122 for (Pair &P : V) 123 Sections.push_back(P.second); 124 } 125 126 // Sorts input sections by section name suffixes, so that .foo.N comes 127 // before .foo.M if N < M. Used to sort .{init,fini}_array.N sections. 128 // We want to keep the original order if the priorities are the same 129 // because the compiler keeps the original initialization order in a 130 // translation unit and we need to respect that. 131 // For more detail, read the section of the GCC's manual about init_priority. 132 void OutputSection::sortInitFini() { 133 // Sort sections by priority. 134 sort([](InputSectionBase *S) { return getPriority(S->Name); }); 135 } 136 137 // Returns true if S matches /Filename.?\.o$/. 138 static bool isCrtBeginEnd(StringRef S, StringRef Filename) { 139 if (!S.endswith(".o")) 140 return false; 141 S = S.drop_back(2); 142 if (S.endswith(Filename)) 143 return true; 144 return !S.empty() && S.drop_back().endswith(Filename); 145 } 146 147 static bool isCrtbegin(StringRef S) { return isCrtBeginEnd(S, "crtbegin"); } 148 static bool isCrtend(StringRef S) { return isCrtBeginEnd(S, "crtend"); } 149 150 // .ctors and .dtors are sorted by this priority from highest to lowest. 151 // 152 // 1. The section was contained in crtbegin (crtbegin contains 153 // some sentinel value in its .ctors and .dtors so that the runtime 154 // can find the beginning of the sections.) 155 // 156 // 2. The section has an optional priority value in the form of ".ctors.N" 157 // or ".dtors.N" where N is a number. Unlike .{init,fini}_array, 158 // they are compared as string rather than number. 159 // 160 // 3. The section is just ".ctors" or ".dtors". 161 // 162 // 4. The section was contained in crtend, which contains an end marker. 163 // 164 // In an ideal world, we don't need this function because .init_array and 165 // .ctors are duplicate features (and .init_array is newer.) However, there 166 // are too many real-world use cases of .ctors, so we had no choice to 167 // support that with this rather ad-hoc semantics. 168 static bool compCtors(const InputSection *A, const InputSection *B) { 169 bool BeginA = isCrtbegin(A->File->getName()); 170 bool BeginB = isCrtbegin(B->File->getName()); 171 if (BeginA != BeginB) 172 return BeginA; 173 bool EndA = isCrtend(A->File->getName()); 174 bool EndB = isCrtend(B->File->getName()); 175 if (EndA != EndB) 176 return EndB; 177 StringRef X = A->Name; 178 StringRef Y = B->Name; 179 assert(X.startswith(".ctors") || X.startswith(".dtors")); 180 assert(Y.startswith(".ctors") || Y.startswith(".dtors")); 181 X = X.substr(6); 182 Y = Y.substr(6); 183 if (X.empty() && Y.empty()) 184 return false; 185 return X < Y; 186 } 187 188 // Sorts input sections by the special rules for .ctors and .dtors. 189 // Unfortunately, the rules are different from the one for .{init,fini}_array. 190 // Read the comment above. 191 void OutputSection::sortCtorsDtors() { 192 std::stable_sort(Sections.begin(), Sections.end(), compCtors); 193 } 194 195 static SectionKey createKey(InputSectionBase *C, StringRef OutsecName) { 196 // The ELF spec just says 197 // ---------------------------------------------------------------- 198 // In the first phase, input sections that match in name, type and 199 // attribute flags should be concatenated into single sections. 200 // ---------------------------------------------------------------- 201 // 202 // However, it is clear that at least some flags have to be ignored for 203 // section merging. At the very least SHF_GROUP and SHF_COMPRESSED have to be 204 // ignored. We should not have two output .text sections just because one was 205 // in a group and another was not for example. 206 // 207 // It also seems that that wording was a late addition and didn't get the 208 // necessary scrutiny. 209 // 210 // Merging sections with different flags is expected by some users. One 211 // reason is that if one file has 212 // 213 // int *const bar __attribute__((section(".foo"))) = (int *)0; 214 // 215 // gcc with -fPIC will produce a read only .foo section. But if another 216 // file has 217 // 218 // int zed; 219 // int *const bar __attribute__((section(".foo"))) = (int *)&zed; 220 // 221 // gcc with -fPIC will produce a read write section. 222 // 223 // Last but not least, when using linker script the merge rules are forced by 224 // the script. Unfortunately, linker scripts are name based. This means that 225 // expressions like *(.foo*) can refer to multiple input sections with 226 // different flags. We cannot put them in different output sections or we 227 // would produce wrong results for 228 // 229 // start = .; *(.foo.*) end = .; *(.bar) 230 // 231 // and a mapping of .foo1 and .bar1 to one section and .foo2 and .bar2 to 232 // another. The problem is that there is no way to layout those output 233 // sections such that the .foo sections are the only thing between the start 234 // and end symbols. 235 // 236 // Given the above issues, we instead merge sections by name and error on 237 // incompatible types and flags. 238 239 uint32_t Alignment = 0; 240 uint64_t Flags = 0; 241 if (Config->Relocatable && (C->Flags & SHF_MERGE)) { 242 Alignment = std::max<uint64_t>(C->Alignment, C->Entsize); 243 Flags = C->Flags & (SHF_MERGE | SHF_STRINGS); 244 } 245 246 return SectionKey{OutsecName, Flags, Alignment}; 247 } 248 249 OutputSectionFactory::OutputSectionFactory( 250 std::vector<OutputSection *> &OutputSections) 251 : OutputSections(OutputSections) {} 252 253 static uint64_t getIncompatibleFlags(uint64_t Flags) { 254 return Flags & (SHF_ALLOC | SHF_TLS); 255 } 256 257 // We allow sections of types listed below to merged into a 258 // single progbits section. This is typically done by linker 259 // scripts. Merging nobits and progbits will force disk space 260 // to be allocated for nobits sections. Other ones don't require 261 // any special treatment on top of progbits, so there doesn't 262 // seem to be a harm in merging them. 263 static bool canMergeToProgbits(unsigned Type) { 264 return Type == SHT_NOBITS || Type == SHT_PROGBITS || Type == SHT_INIT_ARRAY || 265 Type == SHT_PREINIT_ARRAY || Type == SHT_FINI_ARRAY || 266 Type == SHT_NOTE; 267 } 268 269 void elf::reportDiscarded(InputSectionBase *IS) { 270 if (!Config->PrintGcSections) 271 return; 272 message("removing unused section from '" + IS->Name + "' in file '" + 273 IS->File->getName()); 274 } 275 276 void OutputSectionFactory::addInputSec(InputSectionBase *IS, 277 StringRef OutsecName) { 278 // Sections with the SHT_GROUP attribute reach here only when the - r option 279 // is given. Such sections define "section groups", and InputFiles.cpp has 280 // dedup'ed section groups by their signatures. For the -r, we want to pass 281 // through all SHT_GROUP sections without merging them because merging them 282 // creates broken section contents. 283 if (IS->Type == SHT_GROUP) { 284 OutputSection *Out = nullptr; 285 addInputSec(IS, OutsecName, Out); 286 return; 287 } 288 289 // Imagine .zed : { *(.foo) *(.bar) } script. Both foo and bar may have 290 // relocation sections .rela.foo and .rela.bar for example. Most tools do 291 // not allow multiple REL[A] sections for output section. Hence we 292 // should combine these relocation sections into single output. 293 // We skip synthetic sections because it can be .rela.dyn/.rela.plt or any 294 // other REL[A] sections created by linker itself. 295 if (!isa<SyntheticSection>(IS) && 296 (IS->Type == SHT_REL || IS->Type == SHT_RELA)) { 297 auto *Sec = cast<InputSection>(IS); 298 OutputSection *Out = Sec->getRelocatedSection()->getOutputSection(); 299 addInputSec(IS, OutsecName, Out->RelocationSection); 300 return; 301 } 302 303 SectionKey Key = createKey(IS, OutsecName); 304 OutputSection *&Sec = Map[Key]; 305 return addInputSec(IS, OutsecName, Sec); 306 } 307 308 void OutputSectionFactory::addInputSec(InputSectionBase *IS, 309 StringRef OutsecName, 310 OutputSection *&Sec) { 311 if (!IS->Live) { 312 reportDiscarded(IS); 313 return; 314 } 315 316 uint64_t Flags = IS->Flags; 317 if (!Config->Relocatable) 318 Flags &= ~(uint64_t)SHF_GROUP; 319 320 if (Sec) { 321 if (getIncompatibleFlags(Sec->Flags) != getIncompatibleFlags(IS->Flags)) 322 error("incompatible section flags for " + Sec->Name + 323 "\n>>> " + toString(IS) + ": 0x" + utohexstr(IS->Flags) + 324 "\n>>> output section " + Sec->Name + ": 0x" + 325 utohexstr(Sec->Flags)); 326 if (Sec->Type != IS->Type) { 327 if (canMergeToProgbits(Sec->Type) && canMergeToProgbits(IS->Type)) 328 Sec->Type = SHT_PROGBITS; 329 else 330 error("section type mismatch for " + IS->Name + 331 "\n>>> " + toString(IS) + ": " + 332 getELFSectionTypeName(Config->EMachine, IS->Type) + 333 "\n>>> output section " + Sec->Name + ": " + 334 getELFSectionTypeName(Config->EMachine, Sec->Type)); 335 } 336 Sec->Flags |= Flags; 337 } else { 338 Sec = make<OutputSection>(OutsecName, IS->Type, Flags); 339 OutputSections.push_back(Sec); 340 } 341 342 Sec->addSection(cast<InputSection>(IS)); 343 } 344 345 OutputSectionFactory::~OutputSectionFactory() {} 346 347 SectionKey DenseMapInfo<SectionKey>::getEmptyKey() { 348 return SectionKey{DenseMapInfo<StringRef>::getEmptyKey(), 0, 0}; 349 } 350 351 SectionKey DenseMapInfo<SectionKey>::getTombstoneKey() { 352 return SectionKey{DenseMapInfo<StringRef>::getTombstoneKey(), 0, 0}; 353 } 354 355 unsigned DenseMapInfo<SectionKey>::getHashValue(const SectionKey &Val) { 356 return hash_combine(Val.Name, Val.Flags, Val.Alignment); 357 } 358 359 bool DenseMapInfo<SectionKey>::isEqual(const SectionKey &LHS, 360 const SectionKey &RHS) { 361 return DenseMapInfo<StringRef>::isEqual(LHS.Name, RHS.Name) && 362 LHS.Flags == RHS.Flags && LHS.Alignment == RHS.Alignment; 363 } 364 365 uint64_t elf::getHeaderSize() { 366 if (Config->OFormatBinary) 367 return 0; 368 return Out::ElfHeader->Size + Out::ProgramHeaders->Size; 369 } 370 371 template void OutputSection::writeHeaderTo<ELF32LE>(ELF32LE::Shdr *Shdr); 372 template void OutputSection::writeHeaderTo<ELF32BE>(ELF32BE::Shdr *Shdr); 373 template void OutputSection::writeHeaderTo<ELF64LE>(ELF64LE::Shdr *Shdr); 374 template void OutputSection::writeHeaderTo<ELF64BE>(ELF64BE::Shdr *Shdr); 375