1 //===- LinkerScript.cpp ---------------------------------------------------===// 2 // 3 // The LLVM Linker 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the parser/evaluator of the linker script. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "LinkerScript.h" 15 #include "Config.h" 16 #include "InputSection.h" 17 #include "OutputSections.h" 18 #include "SymbolTable.h" 19 #include "Symbols.h" 20 #include "SyntheticSections.h" 21 #include "Target.h" 22 #include "Writer.h" 23 #include "lld/Common/Memory.h" 24 #include "lld/Common/Strings.h" 25 #include "lld/Common/Threads.h" 26 #include "llvm/ADT/STLExtras.h" 27 #include "llvm/ADT/StringRef.h" 28 #include "llvm/BinaryFormat/ELF.h" 29 #include "llvm/Support/Casting.h" 30 #include "llvm/Support/Endian.h" 31 #include "llvm/Support/ErrorHandling.h" 32 #include "llvm/Support/FileSystem.h" 33 #include "llvm/Support/Path.h" 34 #include <algorithm> 35 #include <cassert> 36 #include <cstddef> 37 #include <cstdint> 38 #include <iterator> 39 #include <limits> 40 #include <string> 41 #include <vector> 42 43 using namespace llvm; 44 using namespace llvm::ELF; 45 using namespace llvm::object; 46 using namespace llvm::support::endian; 47 using namespace lld; 48 using namespace lld::elf; 49 50 LinkerScript *elf::Script; 51 52 static uint64_t getOutputSectionVA(SectionBase *InputSec, StringRef Loc) { 53 if (OutputSection *OS = InputSec->getOutputSection()) 54 return OS->Addr; 55 error(Loc + ": unable to evaluate expression: input section " + 56 InputSec->Name + " has no output section assigned"); 57 return 0; 58 } 59 60 uint64_t ExprValue::getValue() const { 61 if (Sec) 62 return alignTo(Sec->getOffset(Val) + getOutputSectionVA(Sec, Loc), 63 Alignment); 64 return alignTo(Val, Alignment); 65 } 66 67 uint64_t ExprValue::getSecAddr() const { 68 if (Sec) 69 return Sec->getOffset(0) + getOutputSectionVA(Sec, Loc); 70 return 0; 71 } 72 73 uint64_t ExprValue::getSectionOffset() const { 74 // If the alignment is trivial, we don't have to compute the full 75 // value to know the offset. This allows this function to succeed in 76 // cases where the output section is not yet known. 77 if (Alignment == 1 && (!Sec || !Sec->getOutputSection())) 78 return Val; 79 return getValue() - getSecAddr(); 80 } 81 82 OutputSection *LinkerScript::createOutputSection(StringRef Name, 83 StringRef Location) { 84 OutputSection *&SecRef = NameToOutputSection[Name]; 85 OutputSection *Sec; 86 if (SecRef && SecRef->Location.empty()) { 87 // There was a forward reference. 88 Sec = SecRef; 89 } else { 90 Sec = make<OutputSection>(Name, SHT_NOBITS, 0); 91 if (!SecRef) 92 SecRef = Sec; 93 } 94 Sec->Location = Location; 95 return Sec; 96 } 97 98 OutputSection *LinkerScript::getOrCreateOutputSection(StringRef Name) { 99 OutputSection *&CmdRef = NameToOutputSection[Name]; 100 if (!CmdRef) 101 CmdRef = make<OutputSection>(Name, SHT_PROGBITS, 0); 102 return CmdRef; 103 } 104 105 // Expands the memory region by the specified size. 106 static void expandMemoryRegion(MemoryRegion *MemRegion, uint64_t Size, 107 StringRef RegionName, StringRef SecName) { 108 MemRegion->CurPos += Size; 109 uint64_t NewSize = MemRegion->CurPos - MemRegion->Origin; 110 if (NewSize > MemRegion->Length) 111 error("section '" + SecName + "' will not fit in region '" + RegionName + 112 "': overflowed by " + Twine(NewSize - MemRegion->Length) + " bytes"); 113 } 114 115 void LinkerScript::expandOutputSection(uint64_t Size) { 116 Ctx->OutSec->Size += Size; 117 if (Ctx->MemRegion) 118 expandMemoryRegion(Ctx->MemRegion, Size, Ctx->MemRegion->Name, 119 Ctx->OutSec->Name); 120 // FIXME: check LMA region overflow too. 121 if (Ctx->LMARegion) 122 Ctx->LMARegion->CurPos += Size; 123 } 124 125 void LinkerScript::setDot(Expr E, const Twine &Loc, bool InSec) { 126 uint64_t Val = E().getValue(); 127 if (Val < Dot && InSec) 128 error(Loc + ": unable to move location counter backward for: " + 129 Ctx->OutSec->Name); 130 131 // Update to location counter means update to section size. 132 if (InSec) 133 expandOutputSection(Val - Dot); 134 Dot = Val; 135 } 136 137 // Used for handling linker symbol assignments, for both finalizing 138 // their values and doing early declarations. Returns true if symbol 139 // should be defined from linker script. 140 static bool shouldDefineSym(SymbolAssignment *Cmd) { 141 if (Cmd->Name == ".") 142 return false; 143 144 if (!Cmd->Provide) 145 return true; 146 147 // If a symbol was in PROVIDE(), we need to define it only 148 // when it is a referenced undefined symbol. 149 Symbol *B = Symtab->find(Cmd->Name); 150 if (B && !B->isDefined()) 151 return true; 152 return false; 153 } 154 155 // This function is called from processSectionCommands, 156 // while we are fixing the output section layout. 157 void LinkerScript::addSymbol(SymbolAssignment *Cmd) { 158 if (!shouldDefineSym(Cmd)) 159 return; 160 161 // Define a symbol. 162 Symbol *Sym; 163 uint8_t Visibility = Cmd->Hidden ? STV_HIDDEN : STV_DEFAULT; 164 std::tie(Sym, std::ignore) = Symtab->insert(Cmd->Name, /*Type*/ 0, Visibility, 165 /*CanOmitFromDynSym*/ false, 166 /*File*/ nullptr); 167 ExprValue Value = Cmd->Expression(); 168 SectionBase *Sec = Value.isAbsolute() ? nullptr : Value.Sec; 169 170 // When this function is called, section addresses have not been 171 // fixed yet. So, we may or may not know the value of the RHS 172 // expression. 173 // 174 // For example, if an expression is `x = 42`, we know x is always 42. 175 // However, if an expression is `x = .`, there's no way to know its 176 // value at the moment. 177 // 178 // We want to set symbol values early if we can. This allows us to 179 // use symbols as variables in linker scripts. Doing so allows us to 180 // write expressions like this: `alignment = 16; . = ALIGN(., alignment)`. 181 uint64_t SymValue = Value.Sec ? 0 : Value.getValue(); 182 183 replaceSymbol<Defined>(Sym, nullptr, Cmd->Name, STB_GLOBAL, Visibility, 184 STT_NOTYPE, SymValue, 0, Sec); 185 Cmd->Sym = cast<Defined>(Sym); 186 } 187 188 // This function is called from LinkerScript::declareSymbols. 189 // It creates a placeholder symbol if needed. 190 static void declareSymbol(SymbolAssignment *Cmd) { 191 if (!shouldDefineSym(Cmd)) 192 return; 193 194 // We can't calculate final value right now. 195 Symbol *Sym; 196 uint8_t Visibility = Cmd->Hidden ? STV_HIDDEN : STV_DEFAULT; 197 std::tie(Sym, std::ignore) = Symtab->insert(Cmd->Name, /*Type*/ 0, Visibility, 198 /*CanOmitFromDynSym*/ false, 199 /*File*/ nullptr); 200 replaceSymbol<Defined>(Sym, nullptr, Cmd->Name, STB_GLOBAL, Visibility, 201 STT_NOTYPE, 0, 0, nullptr); 202 Cmd->Sym = cast<Defined>(Sym); 203 Cmd->Provide = false; 204 } 205 206 // Symbols defined in script should not be inlined by LTO. At the same time 207 // we don't know their final values until late stages of link. Here we scan 208 // over symbol assignment commands and create placeholder symbols if needed. 209 void LinkerScript::declareSymbols() { 210 assert(!Ctx); 211 for (BaseCommand *Base : SectionCommands) { 212 if (auto *Cmd = dyn_cast<SymbolAssignment>(Base)) { 213 declareSymbol(Cmd); 214 continue; 215 } 216 auto *Sec = dyn_cast<OutputSection>(Base); 217 if (!Sec) 218 continue; 219 // If the output section directive has constraints, 220 // we can't say for sure if it is going to be included or not. 221 // Skip such sections for now. Improve the checks if we ever 222 // need symbols from that sections to be declared early. 223 if (Sec->Constraint != ConstraintKind::NoConstraint) 224 continue; 225 for (BaseCommand *Base2 : Sec->SectionCommands) 226 if (auto *Cmd = dyn_cast<SymbolAssignment>(Base2)) 227 declareSymbol(Cmd); 228 } 229 } 230 231 // This function is called from assignAddresses, while we are 232 // fixing the output section addresses. This function is supposed 233 // to set the final value for a given symbol assignment. 234 void LinkerScript::assignSymbol(SymbolAssignment *Cmd, bool InSec) { 235 if (Cmd->Name == ".") { 236 setDot(Cmd->Expression, Cmd->Location, InSec); 237 return; 238 } 239 240 if (!Cmd->Sym) 241 return; 242 243 ExprValue V = Cmd->Expression(); 244 if (V.isAbsolute()) { 245 Cmd->Sym->Section = nullptr; 246 Cmd->Sym->Value = V.getValue(); 247 } else { 248 Cmd->Sym->Section = V.Sec; 249 Cmd->Sym->Value = V.getSectionOffset(); 250 } 251 } 252 253 static std::string getFilename(InputFile *File) { 254 if (!File) 255 return ""; 256 if (File->ArchiveName.empty()) 257 return File->getName(); 258 return (File->ArchiveName + "(" + File->getName() + ")").str(); 259 } 260 261 bool LinkerScript::shouldKeep(InputSectionBase *S) { 262 if (KeptSections.empty()) 263 return false; 264 std::string Filename = getFilename(S->File); 265 for (InputSectionDescription *ID : KeptSections) 266 if (ID->FilePat.match(Filename)) 267 for (SectionPattern &P : ID->SectionPatterns) 268 if (P.SectionPat.match(S->Name)) 269 return true; 270 return false; 271 } 272 273 // A helper function for the SORT() command. 274 static std::function<bool(InputSectionBase *, InputSectionBase *)> 275 getComparator(SortSectionPolicy K) { 276 switch (K) { 277 case SortSectionPolicy::Alignment: 278 return [](InputSectionBase *A, InputSectionBase *B) { 279 // ">" is not a mistake. Sections with larger alignments are placed 280 // before sections with smaller alignments in order to reduce the 281 // amount of padding necessary. This is compatible with GNU. 282 return A->Alignment > B->Alignment; 283 }; 284 case SortSectionPolicy::Name: 285 return [](InputSectionBase *A, InputSectionBase *B) { 286 return A->Name < B->Name; 287 }; 288 case SortSectionPolicy::Priority: 289 return [](InputSectionBase *A, InputSectionBase *B) { 290 return getPriority(A->Name) < getPriority(B->Name); 291 }; 292 default: 293 llvm_unreachable("unknown sort policy"); 294 } 295 } 296 297 // A helper function for the SORT() command. 298 static bool matchConstraints(ArrayRef<InputSection *> Sections, 299 ConstraintKind Kind) { 300 if (Kind == ConstraintKind::NoConstraint) 301 return true; 302 303 bool IsRW = llvm::any_of( 304 Sections, [](InputSection *Sec) { return Sec->Flags & SHF_WRITE; }); 305 306 return (IsRW && Kind == ConstraintKind::ReadWrite) || 307 (!IsRW && Kind == ConstraintKind::ReadOnly); 308 } 309 310 static void sortSections(MutableArrayRef<InputSection *> Vec, 311 SortSectionPolicy K) { 312 if (K != SortSectionPolicy::Default && K != SortSectionPolicy::None) 313 std::stable_sort(Vec.begin(), Vec.end(), getComparator(K)); 314 } 315 316 // Sort sections as instructed by SORT-family commands and --sort-section 317 // option. Because SORT-family commands can be nested at most two depth 318 // (e.g. SORT_BY_NAME(SORT_BY_ALIGNMENT(.text.*))) and because the command 319 // line option is respected even if a SORT command is given, the exact 320 // behavior we have here is a bit complicated. Here are the rules. 321 // 322 // 1. If two SORT commands are given, --sort-section is ignored. 323 // 2. If one SORT command is given, and if it is not SORT_NONE, 324 // --sort-section is handled as an inner SORT command. 325 // 3. If one SORT command is given, and if it is SORT_NONE, don't sort. 326 // 4. If no SORT command is given, sort according to --sort-section. 327 static void sortInputSections(MutableArrayRef<InputSection *> Vec, 328 const SectionPattern &Pat) { 329 if (Pat.SortOuter == SortSectionPolicy::None) 330 return; 331 332 if (Pat.SortInner == SortSectionPolicy::Default) 333 sortSections(Vec, Config->SortSection); 334 else 335 sortSections(Vec, Pat.SortInner); 336 sortSections(Vec, Pat.SortOuter); 337 } 338 339 // Compute and remember which sections the InputSectionDescription matches. 340 std::vector<InputSection *> 341 LinkerScript::computeInputSections(const InputSectionDescription *Cmd) { 342 std::vector<InputSection *> Ret; 343 344 // Collects all sections that satisfy constraints of Cmd. 345 for (const SectionPattern &Pat : Cmd->SectionPatterns) { 346 size_t SizeBefore = Ret.size(); 347 348 for (InputSectionBase *Sec : InputSections) { 349 if (!Sec->Live || Sec->Assigned) 350 continue; 351 352 // For -emit-relocs we have to ignore entries like 353 // .rela.dyn : { *(.rela.data) } 354 // which are common because they are in the default bfd script. 355 if (Sec->Type == SHT_REL || Sec->Type == SHT_RELA) 356 continue; 357 358 std::string Filename = getFilename(Sec->File); 359 if (!Cmd->FilePat.match(Filename) || 360 Pat.ExcludedFilePat.match(Filename) || 361 !Pat.SectionPat.match(Sec->Name)) 362 continue; 363 364 // It is safe to assume that Sec is an InputSection 365 // because mergeable or EH input sections have already been 366 // handled and eliminated. 367 Ret.push_back(cast<InputSection>(Sec)); 368 Sec->Assigned = true; 369 } 370 371 sortInputSections(MutableArrayRef<InputSection *>(Ret).slice(SizeBefore), 372 Pat); 373 } 374 return Ret; 375 } 376 377 void LinkerScript::discard(ArrayRef<InputSection *> V) { 378 for (InputSection *S : V) { 379 if (S == InX::ShStrTab || S == InX::Dynamic || S == InX::DynSymTab || 380 S == InX::DynStrTab) 381 error("discarding " + S->Name + " section is not allowed"); 382 383 S->Assigned = false; 384 S->Live = false; 385 discard(S->DependentSections); 386 } 387 } 388 389 std::vector<InputSection *> 390 LinkerScript::createInputSectionList(OutputSection &OutCmd) { 391 std::vector<InputSection *> Ret; 392 393 for (BaseCommand *Base : OutCmd.SectionCommands) { 394 if (auto *Cmd = dyn_cast<InputSectionDescription>(Base)) { 395 Cmd->Sections = computeInputSections(Cmd); 396 Ret.insert(Ret.end(), Cmd->Sections.begin(), Cmd->Sections.end()); 397 } 398 } 399 return Ret; 400 } 401 402 void LinkerScript::processSectionCommands() { 403 // A symbol can be assigned before any section is mentioned in the linker 404 // script. In an DSO, the symbol values are addresses, so the only important 405 // section values are: 406 // * SHN_UNDEF 407 // * SHN_ABS 408 // * Any value meaning a regular section. 409 // To handle that, create a dummy aether section that fills the void before 410 // the linker scripts switches to another section. It has an index of one 411 // which will map to whatever the first actual section is. 412 Aether = make<OutputSection>("", 0, SHF_ALLOC); 413 Aether->SectionIndex = 1; 414 415 // Ctx captures the local AddressState and makes it accessible deliberately. 416 // This is needed as there are some cases where we cannot just 417 // thread the current state through to a lambda function created by the 418 // script parser. 419 auto Deleter = make_unique<AddressState>(); 420 Ctx = Deleter.get(); 421 Ctx->OutSec = Aether; 422 423 size_t I = 0; 424 // Add input sections to output sections. 425 for (BaseCommand *Base : SectionCommands) { 426 // Handle symbol assignments outside of any output section. 427 if (auto *Cmd = dyn_cast<SymbolAssignment>(Base)) { 428 addSymbol(Cmd); 429 continue; 430 } 431 432 if (auto *Sec = dyn_cast<OutputSection>(Base)) { 433 std::vector<InputSection *> V = createInputSectionList(*Sec); 434 435 // The output section name `/DISCARD/' is special. 436 // Any input section assigned to it is discarded. 437 if (Sec->Name == "/DISCARD/") { 438 discard(V); 439 Sec->SectionCommands.clear(); 440 continue; 441 } 442 443 // This is for ONLY_IF_RO and ONLY_IF_RW. An output section directive 444 // ".foo : ONLY_IF_R[OW] { ... }" is handled only if all member input 445 // sections satisfy a given constraint. If not, a directive is handled 446 // as if it wasn't present from the beginning. 447 // 448 // Because we'll iterate over SectionCommands many more times, the easy 449 // way to "make it as if it wasn't present" is to make it empty. 450 if (!matchConstraints(V, Sec->Constraint)) { 451 for (InputSectionBase *S : V) 452 S->Assigned = false; 453 Sec->SectionCommands.clear(); 454 continue; 455 } 456 457 // A directive may contain symbol definitions like this: 458 // ".foo : { ...; bar = .; }". Handle them. 459 for (BaseCommand *Base : Sec->SectionCommands) 460 if (auto *OutCmd = dyn_cast<SymbolAssignment>(Base)) 461 addSymbol(OutCmd); 462 463 // Handle subalign (e.g. ".foo : SUBALIGN(32) { ... }"). If subalign 464 // is given, input sections are aligned to that value, whether the 465 // given value is larger or smaller than the original section alignment. 466 if (Sec->SubalignExpr) { 467 uint32_t Subalign = Sec->SubalignExpr().getValue(); 468 for (InputSectionBase *S : V) 469 S->Alignment = Subalign; 470 } 471 472 // Add input sections to an output section. 473 for (InputSection *S : V) 474 Sec->addSection(S); 475 476 Sec->SectionIndex = I++; 477 if (Sec->Noload) 478 Sec->Type = SHT_NOBITS; 479 if (Sec->NonAlloc) 480 Sec->Flags &= ~(uint64_t)SHF_ALLOC; 481 } 482 } 483 Ctx = nullptr; 484 } 485 486 static OutputSection *findByName(ArrayRef<BaseCommand *> Vec, 487 StringRef Name) { 488 for (BaseCommand *Base : Vec) 489 if (auto *Sec = dyn_cast<OutputSection>(Base)) 490 if (Sec->Name == Name) 491 return Sec; 492 return nullptr; 493 } 494 495 static OutputSection *createSection(InputSectionBase *IS, 496 StringRef OutsecName) { 497 OutputSection *Sec = Script->createOutputSection(OutsecName, "<internal>"); 498 Sec->addSection(cast<InputSection>(IS)); 499 return Sec; 500 } 501 502 static OutputSection *addInputSec(StringMap<OutputSection *> &Map, 503 InputSectionBase *IS, StringRef OutsecName) { 504 // Sections with SHT_GROUP or SHF_GROUP attributes reach here only when the -r 505 // option is given. A section with SHT_GROUP defines a "section group", and 506 // its members have SHF_GROUP attribute. Usually these flags have already been 507 // stripped by InputFiles.cpp as section groups are processed and uniquified. 508 // However, for the -r option, we want to pass through all section groups 509 // as-is because adding/removing members or merging them with other groups 510 // change their semantics. 511 if (IS->Type == SHT_GROUP || (IS->Flags & SHF_GROUP)) 512 return createSection(IS, OutsecName); 513 514 // Imagine .zed : { *(.foo) *(.bar) } script. Both foo and bar may have 515 // relocation sections .rela.foo and .rela.bar for example. Most tools do 516 // not allow multiple REL[A] sections for output section. Hence we 517 // should combine these relocation sections into single output. 518 // We skip synthetic sections because it can be .rela.dyn/.rela.plt or any 519 // other REL[A] sections created by linker itself. 520 if (!isa<SyntheticSection>(IS) && 521 (IS->Type == SHT_REL || IS->Type == SHT_RELA)) { 522 auto *Sec = cast<InputSection>(IS); 523 OutputSection *Out = Sec->getRelocatedSection()->getOutputSection(); 524 525 if (Out->RelocationSection) { 526 Out->RelocationSection->addSection(Sec); 527 return nullptr; 528 } 529 530 Out->RelocationSection = createSection(IS, OutsecName); 531 return Out->RelocationSection; 532 } 533 534 // When control reaches here, mergeable sections have already been merged into 535 // synthetic sections. For relocatable case we want to create one output 536 // section per syntetic section so that they have a valid sh_entsize. 537 if (Config->Relocatable && (IS->Flags & SHF_MERGE)) 538 return createSection(IS, OutsecName); 539 540 // The ELF spec just says 541 // ---------------------------------------------------------------- 542 // In the first phase, input sections that match in name, type and 543 // attribute flags should be concatenated into single sections. 544 // ---------------------------------------------------------------- 545 // 546 // However, it is clear that at least some flags have to be ignored for 547 // section merging. At the very least SHF_GROUP and SHF_COMPRESSED have to be 548 // ignored. We should not have two output .text sections just because one was 549 // in a group and another was not for example. 550 // 551 // It also seems that wording was a late addition and didn't get the 552 // necessary scrutiny. 553 // 554 // Merging sections with different flags is expected by some users. One 555 // reason is that if one file has 556 // 557 // int *const bar __attribute__((section(".foo"))) = (int *)0; 558 // 559 // gcc with -fPIC will produce a read only .foo section. But if another 560 // file has 561 // 562 // int zed; 563 // int *const bar __attribute__((section(".foo"))) = (int *)&zed; 564 // 565 // gcc with -fPIC will produce a read write section. 566 // 567 // Last but not least, when using linker script the merge rules are forced by 568 // the script. Unfortunately, linker scripts are name based. This means that 569 // expressions like *(.foo*) can refer to multiple input sections with 570 // different flags. We cannot put them in different output sections or we 571 // would produce wrong results for 572 // 573 // start = .; *(.foo.*) end = .; *(.bar) 574 // 575 // and a mapping of .foo1 and .bar1 to one section and .foo2 and .bar2 to 576 // another. The problem is that there is no way to layout those output 577 // sections such that the .foo sections are the only thing between the start 578 // and end symbols. 579 // 580 // Given the above issues, we instead merge sections by name and error on 581 // incompatible types and flags. 582 OutputSection *&Sec = Map[OutsecName]; 583 if (Sec) { 584 Sec->addSection(cast<InputSection>(IS)); 585 return nullptr; 586 } 587 588 Sec = createSection(IS, OutsecName); 589 return Sec; 590 } 591 592 // Add sections that didn't match any sections command. 593 void LinkerScript::addOrphanSections() { 594 unsigned End = SectionCommands.size(); 595 StringMap<OutputSection *> Map; 596 597 std::vector<OutputSection *> V; 598 for (InputSectionBase *S : InputSections) { 599 if (!S->Live || S->Parent) 600 continue; 601 602 StringRef Name = getOutputSectionName(S); 603 604 if (Config->OrphanHandling == OrphanHandlingPolicy::Error) 605 error(toString(S) + " is being placed in '" + Name + "'"); 606 else if (Config->OrphanHandling == OrphanHandlingPolicy::Warn) 607 warn(toString(S) + " is being placed in '" + Name + "'"); 608 609 if (OutputSection *Sec = 610 findByName(makeArrayRef(SectionCommands).slice(0, End), Name)) { 611 Sec->addSection(cast<InputSection>(S)); 612 continue; 613 } 614 615 if (OutputSection *OS = addInputSec(Map, S, Name)) 616 V.push_back(OS); 617 assert(S->getOutputSection()->SectionIndex == INT_MAX); 618 } 619 620 // If no SECTIONS command was given, we should insert sections commands 621 // before others, so that we can handle scripts which refers them, 622 // for example: "foo = ABSOLUTE(ADDR(.text)));". 623 // When SECTIONS command is present we just add all orphans to the end. 624 if (HasSectionsCommand) 625 SectionCommands.insert(SectionCommands.end(), V.begin(), V.end()); 626 else 627 SectionCommands.insert(SectionCommands.begin(), V.begin(), V.end()); 628 } 629 630 uint64_t LinkerScript::advance(uint64_t Size, unsigned Alignment) { 631 bool IsTbss = 632 (Ctx->OutSec->Flags & SHF_TLS) && Ctx->OutSec->Type == SHT_NOBITS; 633 uint64_t Start = IsTbss ? Dot + Ctx->ThreadBssOffset : Dot; 634 Start = alignTo(Start, Alignment); 635 uint64_t End = Start + Size; 636 637 if (IsTbss) 638 Ctx->ThreadBssOffset = End - Dot; 639 else 640 Dot = End; 641 return End; 642 } 643 644 void LinkerScript::output(InputSection *S) { 645 uint64_t Before = advance(0, 1); 646 uint64_t Pos = advance(S->getSize(), S->Alignment); 647 S->OutSecOff = Pos - S->getSize() - Ctx->OutSec->Addr; 648 649 // Update output section size after adding each section. This is so that 650 // SIZEOF works correctly in the case below: 651 // .foo { *(.aaa) a = SIZEOF(.foo); *(.bbb) } 652 expandOutputSection(Pos - Before); 653 } 654 655 void LinkerScript::switchTo(OutputSection *Sec) { 656 if (Ctx->OutSec == Sec) 657 return; 658 659 Ctx->OutSec = Sec; 660 Ctx->OutSec->Addr = advance(0, Ctx->OutSec->Alignment); 661 } 662 663 // This function searches for a memory region to place the given output 664 // section in. If found, a pointer to the appropriate memory region is 665 // returned. Otherwise, a nullptr is returned. 666 MemoryRegion *LinkerScript::findMemoryRegion(OutputSection *Sec) { 667 // If a memory region name was specified in the output section command, 668 // then try to find that region first. 669 if (!Sec->MemoryRegionName.empty()) { 670 if (MemoryRegion *M = MemoryRegions.lookup(Sec->MemoryRegionName)) 671 return M; 672 error("memory region '" + Sec->MemoryRegionName + "' not declared"); 673 return nullptr; 674 } 675 676 // If at least one memory region is defined, all sections must 677 // belong to some memory region. Otherwise, we don't need to do 678 // anything for memory regions. 679 if (MemoryRegions.empty()) 680 return nullptr; 681 682 // See if a region can be found by matching section flags. 683 for (auto &Pair : MemoryRegions) { 684 MemoryRegion *M = Pair.second; 685 if ((M->Flags & Sec->Flags) && (M->NegFlags & Sec->Flags) == 0) 686 return M; 687 } 688 689 // Otherwise, no suitable region was found. 690 if (Sec->Flags & SHF_ALLOC) 691 error("no memory region specified for section '" + Sec->Name + "'"); 692 return nullptr; 693 } 694 695 // This function assigns offsets to input sections and an output section 696 // for a single sections command (e.g. ".text { *(.text); }"). 697 void LinkerScript::assignOffsets(OutputSection *Sec) { 698 if (!(Sec->Flags & SHF_ALLOC)) 699 Dot = 0; 700 else if (Sec->AddrExpr) 701 setDot(Sec->AddrExpr, Sec->Location, false); 702 703 Ctx->MemRegion = Sec->MemRegion; 704 Ctx->LMARegion = Sec->LMARegion; 705 if (Ctx->MemRegion) 706 Dot = Ctx->MemRegion->CurPos; 707 708 switchTo(Sec); 709 710 if (Sec->LMAExpr) 711 Ctx->LMAOffset = Sec->LMAExpr().getValue() - Dot; 712 713 if (MemoryRegion *MR = Sec->LMARegion) 714 Ctx->LMAOffset = MR->CurPos - Dot; 715 716 // If neither AT nor AT> is specified for an allocatable section, the linker 717 // will set the LMA such that the difference between VMA and LMA for the 718 // section is the same as the preceding output section in the same region 719 // https://sourceware.org/binutils/docs-2.20/ld/Output-Section-LMA.html 720 if (PhdrEntry *L = Ctx->OutSec->PtLoad) 721 L->LMAOffset = Ctx->LMAOffset; 722 723 // The Size previously denoted how many InputSections had been added to this 724 // section, and was used for sorting SHF_LINK_ORDER sections. Reset it to 725 // compute the actual size value. 726 Sec->Size = 0; 727 728 // We visited SectionsCommands from processSectionCommands to 729 // layout sections. Now, we visit SectionsCommands again to fix 730 // section offsets. 731 for (BaseCommand *Base : Sec->SectionCommands) { 732 // This handles the assignments to symbol or to the dot. 733 if (auto *Cmd = dyn_cast<SymbolAssignment>(Base)) { 734 assignSymbol(Cmd, true); 735 continue; 736 } 737 738 // Handle BYTE(), SHORT(), LONG(), or QUAD(). 739 if (auto *Cmd = dyn_cast<ByteCommand>(Base)) { 740 Cmd->Offset = Dot - Ctx->OutSec->Addr; 741 Dot += Cmd->Size; 742 expandOutputSection(Cmd->Size); 743 continue; 744 } 745 746 // Handle ASSERT(). 747 if (auto *Cmd = dyn_cast<AssertCommand>(Base)) { 748 Cmd->Expression(); 749 continue; 750 } 751 752 // Handle a single input section description command. 753 // It calculates and assigns the offsets for each section and also 754 // updates the output section size. 755 auto *Cmd = cast<InputSectionDescription>(Base); 756 for (InputSection *Sec : Cmd->Sections) { 757 // We tentatively added all synthetic sections at the beginning and 758 // removed empty ones afterwards (because there is no way to know 759 // whether they were going be empty or not other than actually running 760 // linker scripts.) We need to ignore remains of empty sections. 761 if (auto *S = dyn_cast<SyntheticSection>(Sec)) 762 if (S->empty()) 763 continue; 764 765 if (!Sec->Live) 766 continue; 767 assert(Ctx->OutSec == Sec->getParent()); 768 output(Sec); 769 } 770 } 771 } 772 773 static bool isDiscardable(OutputSection &Sec) { 774 // We do not remove empty sections that are explicitly 775 // assigned to any segment. 776 if (!Sec.Phdrs.empty()) 777 return false; 778 779 // We do not want to remove sections that reference symbols in address and 780 // other expressions. We add script symbols as undefined, and want to ensure 781 // all of them are defined in the output, hence have to keep them. 782 if (Sec.ExpressionsUseSymbols) 783 return false; 784 785 for (BaseCommand *Base : Sec.SectionCommands) 786 if (!isa<InputSectionDescription>(*Base)) 787 return false; 788 return getInputSections(&Sec).empty(); 789 } 790 791 void LinkerScript::adjustSectionsBeforeSorting() { 792 // If the output section contains only symbol assignments, create a 793 // corresponding output section. The issue is what to do with linker script 794 // like ".foo : { symbol = 42; }". One option would be to convert it to 795 // "symbol = 42;". That is, move the symbol out of the empty section 796 // description. That seems to be what bfd does for this simple case. The 797 // problem is that this is not completely general. bfd will give up and 798 // create a dummy section too if there is a ". = . + 1" inside the section 799 // for example. 800 // Given that we want to create the section, we have to worry what impact 801 // it will have on the link. For example, if we just create a section with 802 // 0 for flags, it would change which PT_LOADs are created. 803 // We could remember that particular section is dummy and ignore it in 804 // other parts of the linker, but unfortunately there are quite a few places 805 // that would need to change: 806 // * The program header creation. 807 // * The orphan section placement. 808 // * The address assignment. 809 // The other option is to pick flags that minimize the impact the section 810 // will have on the rest of the linker. That is why we copy the flags from 811 // the previous sections. Only a few flags are needed to keep the impact low. 812 uint64_t Flags = SHF_ALLOC; 813 814 for (BaseCommand *&Cmd : SectionCommands) { 815 auto *Sec = dyn_cast<OutputSection>(Cmd); 816 if (!Sec) 817 continue; 818 819 // A live output section means that some input section was added to it. It 820 // might have been removed (gc, or empty synthetic section), but we at least 821 // know the flags. 822 if (Sec->Live) 823 Flags = Sec->Flags & (SHF_ALLOC | SHF_WRITE | SHF_EXECINSTR); 824 else 825 Sec->Flags = Flags; 826 827 if (isDiscardable(*Sec)) { 828 Sec->Live = false; 829 Cmd = nullptr; 830 } 831 } 832 833 // It is common practice to use very generic linker scripts. So for any 834 // given run some of the output sections in the script will be empty. 835 // We could create corresponding empty output sections, but that would 836 // clutter the output. 837 // We instead remove trivially empty sections. The bfd linker seems even 838 // more aggressive at removing them. 839 llvm::erase_if(SectionCommands, [&](BaseCommand *Base) { return !Base; }); 840 } 841 842 void LinkerScript::adjustSectionsAfterSorting() { 843 // Try and find an appropriate memory region to assign offsets in. 844 for (BaseCommand *Base : SectionCommands) { 845 if (auto *Sec = dyn_cast<OutputSection>(Base)) { 846 if (!Sec->LMARegionName.empty()) { 847 if (MemoryRegion *M = MemoryRegions.lookup(Sec->LMARegionName)) 848 Sec->LMARegion = M; 849 else 850 error("memory region '" + Sec->LMARegionName + "' not declared"); 851 } 852 Sec->MemRegion = findMemoryRegion(Sec); 853 // Handle align (e.g. ".foo : ALIGN(16) { ... }"). 854 if (Sec->AlignExpr) 855 Sec->Alignment = 856 std::max<uint32_t>(Sec->Alignment, Sec->AlignExpr().getValue()); 857 } 858 } 859 860 // If output section command doesn't specify any segments, 861 // and we haven't previously assigned any section to segment, 862 // then we simply assign section to the very first load segment. 863 // Below is an example of such linker script: 864 // PHDRS { seg PT_LOAD; } 865 // SECTIONS { .aaa : { *(.aaa) } } 866 std::vector<StringRef> DefPhdrs; 867 auto FirstPtLoad = llvm::find_if(PhdrsCommands, [](const PhdrsCommand &Cmd) { 868 return Cmd.Type == PT_LOAD; 869 }); 870 if (FirstPtLoad != PhdrsCommands.end()) 871 DefPhdrs.push_back(FirstPtLoad->Name); 872 873 // Walk the commands and propagate the program headers to commands that don't 874 // explicitly specify them. 875 for (BaseCommand *Base : SectionCommands) { 876 auto *Sec = dyn_cast<OutputSection>(Base); 877 if (!Sec) 878 continue; 879 880 if (Sec->Phdrs.empty()) { 881 // To match the bfd linker script behaviour, only propagate program 882 // headers to sections that are allocated. 883 if (Sec->Flags & SHF_ALLOC) 884 Sec->Phdrs = DefPhdrs; 885 } else { 886 DefPhdrs = Sec->Phdrs; 887 } 888 } 889 } 890 891 static OutputSection *findFirstSection(PhdrEntry *Load) { 892 for (OutputSection *Sec : OutputSections) 893 if (Sec->PtLoad == Load) 894 return Sec; 895 return nullptr; 896 } 897 898 static uint64_t computeBase(uint64_t Min, bool AllocateHeaders) { 899 // If there is no SECTIONS or if the linkerscript is explicit about program 900 // headers, do our best to allocate them. 901 if (!Script->HasSectionsCommand || AllocateHeaders) 902 return 0; 903 // Otherwise only allocate program headers if that would not add a page. 904 return alignDown(Min, Config->MaxPageSize); 905 } 906 907 // Try to find an address for the file and program headers output sections, 908 // which were unconditionally added to the first PT_LOAD segment earlier. 909 // 910 // When using the default layout, we check if the headers fit below the first 911 // allocated section. When using a linker script, we also check if the headers 912 // are covered by the output section. This allows omitting the headers by not 913 // leaving enough space for them in the linker script; this pattern is common 914 // in embedded systems. 915 // 916 // If there isn't enough space for these sections, we'll remove them from the 917 // PT_LOAD segment, and we'll also remove the PT_PHDR segment. 918 void LinkerScript::allocateHeaders(std::vector<PhdrEntry *> &Phdrs) { 919 uint64_t Min = std::numeric_limits<uint64_t>::max(); 920 for (OutputSection *Sec : OutputSections) 921 if (Sec->Flags & SHF_ALLOC) 922 Min = std::min<uint64_t>(Min, Sec->Addr); 923 924 auto It = llvm::find_if( 925 Phdrs, [](const PhdrEntry *E) { return E->p_type == PT_LOAD; }); 926 if (It == Phdrs.end()) 927 return; 928 PhdrEntry *FirstPTLoad = *It; 929 930 bool HasExplicitHeaders = 931 llvm::any_of(PhdrsCommands, [](const PhdrsCommand &Cmd) { 932 return Cmd.HasPhdrs || Cmd.HasFilehdr; 933 }); 934 uint64_t HeaderSize = getHeaderSize(); 935 if (HeaderSize <= Min - computeBase(Min, HasExplicitHeaders)) { 936 Min = alignDown(Min - HeaderSize, Config->MaxPageSize); 937 Out::ElfHeader->Addr = Min; 938 Out::ProgramHeaders->Addr = Min + Out::ElfHeader->Size; 939 return; 940 } 941 942 // Error if we were explicitly asked to allocate headers. 943 if (HasExplicitHeaders) 944 error("could not allocate headers"); 945 946 Out::ElfHeader->PtLoad = nullptr; 947 Out::ProgramHeaders->PtLoad = nullptr; 948 FirstPTLoad->FirstSec = findFirstSection(FirstPTLoad); 949 950 llvm::erase_if(Phdrs, 951 [](const PhdrEntry *E) { return E->p_type == PT_PHDR; }); 952 } 953 954 LinkerScript::AddressState::AddressState() { 955 for (auto &MRI : Script->MemoryRegions) { 956 MemoryRegion *MR = MRI.second; 957 MR->CurPos = MR->Origin; 958 } 959 } 960 961 static uint64_t getInitialDot() { 962 // By default linker scripts use an initial value of 0 for '.', 963 // but prefer -image-base if set. 964 if (Script->HasSectionsCommand) 965 return Config->ImageBase ? *Config->ImageBase : 0; 966 967 uint64_t StartAddr = UINT64_MAX; 968 // The Sections with -T<section> have been sorted in order of ascending 969 // address. We must lower StartAddr if the lowest -T<section address> as 970 // calls to setDot() must be monotonically increasing. 971 for (auto &KV : Config->SectionStartMap) 972 StartAddr = std::min(StartAddr, KV.second); 973 return std::min(StartAddr, Target->getImageBase() + elf::getHeaderSize()); 974 } 975 976 // Here we assign addresses as instructed by linker script SECTIONS 977 // sub-commands. Doing that allows us to use final VA values, so here 978 // we also handle rest commands like symbol assignments and ASSERTs. 979 void LinkerScript::assignAddresses() { 980 Dot = getInitialDot(); 981 982 auto Deleter = make_unique<AddressState>(); 983 Ctx = Deleter.get(); 984 ErrorOnMissingSection = true; 985 switchTo(Aether); 986 987 for (BaseCommand *Base : SectionCommands) { 988 if (auto *Cmd = dyn_cast<SymbolAssignment>(Base)) { 989 assignSymbol(Cmd, false); 990 continue; 991 } 992 993 if (auto *Cmd = dyn_cast<AssertCommand>(Base)) { 994 Cmd->Expression(); 995 continue; 996 } 997 998 assignOffsets(cast<OutputSection>(Base)); 999 } 1000 Ctx = nullptr; 1001 } 1002 1003 // Creates program headers as instructed by PHDRS linker script command. 1004 std::vector<PhdrEntry *> LinkerScript::createPhdrs() { 1005 std::vector<PhdrEntry *> Ret; 1006 1007 // Process PHDRS and FILEHDR keywords because they are not 1008 // real output sections and cannot be added in the following loop. 1009 for (const PhdrsCommand &Cmd : PhdrsCommands) { 1010 PhdrEntry *Phdr = make<PhdrEntry>(Cmd.Type, Cmd.Flags ? *Cmd.Flags : PF_R); 1011 1012 if (Cmd.HasFilehdr) 1013 Phdr->add(Out::ElfHeader); 1014 if (Cmd.HasPhdrs) 1015 Phdr->add(Out::ProgramHeaders); 1016 1017 if (Cmd.LMAExpr) { 1018 Phdr->p_paddr = Cmd.LMAExpr().getValue(); 1019 Phdr->HasLMA = true; 1020 } 1021 Ret.push_back(Phdr); 1022 } 1023 1024 // Add output sections to program headers. 1025 for (OutputSection *Sec : OutputSections) { 1026 // Assign headers specified by linker script 1027 for (size_t Id : getPhdrIndices(Sec)) { 1028 Ret[Id]->add(Sec); 1029 if (!PhdrsCommands[Id].Flags.hasValue()) 1030 Ret[Id]->p_flags |= Sec->getPhdrFlags(); 1031 } 1032 } 1033 return Ret; 1034 } 1035 1036 // Returns true if we should emit an .interp section. 1037 // 1038 // We usually do. But if PHDRS commands are given, and 1039 // no PT_INTERP is there, there's no place to emit an 1040 // .interp, so we don't do that in that case. 1041 bool LinkerScript::needsInterpSection() { 1042 if (PhdrsCommands.empty()) 1043 return true; 1044 for (PhdrsCommand &Cmd : PhdrsCommands) 1045 if (Cmd.Type == PT_INTERP) 1046 return true; 1047 return false; 1048 } 1049 1050 ExprValue LinkerScript::getSymbolValue(StringRef Name, const Twine &Loc) { 1051 if (Name == ".") { 1052 if (Ctx) 1053 return {Ctx->OutSec, false, Dot - Ctx->OutSec->Addr, Loc}; 1054 error(Loc + ": unable to get location counter value"); 1055 return 0; 1056 } 1057 1058 if (Symbol *Sym = Symtab->find(Name)) { 1059 if (auto *DS = dyn_cast<Defined>(Sym)) 1060 return {DS->Section, false, DS->Value, Loc}; 1061 if (auto *SS = dyn_cast<SharedSymbol>(Sym)) 1062 if (!ErrorOnMissingSection || SS->CopyRelSec) 1063 return {SS->CopyRelSec, false, 0, Loc}; 1064 } 1065 1066 error(Loc + ": symbol not found: " + Name); 1067 return 0; 1068 } 1069 1070 // Returns the index of the segment named Name. 1071 static Optional<size_t> getPhdrIndex(ArrayRef<PhdrsCommand> Vec, 1072 StringRef Name) { 1073 for (size_t I = 0; I < Vec.size(); ++I) 1074 if (Vec[I].Name == Name) 1075 return I; 1076 return None; 1077 } 1078 1079 // Returns indices of ELF headers containing specific section. Each index is a 1080 // zero based number of ELF header listed within PHDRS {} script block. 1081 std::vector<size_t> LinkerScript::getPhdrIndices(OutputSection *Cmd) { 1082 std::vector<size_t> Ret; 1083 1084 for (StringRef S : Cmd->Phdrs) { 1085 if (Optional<size_t> Idx = getPhdrIndex(PhdrsCommands, S)) 1086 Ret.push_back(*Idx); 1087 else if (S != "NONE") 1088 error(Cmd->Location + ": section header '" + S + 1089 "' is not listed in PHDRS"); 1090 } 1091 return Ret; 1092 } 1093