1 //===- LinkerScript.cpp ---------------------------------------------------===// 2 // 3 // The LLVM Linker 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the parser/evaluator of the linker script. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "LinkerScript.h" 15 #include "Config.h" 16 #include "InputSection.h" 17 #include "OutputSections.h" 18 #include "SymbolTable.h" 19 #include "Symbols.h" 20 #include "SyntheticSections.h" 21 #include "Target.h" 22 #include "Writer.h" 23 #include "lld/Common/Memory.h" 24 #include "lld/Common/Strings.h" 25 #include "lld/Common/Threads.h" 26 #include "llvm/ADT/STLExtras.h" 27 #include "llvm/ADT/StringRef.h" 28 #include "llvm/BinaryFormat/ELF.h" 29 #include "llvm/Support/Casting.h" 30 #include "llvm/Support/Endian.h" 31 #include "llvm/Support/ErrorHandling.h" 32 #include "llvm/Support/FileSystem.h" 33 #include "llvm/Support/Path.h" 34 #include <algorithm> 35 #include <cassert> 36 #include <cstddef> 37 #include <cstdint> 38 #include <iterator> 39 #include <limits> 40 #include <string> 41 #include <vector> 42 43 using namespace llvm; 44 using namespace llvm::ELF; 45 using namespace llvm::object; 46 using namespace llvm::support::endian; 47 using namespace lld; 48 using namespace lld::elf; 49 50 LinkerScript *elf::Script; 51 52 static uint64_t getOutputSectionVA(SectionBase *InputSec, StringRef Loc) { 53 if (OutputSection *OS = InputSec->getOutputSection()) 54 return OS->Addr; 55 error(Loc + ": unable to evaluate expression: input section " + 56 InputSec->Name + " has no output section assigned"); 57 return 0; 58 } 59 60 uint64_t ExprValue::getValue() const { 61 if (Sec) 62 return alignTo(Sec->getOffset(Val) + getOutputSectionVA(Sec, Loc), 63 Alignment); 64 return alignTo(Val, Alignment); 65 } 66 67 uint64_t ExprValue::getSecAddr() const { 68 if (Sec) 69 return Sec->getOffset(0) + getOutputSectionVA(Sec, Loc); 70 return 0; 71 } 72 73 uint64_t ExprValue::getSectionOffset() const { 74 // If the alignment is trivial, we don't have to compute the full 75 // value to know the offset. This allows this function to succeed in 76 // cases where the output section is not yet known. 77 if (Alignment == 1 && (!Sec || !Sec->getOutputSection())) 78 return Val; 79 return getValue() - getSecAddr(); 80 } 81 82 OutputSection *LinkerScript::createOutputSection(StringRef Name, 83 StringRef Location) { 84 OutputSection *&SecRef = NameToOutputSection[Name]; 85 OutputSection *Sec; 86 if (SecRef && SecRef->Location.empty()) { 87 // There was a forward reference. 88 Sec = SecRef; 89 } else { 90 Sec = make<OutputSection>(Name, SHT_NOBITS, 0); 91 if (!SecRef) 92 SecRef = Sec; 93 } 94 Sec->Location = Location; 95 return Sec; 96 } 97 98 OutputSection *LinkerScript::getOrCreateOutputSection(StringRef Name) { 99 OutputSection *&CmdRef = NameToOutputSection[Name]; 100 if (!CmdRef) 101 CmdRef = make<OutputSection>(Name, SHT_PROGBITS, 0); 102 return CmdRef; 103 } 104 105 // Expands the memory region by the specified size. 106 static void expandMemoryRegion(MemoryRegion *MemRegion, uint64_t Size, 107 StringRef RegionName, StringRef SecName) { 108 MemRegion->CurPos += Size; 109 uint64_t NewSize = MemRegion->CurPos - MemRegion->Origin; 110 if (NewSize > MemRegion->Length) 111 error("section '" + SecName + "' will not fit in region '" + RegionName + 112 "': overflowed by " + Twine(NewSize - MemRegion->Length) + " bytes"); 113 } 114 115 void LinkerScript::expandMemoryRegions(uint64_t Size) { 116 if (Ctx->MemRegion) 117 expandMemoryRegion(Ctx->MemRegion, Size, Ctx->MemRegion->Name, 118 Ctx->OutSec->Name); 119 // Only expand the LMARegion if it is different from MemRegion. 120 if (Ctx->LMARegion && Ctx->MemRegion != Ctx->LMARegion) 121 expandMemoryRegion(Ctx->LMARegion, Size, Ctx->LMARegion->Name, 122 Ctx->OutSec->Name); 123 } 124 125 void LinkerScript::expandOutputSection(uint64_t Size) { 126 Ctx->OutSec->Size += Size; 127 expandMemoryRegions(Size); 128 } 129 130 void LinkerScript::setDot(Expr E, const Twine &Loc, bool InSec) { 131 uint64_t Val = E().getValue(); 132 if (Val < Dot && InSec) 133 error(Loc + ": unable to move location counter backward for: " + 134 Ctx->OutSec->Name); 135 136 // Update to location counter means update to section size. 137 if (InSec) 138 expandOutputSection(Val - Dot); 139 else 140 expandMemoryRegions(Val - Dot); 141 142 Dot = Val; 143 } 144 145 // Used for handling linker symbol assignments, for both finalizing 146 // their values and doing early declarations. Returns true if symbol 147 // should be defined from linker script. 148 static bool shouldDefineSym(SymbolAssignment *Cmd) { 149 if (Cmd->Name == ".") 150 return false; 151 152 if (!Cmd->Provide) 153 return true; 154 155 // If a symbol was in PROVIDE(), we need to define it only 156 // when it is a referenced undefined symbol. 157 Symbol *B = Symtab->find(Cmd->Name); 158 if (B && !B->isDefined()) 159 return true; 160 return false; 161 } 162 163 // This function is called from processSectionCommands, 164 // while we are fixing the output section layout. 165 void LinkerScript::addSymbol(SymbolAssignment *Cmd) { 166 if (!shouldDefineSym(Cmd)) 167 return; 168 169 // Define a symbol. 170 Symbol *Sym; 171 uint8_t Visibility = Cmd->Hidden ? STV_HIDDEN : STV_DEFAULT; 172 std::tie(Sym, std::ignore) = Symtab->insert(Cmd->Name, Visibility, 173 /*CanOmitFromDynSym*/ false, 174 /*File*/ nullptr); 175 ExprValue Value = Cmd->Expression(); 176 SectionBase *Sec = Value.isAbsolute() ? nullptr : Value.Sec; 177 178 // When this function is called, section addresses have not been 179 // fixed yet. So, we may or may not know the value of the RHS 180 // expression. 181 // 182 // For example, if an expression is `x = 42`, we know x is always 42. 183 // However, if an expression is `x = .`, there's no way to know its 184 // value at the moment. 185 // 186 // We want to set symbol values early if we can. This allows us to 187 // use symbols as variables in linker scripts. Doing so allows us to 188 // write expressions like this: `alignment = 16; . = ALIGN(., alignment)`. 189 uint64_t SymValue = Value.Sec ? 0 : Value.getValue(); 190 191 replaceSymbol<Defined>(Sym, nullptr, Cmd->Name, STB_GLOBAL, Visibility, 192 STT_NOTYPE, SymValue, 0, Sec); 193 Cmd->Sym = cast<Defined>(Sym); 194 } 195 196 // This function is called from LinkerScript::declareSymbols. 197 // It creates a placeholder symbol if needed. 198 static void declareSymbol(SymbolAssignment *Cmd) { 199 if (!shouldDefineSym(Cmd)) 200 return; 201 202 // We can't calculate final value right now. 203 Symbol *Sym; 204 uint8_t Visibility = Cmd->Hidden ? STV_HIDDEN : STV_DEFAULT; 205 std::tie(Sym, std::ignore) = Symtab->insert(Cmd->Name, Visibility, 206 /*CanOmitFromDynSym*/ false, 207 /*File*/ nullptr); 208 replaceSymbol<Defined>(Sym, nullptr, Cmd->Name, STB_GLOBAL, Visibility, 209 STT_NOTYPE, 0, 0, nullptr); 210 Cmd->Sym = cast<Defined>(Sym); 211 Cmd->Provide = false; 212 Sym->ScriptDefined = true; 213 } 214 215 // This method is used to handle INSERT AFTER statement. Here we rebuild 216 // the list of script commands to mix sections inserted into. 217 void LinkerScript::processInsertCommands() { 218 std::vector<BaseCommand *> V; 219 auto Insert = [&](std::vector<BaseCommand *> &From) { 220 V.insert(V.end(), From.begin(), From.end()); 221 From.clear(); 222 }; 223 224 for (BaseCommand *Base : SectionCommands) { 225 if (auto *OS = dyn_cast<OutputSection>(Base)) { 226 Insert(InsertBeforeCommands[OS->Name]); 227 V.push_back(Base); 228 Insert(InsertAfterCommands[OS->Name]); 229 continue; 230 } 231 V.push_back(Base); 232 } 233 234 for (auto &Cmds : {InsertBeforeCommands, InsertAfterCommands}) 235 for (const std::pair<StringRef, std::vector<BaseCommand *>> &P : Cmds) 236 if (!P.second.empty()) 237 error("unable to INSERT AFTER/BEFORE " + P.first + 238 ": section not defined"); 239 240 SectionCommands = std::move(V); 241 } 242 243 // Symbols defined in script should not be inlined by LTO. At the same time 244 // we don't know their final values until late stages of link. Here we scan 245 // over symbol assignment commands and create placeholder symbols if needed. 246 void LinkerScript::declareSymbols() { 247 assert(!Ctx); 248 for (BaseCommand *Base : SectionCommands) { 249 if (auto *Cmd = dyn_cast<SymbolAssignment>(Base)) { 250 declareSymbol(Cmd); 251 continue; 252 } 253 254 // If the output section directive has constraints, 255 // we can't say for sure if it is going to be included or not. 256 // Skip such sections for now. Improve the checks if we ever 257 // need symbols from that sections to be declared early. 258 auto *Sec = cast<OutputSection>(Base); 259 if (Sec->Constraint != ConstraintKind::NoConstraint) 260 continue; 261 for (BaseCommand *Base2 : Sec->SectionCommands) 262 if (auto *Cmd = dyn_cast<SymbolAssignment>(Base2)) 263 declareSymbol(Cmd); 264 } 265 } 266 267 // This function is called from assignAddresses, while we are 268 // fixing the output section addresses. This function is supposed 269 // to set the final value for a given symbol assignment. 270 void LinkerScript::assignSymbol(SymbolAssignment *Cmd, bool InSec) { 271 if (Cmd->Name == ".") { 272 setDot(Cmd->Expression, Cmd->Location, InSec); 273 return; 274 } 275 276 if (!Cmd->Sym) 277 return; 278 279 ExprValue V = Cmd->Expression(); 280 if (V.isAbsolute()) { 281 Cmd->Sym->Section = nullptr; 282 Cmd->Sym->Value = V.getValue(); 283 } else { 284 Cmd->Sym->Section = V.Sec; 285 Cmd->Sym->Value = V.getSectionOffset(); 286 } 287 } 288 289 static std::string getFilename(InputFile *File) { 290 if (!File) 291 return ""; 292 if (File->ArchiveName.empty()) 293 return File->getName(); 294 return (File->ArchiveName + "(" + File->getName() + ")").str(); 295 } 296 297 bool LinkerScript::shouldKeep(InputSectionBase *S) { 298 if (KeptSections.empty()) 299 return false; 300 std::string Filename = getFilename(S->File); 301 for (InputSectionDescription *ID : KeptSections) 302 if (ID->FilePat.match(Filename)) 303 for (SectionPattern &P : ID->SectionPatterns) 304 if (P.SectionPat.match(S->Name)) 305 return true; 306 return false; 307 } 308 309 // A helper function for the SORT() command. 310 static std::function<bool(InputSectionBase *, InputSectionBase *)> 311 getComparator(SortSectionPolicy K) { 312 switch (K) { 313 case SortSectionPolicy::Alignment: 314 return [](InputSectionBase *A, InputSectionBase *B) { 315 // ">" is not a mistake. Sections with larger alignments are placed 316 // before sections with smaller alignments in order to reduce the 317 // amount of padding necessary. This is compatible with GNU. 318 return A->Alignment > B->Alignment; 319 }; 320 case SortSectionPolicy::Name: 321 return [](InputSectionBase *A, InputSectionBase *B) { 322 return A->Name < B->Name; 323 }; 324 case SortSectionPolicy::Priority: 325 return [](InputSectionBase *A, InputSectionBase *B) { 326 return getPriority(A->Name) < getPriority(B->Name); 327 }; 328 default: 329 llvm_unreachable("unknown sort policy"); 330 } 331 } 332 333 // A helper function for the SORT() command. 334 static bool matchConstraints(ArrayRef<InputSection *> Sections, 335 ConstraintKind Kind) { 336 if (Kind == ConstraintKind::NoConstraint) 337 return true; 338 339 bool IsRW = llvm::any_of( 340 Sections, [](InputSection *Sec) { return Sec->Flags & SHF_WRITE; }); 341 342 return (IsRW && Kind == ConstraintKind::ReadWrite) || 343 (!IsRW && Kind == ConstraintKind::ReadOnly); 344 } 345 346 static void sortSections(MutableArrayRef<InputSection *> Vec, 347 SortSectionPolicy K) { 348 if (K != SortSectionPolicy::Default && K != SortSectionPolicy::None) 349 std::stable_sort(Vec.begin(), Vec.end(), getComparator(K)); 350 } 351 352 // Sort sections as instructed by SORT-family commands and --sort-section 353 // option. Because SORT-family commands can be nested at most two depth 354 // (e.g. SORT_BY_NAME(SORT_BY_ALIGNMENT(.text.*))) and because the command 355 // line option is respected even if a SORT command is given, the exact 356 // behavior we have here is a bit complicated. Here are the rules. 357 // 358 // 1. If two SORT commands are given, --sort-section is ignored. 359 // 2. If one SORT command is given, and if it is not SORT_NONE, 360 // --sort-section is handled as an inner SORT command. 361 // 3. If one SORT command is given, and if it is SORT_NONE, don't sort. 362 // 4. If no SORT command is given, sort according to --sort-section. 363 static void sortInputSections(MutableArrayRef<InputSection *> Vec, 364 const SectionPattern &Pat) { 365 if (Pat.SortOuter == SortSectionPolicy::None) 366 return; 367 368 if (Pat.SortInner == SortSectionPolicy::Default) 369 sortSections(Vec, Config->SortSection); 370 else 371 sortSections(Vec, Pat.SortInner); 372 sortSections(Vec, Pat.SortOuter); 373 } 374 375 // Compute and remember which sections the InputSectionDescription matches. 376 std::vector<InputSection *> 377 LinkerScript::computeInputSections(const InputSectionDescription *Cmd) { 378 std::vector<InputSection *> Ret; 379 380 // Collects all sections that satisfy constraints of Cmd. 381 for (const SectionPattern &Pat : Cmd->SectionPatterns) { 382 size_t SizeBefore = Ret.size(); 383 384 for (InputSectionBase *Sec : InputSections) { 385 if (!Sec->Live || Sec->Assigned) 386 continue; 387 388 // For -emit-relocs we have to ignore entries like 389 // .rela.dyn : { *(.rela.data) } 390 // which are common because they are in the default bfd script. 391 // We do not ignore SHT_REL[A] linker-synthesized sections here because 392 // want to support scripts that do custom layout for them. 393 if (auto *IS = dyn_cast<InputSection>(Sec)) 394 if (IS->getRelocatedSection()) 395 continue; 396 397 std::string Filename = getFilename(Sec->File); 398 if (!Cmd->FilePat.match(Filename) || 399 Pat.ExcludedFilePat.match(Filename) || 400 !Pat.SectionPat.match(Sec->Name)) 401 continue; 402 403 // It is safe to assume that Sec is an InputSection 404 // because mergeable or EH input sections have already been 405 // handled and eliminated. 406 Ret.push_back(cast<InputSection>(Sec)); 407 Sec->Assigned = true; 408 } 409 410 sortInputSections(MutableArrayRef<InputSection *>(Ret).slice(SizeBefore), 411 Pat); 412 } 413 return Ret; 414 } 415 416 void LinkerScript::discard(ArrayRef<InputSection *> V) { 417 for (InputSection *S : V) { 418 if (S == In.ShStrTab || S == In.RelaDyn || S == In.RelrDyn) 419 error("discarding " + S->Name + " section is not allowed"); 420 421 // You can discard .hash and .gnu.hash sections by linker scripts. Since 422 // they are synthesized sections, we need to handle them differently than 423 // other regular sections. 424 if (S == In.GnuHashTab) 425 In.GnuHashTab = nullptr; 426 if (S == In.HashTab) 427 In.HashTab = nullptr; 428 429 S->Assigned = false; 430 S->Live = false; 431 discard(S->DependentSections); 432 } 433 } 434 435 std::vector<InputSection *> 436 LinkerScript::createInputSectionList(OutputSection &OutCmd) { 437 std::vector<InputSection *> Ret; 438 439 for (BaseCommand *Base : OutCmd.SectionCommands) { 440 if (auto *Cmd = dyn_cast<InputSectionDescription>(Base)) { 441 Cmd->Sections = computeInputSections(Cmd); 442 Ret.insert(Ret.end(), Cmd->Sections.begin(), Cmd->Sections.end()); 443 } 444 } 445 return Ret; 446 } 447 448 void LinkerScript::processSectionCommands() { 449 // A symbol can be assigned before any section is mentioned in the linker 450 // script. In an DSO, the symbol values are addresses, so the only important 451 // section values are: 452 // * SHN_UNDEF 453 // * SHN_ABS 454 // * Any value meaning a regular section. 455 // To handle that, create a dummy aether section that fills the void before 456 // the linker scripts switches to another section. It has an index of one 457 // which will map to whatever the first actual section is. 458 Aether = make<OutputSection>("", 0, SHF_ALLOC); 459 Aether->SectionIndex = 1; 460 461 // Ctx captures the local AddressState and makes it accessible deliberately. 462 // This is needed as there are some cases where we cannot just 463 // thread the current state through to a lambda function created by the 464 // script parser. 465 auto Deleter = make_unique<AddressState>(); 466 Ctx = Deleter.get(); 467 Ctx->OutSec = Aether; 468 469 size_t I = 0; 470 // Add input sections to output sections. 471 for (BaseCommand *Base : SectionCommands) { 472 // Handle symbol assignments outside of any output section. 473 if (auto *Cmd = dyn_cast<SymbolAssignment>(Base)) { 474 addSymbol(Cmd); 475 continue; 476 } 477 478 if (auto *Sec = dyn_cast<OutputSection>(Base)) { 479 std::vector<InputSection *> V = createInputSectionList(*Sec); 480 481 // The output section name `/DISCARD/' is special. 482 // Any input section assigned to it is discarded. 483 if (Sec->Name == "/DISCARD/") { 484 discard(V); 485 Sec->SectionCommands.clear(); 486 continue; 487 } 488 489 // This is for ONLY_IF_RO and ONLY_IF_RW. An output section directive 490 // ".foo : ONLY_IF_R[OW] { ... }" is handled only if all member input 491 // sections satisfy a given constraint. If not, a directive is handled 492 // as if it wasn't present from the beginning. 493 // 494 // Because we'll iterate over SectionCommands many more times, the easy 495 // way to "make it as if it wasn't present" is to make it empty. 496 if (!matchConstraints(V, Sec->Constraint)) { 497 for (InputSectionBase *S : V) 498 S->Assigned = false; 499 Sec->SectionCommands.clear(); 500 continue; 501 } 502 503 // A directive may contain symbol definitions like this: 504 // ".foo : { ...; bar = .; }". Handle them. 505 for (BaseCommand *Base : Sec->SectionCommands) 506 if (auto *OutCmd = dyn_cast<SymbolAssignment>(Base)) 507 addSymbol(OutCmd); 508 509 // Handle subalign (e.g. ".foo : SUBALIGN(32) { ... }"). If subalign 510 // is given, input sections are aligned to that value, whether the 511 // given value is larger or smaller than the original section alignment. 512 if (Sec->SubalignExpr) { 513 uint32_t Subalign = Sec->SubalignExpr().getValue(); 514 for (InputSectionBase *S : V) 515 S->Alignment = Subalign; 516 } 517 518 // Add input sections to an output section. 519 for (InputSection *S : V) 520 Sec->addSection(S); 521 522 Sec->SectionIndex = I++; 523 if (Sec->Noload) 524 Sec->Type = SHT_NOBITS; 525 if (Sec->NonAlloc) 526 Sec->Flags &= ~(uint64_t)SHF_ALLOC; 527 } 528 } 529 Ctx = nullptr; 530 } 531 532 static OutputSection *findByName(ArrayRef<BaseCommand *> Vec, 533 StringRef Name) { 534 for (BaseCommand *Base : Vec) 535 if (auto *Sec = dyn_cast<OutputSection>(Base)) 536 if (Sec->Name == Name) 537 return Sec; 538 return nullptr; 539 } 540 541 static OutputSection *createSection(InputSectionBase *IS, 542 StringRef OutsecName) { 543 OutputSection *Sec = Script->createOutputSection(OutsecName, "<internal>"); 544 Sec->addSection(cast<InputSection>(IS)); 545 return Sec; 546 } 547 548 static OutputSection *addInputSec(StringMap<OutputSection *> &Map, 549 InputSectionBase *IS, StringRef OutsecName) { 550 // Sections with SHT_GROUP or SHF_GROUP attributes reach here only when the -r 551 // option is given. A section with SHT_GROUP defines a "section group", and 552 // its members have SHF_GROUP attribute. Usually these flags have already been 553 // stripped by InputFiles.cpp as section groups are processed and uniquified. 554 // However, for the -r option, we want to pass through all section groups 555 // as-is because adding/removing members or merging them with other groups 556 // change their semantics. 557 if (IS->Type == SHT_GROUP || (IS->Flags & SHF_GROUP)) 558 return createSection(IS, OutsecName); 559 560 // Imagine .zed : { *(.foo) *(.bar) } script. Both foo and bar may have 561 // relocation sections .rela.foo and .rela.bar for example. Most tools do 562 // not allow multiple REL[A] sections for output section. Hence we 563 // should combine these relocation sections into single output. 564 // We skip synthetic sections because it can be .rela.dyn/.rela.plt or any 565 // other REL[A] sections created by linker itself. 566 if (!isa<SyntheticSection>(IS) && 567 (IS->Type == SHT_REL || IS->Type == SHT_RELA)) { 568 auto *Sec = cast<InputSection>(IS); 569 OutputSection *Out = Sec->getRelocatedSection()->getOutputSection(); 570 571 if (Out->RelocationSection) { 572 Out->RelocationSection->addSection(Sec); 573 return nullptr; 574 } 575 576 Out->RelocationSection = createSection(IS, OutsecName); 577 return Out->RelocationSection; 578 } 579 580 // When control reaches here, mergeable sections have already been merged into 581 // synthetic sections. For relocatable case we want to create one output 582 // section per syntetic section so that they have a valid sh_entsize. 583 if (Config->Relocatable && (IS->Flags & SHF_MERGE)) 584 return createSection(IS, OutsecName); 585 586 // The ELF spec just says 587 // ---------------------------------------------------------------- 588 // In the first phase, input sections that match in name, type and 589 // attribute flags should be concatenated into single sections. 590 // ---------------------------------------------------------------- 591 // 592 // However, it is clear that at least some flags have to be ignored for 593 // section merging. At the very least SHF_GROUP and SHF_COMPRESSED have to be 594 // ignored. We should not have two output .text sections just because one was 595 // in a group and another was not for example. 596 // 597 // It also seems that wording was a late addition and didn't get the 598 // necessary scrutiny. 599 // 600 // Merging sections with different flags is expected by some users. One 601 // reason is that if one file has 602 // 603 // int *const bar __attribute__((section(".foo"))) = (int *)0; 604 // 605 // gcc with -fPIC will produce a read only .foo section. But if another 606 // file has 607 // 608 // int zed; 609 // int *const bar __attribute__((section(".foo"))) = (int *)&zed; 610 // 611 // gcc with -fPIC will produce a read write section. 612 // 613 // Last but not least, when using linker script the merge rules are forced by 614 // the script. Unfortunately, linker scripts are name based. This means that 615 // expressions like *(.foo*) can refer to multiple input sections with 616 // different flags. We cannot put them in different output sections or we 617 // would produce wrong results for 618 // 619 // start = .; *(.foo.*) end = .; *(.bar) 620 // 621 // and a mapping of .foo1 and .bar1 to one section and .foo2 and .bar2 to 622 // another. The problem is that there is no way to layout those output 623 // sections such that the .foo sections are the only thing between the start 624 // and end symbols. 625 // 626 // Given the above issues, we instead merge sections by name and error on 627 // incompatible types and flags. 628 OutputSection *&Sec = Map[OutsecName]; 629 if (Sec) { 630 Sec->addSection(cast<InputSection>(IS)); 631 return nullptr; 632 } 633 634 Sec = createSection(IS, OutsecName); 635 return Sec; 636 } 637 638 // Add sections that didn't match any sections command. 639 void LinkerScript::addOrphanSections() { 640 unsigned End = SectionCommands.size(); 641 StringMap<OutputSection *> Map; 642 std::vector<OutputSection *> V; 643 644 auto Add = [&](InputSectionBase *S) { 645 if (!S->Live || S->Parent) 646 return; 647 648 StringRef Name = getOutputSectionName(S); 649 650 if (Config->OrphanHandling == OrphanHandlingPolicy::Error) 651 error(toString(S) + " is being placed in '" + Name + "'"); 652 else if (Config->OrphanHandling == OrphanHandlingPolicy::Warn) 653 warn(toString(S) + " is being placed in '" + Name + "'"); 654 655 if (OutputSection *Sec = 656 findByName(makeArrayRef(SectionCommands).slice(0, End), Name)) { 657 Sec->addSection(cast<InputSection>(S)); 658 return; 659 } 660 661 if (OutputSection *OS = addInputSec(Map, S, Name)) 662 V.push_back(OS); 663 assert(S->getOutputSection()->SectionIndex == UINT32_MAX); 664 }; 665 666 // For futher --emit-reloc handling code we need target output section 667 // to be created before we create relocation output section, so we want 668 // to create target sections first. We do not want priority handling 669 // for synthetic sections because them are special. 670 for (InputSectionBase *IS : InputSections) { 671 if (auto *Sec = dyn_cast<InputSection>(IS)) 672 if (InputSectionBase *Rel = Sec->getRelocatedSection()) 673 if (auto *RelIS = dyn_cast_or_null<InputSectionBase>(Rel->Parent)) 674 Add(RelIS); 675 Add(IS); 676 } 677 678 // If no SECTIONS command was given, we should insert sections commands 679 // before others, so that we can handle scripts which refers them, 680 // for example: "foo = ABSOLUTE(ADDR(.text)));". 681 // When SECTIONS command is present we just add all orphans to the end. 682 if (HasSectionsCommand) 683 SectionCommands.insert(SectionCommands.end(), V.begin(), V.end()); 684 else 685 SectionCommands.insert(SectionCommands.begin(), V.begin(), V.end()); 686 } 687 688 uint64_t LinkerScript::advance(uint64_t Size, unsigned Alignment) { 689 bool IsTbss = 690 (Ctx->OutSec->Flags & SHF_TLS) && Ctx->OutSec->Type == SHT_NOBITS; 691 uint64_t Start = IsTbss ? Dot + Ctx->ThreadBssOffset : Dot; 692 Start = alignTo(Start, Alignment); 693 uint64_t End = Start + Size; 694 695 if (IsTbss) 696 Ctx->ThreadBssOffset = End - Dot; 697 else 698 Dot = End; 699 return End; 700 } 701 702 void LinkerScript::output(InputSection *S) { 703 assert(Ctx->OutSec == S->getParent()); 704 uint64_t Before = advance(0, 1); 705 uint64_t Pos = advance(S->getSize(), S->Alignment); 706 S->OutSecOff = Pos - S->getSize() - Ctx->OutSec->Addr; 707 708 // Update output section size after adding each section. This is so that 709 // SIZEOF works correctly in the case below: 710 // .foo { *(.aaa) a = SIZEOF(.foo); *(.bbb) } 711 expandOutputSection(Pos - Before); 712 } 713 714 void LinkerScript::switchTo(OutputSection *Sec) { 715 Ctx->OutSec = Sec; 716 717 uint64_t Before = advance(0, 1); 718 Ctx->OutSec->Addr = advance(0, Ctx->OutSec->Alignment); 719 expandMemoryRegions(Ctx->OutSec->Addr - Before); 720 } 721 722 // This function searches for a memory region to place the given output 723 // section in. If found, a pointer to the appropriate memory region is 724 // returned. Otherwise, a nullptr is returned. 725 MemoryRegion *LinkerScript::findMemoryRegion(OutputSection *Sec) { 726 // If a memory region name was specified in the output section command, 727 // then try to find that region first. 728 if (!Sec->MemoryRegionName.empty()) { 729 if (MemoryRegion *M = MemoryRegions.lookup(Sec->MemoryRegionName)) 730 return M; 731 error("memory region '" + Sec->MemoryRegionName + "' not declared"); 732 return nullptr; 733 } 734 735 // If at least one memory region is defined, all sections must 736 // belong to some memory region. Otherwise, we don't need to do 737 // anything for memory regions. 738 if (MemoryRegions.empty()) 739 return nullptr; 740 741 // See if a region can be found by matching section flags. 742 for (auto &Pair : MemoryRegions) { 743 MemoryRegion *M = Pair.second; 744 if ((M->Flags & Sec->Flags) && (M->NegFlags & Sec->Flags) == 0) 745 return M; 746 } 747 748 // Otherwise, no suitable region was found. 749 if (Sec->Flags & SHF_ALLOC) 750 error("no memory region specified for section '" + Sec->Name + "'"); 751 return nullptr; 752 } 753 754 static OutputSection *findFirstSection(PhdrEntry *Load) { 755 for (OutputSection *Sec : OutputSections) 756 if (Sec->PtLoad == Load) 757 return Sec; 758 return nullptr; 759 } 760 761 // This function assigns offsets to input sections and an output section 762 // for a single sections command (e.g. ".text { *(.text); }"). 763 void LinkerScript::assignOffsets(OutputSection *Sec) { 764 if (!(Sec->Flags & SHF_ALLOC)) 765 Dot = 0; 766 else if (Sec->AddrExpr) 767 setDot(Sec->AddrExpr, Sec->Location, false); 768 769 Ctx->MemRegion = Sec->MemRegion; 770 Ctx->LMARegion = Sec->LMARegion; 771 if (Ctx->MemRegion) 772 Dot = Ctx->MemRegion->CurPos; 773 774 switchTo(Sec); 775 776 if (Sec->LMAExpr) 777 Ctx->LMAOffset = Sec->LMAExpr().getValue() - Dot; 778 779 if (MemoryRegion *MR = Sec->LMARegion) 780 Ctx->LMAOffset = MR->CurPos - Dot; 781 782 // If neither AT nor AT> is specified for an allocatable section, the linker 783 // will set the LMA such that the difference between VMA and LMA for the 784 // section is the same as the preceding output section in the same region 785 // https://sourceware.org/binutils/docs-2.20/ld/Output-Section-LMA.html 786 // This, however, should only be done by the first "non-header" section 787 // in the segment. 788 if (PhdrEntry *L = Ctx->OutSec->PtLoad) 789 if (Sec == findFirstSection(L)) 790 L->LMAOffset = Ctx->LMAOffset; 791 792 // We can call this method multiple times during the creation of 793 // thunks and want to start over calculation each time. 794 Sec->Size = 0; 795 796 // We visited SectionsCommands from processSectionCommands to 797 // layout sections. Now, we visit SectionsCommands again to fix 798 // section offsets. 799 for (BaseCommand *Base : Sec->SectionCommands) { 800 // This handles the assignments to symbol or to the dot. 801 if (auto *Cmd = dyn_cast<SymbolAssignment>(Base)) { 802 Cmd->Addr = Dot; 803 assignSymbol(Cmd, true); 804 Cmd->Size = Dot - Cmd->Addr; 805 continue; 806 } 807 808 // Handle BYTE(), SHORT(), LONG(), or QUAD(). 809 if (auto *Cmd = dyn_cast<ByteCommand>(Base)) { 810 Cmd->Offset = Dot - Ctx->OutSec->Addr; 811 Dot += Cmd->Size; 812 expandOutputSection(Cmd->Size); 813 continue; 814 } 815 816 // Handle a single input section description command. 817 // It calculates and assigns the offsets for each section and also 818 // updates the output section size. 819 for (InputSection *Sec : cast<InputSectionDescription>(Base)->Sections) 820 output(Sec); 821 } 822 } 823 824 static bool isDiscardable(OutputSection &Sec) { 825 // We do not remove empty sections that are explicitly 826 // assigned to any segment. 827 if (!Sec.Phdrs.empty()) 828 return false; 829 830 // We do not want to remove sections that reference symbols in address and 831 // other expressions. We add script symbols as undefined, and want to ensure 832 // all of them are defined in the output, hence have to keep them. 833 if (Sec.ExpressionsUseSymbols) 834 return false; 835 836 for (BaseCommand *Base : Sec.SectionCommands) { 837 if (auto Cmd = dyn_cast<SymbolAssignment>(Base)) 838 // Don't create empty output sections just for unreferenced PROVIDE 839 // symbols. 840 if (Cmd->Name != "." && !Cmd->Sym) 841 continue; 842 843 if (!isa<InputSectionDescription>(*Base)) 844 return false; 845 } 846 return true; 847 } 848 849 void LinkerScript::adjustSectionsBeforeSorting() { 850 // If the output section contains only symbol assignments, create a 851 // corresponding output section. The issue is what to do with linker script 852 // like ".foo : { symbol = 42; }". One option would be to convert it to 853 // "symbol = 42;". That is, move the symbol out of the empty section 854 // description. That seems to be what bfd does for this simple case. The 855 // problem is that this is not completely general. bfd will give up and 856 // create a dummy section too if there is a ". = . + 1" inside the section 857 // for example. 858 // Given that we want to create the section, we have to worry what impact 859 // it will have on the link. For example, if we just create a section with 860 // 0 for flags, it would change which PT_LOADs are created. 861 // We could remember that particular section is dummy and ignore it in 862 // other parts of the linker, but unfortunately there are quite a few places 863 // that would need to change: 864 // * The program header creation. 865 // * The orphan section placement. 866 // * The address assignment. 867 // The other option is to pick flags that minimize the impact the section 868 // will have on the rest of the linker. That is why we copy the flags from 869 // the previous sections. Only a few flags are needed to keep the impact low. 870 uint64_t Flags = SHF_ALLOC; 871 872 for (BaseCommand *&Cmd : SectionCommands) { 873 auto *Sec = dyn_cast<OutputSection>(Cmd); 874 if (!Sec) 875 continue; 876 877 // Handle align (e.g. ".foo : ALIGN(16) { ... }"). 878 if (Sec->AlignExpr) 879 Sec->Alignment = 880 std::max<uint32_t>(Sec->Alignment, Sec->AlignExpr().getValue()); 881 882 // A live output section means that some input section was added to it. It 883 // might have been removed (if it was empty synthetic section), but we at 884 // least know the flags. 885 if (Sec->Live) 886 Flags = Sec->Flags; 887 888 // We do not want to keep any special flags for output section 889 // in case it is empty. 890 bool IsEmpty = getInputSections(Sec).empty(); 891 if (IsEmpty) 892 Sec->Flags = Flags & (SHF_ALLOC | SHF_WRITE | SHF_EXECINSTR); 893 894 if (IsEmpty && isDiscardable(*Sec)) { 895 Sec->Live = false; 896 Cmd = nullptr; 897 } 898 } 899 900 // It is common practice to use very generic linker scripts. So for any 901 // given run some of the output sections in the script will be empty. 902 // We could create corresponding empty output sections, but that would 903 // clutter the output. 904 // We instead remove trivially empty sections. The bfd linker seems even 905 // more aggressive at removing them. 906 llvm::erase_if(SectionCommands, [&](BaseCommand *Base) { return !Base; }); 907 } 908 909 void LinkerScript::adjustSectionsAfterSorting() { 910 // Try and find an appropriate memory region to assign offsets in. 911 for (BaseCommand *Base : SectionCommands) { 912 if (auto *Sec = dyn_cast<OutputSection>(Base)) { 913 if (!Sec->LMARegionName.empty()) { 914 if (MemoryRegion *M = MemoryRegions.lookup(Sec->LMARegionName)) 915 Sec->LMARegion = M; 916 else 917 error("memory region '" + Sec->LMARegionName + "' not declared"); 918 } 919 Sec->MemRegion = findMemoryRegion(Sec); 920 } 921 } 922 923 // If output section command doesn't specify any segments, 924 // and we haven't previously assigned any section to segment, 925 // then we simply assign section to the very first load segment. 926 // Below is an example of such linker script: 927 // PHDRS { seg PT_LOAD; } 928 // SECTIONS { .aaa : { *(.aaa) } } 929 std::vector<StringRef> DefPhdrs; 930 auto FirstPtLoad = llvm::find_if(PhdrsCommands, [](const PhdrsCommand &Cmd) { 931 return Cmd.Type == PT_LOAD; 932 }); 933 if (FirstPtLoad != PhdrsCommands.end()) 934 DefPhdrs.push_back(FirstPtLoad->Name); 935 936 // Walk the commands and propagate the program headers to commands that don't 937 // explicitly specify them. 938 for (BaseCommand *Base : SectionCommands) { 939 auto *Sec = dyn_cast<OutputSection>(Base); 940 if (!Sec) 941 continue; 942 943 if (Sec->Phdrs.empty()) { 944 // To match the bfd linker script behaviour, only propagate program 945 // headers to sections that are allocated. 946 if (Sec->Flags & SHF_ALLOC) 947 Sec->Phdrs = DefPhdrs; 948 } else { 949 DefPhdrs = Sec->Phdrs; 950 } 951 } 952 } 953 954 static uint64_t computeBase(uint64_t Min, bool AllocateHeaders) { 955 // If there is no SECTIONS or if the linkerscript is explicit about program 956 // headers, do our best to allocate them. 957 if (!Script->HasSectionsCommand || AllocateHeaders) 958 return 0; 959 // Otherwise only allocate program headers if that would not add a page. 960 return alignDown(Min, Config->MaxPageSize); 961 } 962 963 // Try to find an address for the file and program headers output sections, 964 // which were unconditionally added to the first PT_LOAD segment earlier. 965 // 966 // When using the default layout, we check if the headers fit below the first 967 // allocated section. When using a linker script, we also check if the headers 968 // are covered by the output section. This allows omitting the headers by not 969 // leaving enough space for them in the linker script; this pattern is common 970 // in embedded systems. 971 // 972 // If there isn't enough space for these sections, we'll remove them from the 973 // PT_LOAD segment, and we'll also remove the PT_PHDR segment. 974 void LinkerScript::allocateHeaders(std::vector<PhdrEntry *> &Phdrs) { 975 uint64_t Min = std::numeric_limits<uint64_t>::max(); 976 for (OutputSection *Sec : OutputSections) 977 if (Sec->Flags & SHF_ALLOC) 978 Min = std::min<uint64_t>(Min, Sec->Addr); 979 980 auto It = llvm::find_if( 981 Phdrs, [](const PhdrEntry *E) { return E->p_type == PT_LOAD; }); 982 if (It == Phdrs.end()) 983 return; 984 PhdrEntry *FirstPTLoad = *It; 985 986 bool HasExplicitHeaders = 987 llvm::any_of(PhdrsCommands, [](const PhdrsCommand &Cmd) { 988 return Cmd.HasPhdrs || Cmd.HasFilehdr; 989 }); 990 uint64_t HeaderSize = getHeaderSize(); 991 if (HeaderSize <= Min - computeBase(Min, HasExplicitHeaders)) { 992 Min = alignDown(Min - HeaderSize, Config->MaxPageSize); 993 Out::ElfHeader->Addr = Min; 994 Out::ProgramHeaders->Addr = Min + Out::ElfHeader->Size; 995 return; 996 } 997 998 // Error if we were explicitly asked to allocate headers. 999 if (HasExplicitHeaders) 1000 error("could not allocate headers"); 1001 1002 Out::ElfHeader->PtLoad = nullptr; 1003 Out::ProgramHeaders->PtLoad = nullptr; 1004 FirstPTLoad->FirstSec = findFirstSection(FirstPTLoad); 1005 1006 llvm::erase_if(Phdrs, 1007 [](const PhdrEntry *E) { return E->p_type == PT_PHDR; }); 1008 } 1009 1010 LinkerScript::AddressState::AddressState() { 1011 for (auto &MRI : Script->MemoryRegions) { 1012 MemoryRegion *MR = MRI.second; 1013 MR->CurPos = MR->Origin; 1014 } 1015 } 1016 1017 static uint64_t getInitialDot() { 1018 // By default linker scripts use an initial value of 0 for '.', 1019 // but prefer -image-base if set. 1020 if (Script->HasSectionsCommand) 1021 return Config->ImageBase ? *Config->ImageBase : 0; 1022 1023 uint64_t StartAddr = UINT64_MAX; 1024 // The Sections with -T<section> have been sorted in order of ascending 1025 // address. We must lower StartAddr if the lowest -T<section address> as 1026 // calls to setDot() must be monotonically increasing. 1027 for (auto &KV : Config->SectionStartMap) 1028 StartAddr = std::min(StartAddr, KV.second); 1029 return std::min(StartAddr, Target->getImageBase() + elf::getHeaderSize()); 1030 } 1031 1032 // Here we assign addresses as instructed by linker script SECTIONS 1033 // sub-commands. Doing that allows us to use final VA values, so here 1034 // we also handle rest commands like symbol assignments and ASSERTs. 1035 void LinkerScript::assignAddresses() { 1036 Dot = getInitialDot(); 1037 1038 auto Deleter = make_unique<AddressState>(); 1039 Ctx = Deleter.get(); 1040 ErrorOnMissingSection = true; 1041 switchTo(Aether); 1042 1043 for (BaseCommand *Base : SectionCommands) { 1044 if (auto *Cmd = dyn_cast<SymbolAssignment>(Base)) { 1045 Cmd->Addr = Dot; 1046 assignSymbol(Cmd, false); 1047 Cmd->Size = Dot - Cmd->Addr; 1048 continue; 1049 } 1050 assignOffsets(cast<OutputSection>(Base)); 1051 } 1052 Ctx = nullptr; 1053 } 1054 1055 // Creates program headers as instructed by PHDRS linker script command. 1056 std::vector<PhdrEntry *> LinkerScript::createPhdrs() { 1057 std::vector<PhdrEntry *> Ret; 1058 1059 // Process PHDRS and FILEHDR keywords because they are not 1060 // real output sections and cannot be added in the following loop. 1061 for (const PhdrsCommand &Cmd : PhdrsCommands) { 1062 PhdrEntry *Phdr = make<PhdrEntry>(Cmd.Type, Cmd.Flags ? *Cmd.Flags : PF_R); 1063 1064 if (Cmd.HasFilehdr) 1065 Phdr->add(Out::ElfHeader); 1066 if (Cmd.HasPhdrs) 1067 Phdr->add(Out::ProgramHeaders); 1068 1069 if (Cmd.LMAExpr) { 1070 Phdr->p_paddr = Cmd.LMAExpr().getValue(); 1071 Phdr->HasLMA = true; 1072 } 1073 Ret.push_back(Phdr); 1074 } 1075 1076 // Add output sections to program headers. 1077 for (OutputSection *Sec : OutputSections) { 1078 // Assign headers specified by linker script 1079 for (size_t Id : getPhdrIndices(Sec)) { 1080 Ret[Id]->add(Sec); 1081 if (!PhdrsCommands[Id].Flags.hasValue()) 1082 Ret[Id]->p_flags |= Sec->getPhdrFlags(); 1083 } 1084 } 1085 return Ret; 1086 } 1087 1088 // Returns true if we should emit an .interp section. 1089 // 1090 // We usually do. But if PHDRS commands are given, and 1091 // no PT_INTERP is there, there's no place to emit an 1092 // .interp, so we don't do that in that case. 1093 bool LinkerScript::needsInterpSection() { 1094 if (PhdrsCommands.empty()) 1095 return true; 1096 for (PhdrsCommand &Cmd : PhdrsCommands) 1097 if (Cmd.Type == PT_INTERP) 1098 return true; 1099 return false; 1100 } 1101 1102 ExprValue LinkerScript::getSymbolValue(StringRef Name, const Twine &Loc) { 1103 if (Name == ".") { 1104 if (Ctx) 1105 return {Ctx->OutSec, false, Dot - Ctx->OutSec->Addr, Loc}; 1106 error(Loc + ": unable to get location counter value"); 1107 return 0; 1108 } 1109 1110 if (Symbol *Sym = Symtab->find(Name)) { 1111 if (auto *DS = dyn_cast<Defined>(Sym)) 1112 return {DS->Section, false, DS->Value, Loc}; 1113 if (isa<SharedSymbol>(Sym)) 1114 if (!ErrorOnMissingSection) 1115 return {nullptr, false, 0, Loc}; 1116 } 1117 1118 error(Loc + ": symbol not found: " + Name); 1119 return 0; 1120 } 1121 1122 // Returns the index of the segment named Name. 1123 static Optional<size_t> getPhdrIndex(ArrayRef<PhdrsCommand> Vec, 1124 StringRef Name) { 1125 for (size_t I = 0; I < Vec.size(); ++I) 1126 if (Vec[I].Name == Name) 1127 return I; 1128 return None; 1129 } 1130 1131 // Returns indices of ELF headers containing specific section. Each index is a 1132 // zero based number of ELF header listed within PHDRS {} script block. 1133 std::vector<size_t> LinkerScript::getPhdrIndices(OutputSection *Cmd) { 1134 std::vector<size_t> Ret; 1135 1136 for (StringRef S : Cmd->Phdrs) { 1137 if (Optional<size_t> Idx = getPhdrIndex(PhdrsCommands, S)) 1138 Ret.push_back(*Idx); 1139 else if (S != "NONE") 1140 error(Cmd->Location + ": section header '" + S + 1141 "' is not listed in PHDRS"); 1142 } 1143 return Ret; 1144 } 1145