1 //===- LinkerScript.cpp ---------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the parser/evaluator of the linker script.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "LinkerScript.h"
14 #include "Config.h"
15 #include "InputSection.h"
16 #include "OutputSections.h"
17 #include "SymbolTable.h"
18 #include "Symbols.h"
19 #include "SyntheticSections.h"
20 #include "Target.h"
21 #include "Writer.h"
22 #include "lld/Common/Memory.h"
23 #include "lld/Common/Strings.h"
24 #include "lld/Common/Threads.h"
25 #include "llvm/ADT/STLExtras.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/BinaryFormat/ELF.h"
28 #include "llvm/Support/Casting.h"
29 #include "llvm/Support/Endian.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/Support/FileSystem.h"
32 #include "llvm/Support/Path.h"
33 #include <algorithm>
34 #include <cassert>
35 #include <cstddef>
36 #include <cstdint>
37 #include <iterator>
38 #include <limits>
39 #include <string>
40 #include <vector>
41 
42 using namespace llvm;
43 using namespace llvm::ELF;
44 using namespace llvm::object;
45 using namespace llvm::support::endian;
46 using namespace lld;
47 using namespace lld::elf;
48 
49 LinkerScript *elf::script;
50 
51 static uint64_t getOutputSectionVA(SectionBase *inputSec, StringRef loc) {
52   if (OutputSection *os = inputSec->getOutputSection())
53     return os->addr;
54   error(loc + ": unable to evaluate expression: input section " +
55         inputSec->name + " has no output section assigned");
56   return 0;
57 }
58 
59 uint64_t ExprValue::getValue() const {
60   if (sec)
61     return alignTo(sec->getOffset(val) + getOutputSectionVA(sec, loc),
62                    alignment);
63   return alignTo(val, alignment);
64 }
65 
66 uint64_t ExprValue::getSecAddr() const {
67   if (sec)
68     return sec->getOffset(0) + getOutputSectionVA(sec, loc);
69   return 0;
70 }
71 
72 uint64_t ExprValue::getSectionOffset() const {
73   // If the alignment is trivial, we don't have to compute the full
74   // value to know the offset. This allows this function to succeed in
75   // cases where the output section is not yet known.
76   if (alignment == 1 && (!sec || !sec->getOutputSection()))
77     return val;
78   return getValue() - getSecAddr();
79 }
80 
81 OutputSection *LinkerScript::createOutputSection(StringRef name,
82                                                  StringRef location) {
83   OutputSection *&secRef = nameToOutputSection[name];
84   OutputSection *sec;
85   if (secRef && secRef->location.empty()) {
86     // There was a forward reference.
87     sec = secRef;
88   } else {
89     sec = make<OutputSection>(name, SHT_PROGBITS, 0);
90     if (!secRef)
91       secRef = sec;
92   }
93   sec->location = location;
94   return sec;
95 }
96 
97 OutputSection *LinkerScript::getOrCreateOutputSection(StringRef name) {
98   OutputSection *&cmdRef = nameToOutputSection[name];
99   if (!cmdRef)
100     cmdRef = make<OutputSection>(name, SHT_PROGBITS, 0);
101   return cmdRef;
102 }
103 
104 // Expands the memory region by the specified size.
105 static void expandMemoryRegion(MemoryRegion *memRegion, uint64_t size,
106                                StringRef regionName, StringRef secName) {
107   memRegion->curPos += size;
108   uint64_t newSize = memRegion->curPos - memRegion->origin;
109   if (newSize > memRegion->length)
110     error("section '" + secName + "' will not fit in region '" + regionName +
111           "': overflowed by " + Twine(newSize - memRegion->length) + " bytes");
112 }
113 
114 void LinkerScript::expandMemoryRegions(uint64_t size) {
115   if (ctx->memRegion)
116     expandMemoryRegion(ctx->memRegion, size, ctx->memRegion->name,
117                        ctx->outSec->name);
118   // Only expand the LMARegion if it is different from memRegion.
119   if (ctx->lmaRegion && ctx->memRegion != ctx->lmaRegion)
120     expandMemoryRegion(ctx->lmaRegion, size, ctx->lmaRegion->name,
121                        ctx->outSec->name);
122 }
123 
124 void LinkerScript::expandOutputSection(uint64_t size) {
125   ctx->outSec->size += size;
126   expandMemoryRegions(size);
127 }
128 
129 void LinkerScript::setDot(Expr e, const Twine &loc, bool inSec) {
130   uint64_t val = e().getValue();
131   if (val < dot && inSec)
132     error(loc + ": unable to move location counter backward for: " +
133           ctx->outSec->name);
134 
135   // Update to location counter means update to section size.
136   if (inSec)
137     expandOutputSection(val - dot);
138 
139   dot = val;
140 }
141 
142 // Used for handling linker symbol assignments, for both finalizing
143 // their values and doing early declarations. Returns true if symbol
144 // should be defined from linker script.
145 static bool shouldDefineSym(SymbolAssignment *cmd) {
146   if (cmd->name == ".")
147     return false;
148 
149   if (!cmd->provide)
150     return true;
151 
152   // If a symbol was in PROVIDE(), we need to define it only
153   // when it is a referenced undefined symbol.
154   Symbol *b = symtab->find(cmd->name);
155   if (b && !b->isDefined())
156     return true;
157   return false;
158 }
159 
160 // This function is called from processSectionCommands,
161 // while we are fixing the output section layout.
162 void LinkerScript::addSymbol(SymbolAssignment *cmd) {
163   if (!shouldDefineSym(cmd))
164     return;
165 
166   // Define a symbol.
167   ExprValue value = cmd->expression();
168   SectionBase *sec = value.isAbsolute() ? nullptr : value.sec;
169   uint8_t visibility = cmd->hidden ? STV_HIDDEN : STV_DEFAULT;
170 
171   // When this function is called, section addresses have not been
172   // fixed yet. So, we may or may not know the value of the RHS
173   // expression.
174   //
175   // For example, if an expression is `x = 42`, we know x is always 42.
176   // However, if an expression is `x = .`, there's no way to know its
177   // value at the moment.
178   //
179   // We want to set symbol values early if we can. This allows us to
180   // use symbols as variables in linker scripts. Doing so allows us to
181   // write expressions like this: `alignment = 16; . = ALIGN(., alignment)`.
182   uint64_t symValue = value.sec ? 0 : value.getValue();
183 
184   Defined newSym(nullptr, cmd->name, STB_GLOBAL, visibility, STT_NOTYPE,
185                  symValue, 0, sec);
186 
187   Symbol *sym = symtab->insert(cmd->name);
188   sym->mergeProperties(newSym);
189   sym->replace(newSym);
190   cmd->sym = cast<Defined>(sym);
191 }
192 
193 // This function is called from LinkerScript::declareSymbols.
194 // It creates a placeholder symbol if needed.
195 static void declareSymbol(SymbolAssignment *cmd) {
196   if (!shouldDefineSym(cmd))
197     return;
198 
199   uint8_t visibility = cmd->hidden ? STV_HIDDEN : STV_DEFAULT;
200   Defined newSym(nullptr, cmd->name, STB_GLOBAL, visibility, STT_NOTYPE, 0, 0,
201                  nullptr);
202 
203   // We can't calculate final value right now.
204   Symbol *sym = symtab->insert(cmd->name);
205   sym->mergeProperties(newSym);
206   sym->replace(newSym);
207 
208   cmd->sym = cast<Defined>(sym);
209   cmd->provide = false;
210   sym->scriptDefined = true;
211 }
212 
213 // This method is used to handle INSERT AFTER statement. Here we rebuild
214 // the list of script commands to mix sections inserted into.
215 void LinkerScript::processInsertCommands() {
216   std::vector<BaseCommand *> v;
217   auto insert = [&](std::vector<BaseCommand *> &from) {
218     v.insert(v.end(), from.begin(), from.end());
219     from.clear();
220   };
221 
222   for (BaseCommand *base : sectionCommands) {
223     if (auto *os = dyn_cast<OutputSection>(base)) {
224       insert(insertBeforeCommands[os->name]);
225       v.push_back(base);
226       insert(insertAfterCommands[os->name]);
227       continue;
228     }
229     v.push_back(base);
230   }
231 
232   for (auto &cmds : {insertBeforeCommands, insertAfterCommands})
233     for (const std::pair<StringRef, std::vector<BaseCommand *>> &p : cmds)
234       if (!p.second.empty())
235         error("unable to INSERT AFTER/BEFORE " + p.first +
236               ": section not defined");
237 
238   sectionCommands = std::move(v);
239 }
240 
241 // Symbols defined in script should not be inlined by LTO. At the same time
242 // we don't know their final values until late stages of link. Here we scan
243 // over symbol assignment commands and create placeholder symbols if needed.
244 void LinkerScript::declareSymbols() {
245   assert(!ctx);
246   for (BaseCommand *base : sectionCommands) {
247     if (auto *cmd = dyn_cast<SymbolAssignment>(base)) {
248       declareSymbol(cmd);
249       continue;
250     }
251 
252     // If the output section directive has constraints,
253     // we can't say for sure if it is going to be included or not.
254     // Skip such sections for now. Improve the checks if we ever
255     // need symbols from that sections to be declared early.
256     auto *sec = cast<OutputSection>(base);
257     if (sec->constraint != ConstraintKind::NoConstraint)
258       continue;
259     for (BaseCommand *base2 : sec->sectionCommands)
260       if (auto *cmd = dyn_cast<SymbolAssignment>(base2))
261         declareSymbol(cmd);
262   }
263 }
264 
265 // This function is called from assignAddresses, while we are
266 // fixing the output section addresses. This function is supposed
267 // to set the final value for a given symbol assignment.
268 void LinkerScript::assignSymbol(SymbolAssignment *cmd, bool inSec) {
269   if (cmd->name == ".") {
270     setDot(cmd->expression, cmd->location, inSec);
271     return;
272   }
273 
274   if (!cmd->sym)
275     return;
276 
277   ExprValue v = cmd->expression();
278   if (v.isAbsolute()) {
279     cmd->sym->section = nullptr;
280     cmd->sym->value = v.getValue();
281   } else {
282     cmd->sym->section = v.sec;
283     cmd->sym->value = v.getSectionOffset();
284   }
285 }
286 
287 static std::string getFilename(InputFile *file) {
288   if (!file)
289     return "";
290   if (file->archiveName.empty())
291     return file->getName();
292   return (file->archiveName + "(" + file->getName() + ")").str();
293 }
294 
295 bool LinkerScript::shouldKeep(InputSectionBase *s) {
296   if (keptSections.empty())
297     return false;
298   std::string filename = getFilename(s->file);
299   for (InputSectionDescription *id : keptSections)
300     if (id->filePat.match(filename))
301       for (SectionPattern &p : id->sectionPatterns)
302         if (p.sectionPat.match(s->name))
303           return true;
304   return false;
305 }
306 
307 // A helper function for the SORT() command.
308 static bool matchConstraints(ArrayRef<InputSection *> sections,
309                              ConstraintKind kind) {
310   if (kind == ConstraintKind::NoConstraint)
311     return true;
312 
313   bool isRW = llvm::any_of(
314       sections, [](InputSection *sec) { return sec->flags & SHF_WRITE; });
315 
316   return (isRW && kind == ConstraintKind::ReadWrite) ||
317          (!isRW && kind == ConstraintKind::ReadOnly);
318 }
319 
320 static void sortSections(MutableArrayRef<InputSection *> vec,
321                          SortSectionPolicy k) {
322   auto alignmentComparator = [](InputSectionBase *a, InputSectionBase *b) {
323     // ">" is not a mistake. Sections with larger alignments are placed
324     // before sections with smaller alignments in order to reduce the
325     // amount of padding necessary. This is compatible with GNU.
326     return a->alignment > b->alignment;
327   };
328   auto nameComparator = [](InputSectionBase *a, InputSectionBase *b) {
329     return a->name < b->name;
330   };
331   auto priorityComparator = [](InputSectionBase *a, InputSectionBase *b) {
332     return getPriority(a->name) < getPriority(b->name);
333   };
334 
335   switch (k) {
336   case SortSectionPolicy::Default:
337   case SortSectionPolicy::None:
338     return;
339   case SortSectionPolicy::Alignment:
340     return llvm::stable_sort(vec, alignmentComparator);
341   case SortSectionPolicy::Name:
342     return llvm::stable_sort(vec, nameComparator);
343   case SortSectionPolicy::Priority:
344     return llvm::stable_sort(vec, priorityComparator);
345   }
346 }
347 
348 // Sort sections as instructed by SORT-family commands and --sort-section
349 // option. Because SORT-family commands can be nested at most two depth
350 // (e.g. SORT_BY_NAME(SORT_BY_ALIGNMENT(.text.*))) and because the command
351 // line option is respected even if a SORT command is given, the exact
352 // behavior we have here is a bit complicated. Here are the rules.
353 //
354 // 1. If two SORT commands are given, --sort-section is ignored.
355 // 2. If one SORT command is given, and if it is not SORT_NONE,
356 //    --sort-section is handled as an inner SORT command.
357 // 3. If one SORT command is given, and if it is SORT_NONE, don't sort.
358 // 4. If no SORT command is given, sort according to --sort-section.
359 static void sortInputSections(MutableArrayRef<InputSection *> vec,
360                               const SectionPattern &pat) {
361   if (pat.sortOuter == SortSectionPolicy::None)
362     return;
363 
364   if (pat.sortInner == SortSectionPolicy::Default)
365     sortSections(vec, config->sortSection);
366   else
367     sortSections(vec, pat.sortInner);
368   sortSections(vec, pat.sortOuter);
369 }
370 
371 // Compute and remember which sections the InputSectionDescription matches.
372 std::vector<InputSection *>
373 LinkerScript::computeInputSections(const InputSectionDescription *cmd) {
374   std::vector<InputSection *> ret;
375 
376   // Collects all sections that satisfy constraints of Cmd.
377   for (const SectionPattern &pat : cmd->sectionPatterns) {
378     size_t sizeBefore = ret.size();
379 
380     for (InputSectionBase *sec : inputSections) {
381       if (!sec->isLive() || sec->assigned)
382         continue;
383 
384       // For -emit-relocs we have to ignore entries like
385       //   .rela.dyn : { *(.rela.data) }
386       // which are common because they are in the default bfd script.
387       // We do not ignore SHT_REL[A] linker-synthesized sections here because
388       // want to support scripts that do custom layout for them.
389       if (auto *isec = dyn_cast<InputSection>(sec))
390         if (isec->getRelocatedSection())
391           continue;
392 
393       std::string filename = getFilename(sec->file);
394       if (!cmd->filePat.match(filename) ||
395           pat.excludedFilePat.match(filename) ||
396           !pat.sectionPat.match(sec->name))
397         continue;
398 
399       // It is safe to assume that Sec is an InputSection
400       // because mergeable or EH input sections have already been
401       // handled and eliminated.
402       ret.push_back(cast<InputSection>(sec));
403       sec->assigned = true;
404     }
405 
406     sortInputSections(MutableArrayRef<InputSection *>(ret).slice(sizeBefore),
407                       pat);
408   }
409   return ret;
410 }
411 
412 void LinkerScript::discard(ArrayRef<InputSection *> v) {
413   for (InputSection *s : v) {
414     if (s == in.shStrTab || s == mainPart->relaDyn || s == mainPart->relrDyn)
415       error("discarding " + s->name + " section is not allowed");
416 
417     // You can discard .hash and .gnu.hash sections by linker scripts. Since
418     // they are synthesized sections, we need to handle them differently than
419     // other regular sections.
420     if (s == mainPart->gnuHashTab)
421       mainPart->gnuHashTab = nullptr;
422     if (s == mainPart->hashTab)
423       mainPart->hashTab = nullptr;
424 
425     s->assigned = false;
426     s->markDead();
427     discard(s->dependentSections);
428   }
429 }
430 
431 std::vector<InputSection *>
432 LinkerScript::createInputSectionList(OutputSection &outCmd) {
433   std::vector<InputSection *> ret;
434 
435   for (BaseCommand *base : outCmd.sectionCommands) {
436     if (auto *cmd = dyn_cast<InputSectionDescription>(base)) {
437       cmd->sections = computeInputSections(cmd);
438       ret.insert(ret.end(), cmd->sections.begin(), cmd->sections.end());
439     }
440   }
441   return ret;
442 }
443 
444 void LinkerScript::processSectionCommands() {
445   // A symbol can be assigned before any section is mentioned in the linker
446   // script. In an DSO, the symbol values are addresses, so the only important
447   // section values are:
448   // * SHN_UNDEF
449   // * SHN_ABS
450   // * Any value meaning a regular section.
451   // To handle that, create a dummy aether section that fills the void before
452   // the linker scripts switches to another section. It has an index of one
453   // which will map to whatever the first actual section is.
454   aether = make<OutputSection>("", 0, SHF_ALLOC);
455   aether->sectionIndex = 1;
456 
457   // Ctx captures the local AddressState and makes it accessible deliberately.
458   // This is needed as there are some cases where we cannot just
459   // thread the current state through to a lambda function created by the
460   // script parser.
461   auto deleter = std::make_unique<AddressState>();
462   ctx = deleter.get();
463   ctx->outSec = aether;
464 
465   size_t i = 0;
466   // Add input sections to output sections.
467   for (BaseCommand *base : sectionCommands) {
468     // Handle symbol assignments outside of any output section.
469     if (auto *cmd = dyn_cast<SymbolAssignment>(base)) {
470       addSymbol(cmd);
471       continue;
472     }
473 
474     if (auto *sec = dyn_cast<OutputSection>(base)) {
475       std::vector<InputSection *> v = createInputSectionList(*sec);
476 
477       // The output section name `/DISCARD/' is special.
478       // Any input section assigned to it is discarded.
479       if (sec->name == "/DISCARD/") {
480         discard(v);
481         sec->sectionCommands.clear();
482         continue;
483       }
484 
485       // This is for ONLY_IF_RO and ONLY_IF_RW. An output section directive
486       // ".foo : ONLY_IF_R[OW] { ... }" is handled only if all member input
487       // sections satisfy a given constraint. If not, a directive is handled
488       // as if it wasn't present from the beginning.
489       //
490       // Because we'll iterate over SectionCommands many more times, the easy
491       // way to "make it as if it wasn't present" is to make it empty.
492       if (!matchConstraints(v, sec->constraint)) {
493         for (InputSectionBase *s : v)
494           s->assigned = false;
495         sec->sectionCommands.clear();
496         continue;
497       }
498 
499       // A directive may contain symbol definitions like this:
500       // ".foo : { ...; bar = .; }". Handle them.
501       for (BaseCommand *base : sec->sectionCommands)
502         if (auto *outCmd = dyn_cast<SymbolAssignment>(base))
503           addSymbol(outCmd);
504 
505       // Handle subalign (e.g. ".foo : SUBALIGN(32) { ... }"). If subalign
506       // is given, input sections are aligned to that value, whether the
507       // given value is larger or smaller than the original section alignment.
508       if (sec->subalignExpr) {
509         uint32_t subalign = sec->subalignExpr().getValue();
510         for (InputSectionBase *s : v)
511           s->alignment = subalign;
512       }
513 
514       // Add input sections to an output section.
515       for (InputSection *s : v)
516         sec->addSection(s);
517 
518       sec->sectionIndex = i++;
519       if (sec->noload)
520         sec->type = SHT_NOBITS;
521       if (sec->nonAlloc)
522         sec->flags &= ~(uint64_t)SHF_ALLOC;
523     }
524   }
525   ctx = nullptr;
526 }
527 
528 static OutputSection *findByName(ArrayRef<BaseCommand *> vec,
529                                  StringRef name) {
530   for (BaseCommand *base : vec)
531     if (auto *sec = dyn_cast<OutputSection>(base))
532       if (sec->name == name)
533         return sec;
534   return nullptr;
535 }
536 
537 static OutputSection *createSection(InputSectionBase *isec,
538                                     StringRef outsecName) {
539   OutputSection *sec = script->createOutputSection(outsecName, "<internal>");
540   sec->addSection(cast<InputSection>(isec));
541   return sec;
542 }
543 
544 static OutputSection *
545 addInputSec(StringMap<TinyPtrVector<OutputSection *>> &map,
546             InputSectionBase *isec, StringRef outsecName) {
547   // Sections with SHT_GROUP or SHF_GROUP attributes reach here only when the -r
548   // option is given. A section with SHT_GROUP defines a "section group", and
549   // its members have SHF_GROUP attribute. Usually these flags have already been
550   // stripped by InputFiles.cpp as section groups are processed and uniquified.
551   // However, for the -r option, we want to pass through all section groups
552   // as-is because adding/removing members or merging them with other groups
553   // change their semantics.
554   if (isec->type == SHT_GROUP || (isec->flags & SHF_GROUP))
555     return createSection(isec, outsecName);
556 
557   // Imagine .zed : { *(.foo) *(.bar) } script. Both foo and bar may have
558   // relocation sections .rela.foo and .rela.bar for example. Most tools do
559   // not allow multiple REL[A] sections for output section. Hence we
560   // should combine these relocation sections into single output.
561   // We skip synthetic sections because it can be .rela.dyn/.rela.plt or any
562   // other REL[A] sections created by linker itself.
563   if (!isa<SyntheticSection>(isec) &&
564       (isec->type == SHT_REL || isec->type == SHT_RELA)) {
565     auto *sec = cast<InputSection>(isec);
566     OutputSection *out = sec->getRelocatedSection()->getOutputSection();
567 
568     if (out->relocationSection) {
569       out->relocationSection->addSection(sec);
570       return nullptr;
571     }
572 
573     out->relocationSection = createSection(isec, outsecName);
574     return out->relocationSection;
575   }
576 
577   // When control reaches here, mergeable sections have already been merged into
578   // synthetic sections. For relocatable case we want to create one output
579   // section per syntetic section so that they have a valid sh_entsize.
580   if (config->relocatable && (isec->flags & SHF_MERGE))
581     return createSection(isec, outsecName);
582 
583   //  The ELF spec just says
584   // ----------------------------------------------------------------
585   // In the first phase, input sections that match in name, type and
586   // attribute flags should be concatenated into single sections.
587   // ----------------------------------------------------------------
588   //
589   // However, it is clear that at least some flags have to be ignored for
590   // section merging. At the very least SHF_GROUP and SHF_COMPRESSED have to be
591   // ignored. We should not have two output .text sections just because one was
592   // in a group and another was not for example.
593   //
594   // It also seems that wording was a late addition and didn't get the
595   // necessary scrutiny.
596   //
597   // Merging sections with different flags is expected by some users. One
598   // reason is that if one file has
599   //
600   // int *const bar __attribute__((section(".foo"))) = (int *)0;
601   //
602   // gcc with -fPIC will produce a read only .foo section. But if another
603   // file has
604   //
605   // int zed;
606   // int *const bar __attribute__((section(".foo"))) = (int *)&zed;
607   //
608   // gcc with -fPIC will produce a read write section.
609   //
610   // Last but not least, when using linker script the merge rules are forced by
611   // the script. Unfortunately, linker scripts are name based. This means that
612   // expressions like *(.foo*) can refer to multiple input sections with
613   // different flags. We cannot put them in different output sections or we
614   // would produce wrong results for
615   //
616   // start = .; *(.foo.*) end = .; *(.bar)
617   //
618   // and a mapping of .foo1 and .bar1 to one section and .foo2 and .bar2 to
619   // another. The problem is that there is no way to layout those output
620   // sections such that the .foo sections are the only thing between the start
621   // and end symbols.
622   //
623   // Given the above issues, we instead merge sections by name and error on
624   // incompatible types and flags.
625   TinyPtrVector<OutputSection *> &v = map[outsecName];
626   for (OutputSection *sec : v) {
627     if (sec->partition != isec->partition)
628       continue;
629     sec->addSection(cast<InputSection>(isec));
630     return nullptr;
631   }
632 
633   OutputSection *sec = createSection(isec, outsecName);
634   v.push_back(sec);
635   return sec;
636 }
637 
638 // Add sections that didn't match any sections command.
639 void LinkerScript::addOrphanSections() {
640   StringMap<TinyPtrVector<OutputSection *>> map;
641   std::vector<OutputSection *> v;
642 
643   auto add = [&](InputSectionBase *s) {
644     if (!s->isLive() || s->parent)
645       return;
646 
647     StringRef name = getOutputSectionName(s);
648 
649     if (config->orphanHandling == OrphanHandlingPolicy::Error)
650       error(toString(s) + " is being placed in '" + name + "'");
651     else if (config->orphanHandling == OrphanHandlingPolicy::Warn)
652       warn(toString(s) + " is being placed in '" + name + "'");
653 
654     if (OutputSection *sec = findByName(sectionCommands, name)) {
655       sec->addSection(cast<InputSection>(s));
656       return;
657     }
658 
659     if (OutputSection *os = addInputSec(map, s, name))
660       v.push_back(os);
661     assert(s->getOutputSection()->sectionIndex == UINT32_MAX);
662   };
663 
664   // For futher --emit-reloc handling code we need target output section
665   // to be created before we create relocation output section, so we want
666   // to create target sections first. We do not want priority handling
667   // for synthetic sections because them are special.
668   for (InputSectionBase *isec : inputSections) {
669     if (auto *sec = dyn_cast<InputSection>(isec))
670       if (InputSectionBase *rel = sec->getRelocatedSection())
671         if (auto *relIS = dyn_cast_or_null<InputSectionBase>(rel->parent))
672           add(relIS);
673     add(isec);
674   }
675 
676   // If no SECTIONS command was given, we should insert sections commands
677   // before others, so that we can handle scripts which refers them,
678   // for example: "foo = ABSOLUTE(ADDR(.text)));".
679   // When SECTIONS command is present we just add all orphans to the end.
680   if (hasSectionsCommand)
681     sectionCommands.insert(sectionCommands.end(), v.begin(), v.end());
682   else
683     sectionCommands.insert(sectionCommands.begin(), v.begin(), v.end());
684 }
685 
686 uint64_t LinkerScript::advance(uint64_t size, unsigned alignment) {
687   bool isTbss =
688       (ctx->outSec->flags & SHF_TLS) && ctx->outSec->type == SHT_NOBITS;
689   uint64_t start = isTbss ? dot + ctx->threadBssOffset : dot;
690   start = alignTo(start, alignment);
691   uint64_t end = start + size;
692 
693   if (isTbss)
694     ctx->threadBssOffset = end - dot;
695   else
696     dot = end;
697   return end;
698 }
699 
700 void LinkerScript::output(InputSection *s) {
701   assert(ctx->outSec == s->getParent());
702   uint64_t before = advance(0, 1);
703   uint64_t pos = advance(s->getSize(), s->alignment);
704   s->outSecOff = pos - s->getSize() - ctx->outSec->addr;
705 
706   // Update output section size after adding each section. This is so that
707   // SIZEOF works correctly in the case below:
708   // .foo { *(.aaa) a = SIZEOF(.foo); *(.bbb) }
709   expandOutputSection(pos - before);
710 }
711 
712 void LinkerScript::switchTo(OutputSection *sec) {
713   ctx->outSec = sec;
714 
715   uint64_t before = advance(0, 1);
716   ctx->outSec->addr = advance(0, ctx->outSec->alignment);
717   expandMemoryRegions(ctx->outSec->addr - before);
718 }
719 
720 // This function searches for a memory region to place the given output
721 // section in. If found, a pointer to the appropriate memory region is
722 // returned. Otherwise, a nullptr is returned.
723 MemoryRegion *LinkerScript::findMemoryRegion(OutputSection *sec) {
724   // If a memory region name was specified in the output section command,
725   // then try to find that region first.
726   if (!sec->memoryRegionName.empty()) {
727     if (MemoryRegion *m = memoryRegions.lookup(sec->memoryRegionName))
728       return m;
729     error("memory region '" + sec->memoryRegionName + "' not declared");
730     return nullptr;
731   }
732 
733   // If at least one memory region is defined, all sections must
734   // belong to some memory region. Otherwise, we don't need to do
735   // anything for memory regions.
736   if (memoryRegions.empty())
737     return nullptr;
738 
739   // See if a region can be found by matching section flags.
740   for (auto &pair : memoryRegions) {
741     MemoryRegion *m = pair.second;
742     if ((m->flags & sec->flags) && (m->negFlags & sec->flags) == 0)
743       return m;
744   }
745 
746   // Otherwise, no suitable region was found.
747   if (sec->flags & SHF_ALLOC)
748     error("no memory region specified for section '" + sec->name + "'");
749   return nullptr;
750 }
751 
752 static OutputSection *findFirstSection(PhdrEntry *load) {
753   for (OutputSection *sec : outputSections)
754     if (sec->ptLoad == load)
755       return sec;
756   return nullptr;
757 }
758 
759 // This function assigns offsets to input sections and an output section
760 // for a single sections command (e.g. ".text { *(.text); }").
761 void LinkerScript::assignOffsets(OutputSection *sec) {
762   if (!(sec->flags & SHF_ALLOC))
763     dot = 0;
764 
765   ctx->memRegion = sec->memRegion;
766   ctx->lmaRegion = sec->lmaRegion;
767   if (ctx->memRegion)
768     dot = ctx->memRegion->curPos;
769 
770   if ((sec->flags & SHF_ALLOC) && sec->addrExpr)
771     setDot(sec->addrExpr, sec->location, false);
772 
773   // If the address of the section has been moved forward by an explicit
774   // expression so that it now starts past the current curPos of the enclosing
775   // region, we need to expand the current region to account for the space
776   // between the previous section, if any, and the start of this section.
777   if (ctx->memRegion && ctx->memRegion->curPos < dot)
778     expandMemoryRegion(ctx->memRegion, dot - ctx->memRegion->curPos,
779                        ctx->memRegion->name, sec->name);
780 
781   switchTo(sec);
782 
783   if (sec->lmaExpr)
784     ctx->lmaOffset = sec->lmaExpr().getValue() - dot;
785 
786   if (MemoryRegion *mr = sec->lmaRegion)
787     ctx->lmaOffset = mr->curPos - dot;
788 
789   // If neither AT nor AT> is specified for an allocatable section, the linker
790   // will set the LMA such that the difference between VMA and LMA for the
791   // section is the same as the preceding output section in the same region
792   // https://sourceware.org/binutils/docs-2.20/ld/Output-Section-LMA.html
793   // This, however, should only be done by the first "non-header" section
794   // in the segment.
795   if (PhdrEntry *l = ctx->outSec->ptLoad)
796     if (sec == findFirstSection(l))
797       l->lmaOffset = ctx->lmaOffset;
798 
799   // We can call this method multiple times during the creation of
800   // thunks and want to start over calculation each time.
801   sec->size = 0;
802 
803   // We visited SectionsCommands from processSectionCommands to
804   // layout sections. Now, we visit SectionsCommands again to fix
805   // section offsets.
806   for (BaseCommand *base : sec->sectionCommands) {
807     // This handles the assignments to symbol or to the dot.
808     if (auto *cmd = dyn_cast<SymbolAssignment>(base)) {
809       cmd->addr = dot;
810       assignSymbol(cmd, true);
811       cmd->size = dot - cmd->addr;
812       continue;
813     }
814 
815     // Handle BYTE(), SHORT(), LONG(), or QUAD().
816     if (auto *cmd = dyn_cast<ByteCommand>(base)) {
817       cmd->offset = dot - ctx->outSec->addr;
818       dot += cmd->size;
819       expandOutputSection(cmd->size);
820       continue;
821     }
822 
823     // Handle a single input section description command.
824     // It calculates and assigns the offsets for each section and also
825     // updates the output section size.
826     for (InputSection *sec : cast<InputSectionDescription>(base)->sections)
827       output(sec);
828   }
829 }
830 
831 static bool isDiscardable(OutputSection &sec) {
832   if (sec.name == "/DISCARD/")
833     return true;
834 
835   // We do not remove empty sections that are explicitly
836   // assigned to any segment.
837   if (!sec.phdrs.empty())
838     return false;
839 
840   // We do not want to remove OutputSections with expressions that reference
841   // symbols even if the OutputSection is empty. We want to ensure that the
842   // expressions can be evaluated and report an error if they cannot.
843   if (sec.expressionsUseSymbols)
844     return false;
845 
846   // OutputSections may be referenced by name in ADDR and LOADADDR expressions,
847   // as an empty Section can has a valid VMA and LMA we keep the OutputSection
848   // to maintain the integrity of the other Expression.
849   if (sec.usedInExpression)
850     return false;
851 
852   for (BaseCommand *base : sec.sectionCommands) {
853     if (auto cmd = dyn_cast<SymbolAssignment>(base))
854       // Don't create empty output sections just for unreferenced PROVIDE
855       // symbols.
856       if (cmd->name != "." && !cmd->sym)
857         continue;
858 
859     if (!isa<InputSectionDescription>(*base))
860       return false;
861   }
862   return true;
863 }
864 
865 void LinkerScript::adjustSectionsBeforeSorting() {
866   // If the output section contains only symbol assignments, create a
867   // corresponding output section. The issue is what to do with linker script
868   // like ".foo : { symbol = 42; }". One option would be to convert it to
869   // "symbol = 42;". That is, move the symbol out of the empty section
870   // description. That seems to be what bfd does for this simple case. The
871   // problem is that this is not completely general. bfd will give up and
872   // create a dummy section too if there is a ". = . + 1" inside the section
873   // for example.
874   // Given that we want to create the section, we have to worry what impact
875   // it will have on the link. For example, if we just create a section with
876   // 0 for flags, it would change which PT_LOADs are created.
877   // We could remember that particular section is dummy and ignore it in
878   // other parts of the linker, but unfortunately there are quite a few places
879   // that would need to change:
880   //   * The program header creation.
881   //   * The orphan section placement.
882   //   * The address assignment.
883   // The other option is to pick flags that minimize the impact the section
884   // will have on the rest of the linker. That is why we copy the flags from
885   // the previous sections. Only a few flags are needed to keep the impact low.
886   uint64_t flags = SHF_ALLOC;
887 
888   for (BaseCommand *&cmd : sectionCommands) {
889     auto *sec = dyn_cast<OutputSection>(cmd);
890     if (!sec)
891       continue;
892 
893     // Handle align (e.g. ".foo : ALIGN(16) { ... }").
894     if (sec->alignExpr)
895       sec->alignment =
896           std::max<uint32_t>(sec->alignment, sec->alignExpr().getValue());
897 
898     // The input section might have been removed (if it was an empty synthetic
899     // section), but we at least know the flags.
900     if (sec->hasInputSections)
901       flags = sec->flags;
902 
903     // We do not want to keep any special flags for output section
904     // in case it is empty.
905     bool isEmpty = getInputSections(sec).empty();
906     if (isEmpty)
907       sec->flags = flags & ((sec->nonAlloc ? 0 : (uint64_t)SHF_ALLOC) |
908                             SHF_WRITE | SHF_EXECINSTR);
909 
910     if (isEmpty && isDiscardable(*sec)) {
911       sec->markDead();
912       cmd = nullptr;
913     } else if (!sec->isLive()) {
914       sec->markLive();
915     }
916   }
917 
918   // It is common practice to use very generic linker scripts. So for any
919   // given run some of the output sections in the script will be empty.
920   // We could create corresponding empty output sections, but that would
921   // clutter the output.
922   // We instead remove trivially empty sections. The bfd linker seems even
923   // more aggressive at removing them.
924   llvm::erase_if(sectionCommands, [&](BaseCommand *base) { return !base; });
925 }
926 
927 void LinkerScript::adjustSectionsAfterSorting() {
928   // Try and find an appropriate memory region to assign offsets in.
929   for (BaseCommand *base : sectionCommands) {
930     if (auto *sec = dyn_cast<OutputSection>(base)) {
931       if (!sec->lmaRegionName.empty()) {
932         if (MemoryRegion *m = memoryRegions.lookup(sec->lmaRegionName))
933           sec->lmaRegion = m;
934         else
935           error("memory region '" + sec->lmaRegionName + "' not declared");
936       }
937       sec->memRegion = findMemoryRegion(sec);
938     }
939   }
940 
941   // If output section command doesn't specify any segments,
942   // and we haven't previously assigned any section to segment,
943   // then we simply assign section to the very first load segment.
944   // Below is an example of such linker script:
945   // PHDRS { seg PT_LOAD; }
946   // SECTIONS { .aaa : { *(.aaa) } }
947   std::vector<StringRef> defPhdrs;
948   auto firstPtLoad = llvm::find_if(phdrsCommands, [](const PhdrsCommand &cmd) {
949     return cmd.type == PT_LOAD;
950   });
951   if (firstPtLoad != phdrsCommands.end())
952     defPhdrs.push_back(firstPtLoad->name);
953 
954   // Walk the commands and propagate the program headers to commands that don't
955   // explicitly specify them.
956   for (BaseCommand *base : sectionCommands) {
957     auto *sec = dyn_cast<OutputSection>(base);
958     if (!sec)
959       continue;
960 
961     if (sec->phdrs.empty()) {
962       // To match the bfd linker script behaviour, only propagate program
963       // headers to sections that are allocated.
964       if (sec->flags & SHF_ALLOC)
965         sec->phdrs = defPhdrs;
966     } else {
967       defPhdrs = sec->phdrs;
968     }
969   }
970 }
971 
972 static uint64_t computeBase(uint64_t min, bool allocateHeaders) {
973   // If there is no SECTIONS or if the linkerscript is explicit about program
974   // headers, do our best to allocate them.
975   if (!script->hasSectionsCommand || allocateHeaders)
976     return 0;
977   // Otherwise only allocate program headers if that would not add a page.
978   return alignDown(min, config->maxPageSize);
979 }
980 
981 // Try to find an address for the file and program headers output sections,
982 // which were unconditionally added to the first PT_LOAD segment earlier.
983 //
984 // When using the default layout, we check if the headers fit below the first
985 // allocated section. When using a linker script, we also check if the headers
986 // are covered by the output section. This allows omitting the headers by not
987 // leaving enough space for them in the linker script; this pattern is common
988 // in embedded systems.
989 //
990 // If there isn't enough space for these sections, we'll remove them from the
991 // PT_LOAD segment, and we'll also remove the PT_PHDR segment.
992 void LinkerScript::allocateHeaders(std::vector<PhdrEntry *> &phdrs) {
993   uint64_t min = std::numeric_limits<uint64_t>::max();
994   for (OutputSection *sec : outputSections)
995     if (sec->flags & SHF_ALLOC)
996       min = std::min<uint64_t>(min, sec->addr);
997 
998   auto it = llvm::find_if(
999       phdrs, [](const PhdrEntry *e) { return e->p_type == PT_LOAD; });
1000   if (it == phdrs.end())
1001     return;
1002   PhdrEntry *firstPTLoad = *it;
1003 
1004   bool hasExplicitHeaders =
1005       llvm::any_of(phdrsCommands, [](const PhdrsCommand &cmd) {
1006         return cmd.hasPhdrs || cmd.hasFilehdr;
1007       });
1008   bool paged = !config->omagic && !config->nmagic;
1009   uint64_t headerSize = getHeaderSize();
1010   if ((paged || hasExplicitHeaders) &&
1011       headerSize <= min - computeBase(min, hasExplicitHeaders)) {
1012     min = alignDown(min - headerSize, config->maxPageSize);
1013     Out::elfHeader->addr = min;
1014     Out::programHeaders->addr = min + Out::elfHeader->size;
1015     return;
1016   }
1017 
1018   // Error if we were explicitly asked to allocate headers.
1019   if (hasExplicitHeaders)
1020     error("could not allocate headers");
1021 
1022   Out::elfHeader->ptLoad = nullptr;
1023   Out::programHeaders->ptLoad = nullptr;
1024   firstPTLoad->firstSec = findFirstSection(firstPTLoad);
1025 
1026   llvm::erase_if(phdrs,
1027                  [](const PhdrEntry *e) { return e->p_type == PT_PHDR; });
1028 }
1029 
1030 LinkerScript::AddressState::AddressState() {
1031   for (auto &mri : script->memoryRegions) {
1032     MemoryRegion *mr = mri.second;
1033     mr->curPos = mr->origin;
1034   }
1035 }
1036 
1037 static uint64_t getInitialDot() {
1038   // By default linker scripts use an initial value of 0 for '.',
1039   // but prefer -image-base if set.
1040   if (script->hasSectionsCommand)
1041     return config->imageBase ? *config->imageBase : 0;
1042 
1043   uint64_t startAddr = UINT64_MAX;
1044   // The sections with -T<section> have been sorted in order of ascending
1045   // address. We must lower startAddr if the lowest -T<section address> as
1046   // calls to setDot() must be monotonically increasing.
1047   for (auto &kv : config->sectionStartMap)
1048     startAddr = std::min(startAddr, kv.second);
1049   return std::min(startAddr, target->getImageBase() + elf::getHeaderSize());
1050 }
1051 
1052 // Here we assign addresses as instructed by linker script SECTIONS
1053 // sub-commands. Doing that allows us to use final VA values, so here
1054 // we also handle rest commands like symbol assignments and ASSERTs.
1055 void LinkerScript::assignAddresses() {
1056   dot = getInitialDot();
1057 
1058   auto deleter = std::make_unique<AddressState>();
1059   ctx = deleter.get();
1060   errorOnMissingSection = true;
1061   switchTo(aether);
1062 
1063   for (BaseCommand *base : sectionCommands) {
1064     if (auto *cmd = dyn_cast<SymbolAssignment>(base)) {
1065       cmd->addr = dot;
1066       assignSymbol(cmd, false);
1067       cmd->size = dot - cmd->addr;
1068       continue;
1069     }
1070     assignOffsets(cast<OutputSection>(base));
1071   }
1072   ctx = nullptr;
1073 }
1074 
1075 // Creates program headers as instructed by PHDRS linker script command.
1076 std::vector<PhdrEntry *> LinkerScript::createPhdrs() {
1077   std::vector<PhdrEntry *> ret;
1078 
1079   // Process PHDRS and FILEHDR keywords because they are not
1080   // real output sections and cannot be added in the following loop.
1081   for (const PhdrsCommand &cmd : phdrsCommands) {
1082     PhdrEntry *phdr = make<PhdrEntry>(cmd.type, cmd.flags ? *cmd.flags : PF_R);
1083 
1084     if (cmd.hasFilehdr)
1085       phdr->add(Out::elfHeader);
1086     if (cmd.hasPhdrs)
1087       phdr->add(Out::programHeaders);
1088 
1089     if (cmd.lmaExpr) {
1090       phdr->p_paddr = cmd.lmaExpr().getValue();
1091       phdr->hasLMA = true;
1092     }
1093     ret.push_back(phdr);
1094   }
1095 
1096   // Add output sections to program headers.
1097   for (OutputSection *sec : outputSections) {
1098     // Assign headers specified by linker script
1099     for (size_t id : getPhdrIndices(sec)) {
1100       ret[id]->add(sec);
1101       if (!phdrsCommands[id].flags.hasValue())
1102         ret[id]->p_flags |= sec->getPhdrFlags();
1103     }
1104   }
1105   return ret;
1106 }
1107 
1108 // Returns true if we should emit an .interp section.
1109 //
1110 // We usually do. But if PHDRS commands are given, and
1111 // no PT_INTERP is there, there's no place to emit an
1112 // .interp, so we don't do that in that case.
1113 bool LinkerScript::needsInterpSection() {
1114   if (phdrsCommands.empty())
1115     return true;
1116   for (PhdrsCommand &cmd : phdrsCommands)
1117     if (cmd.type == PT_INTERP)
1118       return true;
1119   return false;
1120 }
1121 
1122 ExprValue LinkerScript::getSymbolValue(StringRef name, const Twine &loc) {
1123   if (name == ".") {
1124     if (ctx)
1125       return {ctx->outSec, false, dot - ctx->outSec->addr, loc};
1126     error(loc + ": unable to get location counter value");
1127     return 0;
1128   }
1129 
1130   if (Symbol *sym = symtab->find(name)) {
1131     if (auto *ds = dyn_cast<Defined>(sym))
1132       return {ds->section, false, ds->value, loc};
1133     if (isa<SharedSymbol>(sym))
1134       if (!errorOnMissingSection)
1135         return {nullptr, false, 0, loc};
1136   }
1137 
1138   error(loc + ": symbol not found: " + name);
1139   return 0;
1140 }
1141 
1142 // Returns the index of the segment named Name.
1143 static Optional<size_t> getPhdrIndex(ArrayRef<PhdrsCommand> vec,
1144                                      StringRef name) {
1145   for (size_t i = 0; i < vec.size(); ++i)
1146     if (vec[i].name == name)
1147       return i;
1148   return None;
1149 }
1150 
1151 // Returns indices of ELF headers containing specific section. Each index is a
1152 // zero based number of ELF header listed within PHDRS {} script block.
1153 std::vector<size_t> LinkerScript::getPhdrIndices(OutputSection *cmd) {
1154   std::vector<size_t> ret;
1155 
1156   for (StringRef s : cmd->phdrs) {
1157     if (Optional<size_t> idx = getPhdrIndex(phdrsCommands, s))
1158       ret.push_back(*idx);
1159     else if (s != "NONE")
1160       error(cmd->location + ": section header '" + s +
1161             "' is not listed in PHDRS");
1162   }
1163   return ret;
1164 }
1165