1 //===- LinkerScript.cpp ---------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the parser/evaluator of the linker script.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "LinkerScript.h"
14 #include "Config.h"
15 #include "InputSection.h"
16 #include "OutputSections.h"
17 #include "SymbolTable.h"
18 #include "Symbols.h"
19 #include "SyntheticSections.h"
20 #include "Target.h"
21 #include "Writer.h"
22 #include "lld/Common/Memory.h"
23 #include "lld/Common/Strings.h"
24 #include "lld/Common/Threads.h"
25 #include "llvm/ADT/STLExtras.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/BinaryFormat/ELF.h"
28 #include "llvm/Support/Casting.h"
29 #include "llvm/Support/Endian.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/Support/FileSystem.h"
32 #include "llvm/Support/Path.h"
33 #include <algorithm>
34 #include <cassert>
35 #include <cstddef>
36 #include <cstdint>
37 #include <iterator>
38 #include <limits>
39 #include <string>
40 #include <vector>
41 
42 using namespace llvm;
43 using namespace llvm::ELF;
44 using namespace llvm::object;
45 using namespace llvm::support::endian;
46 
47 namespace lld {
48 namespace elf {
49 LinkerScript *script;
50 
51 static uint64_t getOutputSectionVA(SectionBase *sec) {
52   OutputSection *os = sec->getOutputSection();
53   assert(os && "input section has no output section assigned");
54   return os ? os->addr : 0;
55 }
56 
57 uint64_t ExprValue::getValue() const {
58   if (sec)
59     return alignTo(sec->getOffset(val) + getOutputSectionVA(sec),
60                    alignment);
61   return alignTo(val, alignment);
62 }
63 
64 uint64_t ExprValue::getSecAddr() const {
65   if (sec)
66     return sec->getOffset(0) + getOutputSectionVA(sec);
67   return 0;
68 }
69 
70 uint64_t ExprValue::getSectionOffset() const {
71   // If the alignment is trivial, we don't have to compute the full
72   // value to know the offset. This allows this function to succeed in
73   // cases where the output section is not yet known.
74   if (alignment == 1 && !sec)
75     return val;
76   return getValue() - getSecAddr();
77 }
78 
79 OutputSection *LinkerScript::createOutputSection(StringRef name,
80                                                  StringRef location) {
81   OutputSection *&secRef = nameToOutputSection[name];
82   OutputSection *sec;
83   if (secRef && secRef->location.empty()) {
84     // There was a forward reference.
85     sec = secRef;
86   } else {
87     sec = make<OutputSection>(name, SHT_PROGBITS, 0);
88     if (!secRef)
89       secRef = sec;
90   }
91   sec->location = location;
92   return sec;
93 }
94 
95 OutputSection *LinkerScript::getOrCreateOutputSection(StringRef name) {
96   OutputSection *&cmdRef = nameToOutputSection[name];
97   if (!cmdRef)
98     cmdRef = make<OutputSection>(name, SHT_PROGBITS, 0);
99   return cmdRef;
100 }
101 
102 // Expands the memory region by the specified size.
103 static void expandMemoryRegion(MemoryRegion *memRegion, uint64_t size,
104                                StringRef regionName, StringRef secName) {
105   memRegion->curPos += size;
106   uint64_t newSize = memRegion->curPos - memRegion->origin;
107   if (newSize > memRegion->length)
108     error("section '" + secName + "' will not fit in region '" + regionName +
109           "': overflowed by " + Twine(newSize - memRegion->length) + " bytes");
110 }
111 
112 void LinkerScript::expandMemoryRegions(uint64_t size) {
113   if (ctx->memRegion)
114     expandMemoryRegion(ctx->memRegion, size, ctx->memRegion->name,
115                        ctx->outSec->name);
116   // Only expand the LMARegion if it is different from memRegion.
117   if (ctx->lmaRegion && ctx->memRegion != ctx->lmaRegion)
118     expandMemoryRegion(ctx->lmaRegion, size, ctx->lmaRegion->name,
119                        ctx->outSec->name);
120 }
121 
122 void LinkerScript::expandOutputSection(uint64_t size) {
123   ctx->outSec->size += size;
124   expandMemoryRegions(size);
125 }
126 
127 void LinkerScript::setDot(Expr e, const Twine &loc, bool inSec) {
128   uint64_t val = e().getValue();
129   if (val < dot && inSec)
130     error(loc + ": unable to move location counter backward for: " +
131           ctx->outSec->name);
132 
133   // Update to location counter means update to section size.
134   if (inSec)
135     expandOutputSection(val - dot);
136 
137   dot = val;
138 }
139 
140 // Used for handling linker symbol assignments, for both finalizing
141 // their values and doing early declarations. Returns true if symbol
142 // should be defined from linker script.
143 static bool shouldDefineSym(SymbolAssignment *cmd) {
144   if (cmd->name == ".")
145     return false;
146 
147   if (!cmd->provide)
148     return true;
149 
150   // If a symbol was in PROVIDE(), we need to define it only
151   // when it is a referenced undefined symbol.
152   Symbol *b = symtab->find(cmd->name);
153   if (b && !b->isDefined())
154     return true;
155   return false;
156 }
157 
158 // Called by processSymbolAssignments() to assign definitions to
159 // linker-script-defined symbols.
160 void LinkerScript::addSymbol(SymbolAssignment *cmd) {
161   if (!shouldDefineSym(cmd))
162     return;
163 
164   // Define a symbol.
165   ExprValue value = cmd->expression();
166   SectionBase *sec = value.isAbsolute() ? nullptr : value.sec;
167   uint8_t visibility = cmd->hidden ? STV_HIDDEN : STV_DEFAULT;
168 
169   // When this function is called, section addresses have not been
170   // fixed yet. So, we may or may not know the value of the RHS
171   // expression.
172   //
173   // For example, if an expression is `x = 42`, we know x is always 42.
174   // However, if an expression is `x = .`, there's no way to know its
175   // value at the moment.
176   //
177   // We want to set symbol values early if we can. This allows us to
178   // use symbols as variables in linker scripts. Doing so allows us to
179   // write expressions like this: `alignment = 16; . = ALIGN(., alignment)`.
180   uint64_t symValue = value.sec ? 0 : value.getValue();
181 
182   Defined newSym(nullptr, cmd->name, STB_GLOBAL, visibility, STT_NOTYPE,
183                  symValue, 0, sec);
184 
185   Symbol *sym = symtab->insert(cmd->name);
186   sym->mergeProperties(newSym);
187   sym->replace(newSym);
188   cmd->sym = cast<Defined>(sym);
189 }
190 
191 // This function is called from LinkerScript::declareSymbols.
192 // It creates a placeholder symbol if needed.
193 static void declareSymbol(SymbolAssignment *cmd) {
194   if (!shouldDefineSym(cmd))
195     return;
196 
197   uint8_t visibility = cmd->hidden ? STV_HIDDEN : STV_DEFAULT;
198   Defined newSym(nullptr, cmd->name, STB_GLOBAL, visibility, STT_NOTYPE, 0, 0,
199                  nullptr);
200 
201   // We can't calculate final value right now.
202   Symbol *sym = symtab->insert(cmd->name);
203   sym->mergeProperties(newSym);
204   sym->replace(newSym);
205 
206   cmd->sym = cast<Defined>(sym);
207   cmd->provide = false;
208   sym->scriptDefined = true;
209 }
210 
211 using SymbolAssignmentMap =
212     DenseMap<const Defined *, std::pair<SectionBase *, uint64_t>>;
213 
214 // Collect section/value pairs of linker-script-defined symbols. This is used to
215 // check whether symbol values converge.
216 static SymbolAssignmentMap
217 getSymbolAssignmentValues(const std::vector<BaseCommand *> &sectionCommands) {
218   SymbolAssignmentMap ret;
219   for (BaseCommand *base : sectionCommands) {
220     if (auto *cmd = dyn_cast<SymbolAssignment>(base)) {
221       if (cmd->sym) // sym is nullptr for dot.
222         ret.try_emplace(cmd->sym,
223                         std::make_pair(cmd->sym->section, cmd->sym->value));
224       continue;
225     }
226     for (BaseCommand *sub_base : cast<OutputSection>(base)->sectionCommands)
227       if (auto *cmd = dyn_cast<SymbolAssignment>(sub_base))
228         if (cmd->sym)
229           ret.try_emplace(cmd->sym,
230                           std::make_pair(cmd->sym->section, cmd->sym->value));
231   }
232   return ret;
233 }
234 
235 // Returns the lexicographical smallest (for determinism) Defined whose
236 // section/value has changed.
237 static const Defined *
238 getChangedSymbolAssignment(const SymbolAssignmentMap &oldValues) {
239   const Defined *changed = nullptr;
240   for (auto &it : oldValues) {
241     const Defined *sym = it.first;
242     if (std::make_pair(sym->section, sym->value) != it.second &&
243         (!changed || sym->getName() < changed->getName()))
244       changed = sym;
245   }
246   return changed;
247 }
248 
249 // This method is used to handle INSERT AFTER statement. Here we rebuild
250 // the list of script commands to mix sections inserted into.
251 void LinkerScript::processInsertCommands() {
252   std::vector<BaseCommand *> v;
253   auto insert = [&](std::vector<BaseCommand *> &from) {
254     v.insert(v.end(), from.begin(), from.end());
255     from.clear();
256   };
257 
258   for (BaseCommand *base : sectionCommands) {
259     if (auto *os = dyn_cast<OutputSection>(base)) {
260       insert(insertBeforeCommands[os->name]);
261       v.push_back(base);
262       insert(insertAfterCommands[os->name]);
263       continue;
264     }
265     v.push_back(base);
266   }
267 
268   for (auto &cmds : {insertBeforeCommands, insertAfterCommands})
269     for (const std::pair<StringRef, std::vector<BaseCommand *>> &p : cmds)
270       if (!p.second.empty())
271         error("unable to INSERT AFTER/BEFORE " + p.first +
272               ": section not defined");
273 
274   sectionCommands = std::move(v);
275 }
276 
277 // Symbols defined in script should not be inlined by LTO. At the same time
278 // we don't know their final values until late stages of link. Here we scan
279 // over symbol assignment commands and create placeholder symbols if needed.
280 void LinkerScript::declareSymbols() {
281   assert(!ctx);
282   for (BaseCommand *base : sectionCommands) {
283     if (auto *cmd = dyn_cast<SymbolAssignment>(base)) {
284       declareSymbol(cmd);
285       continue;
286     }
287 
288     // If the output section directive has constraints,
289     // we can't say for sure if it is going to be included or not.
290     // Skip such sections for now. Improve the checks if we ever
291     // need symbols from that sections to be declared early.
292     auto *sec = cast<OutputSection>(base);
293     if (sec->constraint != ConstraintKind::NoConstraint)
294       continue;
295     for (BaseCommand *base2 : sec->sectionCommands)
296       if (auto *cmd = dyn_cast<SymbolAssignment>(base2))
297         declareSymbol(cmd);
298   }
299 }
300 
301 // This function is called from assignAddresses, while we are
302 // fixing the output section addresses. This function is supposed
303 // to set the final value for a given symbol assignment.
304 void LinkerScript::assignSymbol(SymbolAssignment *cmd, bool inSec) {
305   if (cmd->name == ".") {
306     setDot(cmd->expression, cmd->location, inSec);
307     return;
308   }
309 
310   if (!cmd->sym)
311     return;
312 
313   ExprValue v = cmd->expression();
314   if (v.isAbsolute()) {
315     cmd->sym->section = nullptr;
316     cmd->sym->value = v.getValue();
317   } else {
318     cmd->sym->section = v.sec;
319     cmd->sym->value = v.getSectionOffset();
320   }
321 }
322 
323 static std::string getFilename(InputFile *file) {
324   if (!file)
325     return "";
326   if (file->archiveName.empty())
327     return file->getName();
328   return (file->archiveName + "(" + file->getName() + ")").str();
329 }
330 
331 bool LinkerScript::shouldKeep(InputSectionBase *s) {
332   if (keptSections.empty())
333     return false;
334   std::string filename = getFilename(s->file);
335   for (InputSectionDescription *id : keptSections)
336     if (id->filePat.match(filename))
337       for (SectionPattern &p : id->sectionPatterns)
338         if (p.sectionPat.match(s->name))
339           return true;
340   return false;
341 }
342 
343 // A helper function for the SORT() command.
344 static bool matchConstraints(ArrayRef<InputSectionBase *> sections,
345                              ConstraintKind kind) {
346   if (kind == ConstraintKind::NoConstraint)
347     return true;
348 
349   bool isRW = llvm::any_of(
350       sections, [](InputSectionBase *sec) { return sec->flags & SHF_WRITE; });
351 
352   return (isRW && kind == ConstraintKind::ReadWrite) ||
353          (!isRW && kind == ConstraintKind::ReadOnly);
354 }
355 
356 static void sortSections(MutableArrayRef<InputSectionBase *> vec,
357                          SortSectionPolicy k) {
358   auto alignmentComparator = [](InputSectionBase *a, InputSectionBase *b) {
359     // ">" is not a mistake. Sections with larger alignments are placed
360     // before sections with smaller alignments in order to reduce the
361     // amount of padding necessary. This is compatible with GNU.
362     return a->alignment > b->alignment;
363   };
364   auto nameComparator = [](InputSectionBase *a, InputSectionBase *b) {
365     return a->name < b->name;
366   };
367   auto priorityComparator = [](InputSectionBase *a, InputSectionBase *b) {
368     return getPriority(a->name) < getPriority(b->name);
369   };
370 
371   switch (k) {
372   case SortSectionPolicy::Default:
373   case SortSectionPolicy::None:
374     return;
375   case SortSectionPolicy::Alignment:
376     return llvm::stable_sort(vec, alignmentComparator);
377   case SortSectionPolicy::Name:
378     return llvm::stable_sort(vec, nameComparator);
379   case SortSectionPolicy::Priority:
380     return llvm::stable_sort(vec, priorityComparator);
381   }
382 }
383 
384 // Sort sections as instructed by SORT-family commands and --sort-section
385 // option. Because SORT-family commands can be nested at most two depth
386 // (e.g. SORT_BY_NAME(SORT_BY_ALIGNMENT(.text.*))) and because the command
387 // line option is respected even if a SORT command is given, the exact
388 // behavior we have here is a bit complicated. Here are the rules.
389 //
390 // 1. If two SORT commands are given, --sort-section is ignored.
391 // 2. If one SORT command is given, and if it is not SORT_NONE,
392 //    --sort-section is handled as an inner SORT command.
393 // 3. If one SORT command is given, and if it is SORT_NONE, don't sort.
394 // 4. If no SORT command is given, sort according to --sort-section.
395 static void sortInputSections(MutableArrayRef<InputSectionBase *> vec,
396                               const SectionPattern &pat) {
397   if (pat.sortOuter == SortSectionPolicy::None)
398     return;
399 
400   if (pat.sortInner == SortSectionPolicy::Default)
401     sortSections(vec, config->sortSection);
402   else
403     sortSections(vec, pat.sortInner);
404   sortSections(vec, pat.sortOuter);
405 }
406 
407 // Compute and remember which sections the InputSectionDescription matches.
408 std::vector<InputSectionBase *>
409 LinkerScript::computeInputSections(const InputSectionDescription *cmd) {
410   std::vector<InputSectionBase *> ret;
411 
412   // Collects all sections that satisfy constraints of Cmd.
413   for (const SectionPattern &pat : cmd->sectionPatterns) {
414     size_t sizeBefore = ret.size();
415 
416     for (InputSectionBase *sec : inputSections) {
417       if (!sec->isLive() || sec->parent)
418         continue;
419 
420       // For -emit-relocs we have to ignore entries like
421       //   .rela.dyn : { *(.rela.data) }
422       // which are common because they are in the default bfd script.
423       // We do not ignore SHT_REL[A] linker-synthesized sections here because
424       // want to support scripts that do custom layout for them.
425       if (isa<InputSection>(sec) &&
426           cast<InputSection>(sec)->getRelocatedSection())
427         continue;
428 
429       // Check the name early to improve performance in the common case.
430       if (!pat.sectionPat.match(sec->name))
431         continue;
432 
433       std::string filename = getFilename(sec->file);
434       if (!cmd->filePat.match(filename) || pat.excludedFilePat.match(filename))
435         continue;
436 
437       ret.push_back(sec);
438     }
439 
440     sortInputSections(
441         MutableArrayRef<InputSectionBase *>(ret).slice(sizeBefore), pat);
442   }
443   return ret;
444 }
445 
446 void LinkerScript::discard(InputSectionBase *s) {
447   if (s == in.shStrTab || s == mainPart->relrDyn)
448     error("discarding " + s->name + " section is not allowed");
449 
450   // You can discard .hash and .gnu.hash sections by linker scripts. Since
451   // they are synthesized sections, we need to handle them differently than
452   // other regular sections.
453   if (s == mainPart->gnuHashTab)
454     mainPart->gnuHashTab = nullptr;
455   if (s == mainPart->hashTab)
456     mainPart->hashTab = nullptr;
457 
458   s->markDead();
459   s->parent = nullptr;
460   for (InputSection *ds : s->dependentSections)
461     discard(ds);
462 }
463 
464 std::vector<InputSectionBase *>
465 LinkerScript::createInputSectionList(OutputSection &outCmd) {
466   std::vector<InputSectionBase *> ret;
467 
468   for (BaseCommand *base : outCmd.sectionCommands) {
469     if (auto *cmd = dyn_cast<InputSectionDescription>(base)) {
470       cmd->sectionBases = computeInputSections(cmd);
471       for (InputSectionBase *s : cmd->sectionBases)
472         s->parent = &outCmd;
473       ret.insert(ret.end(), cmd->sectionBases.begin(), cmd->sectionBases.end());
474     }
475   }
476   return ret;
477 }
478 
479 // Create output sections described by SECTIONS commands.
480 void LinkerScript::processSectionCommands() {
481   size_t i = 0;
482   for (BaseCommand *base : sectionCommands) {
483     if (auto *sec = dyn_cast<OutputSection>(base)) {
484       std::vector<InputSectionBase *> v = createInputSectionList(*sec);
485 
486       // The output section name `/DISCARD/' is special.
487       // Any input section assigned to it is discarded.
488       if (sec->name == "/DISCARD/") {
489         for (InputSectionBase *s : v)
490           discard(s);
491         sec->sectionCommands.clear();
492         continue;
493       }
494 
495       // This is for ONLY_IF_RO and ONLY_IF_RW. An output section directive
496       // ".foo : ONLY_IF_R[OW] { ... }" is handled only if all member input
497       // sections satisfy a given constraint. If not, a directive is handled
498       // as if it wasn't present from the beginning.
499       //
500       // Because we'll iterate over SectionCommands many more times, the easy
501       // way to "make it as if it wasn't present" is to make it empty.
502       if (!matchConstraints(v, sec->constraint)) {
503         for (InputSectionBase *s : v)
504           s->parent = nullptr;
505         sec->sectionCommands.clear();
506         continue;
507       }
508 
509       // Handle subalign (e.g. ".foo : SUBALIGN(32) { ... }"). If subalign
510       // is given, input sections are aligned to that value, whether the
511       // given value is larger or smaller than the original section alignment.
512       if (sec->subalignExpr) {
513         uint32_t subalign = sec->subalignExpr().getValue();
514         for (InputSectionBase *s : v)
515           s->alignment = subalign;
516       }
517 
518       // Set the partition field the same way OutputSection::recordSection()
519       // does. Partitions cannot be used with the SECTIONS command, so this is
520       // always 1.
521       sec->partition = 1;
522 
523       sec->sectionIndex = i++;
524     }
525   }
526 }
527 
528 void LinkerScript::processSymbolAssignments() {
529   // Dot outside an output section still represents a relative address, whose
530   // sh_shndx should not be SHN_UNDEF or SHN_ABS. Create a dummy aether section
531   // that fills the void outside a section. It has an index of one, which is
532   // indistinguishable from any other regular section index.
533   aether = make<OutputSection>("", 0, SHF_ALLOC);
534   aether->sectionIndex = 1;
535 
536   // ctx captures the local AddressState and makes it accessible deliberately.
537   // This is needed as there are some cases where we cannot just thread the
538   // current state through to a lambda function created by the script parser.
539   AddressState state;
540   ctx = &state;
541   ctx->outSec = aether;
542 
543   for (BaseCommand *base : sectionCommands) {
544     if (auto *cmd = dyn_cast<SymbolAssignment>(base))
545       addSymbol(cmd);
546     else
547       for (BaseCommand *sub_base : cast<OutputSection>(base)->sectionCommands)
548         if (auto *cmd = dyn_cast<SymbolAssignment>(sub_base))
549           addSymbol(cmd);
550   }
551 
552   ctx = nullptr;
553 }
554 
555 static OutputSection *findByName(ArrayRef<BaseCommand *> vec,
556                                  StringRef name) {
557   for (BaseCommand *base : vec)
558     if (auto *sec = dyn_cast<OutputSection>(base))
559       if (sec->name == name)
560         return sec;
561   return nullptr;
562 }
563 
564 static OutputSection *createSection(InputSectionBase *isec,
565                                     StringRef outsecName) {
566   OutputSection *sec = script->createOutputSection(outsecName, "<internal>");
567   sec->recordSection(isec);
568   return sec;
569 }
570 
571 static OutputSection *
572 addInputSec(StringMap<TinyPtrVector<OutputSection *>> &map,
573             InputSectionBase *isec, StringRef outsecName) {
574   // Sections with SHT_GROUP or SHF_GROUP attributes reach here only when the -r
575   // option is given. A section with SHT_GROUP defines a "section group", and
576   // its members have SHF_GROUP attribute. Usually these flags have already been
577   // stripped by InputFiles.cpp as section groups are processed and uniquified.
578   // However, for the -r option, we want to pass through all section groups
579   // as-is because adding/removing members or merging them with other groups
580   // change their semantics.
581   if (isec->type == SHT_GROUP || (isec->flags & SHF_GROUP))
582     return createSection(isec, outsecName);
583 
584   // Imagine .zed : { *(.foo) *(.bar) } script. Both foo and bar may have
585   // relocation sections .rela.foo and .rela.bar for example. Most tools do
586   // not allow multiple REL[A] sections for output section. Hence we
587   // should combine these relocation sections into single output.
588   // We skip synthetic sections because it can be .rela.dyn/.rela.plt or any
589   // other REL[A] sections created by linker itself.
590   if (!isa<SyntheticSection>(isec) &&
591       (isec->type == SHT_REL || isec->type == SHT_RELA)) {
592     auto *sec = cast<InputSection>(isec);
593     OutputSection *out = sec->getRelocatedSection()->getOutputSection();
594 
595     if (out->relocationSection) {
596       out->relocationSection->recordSection(sec);
597       return nullptr;
598     }
599 
600     out->relocationSection = createSection(isec, outsecName);
601     return out->relocationSection;
602   }
603 
604   //  The ELF spec just says
605   // ----------------------------------------------------------------
606   // In the first phase, input sections that match in name, type and
607   // attribute flags should be concatenated into single sections.
608   // ----------------------------------------------------------------
609   //
610   // However, it is clear that at least some flags have to be ignored for
611   // section merging. At the very least SHF_GROUP and SHF_COMPRESSED have to be
612   // ignored. We should not have two output .text sections just because one was
613   // in a group and another was not for example.
614   //
615   // It also seems that wording was a late addition and didn't get the
616   // necessary scrutiny.
617   //
618   // Merging sections with different flags is expected by some users. One
619   // reason is that if one file has
620   //
621   // int *const bar __attribute__((section(".foo"))) = (int *)0;
622   //
623   // gcc with -fPIC will produce a read only .foo section. But if another
624   // file has
625   //
626   // int zed;
627   // int *const bar __attribute__((section(".foo"))) = (int *)&zed;
628   //
629   // gcc with -fPIC will produce a read write section.
630   //
631   // Last but not least, when using linker script the merge rules are forced by
632   // the script. Unfortunately, linker scripts are name based. This means that
633   // expressions like *(.foo*) can refer to multiple input sections with
634   // different flags. We cannot put them in different output sections or we
635   // would produce wrong results for
636   //
637   // start = .; *(.foo.*) end = .; *(.bar)
638   //
639   // and a mapping of .foo1 and .bar1 to one section and .foo2 and .bar2 to
640   // another. The problem is that there is no way to layout those output
641   // sections such that the .foo sections are the only thing between the start
642   // and end symbols.
643   //
644   // Given the above issues, we instead merge sections by name and error on
645   // incompatible types and flags.
646   TinyPtrVector<OutputSection *> &v = map[outsecName];
647   for (OutputSection *sec : v) {
648     if (sec->partition != isec->partition)
649       continue;
650 
651     if (config->relocatable && (isec->flags & SHF_LINK_ORDER)) {
652       // Merging two SHF_LINK_ORDER sections with different sh_link fields will
653       // change their semantics, so we only merge them in -r links if they will
654       // end up being linked to the same output section. The casts are fine
655       // because everything in the map was created by the orphan placement code.
656       auto *firstIsec = cast<InputSectionBase>(
657           cast<InputSectionDescription>(sec->sectionCommands[0])
658               ->sectionBases[0]);
659       if (firstIsec->getLinkOrderDep()->getOutputSection() !=
660           isec->getLinkOrderDep()->getOutputSection())
661         continue;
662     }
663 
664     sec->recordSection(isec);
665     return nullptr;
666   }
667 
668   OutputSection *sec = createSection(isec, outsecName);
669   v.push_back(sec);
670   return sec;
671 }
672 
673 // Add sections that didn't match any sections command.
674 void LinkerScript::addOrphanSections() {
675   StringMap<TinyPtrVector<OutputSection *>> map;
676   std::vector<OutputSection *> v;
677 
678   std::function<void(InputSectionBase *)> add;
679   add = [&](InputSectionBase *s) {
680     if (s->isLive() && !s->parent) {
681       StringRef name = getOutputSectionName(s);
682 
683       if (config->orphanHandling == OrphanHandlingPolicy::Error)
684         error(toString(s) + " is being placed in '" + name + "'");
685       else if (config->orphanHandling == OrphanHandlingPolicy::Warn)
686         warn(toString(s) + " is being placed in '" + name + "'");
687 
688       if (OutputSection *sec = findByName(sectionCommands, name)) {
689         sec->recordSection(s);
690       } else {
691         if (OutputSection *os = addInputSec(map, s, name))
692           v.push_back(os);
693         assert(isa<MergeInputSection>(s) ||
694                s->getOutputSection()->sectionIndex == UINT32_MAX);
695       }
696     }
697 
698     if (config->relocatable)
699       for (InputSectionBase *depSec : s->dependentSections)
700         if (depSec->flags & SHF_LINK_ORDER)
701           add(depSec);
702   };
703 
704   // For futher --emit-reloc handling code we need target output section
705   // to be created before we create relocation output section, so we want
706   // to create target sections first. We do not want priority handling
707   // for synthetic sections because them are special.
708   for (InputSectionBase *isec : inputSections) {
709     // In -r links, SHF_LINK_ORDER sections are added while adding their parent
710     // sections because we need to know the parent's output section before we
711     // can select an output section for the SHF_LINK_ORDER section.
712     if (config->relocatable && (isec->flags & SHF_LINK_ORDER))
713       continue;
714 
715     if (auto *sec = dyn_cast<InputSection>(isec))
716       if (InputSectionBase *rel = sec->getRelocatedSection())
717         if (auto *relIS = dyn_cast_or_null<InputSectionBase>(rel->parent))
718           add(relIS);
719     add(isec);
720   }
721 
722   // If no SECTIONS command was given, we should insert sections commands
723   // before others, so that we can handle scripts which refers them,
724   // for example: "foo = ABSOLUTE(ADDR(.text)));".
725   // When SECTIONS command is present we just add all orphans to the end.
726   if (hasSectionsCommand)
727     sectionCommands.insert(sectionCommands.end(), v.begin(), v.end());
728   else
729     sectionCommands.insert(sectionCommands.begin(), v.begin(), v.end());
730 }
731 
732 uint64_t LinkerScript::advance(uint64_t size, unsigned alignment) {
733   bool isTbss =
734       (ctx->outSec->flags & SHF_TLS) && ctx->outSec->type == SHT_NOBITS;
735   uint64_t start = isTbss ? dot + ctx->threadBssOffset : dot;
736   start = alignTo(start, alignment);
737   uint64_t end = start + size;
738 
739   if (isTbss)
740     ctx->threadBssOffset = end - dot;
741   else
742     dot = end;
743   return end;
744 }
745 
746 void LinkerScript::output(InputSection *s) {
747   assert(ctx->outSec == s->getParent());
748   uint64_t before = advance(0, 1);
749   uint64_t pos = advance(s->getSize(), s->alignment);
750   s->outSecOff = pos - s->getSize() - ctx->outSec->addr;
751 
752   // Update output section size after adding each section. This is so that
753   // SIZEOF works correctly in the case below:
754   // .foo { *(.aaa) a = SIZEOF(.foo); *(.bbb) }
755   expandOutputSection(pos - before);
756 }
757 
758 void LinkerScript::switchTo(OutputSection *sec) {
759   ctx->outSec = sec;
760 
761   uint64_t before = advance(0, 1);
762   ctx->outSec->addr = advance(0, ctx->outSec->alignment);
763   expandMemoryRegions(ctx->outSec->addr - before);
764 }
765 
766 // This function searches for a memory region to place the given output
767 // section in. If found, a pointer to the appropriate memory region is
768 // returned. Otherwise, a nullptr is returned.
769 MemoryRegion *LinkerScript::findMemoryRegion(OutputSection *sec) {
770   // If a memory region name was specified in the output section command,
771   // then try to find that region first.
772   if (!sec->memoryRegionName.empty()) {
773     if (MemoryRegion *m = memoryRegions.lookup(sec->memoryRegionName))
774       return m;
775     error("memory region '" + sec->memoryRegionName + "' not declared");
776     return nullptr;
777   }
778 
779   // If at least one memory region is defined, all sections must
780   // belong to some memory region. Otherwise, we don't need to do
781   // anything for memory regions.
782   if (memoryRegions.empty())
783     return nullptr;
784 
785   // See if a region can be found by matching section flags.
786   for (auto &pair : memoryRegions) {
787     MemoryRegion *m = pair.second;
788     if ((m->flags & sec->flags) && (m->negFlags & sec->flags) == 0)
789       return m;
790   }
791 
792   // Otherwise, no suitable region was found.
793   if (sec->flags & SHF_ALLOC)
794     error("no memory region specified for section '" + sec->name + "'");
795   return nullptr;
796 }
797 
798 static OutputSection *findFirstSection(PhdrEntry *load) {
799   for (OutputSection *sec : outputSections)
800     if (sec->ptLoad == load)
801       return sec;
802   return nullptr;
803 }
804 
805 // This function assigns offsets to input sections and an output section
806 // for a single sections command (e.g. ".text { *(.text); }").
807 void LinkerScript::assignOffsets(OutputSection *sec) {
808   if (!(sec->flags & SHF_ALLOC))
809     dot = 0;
810 
811   ctx->memRegion = sec->memRegion;
812   ctx->lmaRegion = sec->lmaRegion;
813   if (ctx->memRegion)
814     dot = ctx->memRegion->curPos;
815 
816   if ((sec->flags & SHF_ALLOC) && sec->addrExpr)
817     setDot(sec->addrExpr, sec->location, false);
818 
819   // If the address of the section has been moved forward by an explicit
820   // expression so that it now starts past the current curPos of the enclosing
821   // region, we need to expand the current region to account for the space
822   // between the previous section, if any, and the start of this section.
823   if (ctx->memRegion && ctx->memRegion->curPos < dot)
824     expandMemoryRegion(ctx->memRegion, dot - ctx->memRegion->curPos,
825                        ctx->memRegion->name, sec->name);
826 
827   switchTo(sec);
828 
829   if (sec->lmaExpr)
830     ctx->lmaOffset = sec->lmaExpr().getValue() - dot;
831 
832   if (MemoryRegion *mr = sec->lmaRegion)
833     ctx->lmaOffset = mr->curPos - dot;
834 
835   // If neither AT nor AT> is specified for an allocatable section, the linker
836   // will set the LMA such that the difference between VMA and LMA for the
837   // section is the same as the preceding output section in the same region
838   // https://sourceware.org/binutils/docs-2.20/ld/Output-Section-LMA.html
839   // This, however, should only be done by the first "non-header" section
840   // in the segment.
841   if (PhdrEntry *l = ctx->outSec->ptLoad)
842     if (sec == findFirstSection(l))
843       l->lmaOffset = ctx->lmaOffset;
844 
845   // We can call this method multiple times during the creation of
846   // thunks and want to start over calculation each time.
847   sec->size = 0;
848 
849   // We visited SectionsCommands from processSectionCommands to
850   // layout sections. Now, we visit SectionsCommands again to fix
851   // section offsets.
852   for (BaseCommand *base : sec->sectionCommands) {
853     // This handles the assignments to symbol or to the dot.
854     if (auto *cmd = dyn_cast<SymbolAssignment>(base)) {
855       cmd->addr = dot;
856       assignSymbol(cmd, true);
857       cmd->size = dot - cmd->addr;
858       continue;
859     }
860 
861     // Handle BYTE(), SHORT(), LONG(), or QUAD().
862     if (auto *cmd = dyn_cast<ByteCommand>(base)) {
863       cmd->offset = dot - ctx->outSec->addr;
864       dot += cmd->size;
865       expandOutputSection(cmd->size);
866       continue;
867     }
868 
869     // Handle a single input section description command.
870     // It calculates and assigns the offsets for each section and also
871     // updates the output section size.
872     for (InputSection *sec : cast<InputSectionDescription>(base)->sections)
873       output(sec);
874   }
875 }
876 
877 static bool isDiscardable(OutputSection &sec) {
878   if (sec.name == "/DISCARD/")
879     return true;
880 
881   // We do not remove empty sections that are explicitly
882   // assigned to any segment.
883   if (!sec.phdrs.empty())
884     return false;
885 
886   // We do not want to remove OutputSections with expressions that reference
887   // symbols even if the OutputSection is empty. We want to ensure that the
888   // expressions can be evaluated and report an error if they cannot.
889   if (sec.expressionsUseSymbols)
890     return false;
891 
892   // OutputSections may be referenced by name in ADDR and LOADADDR expressions,
893   // as an empty Section can has a valid VMA and LMA we keep the OutputSection
894   // to maintain the integrity of the other Expression.
895   if (sec.usedInExpression)
896     return false;
897 
898   for (BaseCommand *base : sec.sectionCommands) {
899     if (auto cmd = dyn_cast<SymbolAssignment>(base))
900       // Don't create empty output sections just for unreferenced PROVIDE
901       // symbols.
902       if (cmd->name != "." && !cmd->sym)
903         continue;
904 
905     if (!isa<InputSectionDescription>(*base))
906       return false;
907   }
908   return true;
909 }
910 
911 void LinkerScript::adjustSectionsBeforeSorting() {
912   // If the output section contains only symbol assignments, create a
913   // corresponding output section. The issue is what to do with linker script
914   // like ".foo : { symbol = 42; }". One option would be to convert it to
915   // "symbol = 42;". That is, move the symbol out of the empty section
916   // description. That seems to be what bfd does for this simple case. The
917   // problem is that this is not completely general. bfd will give up and
918   // create a dummy section too if there is a ". = . + 1" inside the section
919   // for example.
920   // Given that we want to create the section, we have to worry what impact
921   // it will have on the link. For example, if we just create a section with
922   // 0 for flags, it would change which PT_LOADs are created.
923   // We could remember that particular section is dummy and ignore it in
924   // other parts of the linker, but unfortunately there are quite a few places
925   // that would need to change:
926   //   * The program header creation.
927   //   * The orphan section placement.
928   //   * The address assignment.
929   // The other option is to pick flags that minimize the impact the section
930   // will have on the rest of the linker. That is why we copy the flags from
931   // the previous sections. Only a few flags are needed to keep the impact low.
932   uint64_t flags = SHF_ALLOC;
933 
934   for (BaseCommand *&cmd : sectionCommands) {
935     auto *sec = dyn_cast<OutputSection>(cmd);
936     if (!sec)
937       continue;
938 
939     // Handle align (e.g. ".foo : ALIGN(16) { ... }").
940     if (sec->alignExpr)
941       sec->alignment =
942           std::max<uint32_t>(sec->alignment, sec->alignExpr().getValue());
943 
944     // The input section might have been removed (if it was an empty synthetic
945     // section), but we at least know the flags.
946     if (sec->hasInputSections)
947       flags = sec->flags;
948 
949     // We do not want to keep any special flags for output section
950     // in case it is empty.
951     bool isEmpty = getInputSections(sec).empty();
952     if (isEmpty)
953       sec->flags = flags & ((sec->nonAlloc ? 0 : (uint64_t)SHF_ALLOC) |
954                             SHF_WRITE | SHF_EXECINSTR);
955 
956     if (isEmpty && isDiscardable(*sec)) {
957       sec->markDead();
958       cmd = nullptr;
959     }
960   }
961 
962   // It is common practice to use very generic linker scripts. So for any
963   // given run some of the output sections in the script will be empty.
964   // We could create corresponding empty output sections, but that would
965   // clutter the output.
966   // We instead remove trivially empty sections. The bfd linker seems even
967   // more aggressive at removing them.
968   llvm::erase_if(sectionCommands, [&](BaseCommand *base) { return !base; });
969 }
970 
971 void LinkerScript::adjustSectionsAfterSorting() {
972   // Try and find an appropriate memory region to assign offsets in.
973   for (BaseCommand *base : sectionCommands) {
974     if (auto *sec = dyn_cast<OutputSection>(base)) {
975       if (!sec->lmaRegionName.empty()) {
976         if (MemoryRegion *m = memoryRegions.lookup(sec->lmaRegionName))
977           sec->lmaRegion = m;
978         else
979           error("memory region '" + sec->lmaRegionName + "' not declared");
980       }
981       sec->memRegion = findMemoryRegion(sec);
982     }
983   }
984 
985   // If output section command doesn't specify any segments,
986   // and we haven't previously assigned any section to segment,
987   // then we simply assign section to the very first load segment.
988   // Below is an example of such linker script:
989   // PHDRS { seg PT_LOAD; }
990   // SECTIONS { .aaa : { *(.aaa) } }
991   std::vector<StringRef> defPhdrs;
992   auto firstPtLoad = llvm::find_if(phdrsCommands, [](const PhdrsCommand &cmd) {
993     return cmd.type == PT_LOAD;
994   });
995   if (firstPtLoad != phdrsCommands.end())
996     defPhdrs.push_back(firstPtLoad->name);
997 
998   // Walk the commands and propagate the program headers to commands that don't
999   // explicitly specify them.
1000   for (BaseCommand *base : sectionCommands) {
1001     auto *sec = dyn_cast<OutputSection>(base);
1002     if (!sec)
1003       continue;
1004 
1005     if (sec->phdrs.empty()) {
1006       // To match the bfd linker script behaviour, only propagate program
1007       // headers to sections that are allocated.
1008       if (sec->flags & SHF_ALLOC)
1009         sec->phdrs = defPhdrs;
1010     } else {
1011       defPhdrs = sec->phdrs;
1012     }
1013   }
1014 }
1015 
1016 static uint64_t computeBase(uint64_t min, bool allocateHeaders) {
1017   // If there is no SECTIONS or if the linkerscript is explicit about program
1018   // headers, do our best to allocate them.
1019   if (!script->hasSectionsCommand || allocateHeaders)
1020     return 0;
1021   // Otherwise only allocate program headers if that would not add a page.
1022   return alignDown(min, config->maxPageSize);
1023 }
1024 
1025 // When the SECTIONS command is used, try to find an address for the file and
1026 // program headers output sections, which can be added to the first PT_LOAD
1027 // segment when program headers are created.
1028 //
1029 // We check if the headers fit below the first allocated section. If there isn't
1030 // enough space for these sections, we'll remove them from the PT_LOAD segment,
1031 // and we'll also remove the PT_PHDR segment.
1032 void LinkerScript::allocateHeaders(std::vector<PhdrEntry *> &phdrs) {
1033   uint64_t min = std::numeric_limits<uint64_t>::max();
1034   for (OutputSection *sec : outputSections)
1035     if (sec->flags & SHF_ALLOC)
1036       min = std::min<uint64_t>(min, sec->addr);
1037 
1038   auto it = llvm::find_if(
1039       phdrs, [](const PhdrEntry *e) { return e->p_type == PT_LOAD; });
1040   if (it == phdrs.end())
1041     return;
1042   PhdrEntry *firstPTLoad = *it;
1043 
1044   bool hasExplicitHeaders =
1045       llvm::any_of(phdrsCommands, [](const PhdrsCommand &cmd) {
1046         return cmd.hasPhdrs || cmd.hasFilehdr;
1047       });
1048   bool paged = !config->omagic && !config->nmagic;
1049   uint64_t headerSize = getHeaderSize();
1050   if ((paged || hasExplicitHeaders) &&
1051       headerSize <= min - computeBase(min, hasExplicitHeaders)) {
1052     min = alignDown(min - headerSize, config->maxPageSize);
1053     Out::elfHeader->addr = min;
1054     Out::programHeaders->addr = min + Out::elfHeader->size;
1055     return;
1056   }
1057 
1058   // Error if we were explicitly asked to allocate headers.
1059   if (hasExplicitHeaders)
1060     error("could not allocate headers");
1061 
1062   Out::elfHeader->ptLoad = nullptr;
1063   Out::programHeaders->ptLoad = nullptr;
1064   firstPTLoad->firstSec = findFirstSection(firstPTLoad);
1065 
1066   llvm::erase_if(phdrs,
1067                  [](const PhdrEntry *e) { return e->p_type == PT_PHDR; });
1068 }
1069 
1070 LinkerScript::AddressState::AddressState() {
1071   for (auto &mri : script->memoryRegions) {
1072     MemoryRegion *mr = mri.second;
1073     mr->curPos = mr->origin;
1074   }
1075 }
1076 
1077 // Here we assign addresses as instructed by linker script SECTIONS
1078 // sub-commands. Doing that allows us to use final VA values, so here
1079 // we also handle rest commands like symbol assignments and ASSERTs.
1080 // Returns a symbol that has changed its section or value, or nullptr if no
1081 // symbol has changed.
1082 const Defined *LinkerScript::assignAddresses() {
1083   if (script->hasSectionsCommand) {
1084     // With a linker script, assignment of addresses to headers is covered by
1085     // allocateHeaders().
1086     dot = config->imageBase.getValueOr(0);
1087   } else {
1088     // Assign addresses to headers right now.
1089     dot = target->getImageBase();
1090     Out::elfHeader->addr = dot;
1091     Out::programHeaders->addr = dot + Out::elfHeader->size;
1092     dot += getHeaderSize();
1093   }
1094 
1095   auto deleter = std::make_unique<AddressState>();
1096   ctx = deleter.get();
1097   errorOnMissingSection = true;
1098   switchTo(aether);
1099 
1100   SymbolAssignmentMap oldValues = getSymbolAssignmentValues(sectionCommands);
1101   for (BaseCommand *base : sectionCommands) {
1102     if (auto *cmd = dyn_cast<SymbolAssignment>(base)) {
1103       cmd->addr = dot;
1104       assignSymbol(cmd, false);
1105       cmd->size = dot - cmd->addr;
1106       continue;
1107     }
1108     assignOffsets(cast<OutputSection>(base));
1109   }
1110 
1111   ctx = nullptr;
1112   return getChangedSymbolAssignment(oldValues);
1113 }
1114 
1115 // Creates program headers as instructed by PHDRS linker script command.
1116 std::vector<PhdrEntry *> LinkerScript::createPhdrs() {
1117   std::vector<PhdrEntry *> ret;
1118 
1119   // Process PHDRS and FILEHDR keywords because they are not
1120   // real output sections and cannot be added in the following loop.
1121   for (const PhdrsCommand &cmd : phdrsCommands) {
1122     PhdrEntry *phdr = make<PhdrEntry>(cmd.type, cmd.flags ? *cmd.flags : PF_R);
1123 
1124     if (cmd.hasFilehdr)
1125       phdr->add(Out::elfHeader);
1126     if (cmd.hasPhdrs)
1127       phdr->add(Out::programHeaders);
1128 
1129     if (cmd.lmaExpr) {
1130       phdr->p_paddr = cmd.lmaExpr().getValue();
1131       phdr->hasLMA = true;
1132     }
1133     ret.push_back(phdr);
1134   }
1135 
1136   // Add output sections to program headers.
1137   for (OutputSection *sec : outputSections) {
1138     // Assign headers specified by linker script
1139     for (size_t id : getPhdrIndices(sec)) {
1140       ret[id]->add(sec);
1141       if (!phdrsCommands[id].flags.hasValue())
1142         ret[id]->p_flags |= sec->getPhdrFlags();
1143     }
1144   }
1145   return ret;
1146 }
1147 
1148 // Returns true if we should emit an .interp section.
1149 //
1150 // We usually do. But if PHDRS commands are given, and
1151 // no PT_INTERP is there, there's no place to emit an
1152 // .interp, so we don't do that in that case.
1153 bool LinkerScript::needsInterpSection() {
1154   if (phdrsCommands.empty())
1155     return true;
1156   for (PhdrsCommand &cmd : phdrsCommands)
1157     if (cmd.type == PT_INTERP)
1158       return true;
1159   return false;
1160 }
1161 
1162 ExprValue LinkerScript::getSymbolValue(StringRef name, const Twine &loc) {
1163   if (name == ".") {
1164     if (ctx)
1165       return {ctx->outSec, false, dot - ctx->outSec->addr, loc};
1166     error(loc + ": unable to get location counter value");
1167     return 0;
1168   }
1169 
1170   if (Symbol *sym = symtab->find(name)) {
1171     if (auto *ds = dyn_cast<Defined>(sym))
1172       return {ds->section, false, ds->value, loc};
1173     if (isa<SharedSymbol>(sym))
1174       if (!errorOnMissingSection)
1175         return {nullptr, false, 0, loc};
1176   }
1177 
1178   error(loc + ": symbol not found: " + name);
1179   return 0;
1180 }
1181 
1182 // Returns the index of the segment named Name.
1183 static Optional<size_t> getPhdrIndex(ArrayRef<PhdrsCommand> vec,
1184                                      StringRef name) {
1185   for (size_t i = 0; i < vec.size(); ++i)
1186     if (vec[i].name == name)
1187       return i;
1188   return None;
1189 }
1190 
1191 // Returns indices of ELF headers containing specific section. Each index is a
1192 // zero based number of ELF header listed within PHDRS {} script block.
1193 std::vector<size_t> LinkerScript::getPhdrIndices(OutputSection *cmd) {
1194   std::vector<size_t> ret;
1195 
1196   for (StringRef s : cmd->phdrs) {
1197     if (Optional<size_t> idx = getPhdrIndex(phdrsCommands, s))
1198       ret.push_back(*idx);
1199     else if (s != "NONE")
1200       error(cmd->location + ": section header '" + s +
1201             "' is not listed in PHDRS");
1202   }
1203   return ret;
1204 }
1205 
1206 } // namespace elf
1207 } // namespace lld
1208