1 //===- LinkerScript.cpp ---------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the parser/evaluator of the linker script. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "LinkerScript.h" 14 #include "Config.h" 15 #include "InputSection.h" 16 #include "OutputSections.h" 17 #include "SymbolTable.h" 18 #include "Symbols.h" 19 #include "SyntheticSections.h" 20 #include "Target.h" 21 #include "Writer.h" 22 #include "lld/Common/CommonLinkerContext.h" 23 #include "lld/Common/Strings.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/BinaryFormat/ELF.h" 27 #include "llvm/Support/Casting.h" 28 #include "llvm/Support/Endian.h" 29 #include "llvm/Support/ErrorHandling.h" 30 #include "llvm/Support/TimeProfiler.h" 31 #include <algorithm> 32 #include <cassert> 33 #include <cstddef> 34 #include <cstdint> 35 #include <limits> 36 #include <string> 37 #include <vector> 38 39 using namespace llvm; 40 using namespace llvm::ELF; 41 using namespace llvm::object; 42 using namespace llvm::support::endian; 43 using namespace lld; 44 using namespace lld::elf; 45 46 std::unique_ptr<LinkerScript> elf::script; 47 48 static bool isSectionPrefix(StringRef prefix, StringRef name) { 49 return name.consume_front(prefix) && (name.empty() || name[0] == '.'); 50 } 51 52 static StringRef getOutputSectionName(const InputSectionBase *s) { 53 if (config->relocatable) 54 return s->name; 55 56 // This is for --emit-relocs. If .text.foo is emitted as .text.bar, we want 57 // to emit .rela.text.foo as .rela.text.bar for consistency (this is not 58 // technically required, but not doing it is odd). This code guarantees that. 59 if (auto *isec = dyn_cast<InputSection>(s)) { 60 if (InputSectionBase *rel = isec->getRelocatedSection()) { 61 OutputSection *out = rel->getOutputSection(); 62 if (s->type == SHT_RELA) 63 return saver().save(".rela" + out->name); 64 return saver().save(".rel" + out->name); 65 } 66 } 67 68 // A BssSection created for a common symbol is identified as "COMMON" in 69 // linker scripts. It should go to .bss section. 70 if (s->name == "COMMON") 71 return ".bss"; 72 73 if (script->hasSectionsCommand) 74 return s->name; 75 76 // When no SECTIONS is specified, emulate GNU ld's internal linker scripts 77 // by grouping sections with certain prefixes. 78 79 // GNU ld places text sections with prefix ".text.hot.", ".text.unknown.", 80 // ".text.unlikely.", ".text.startup." or ".text.exit." before others. 81 // We provide an option -z keep-text-section-prefix to group such sections 82 // into separate output sections. This is more flexible. See also 83 // sortISDBySectionOrder(). 84 // ".text.unknown" means the hotness of the section is unknown. When 85 // SampleFDO is used, if a function doesn't have sample, it could be very 86 // cold or it could be a new function never being sampled. Those functions 87 // will be kept in the ".text.unknown" section. 88 // ".text.split." holds symbols which are split out from functions in other 89 // input sections. For example, with -fsplit-machine-functions, placing the 90 // cold parts in .text.split instead of .text.unlikely mitigates against poor 91 // profile inaccuracy. Techniques such as hugepage remapping can make 92 // conservative decisions at the section granularity. 93 if (isSectionPrefix(".text", s->name)) { 94 if (config->zKeepTextSectionPrefix) 95 for (StringRef v : {".text.hot", ".text.unknown", ".text.unlikely", 96 ".text.startup", ".text.exit", ".text.split"}) 97 if (isSectionPrefix(v.substr(5), s->name.substr(5))) 98 return v; 99 return ".text"; 100 } 101 102 for (StringRef v : 103 {".data.rel.ro", ".data", ".rodata", ".bss.rel.ro", ".bss", 104 ".gcc_except_table", ".init_array", ".fini_array", ".tbss", ".tdata", 105 ".ARM.exidx", ".ARM.extab", ".ctors", ".dtors"}) 106 if (isSectionPrefix(v, s->name)) 107 return v; 108 109 return s->name; 110 } 111 112 uint64_t ExprValue::getValue() const { 113 if (sec) 114 return alignTo(sec->getOutputSection()->addr + sec->getOffset(val), 115 alignment); 116 return alignTo(val, alignment); 117 } 118 119 uint64_t ExprValue::getSecAddr() const { 120 return sec ? sec->getOutputSection()->addr + sec->getOffset(0) : 0; 121 } 122 123 uint64_t ExprValue::getSectionOffset() const { 124 // If the alignment is trivial, we don't have to compute the full 125 // value to know the offset. This allows this function to succeed in 126 // cases where the output section is not yet known. 127 if (alignment == 1 && !sec) 128 return val; 129 return getValue() - getSecAddr(); 130 } 131 132 OutputSection *LinkerScript::createOutputSection(StringRef name, 133 StringRef location) { 134 OutputSection *&secRef = nameToOutputSection[CachedHashStringRef(name)]; 135 OutputSection *sec; 136 if (secRef && secRef->location.empty()) { 137 // There was a forward reference. 138 sec = secRef; 139 } else { 140 sec = make<OutputSection>(name, SHT_PROGBITS, 0); 141 if (!secRef) 142 secRef = sec; 143 } 144 sec->location = std::string(location); 145 return sec; 146 } 147 148 OutputSection *LinkerScript::getOrCreateOutputSection(StringRef name) { 149 OutputSection *&cmdRef = nameToOutputSection[CachedHashStringRef(name)]; 150 if (!cmdRef) 151 cmdRef = make<OutputSection>(name, SHT_PROGBITS, 0); 152 return cmdRef; 153 } 154 155 // Expands the memory region by the specified size. 156 static void expandMemoryRegion(MemoryRegion *memRegion, uint64_t size, 157 StringRef secName) { 158 memRegion->curPos += size; 159 uint64_t newSize = memRegion->curPos - (memRegion->origin)().getValue(); 160 uint64_t length = (memRegion->length)().getValue(); 161 if (newSize > length) 162 error("section '" + secName + "' will not fit in region '" + 163 memRegion->name + "': overflowed by " + Twine(newSize - length) + 164 " bytes"); 165 } 166 167 void LinkerScript::expandMemoryRegions(uint64_t size) { 168 if (ctx->memRegion) 169 expandMemoryRegion(ctx->memRegion, size, ctx->outSec->name); 170 // Only expand the LMARegion if it is different from memRegion. 171 if (ctx->lmaRegion && ctx->memRegion != ctx->lmaRegion) 172 expandMemoryRegion(ctx->lmaRegion, size, ctx->outSec->name); 173 } 174 175 void LinkerScript::expandOutputSection(uint64_t size) { 176 ctx->outSec->size += size; 177 expandMemoryRegions(size); 178 } 179 180 void LinkerScript::setDot(Expr e, const Twine &loc, bool inSec) { 181 uint64_t val = e().getValue(); 182 if (val < dot && inSec) 183 error(loc + ": unable to move location counter backward for: " + 184 ctx->outSec->name); 185 186 // Update to location counter means update to section size. 187 if (inSec) 188 expandOutputSection(val - dot); 189 190 dot = val; 191 } 192 193 // Used for handling linker symbol assignments, for both finalizing 194 // their values and doing early declarations. Returns true if symbol 195 // should be defined from linker script. 196 static bool shouldDefineSym(SymbolAssignment *cmd) { 197 if (cmd->name == ".") 198 return false; 199 200 if (!cmd->provide) 201 return true; 202 203 // If a symbol was in PROVIDE(), we need to define it only 204 // when it is a referenced undefined symbol. 205 Symbol *b = symtab->find(cmd->name); 206 if (b && !b->isDefined()) 207 return true; 208 return false; 209 } 210 211 // Called by processSymbolAssignments() to assign definitions to 212 // linker-script-defined symbols. 213 void LinkerScript::addSymbol(SymbolAssignment *cmd) { 214 if (!shouldDefineSym(cmd)) 215 return; 216 217 // Define a symbol. 218 ExprValue value = cmd->expression(); 219 SectionBase *sec = value.isAbsolute() ? nullptr : value.sec; 220 uint8_t visibility = cmd->hidden ? STV_HIDDEN : STV_DEFAULT; 221 222 // When this function is called, section addresses have not been 223 // fixed yet. So, we may or may not know the value of the RHS 224 // expression. 225 // 226 // For example, if an expression is `x = 42`, we know x is always 42. 227 // However, if an expression is `x = .`, there's no way to know its 228 // value at the moment. 229 // 230 // We want to set symbol values early if we can. This allows us to 231 // use symbols as variables in linker scripts. Doing so allows us to 232 // write expressions like this: `alignment = 16; . = ALIGN(., alignment)`. 233 uint64_t symValue = value.sec ? 0 : value.getValue(); 234 235 Defined newSym(nullptr, cmd->name, STB_GLOBAL, visibility, value.type, 236 symValue, 0, sec); 237 238 Symbol *sym = symtab->insert(cmd->name); 239 sym->mergeProperties(newSym); 240 sym->replace(newSym); 241 cmd->sym = cast<Defined>(sym); 242 } 243 244 // This function is called from LinkerScript::declareSymbols. 245 // It creates a placeholder symbol if needed. 246 static void declareSymbol(SymbolAssignment *cmd) { 247 if (!shouldDefineSym(cmd)) 248 return; 249 250 uint8_t visibility = cmd->hidden ? STV_HIDDEN : STV_DEFAULT; 251 Defined newSym(nullptr, cmd->name, STB_GLOBAL, visibility, STT_NOTYPE, 0, 0, 252 nullptr); 253 254 // We can't calculate final value right now. 255 Symbol *sym = symtab->insert(cmd->name); 256 sym->mergeProperties(newSym); 257 sym->replace(newSym); 258 259 cmd->sym = cast<Defined>(sym); 260 cmd->provide = false; 261 sym->scriptDefined = true; 262 } 263 264 using SymbolAssignmentMap = 265 DenseMap<const Defined *, std::pair<SectionBase *, uint64_t>>; 266 267 // Collect section/value pairs of linker-script-defined symbols. This is used to 268 // check whether symbol values converge. 269 static SymbolAssignmentMap 270 getSymbolAssignmentValues(ArrayRef<SectionCommand *> sectionCommands) { 271 SymbolAssignmentMap ret; 272 for (SectionCommand *cmd : sectionCommands) { 273 if (auto *assign = dyn_cast<SymbolAssignment>(cmd)) { 274 if (assign->sym) // sym is nullptr for dot. 275 ret.try_emplace(assign->sym, std::make_pair(assign->sym->section, 276 assign->sym->value)); 277 continue; 278 } 279 for (SectionCommand *subCmd : cast<OutputSection>(cmd)->commands) 280 if (auto *assign = dyn_cast<SymbolAssignment>(subCmd)) 281 if (assign->sym) 282 ret.try_emplace(assign->sym, std::make_pair(assign->sym->section, 283 assign->sym->value)); 284 } 285 return ret; 286 } 287 288 // Returns the lexicographical smallest (for determinism) Defined whose 289 // section/value has changed. 290 static const Defined * 291 getChangedSymbolAssignment(const SymbolAssignmentMap &oldValues) { 292 const Defined *changed = nullptr; 293 for (auto &it : oldValues) { 294 const Defined *sym = it.first; 295 if (std::make_pair(sym->section, sym->value) != it.second && 296 (!changed || sym->getName() < changed->getName())) 297 changed = sym; 298 } 299 return changed; 300 } 301 302 // Process INSERT [AFTER|BEFORE] commands. For each command, we move the 303 // specified output section to the designated place. 304 void LinkerScript::processInsertCommands() { 305 SmallVector<OutputSection *, 0> moves; 306 for (const InsertCommand &cmd : insertCommands) { 307 for (StringRef name : cmd.names) { 308 // If base is empty, it may have been discarded by 309 // adjustOutputSections(). We do not handle such output sections. 310 auto from = llvm::find_if(sectionCommands, [&](SectionCommand *subCmd) { 311 return isa<OutputSection>(subCmd) && 312 cast<OutputSection>(subCmd)->name == name; 313 }); 314 if (from == sectionCommands.end()) 315 continue; 316 moves.push_back(cast<OutputSection>(*from)); 317 sectionCommands.erase(from); 318 } 319 320 auto insertPos = 321 llvm::find_if(sectionCommands, [&cmd](SectionCommand *subCmd) { 322 auto *to = dyn_cast<OutputSection>(subCmd); 323 return to != nullptr && to->name == cmd.where; 324 }); 325 if (insertPos == sectionCommands.end()) { 326 error("unable to insert " + cmd.names[0] + 327 (cmd.isAfter ? " after " : " before ") + cmd.where); 328 } else { 329 if (cmd.isAfter) 330 ++insertPos; 331 sectionCommands.insert(insertPos, moves.begin(), moves.end()); 332 } 333 moves.clear(); 334 } 335 } 336 337 // Symbols defined in script should not be inlined by LTO. At the same time 338 // we don't know their final values until late stages of link. Here we scan 339 // over symbol assignment commands and create placeholder symbols if needed. 340 void LinkerScript::declareSymbols() { 341 assert(!ctx); 342 for (SectionCommand *cmd : sectionCommands) { 343 if (auto *assign = dyn_cast<SymbolAssignment>(cmd)) { 344 declareSymbol(assign); 345 continue; 346 } 347 348 // If the output section directive has constraints, 349 // we can't say for sure if it is going to be included or not. 350 // Skip such sections for now. Improve the checks if we ever 351 // need symbols from that sections to be declared early. 352 auto *sec = cast<OutputSection>(cmd); 353 if (sec->constraint != ConstraintKind::NoConstraint) 354 continue; 355 for (SectionCommand *cmd : sec->commands) 356 if (auto *assign = dyn_cast<SymbolAssignment>(cmd)) 357 declareSymbol(assign); 358 } 359 } 360 361 // This function is called from assignAddresses, while we are 362 // fixing the output section addresses. This function is supposed 363 // to set the final value for a given symbol assignment. 364 void LinkerScript::assignSymbol(SymbolAssignment *cmd, bool inSec) { 365 if (cmd->name == ".") { 366 setDot(cmd->expression, cmd->location, inSec); 367 return; 368 } 369 370 if (!cmd->sym) 371 return; 372 373 ExprValue v = cmd->expression(); 374 if (v.isAbsolute()) { 375 cmd->sym->section = nullptr; 376 cmd->sym->value = v.getValue(); 377 } else { 378 cmd->sym->section = v.sec; 379 cmd->sym->value = v.getSectionOffset(); 380 } 381 cmd->sym->type = v.type; 382 } 383 384 static inline StringRef getFilename(const InputFile *file) { 385 return file ? file->getNameForScript() : StringRef(); 386 } 387 388 bool InputSectionDescription::matchesFile(const InputFile *file) const { 389 if (filePat.isTrivialMatchAll()) 390 return true; 391 392 if (!matchesFileCache || matchesFileCache->first != file) 393 matchesFileCache.emplace(file, filePat.match(getFilename(file))); 394 395 return matchesFileCache->second; 396 } 397 398 bool SectionPattern::excludesFile(const InputFile *file) const { 399 if (excludedFilePat.empty()) 400 return false; 401 402 if (!excludesFileCache || excludesFileCache->first != file) 403 excludesFileCache.emplace(file, excludedFilePat.match(getFilename(file))); 404 405 return excludesFileCache->second; 406 } 407 408 bool LinkerScript::shouldKeep(InputSectionBase *s) { 409 for (InputSectionDescription *id : keptSections) 410 if (id->matchesFile(s->file)) 411 for (SectionPattern &p : id->sectionPatterns) 412 if (p.sectionPat.match(s->name) && 413 (s->flags & id->withFlags) == id->withFlags && 414 (s->flags & id->withoutFlags) == 0) 415 return true; 416 return false; 417 } 418 419 // A helper function for the SORT() command. 420 static bool matchConstraints(ArrayRef<InputSectionBase *> sections, 421 ConstraintKind kind) { 422 if (kind == ConstraintKind::NoConstraint) 423 return true; 424 425 bool isRW = llvm::any_of( 426 sections, [](InputSectionBase *sec) { return sec->flags & SHF_WRITE; }); 427 428 return (isRW && kind == ConstraintKind::ReadWrite) || 429 (!isRW && kind == ConstraintKind::ReadOnly); 430 } 431 432 static void sortSections(MutableArrayRef<InputSectionBase *> vec, 433 SortSectionPolicy k) { 434 auto alignmentComparator = [](InputSectionBase *a, InputSectionBase *b) { 435 // ">" is not a mistake. Sections with larger alignments are placed 436 // before sections with smaller alignments in order to reduce the 437 // amount of padding necessary. This is compatible with GNU. 438 return a->alignment > b->alignment; 439 }; 440 auto nameComparator = [](InputSectionBase *a, InputSectionBase *b) { 441 return a->name < b->name; 442 }; 443 auto priorityComparator = [](InputSectionBase *a, InputSectionBase *b) { 444 return getPriority(a->name) < getPriority(b->name); 445 }; 446 447 switch (k) { 448 case SortSectionPolicy::Default: 449 case SortSectionPolicy::None: 450 return; 451 case SortSectionPolicy::Alignment: 452 return llvm::stable_sort(vec, alignmentComparator); 453 case SortSectionPolicy::Name: 454 return llvm::stable_sort(vec, nameComparator); 455 case SortSectionPolicy::Priority: 456 return llvm::stable_sort(vec, priorityComparator); 457 } 458 } 459 460 // Sort sections as instructed by SORT-family commands and --sort-section 461 // option. Because SORT-family commands can be nested at most two depth 462 // (e.g. SORT_BY_NAME(SORT_BY_ALIGNMENT(.text.*))) and because the command 463 // line option is respected even if a SORT command is given, the exact 464 // behavior we have here is a bit complicated. Here are the rules. 465 // 466 // 1. If two SORT commands are given, --sort-section is ignored. 467 // 2. If one SORT command is given, and if it is not SORT_NONE, 468 // --sort-section is handled as an inner SORT command. 469 // 3. If one SORT command is given, and if it is SORT_NONE, don't sort. 470 // 4. If no SORT command is given, sort according to --sort-section. 471 static void sortInputSections(MutableArrayRef<InputSectionBase *> vec, 472 SortSectionPolicy outer, 473 SortSectionPolicy inner) { 474 if (outer == SortSectionPolicy::None) 475 return; 476 477 if (inner == SortSectionPolicy::Default) 478 sortSections(vec, config->sortSection); 479 else 480 sortSections(vec, inner); 481 sortSections(vec, outer); 482 } 483 484 // Compute and remember which sections the InputSectionDescription matches. 485 SmallVector<InputSectionBase *, 0> 486 LinkerScript::computeInputSections(const InputSectionDescription *cmd, 487 ArrayRef<InputSectionBase *> sections) { 488 SmallVector<InputSectionBase *, 0> ret; 489 SmallVector<size_t, 0> indexes; 490 DenseSet<size_t> seen; 491 auto sortByPositionThenCommandLine = [&](size_t begin, size_t end) { 492 llvm::sort(MutableArrayRef<size_t>(indexes).slice(begin, end - begin)); 493 for (size_t i = begin; i != end; ++i) 494 ret[i] = sections[indexes[i]]; 495 sortInputSections( 496 MutableArrayRef<InputSectionBase *>(ret).slice(begin, end - begin), 497 config->sortSection, SortSectionPolicy::None); 498 }; 499 500 // Collects all sections that satisfy constraints of Cmd. 501 size_t sizeAfterPrevSort = 0; 502 for (const SectionPattern &pat : cmd->sectionPatterns) { 503 size_t sizeBeforeCurrPat = ret.size(); 504 505 for (size_t i = 0, e = sections.size(); i != e; ++i) { 506 // Skip if the section is dead or has been matched by a previous input 507 // section description or a previous pattern. 508 InputSectionBase *sec = sections[i]; 509 if (!sec->isLive() || sec->parent || seen.contains(i)) 510 continue; 511 512 // For --emit-relocs we have to ignore entries like 513 // .rela.dyn : { *(.rela.data) } 514 // which are common because they are in the default bfd script. 515 // We do not ignore SHT_REL[A] linker-synthesized sections here because 516 // want to support scripts that do custom layout for them. 517 if (isa<InputSection>(sec) && 518 cast<InputSection>(sec)->getRelocatedSection()) 519 continue; 520 521 // Check the name early to improve performance in the common case. 522 if (!pat.sectionPat.match(sec->name)) 523 continue; 524 525 if (!cmd->matchesFile(sec->file) || pat.excludesFile(sec->file) || 526 (sec->flags & cmd->withFlags) != cmd->withFlags || 527 (sec->flags & cmd->withoutFlags) != 0) 528 continue; 529 530 ret.push_back(sec); 531 indexes.push_back(i); 532 seen.insert(i); 533 } 534 535 if (pat.sortOuter == SortSectionPolicy::Default) 536 continue; 537 538 // Matched sections are ordered by radix sort with the keys being (SORT*, 539 // --sort-section, input order), where SORT* (if present) is most 540 // significant. 541 // 542 // Matched sections between the previous SORT* and this SORT* are sorted by 543 // (--sort-alignment, input order). 544 sortByPositionThenCommandLine(sizeAfterPrevSort, sizeBeforeCurrPat); 545 // Matched sections by this SORT* pattern are sorted using all 3 keys. 546 // ret[sizeBeforeCurrPat,ret.size()) are already in the input order, so we 547 // just sort by sortOuter and sortInner. 548 sortInputSections( 549 MutableArrayRef<InputSectionBase *>(ret).slice(sizeBeforeCurrPat), 550 pat.sortOuter, pat.sortInner); 551 sizeAfterPrevSort = ret.size(); 552 } 553 // Matched sections after the last SORT* are sorted by (--sort-alignment, 554 // input order). 555 sortByPositionThenCommandLine(sizeAfterPrevSort, ret.size()); 556 return ret; 557 } 558 559 void LinkerScript::discard(InputSectionBase &s) { 560 if (&s == in.shStrTab.get()) 561 error("discarding " + s.name + " section is not allowed"); 562 563 s.markDead(); 564 s.parent = nullptr; 565 for (InputSection *sec : s.dependentSections) 566 discard(*sec); 567 } 568 569 void LinkerScript::discardSynthetic(OutputSection &outCmd) { 570 for (Partition &part : partitions) { 571 if (!part.armExidx || !part.armExidx->isLive()) 572 continue; 573 SmallVector<InputSectionBase *, 0> secs( 574 part.armExidx->exidxSections.begin(), 575 part.armExidx->exidxSections.end()); 576 for (SectionCommand *cmd : outCmd.commands) 577 if (auto *isd = dyn_cast<InputSectionDescription>(cmd)) 578 for (InputSectionBase *s : computeInputSections(isd, secs)) 579 discard(*s); 580 } 581 } 582 583 SmallVector<InputSectionBase *, 0> 584 LinkerScript::createInputSectionList(OutputSection &outCmd) { 585 SmallVector<InputSectionBase *, 0> ret; 586 587 for (SectionCommand *cmd : outCmd.commands) { 588 if (auto *isd = dyn_cast<InputSectionDescription>(cmd)) { 589 isd->sectionBases = computeInputSections(isd, inputSections); 590 for (InputSectionBase *s : isd->sectionBases) 591 s->parent = &outCmd; 592 ret.insert(ret.end(), isd->sectionBases.begin(), isd->sectionBases.end()); 593 } 594 } 595 return ret; 596 } 597 598 // Create output sections described by SECTIONS commands. 599 void LinkerScript::processSectionCommands() { 600 auto process = [this](OutputSection *osec) { 601 SmallVector<InputSectionBase *, 0> v = createInputSectionList(*osec); 602 603 // The output section name `/DISCARD/' is special. 604 // Any input section assigned to it is discarded. 605 if (osec->name == "/DISCARD/") { 606 for (InputSectionBase *s : v) 607 discard(*s); 608 discardSynthetic(*osec); 609 osec->commands.clear(); 610 return false; 611 } 612 613 // This is for ONLY_IF_RO and ONLY_IF_RW. An output section directive 614 // ".foo : ONLY_IF_R[OW] { ... }" is handled only if all member input 615 // sections satisfy a given constraint. If not, a directive is handled 616 // as if it wasn't present from the beginning. 617 // 618 // Because we'll iterate over SectionCommands many more times, the easy 619 // way to "make it as if it wasn't present" is to make it empty. 620 if (!matchConstraints(v, osec->constraint)) { 621 for (InputSectionBase *s : v) 622 s->parent = nullptr; 623 osec->commands.clear(); 624 return false; 625 } 626 627 // Handle subalign (e.g. ".foo : SUBALIGN(32) { ... }"). If subalign 628 // is given, input sections are aligned to that value, whether the 629 // given value is larger or smaller than the original section alignment. 630 if (osec->subalignExpr) { 631 uint32_t subalign = osec->subalignExpr().getValue(); 632 for (InputSectionBase *s : v) 633 s->alignment = subalign; 634 } 635 636 // Set the partition field the same way OutputSection::recordSection() 637 // does. Partitions cannot be used with the SECTIONS command, so this is 638 // always 1. 639 osec->partition = 1; 640 return true; 641 }; 642 643 // Process OVERWRITE_SECTIONS first so that it can overwrite the main script 644 // or orphans. 645 DenseMap<CachedHashStringRef, OutputSection *> map; 646 size_t i = 0; 647 for (OutputSection *osec : overwriteSections) 648 if (process(osec) && 649 !map.try_emplace(CachedHashStringRef(osec->name), osec).second) 650 warn("OVERWRITE_SECTIONS specifies duplicate " + osec->name); 651 for (SectionCommand *&base : sectionCommands) 652 if (auto *osec = dyn_cast<OutputSection>(base)) { 653 if (OutputSection *overwrite = 654 map.lookup(CachedHashStringRef(osec->name))) { 655 log(overwrite->location + " overwrites " + osec->name); 656 overwrite->sectionIndex = i++; 657 base = overwrite; 658 } else if (process(osec)) { 659 osec->sectionIndex = i++; 660 } 661 } 662 663 // If an OVERWRITE_SECTIONS specified output section is not in 664 // sectionCommands, append it to the end. The section will be inserted by 665 // orphan placement. 666 for (OutputSection *osec : overwriteSections) 667 if (osec->partition == 1 && osec->sectionIndex == UINT32_MAX) 668 sectionCommands.push_back(osec); 669 } 670 671 void LinkerScript::processSymbolAssignments() { 672 // Dot outside an output section still represents a relative address, whose 673 // sh_shndx should not be SHN_UNDEF or SHN_ABS. Create a dummy aether section 674 // that fills the void outside a section. It has an index of one, which is 675 // indistinguishable from any other regular section index. 676 aether = make<OutputSection>("", 0, SHF_ALLOC); 677 aether->sectionIndex = 1; 678 679 // ctx captures the local AddressState and makes it accessible deliberately. 680 // This is needed as there are some cases where we cannot just thread the 681 // current state through to a lambda function created by the script parser. 682 AddressState state; 683 ctx = &state; 684 ctx->outSec = aether; 685 686 for (SectionCommand *cmd : sectionCommands) { 687 if (auto *assign = dyn_cast<SymbolAssignment>(cmd)) 688 addSymbol(assign); 689 else 690 for (SectionCommand *subCmd : cast<OutputSection>(cmd)->commands) 691 if (auto *assign = dyn_cast<SymbolAssignment>(subCmd)) 692 addSymbol(assign); 693 } 694 695 ctx = nullptr; 696 } 697 698 static OutputSection *findByName(ArrayRef<SectionCommand *> vec, 699 StringRef name) { 700 for (SectionCommand *cmd : vec) 701 if (auto *sec = dyn_cast<OutputSection>(cmd)) 702 if (sec->name == name) 703 return sec; 704 return nullptr; 705 } 706 707 static OutputSection *createSection(InputSectionBase *isec, 708 StringRef outsecName) { 709 OutputSection *sec = script->createOutputSection(outsecName, "<internal>"); 710 sec->recordSection(isec); 711 return sec; 712 } 713 714 static OutputSection * 715 addInputSec(StringMap<TinyPtrVector<OutputSection *>> &map, 716 InputSectionBase *isec, StringRef outsecName) { 717 // Sections with SHT_GROUP or SHF_GROUP attributes reach here only when the -r 718 // option is given. A section with SHT_GROUP defines a "section group", and 719 // its members have SHF_GROUP attribute. Usually these flags have already been 720 // stripped by InputFiles.cpp as section groups are processed and uniquified. 721 // However, for the -r option, we want to pass through all section groups 722 // as-is because adding/removing members or merging them with other groups 723 // change their semantics. 724 if (isec->type == SHT_GROUP || (isec->flags & SHF_GROUP)) 725 return createSection(isec, outsecName); 726 727 // Imagine .zed : { *(.foo) *(.bar) } script. Both foo and bar may have 728 // relocation sections .rela.foo and .rela.bar for example. Most tools do 729 // not allow multiple REL[A] sections for output section. Hence we 730 // should combine these relocation sections into single output. 731 // We skip synthetic sections because it can be .rela.dyn/.rela.plt or any 732 // other REL[A] sections created by linker itself. 733 if (!isa<SyntheticSection>(isec) && 734 (isec->type == SHT_REL || isec->type == SHT_RELA)) { 735 auto *sec = cast<InputSection>(isec); 736 OutputSection *out = sec->getRelocatedSection()->getOutputSection(); 737 738 if (out->relocationSection) { 739 out->relocationSection->recordSection(sec); 740 return nullptr; 741 } 742 743 out->relocationSection = createSection(isec, outsecName); 744 return out->relocationSection; 745 } 746 747 // The ELF spec just says 748 // ---------------------------------------------------------------- 749 // In the first phase, input sections that match in name, type and 750 // attribute flags should be concatenated into single sections. 751 // ---------------------------------------------------------------- 752 // 753 // However, it is clear that at least some flags have to be ignored for 754 // section merging. At the very least SHF_GROUP and SHF_COMPRESSED have to be 755 // ignored. We should not have two output .text sections just because one was 756 // in a group and another was not for example. 757 // 758 // It also seems that wording was a late addition and didn't get the 759 // necessary scrutiny. 760 // 761 // Merging sections with different flags is expected by some users. One 762 // reason is that if one file has 763 // 764 // int *const bar __attribute__((section(".foo"))) = (int *)0; 765 // 766 // gcc with -fPIC will produce a read only .foo section. But if another 767 // file has 768 // 769 // int zed; 770 // int *const bar __attribute__((section(".foo"))) = (int *)&zed; 771 // 772 // gcc with -fPIC will produce a read write section. 773 // 774 // Last but not least, when using linker script the merge rules are forced by 775 // the script. Unfortunately, linker scripts are name based. This means that 776 // expressions like *(.foo*) can refer to multiple input sections with 777 // different flags. We cannot put them in different output sections or we 778 // would produce wrong results for 779 // 780 // start = .; *(.foo.*) end = .; *(.bar) 781 // 782 // and a mapping of .foo1 and .bar1 to one section and .foo2 and .bar2 to 783 // another. The problem is that there is no way to layout those output 784 // sections such that the .foo sections are the only thing between the start 785 // and end symbols. 786 // 787 // Given the above issues, we instead merge sections by name and error on 788 // incompatible types and flags. 789 TinyPtrVector<OutputSection *> &v = map[outsecName]; 790 for (OutputSection *sec : v) { 791 if (sec->partition != isec->partition) 792 continue; 793 794 if (config->relocatable && (isec->flags & SHF_LINK_ORDER)) { 795 // Merging two SHF_LINK_ORDER sections with different sh_link fields will 796 // change their semantics, so we only merge them in -r links if they will 797 // end up being linked to the same output section. The casts are fine 798 // because everything in the map was created by the orphan placement code. 799 auto *firstIsec = cast<InputSectionBase>( 800 cast<InputSectionDescription>(sec->commands[0])->sectionBases[0]); 801 OutputSection *firstIsecOut = 802 firstIsec->flags & SHF_LINK_ORDER 803 ? firstIsec->getLinkOrderDep()->getOutputSection() 804 : nullptr; 805 if (firstIsecOut != isec->getLinkOrderDep()->getOutputSection()) 806 continue; 807 } 808 809 sec->recordSection(isec); 810 return nullptr; 811 } 812 813 OutputSection *sec = createSection(isec, outsecName); 814 v.push_back(sec); 815 return sec; 816 } 817 818 // Add sections that didn't match any sections command. 819 void LinkerScript::addOrphanSections() { 820 StringMap<TinyPtrVector<OutputSection *>> map; 821 SmallVector<OutputSection *, 0> v; 822 823 auto add = [&](InputSectionBase *s) { 824 if (s->isLive() && !s->parent) { 825 orphanSections.push_back(s); 826 827 StringRef name = getOutputSectionName(s); 828 if (config->unique) { 829 v.push_back(createSection(s, name)); 830 } else if (OutputSection *sec = findByName(sectionCommands, name)) { 831 sec->recordSection(s); 832 } else { 833 if (OutputSection *os = addInputSec(map, s, name)) 834 v.push_back(os); 835 assert(isa<MergeInputSection>(s) || 836 s->getOutputSection()->sectionIndex == UINT32_MAX); 837 } 838 } 839 }; 840 841 // For further --emit-reloc handling code we need target output section 842 // to be created before we create relocation output section, so we want 843 // to create target sections first. We do not want priority handling 844 // for synthetic sections because them are special. 845 for (InputSectionBase *isec : inputSections) { 846 // In -r links, SHF_LINK_ORDER sections are added while adding their parent 847 // sections because we need to know the parent's output section before we 848 // can select an output section for the SHF_LINK_ORDER section. 849 if (config->relocatable && (isec->flags & SHF_LINK_ORDER)) 850 continue; 851 852 if (auto *sec = dyn_cast<InputSection>(isec)) 853 if (InputSectionBase *rel = sec->getRelocatedSection()) 854 if (auto *relIS = dyn_cast_or_null<InputSectionBase>(rel->parent)) 855 add(relIS); 856 add(isec); 857 if (config->relocatable) 858 for (InputSectionBase *depSec : isec->dependentSections) 859 if (depSec->flags & SHF_LINK_ORDER) 860 add(depSec); 861 } 862 863 // If no SECTIONS command was given, we should insert sections commands 864 // before others, so that we can handle scripts which refers them, 865 // for example: "foo = ABSOLUTE(ADDR(.text)));". 866 // When SECTIONS command is present we just add all orphans to the end. 867 if (hasSectionsCommand) 868 sectionCommands.insert(sectionCommands.end(), v.begin(), v.end()); 869 else 870 sectionCommands.insert(sectionCommands.begin(), v.begin(), v.end()); 871 } 872 873 void LinkerScript::diagnoseOrphanHandling() const { 874 llvm::TimeTraceScope timeScope("Diagnose orphan sections"); 875 if (config->orphanHandling == OrphanHandlingPolicy::Place) 876 return; 877 for (const InputSectionBase *sec : orphanSections) { 878 // Input SHT_REL[A] retained by --emit-relocs are ignored by 879 // computeInputSections(). Don't warn/error. 880 if (isa<InputSection>(sec) && 881 cast<InputSection>(sec)->getRelocatedSection()) 882 continue; 883 884 StringRef name = getOutputSectionName(sec); 885 if (config->orphanHandling == OrphanHandlingPolicy::Error) 886 error(toString(sec) + " is being placed in '" + name + "'"); 887 else 888 warn(toString(sec) + " is being placed in '" + name + "'"); 889 } 890 } 891 892 // This function searches for a memory region to place the given output 893 // section in. If found, a pointer to the appropriate memory region is 894 // returned in the first member of the pair. Otherwise, a nullptr is returned. 895 // The second member of the pair is a hint that should be passed to the 896 // subsequent call of this method. 897 std::pair<MemoryRegion *, MemoryRegion *> 898 LinkerScript::findMemoryRegion(OutputSection *sec, MemoryRegion *hint) { 899 // Non-allocatable sections are not part of the process image. 900 if (!(sec->flags & SHF_ALLOC)) { 901 if (!sec->memoryRegionName.empty()) 902 warn("ignoring memory region assignment for non-allocatable section '" + 903 sec->name + "'"); 904 return {nullptr, nullptr}; 905 } 906 907 // If a memory region name was specified in the output section command, 908 // then try to find that region first. 909 if (!sec->memoryRegionName.empty()) { 910 if (MemoryRegion *m = memoryRegions.lookup(sec->memoryRegionName)) 911 return {m, m}; 912 error("memory region '" + sec->memoryRegionName + "' not declared"); 913 return {nullptr, nullptr}; 914 } 915 916 // If at least one memory region is defined, all sections must 917 // belong to some memory region. Otherwise, we don't need to do 918 // anything for memory regions. 919 if (memoryRegions.empty()) 920 return {nullptr, nullptr}; 921 922 // An orphan section should continue the previous memory region. 923 if (sec->sectionIndex == UINT32_MAX && hint) 924 return {hint, hint}; 925 926 // See if a region can be found by matching section flags. 927 for (auto &pair : memoryRegions) { 928 MemoryRegion *m = pair.second; 929 if (m->compatibleWith(sec->flags)) 930 return {m, nullptr}; 931 } 932 933 // Otherwise, no suitable region was found. 934 error("no memory region specified for section '" + sec->name + "'"); 935 return {nullptr, nullptr}; 936 } 937 938 static OutputSection *findFirstSection(PhdrEntry *load) { 939 for (OutputSection *sec : outputSections) 940 if (sec->ptLoad == load) 941 return sec; 942 return nullptr; 943 } 944 945 // This function assigns offsets to input sections and an output section 946 // for a single sections command (e.g. ".text { *(.text); }"). 947 void LinkerScript::assignOffsets(OutputSection *sec) { 948 const bool isTbss = (sec->flags & SHF_TLS) && sec->type == SHT_NOBITS; 949 const bool sameMemRegion = ctx->memRegion == sec->memRegion; 950 const bool prevLMARegionIsDefault = ctx->lmaRegion == nullptr; 951 const uint64_t savedDot = dot; 952 ctx->memRegion = sec->memRegion; 953 ctx->lmaRegion = sec->lmaRegion; 954 955 if (!(sec->flags & SHF_ALLOC)) { 956 // Non-SHF_ALLOC sections have zero addresses. 957 dot = 0; 958 } else if (isTbss) { 959 // Allow consecutive SHF_TLS SHT_NOBITS output sections. The address range 960 // starts from the end address of the previous tbss section. 961 if (ctx->tbssAddr == 0) 962 ctx->tbssAddr = dot; 963 else 964 dot = ctx->tbssAddr; 965 } else { 966 if (ctx->memRegion) 967 dot = ctx->memRegion->curPos; 968 if (sec->addrExpr) 969 setDot(sec->addrExpr, sec->location, false); 970 971 // If the address of the section has been moved forward by an explicit 972 // expression so that it now starts past the current curPos of the enclosing 973 // region, we need to expand the current region to account for the space 974 // between the previous section, if any, and the start of this section. 975 if (ctx->memRegion && ctx->memRegion->curPos < dot) 976 expandMemoryRegion(ctx->memRegion, dot - ctx->memRegion->curPos, 977 sec->name); 978 } 979 980 ctx->outSec = sec; 981 if (sec->addrExpr && script->hasSectionsCommand) { 982 // The alignment is ignored. 983 sec->addr = dot; 984 } else { 985 // sec->alignment is the max of ALIGN and the maximum of input 986 // section alignments. 987 const uint64_t pos = dot; 988 dot = alignTo(dot, sec->alignment); 989 sec->addr = dot; 990 expandMemoryRegions(dot - pos); 991 } 992 993 // ctx->lmaOffset is LMA minus VMA. If LMA is explicitly specified via AT() or 994 // AT>, recompute ctx->lmaOffset; otherwise, if both previous/current LMA 995 // region is the default, and the two sections are in the same memory region, 996 // reuse previous lmaOffset; otherwise, reset lmaOffset to 0. This emulates 997 // heuristics described in 998 // https://sourceware.org/binutils/docs/ld/Output-Section-LMA.html 999 if (sec->lmaExpr) { 1000 ctx->lmaOffset = sec->lmaExpr().getValue() - dot; 1001 } else if (MemoryRegion *mr = sec->lmaRegion) { 1002 uint64_t lmaStart = alignTo(mr->curPos, sec->alignment); 1003 if (mr->curPos < lmaStart) 1004 expandMemoryRegion(mr, lmaStart - mr->curPos, sec->name); 1005 ctx->lmaOffset = lmaStart - dot; 1006 } else if (!sameMemRegion || !prevLMARegionIsDefault) { 1007 ctx->lmaOffset = 0; 1008 } 1009 1010 // Propagate ctx->lmaOffset to the first "non-header" section. 1011 if (PhdrEntry *l = sec->ptLoad) 1012 if (sec == findFirstSection(l)) 1013 l->lmaOffset = ctx->lmaOffset; 1014 1015 // We can call this method multiple times during the creation of 1016 // thunks and want to start over calculation each time. 1017 sec->size = 0; 1018 1019 // We visited SectionsCommands from processSectionCommands to 1020 // layout sections. Now, we visit SectionsCommands again to fix 1021 // section offsets. 1022 for (SectionCommand *cmd : sec->commands) { 1023 // This handles the assignments to symbol or to the dot. 1024 if (auto *assign = dyn_cast<SymbolAssignment>(cmd)) { 1025 assign->addr = dot; 1026 assignSymbol(assign, true); 1027 assign->size = dot - assign->addr; 1028 continue; 1029 } 1030 1031 // Handle BYTE(), SHORT(), LONG(), or QUAD(). 1032 if (auto *data = dyn_cast<ByteCommand>(cmd)) { 1033 data->offset = dot - sec->addr; 1034 dot += data->size; 1035 expandOutputSection(data->size); 1036 continue; 1037 } 1038 1039 // Handle a single input section description command. 1040 // It calculates and assigns the offsets for each section and also 1041 // updates the output section size. 1042 for (InputSection *isec : cast<InputSectionDescription>(cmd)->sections) { 1043 assert(isec->getParent() == sec); 1044 const uint64_t pos = dot; 1045 dot = alignTo(dot, isec->alignment); 1046 isec->outSecOff = dot - sec->addr; 1047 dot += isec->getSize(); 1048 1049 // Update output section size after adding each section. This is so that 1050 // SIZEOF works correctly in the case below: 1051 // .foo { *(.aaa) a = SIZEOF(.foo); *(.bbb) } 1052 expandOutputSection(dot - pos); 1053 } 1054 } 1055 1056 // Non-SHF_ALLOC sections do not affect the addresses of other OutputSections 1057 // as they are not part of the process image. 1058 if (!(sec->flags & SHF_ALLOC)) { 1059 dot = savedDot; 1060 } else if (isTbss) { 1061 // NOBITS TLS sections are similar. Additionally save the end address. 1062 ctx->tbssAddr = dot; 1063 dot = savedDot; 1064 } 1065 } 1066 1067 static bool isDiscardable(const OutputSection &sec) { 1068 if (sec.name == "/DISCARD/") 1069 return true; 1070 1071 // We do not want to remove OutputSections with expressions that reference 1072 // symbols even if the OutputSection is empty. We want to ensure that the 1073 // expressions can be evaluated and report an error if they cannot. 1074 if (sec.expressionsUseSymbols) 1075 return false; 1076 1077 // OutputSections may be referenced by name in ADDR and LOADADDR expressions, 1078 // as an empty Section can has a valid VMA and LMA we keep the OutputSection 1079 // to maintain the integrity of the other Expression. 1080 if (sec.usedInExpression) 1081 return false; 1082 1083 for (SectionCommand *cmd : sec.commands) { 1084 if (auto assign = dyn_cast<SymbolAssignment>(cmd)) 1085 // Don't create empty output sections just for unreferenced PROVIDE 1086 // symbols. 1087 if (assign->name != "." && !assign->sym) 1088 continue; 1089 1090 if (!isa<InputSectionDescription>(*cmd)) 1091 return false; 1092 } 1093 return true; 1094 } 1095 1096 bool LinkerScript::isDiscarded(const OutputSection *sec) const { 1097 return hasSectionsCommand && (getFirstInputSection(sec) == nullptr) && 1098 isDiscardable(*sec); 1099 } 1100 1101 static void maybePropagatePhdrs(OutputSection &sec, 1102 SmallVector<StringRef, 0> &phdrs) { 1103 if (sec.phdrs.empty()) { 1104 // To match the bfd linker script behaviour, only propagate program 1105 // headers to sections that are allocated. 1106 if (sec.flags & SHF_ALLOC) 1107 sec.phdrs = phdrs; 1108 } else { 1109 phdrs = sec.phdrs; 1110 } 1111 } 1112 1113 void LinkerScript::adjustOutputSections() { 1114 // If the output section contains only symbol assignments, create a 1115 // corresponding output section. The issue is what to do with linker script 1116 // like ".foo : { symbol = 42; }". One option would be to convert it to 1117 // "symbol = 42;". That is, move the symbol out of the empty section 1118 // description. That seems to be what bfd does for this simple case. The 1119 // problem is that this is not completely general. bfd will give up and 1120 // create a dummy section too if there is a ". = . + 1" inside the section 1121 // for example. 1122 // Given that we want to create the section, we have to worry what impact 1123 // it will have on the link. For example, if we just create a section with 1124 // 0 for flags, it would change which PT_LOADs are created. 1125 // We could remember that particular section is dummy and ignore it in 1126 // other parts of the linker, but unfortunately there are quite a few places 1127 // that would need to change: 1128 // * The program header creation. 1129 // * The orphan section placement. 1130 // * The address assignment. 1131 // The other option is to pick flags that minimize the impact the section 1132 // will have on the rest of the linker. That is why we copy the flags from 1133 // the previous sections. Only a few flags are needed to keep the impact low. 1134 uint64_t flags = SHF_ALLOC; 1135 1136 SmallVector<StringRef, 0> defPhdrs; 1137 for (SectionCommand *&cmd : sectionCommands) { 1138 auto *sec = dyn_cast<OutputSection>(cmd); 1139 if (!sec) 1140 continue; 1141 1142 // Handle align (e.g. ".foo : ALIGN(16) { ... }"). 1143 if (sec->alignExpr) 1144 sec->alignment = 1145 std::max<uint32_t>(sec->alignment, sec->alignExpr().getValue()); 1146 1147 bool isEmpty = (getFirstInputSection(sec) == nullptr); 1148 bool discardable = isEmpty && isDiscardable(*sec); 1149 // If sec has at least one input section and not discarded, remember its 1150 // flags to be inherited by subsequent output sections. (sec may contain 1151 // just one empty synthetic section.) 1152 if (sec->hasInputSections && !discardable) 1153 flags = sec->flags; 1154 1155 // We do not want to keep any special flags for output section 1156 // in case it is empty. 1157 if (isEmpty) 1158 sec->flags = flags & ((sec->nonAlloc ? 0 : (uint64_t)SHF_ALLOC) | 1159 SHF_WRITE | SHF_EXECINSTR); 1160 1161 // The code below may remove empty output sections. We should save the 1162 // specified program headers (if exist) and propagate them to subsequent 1163 // sections which do not specify program headers. 1164 // An example of such a linker script is: 1165 // SECTIONS { .empty : { *(.empty) } :rw 1166 // .foo : { *(.foo) } } 1167 // Note: at this point the order of output sections has not been finalized, 1168 // because orphans have not been inserted into their expected positions. We 1169 // will handle them in adjustSectionsAfterSorting(). 1170 if (sec->sectionIndex != UINT32_MAX) 1171 maybePropagatePhdrs(*sec, defPhdrs); 1172 1173 if (discardable) { 1174 sec->markDead(); 1175 cmd = nullptr; 1176 } 1177 } 1178 1179 // It is common practice to use very generic linker scripts. So for any 1180 // given run some of the output sections in the script will be empty. 1181 // We could create corresponding empty output sections, but that would 1182 // clutter the output. 1183 // We instead remove trivially empty sections. The bfd linker seems even 1184 // more aggressive at removing them. 1185 llvm::erase_if(sectionCommands, [&](SectionCommand *cmd) { return !cmd; }); 1186 } 1187 1188 void LinkerScript::adjustSectionsAfterSorting() { 1189 // Try and find an appropriate memory region to assign offsets in. 1190 MemoryRegion *hint = nullptr; 1191 for (SectionCommand *cmd : sectionCommands) { 1192 if (auto *sec = dyn_cast<OutputSection>(cmd)) { 1193 if (!sec->lmaRegionName.empty()) { 1194 if (MemoryRegion *m = memoryRegions.lookup(sec->lmaRegionName)) 1195 sec->lmaRegion = m; 1196 else 1197 error("memory region '" + sec->lmaRegionName + "' not declared"); 1198 } 1199 std::tie(sec->memRegion, hint) = findMemoryRegion(sec, hint); 1200 } 1201 } 1202 1203 // If output section command doesn't specify any segments, 1204 // and we haven't previously assigned any section to segment, 1205 // then we simply assign section to the very first load segment. 1206 // Below is an example of such linker script: 1207 // PHDRS { seg PT_LOAD; } 1208 // SECTIONS { .aaa : { *(.aaa) } } 1209 SmallVector<StringRef, 0> defPhdrs; 1210 auto firstPtLoad = llvm::find_if(phdrsCommands, [](const PhdrsCommand &cmd) { 1211 return cmd.type == PT_LOAD; 1212 }); 1213 if (firstPtLoad != phdrsCommands.end()) 1214 defPhdrs.push_back(firstPtLoad->name); 1215 1216 // Walk the commands and propagate the program headers to commands that don't 1217 // explicitly specify them. 1218 for (SectionCommand *cmd : sectionCommands) 1219 if (auto *sec = dyn_cast<OutputSection>(cmd)) 1220 maybePropagatePhdrs(*sec, defPhdrs); 1221 } 1222 1223 static uint64_t computeBase(uint64_t min, bool allocateHeaders) { 1224 // If there is no SECTIONS or if the linkerscript is explicit about program 1225 // headers, do our best to allocate them. 1226 if (!script->hasSectionsCommand || allocateHeaders) 1227 return 0; 1228 // Otherwise only allocate program headers if that would not add a page. 1229 return alignDown(min, config->maxPageSize); 1230 } 1231 1232 // When the SECTIONS command is used, try to find an address for the file and 1233 // program headers output sections, which can be added to the first PT_LOAD 1234 // segment when program headers are created. 1235 // 1236 // We check if the headers fit below the first allocated section. If there isn't 1237 // enough space for these sections, we'll remove them from the PT_LOAD segment, 1238 // and we'll also remove the PT_PHDR segment. 1239 void LinkerScript::allocateHeaders(SmallVector<PhdrEntry *, 0> &phdrs) { 1240 uint64_t min = std::numeric_limits<uint64_t>::max(); 1241 for (OutputSection *sec : outputSections) 1242 if (sec->flags & SHF_ALLOC) 1243 min = std::min<uint64_t>(min, sec->addr); 1244 1245 auto it = llvm::find_if( 1246 phdrs, [](const PhdrEntry *e) { return e->p_type == PT_LOAD; }); 1247 if (it == phdrs.end()) 1248 return; 1249 PhdrEntry *firstPTLoad = *it; 1250 1251 bool hasExplicitHeaders = 1252 llvm::any_of(phdrsCommands, [](const PhdrsCommand &cmd) { 1253 return cmd.hasPhdrs || cmd.hasFilehdr; 1254 }); 1255 bool paged = !config->omagic && !config->nmagic; 1256 uint64_t headerSize = getHeaderSize(); 1257 if ((paged || hasExplicitHeaders) && 1258 headerSize <= min - computeBase(min, hasExplicitHeaders)) { 1259 min = alignDown(min - headerSize, config->maxPageSize); 1260 Out::elfHeader->addr = min; 1261 Out::programHeaders->addr = min + Out::elfHeader->size; 1262 return; 1263 } 1264 1265 // Error if we were explicitly asked to allocate headers. 1266 if (hasExplicitHeaders) 1267 error("could not allocate headers"); 1268 1269 Out::elfHeader->ptLoad = nullptr; 1270 Out::programHeaders->ptLoad = nullptr; 1271 firstPTLoad->firstSec = findFirstSection(firstPTLoad); 1272 1273 llvm::erase_if(phdrs, 1274 [](const PhdrEntry *e) { return e->p_type == PT_PHDR; }); 1275 } 1276 1277 LinkerScript::AddressState::AddressState() { 1278 for (auto &mri : script->memoryRegions) { 1279 MemoryRegion *mr = mri.second; 1280 mr->curPos = (mr->origin)().getValue(); 1281 } 1282 } 1283 1284 // Here we assign addresses as instructed by linker script SECTIONS 1285 // sub-commands. Doing that allows us to use final VA values, so here 1286 // we also handle rest commands like symbol assignments and ASSERTs. 1287 // Returns a symbol that has changed its section or value, or nullptr if no 1288 // symbol has changed. 1289 const Defined *LinkerScript::assignAddresses() { 1290 if (script->hasSectionsCommand) { 1291 // With a linker script, assignment of addresses to headers is covered by 1292 // allocateHeaders(). 1293 dot = config->imageBase.getValueOr(0); 1294 } else { 1295 // Assign addresses to headers right now. 1296 dot = target->getImageBase(); 1297 Out::elfHeader->addr = dot; 1298 Out::programHeaders->addr = dot + Out::elfHeader->size; 1299 dot += getHeaderSize(); 1300 } 1301 1302 AddressState state; 1303 ctx = &state; 1304 errorOnMissingSection = true; 1305 ctx->outSec = aether; 1306 1307 SymbolAssignmentMap oldValues = getSymbolAssignmentValues(sectionCommands); 1308 for (SectionCommand *cmd : sectionCommands) { 1309 if (auto *assign = dyn_cast<SymbolAssignment>(cmd)) { 1310 assign->addr = dot; 1311 assignSymbol(assign, false); 1312 assign->size = dot - assign->addr; 1313 continue; 1314 } 1315 assignOffsets(cast<OutputSection>(cmd)); 1316 } 1317 1318 ctx = nullptr; 1319 return getChangedSymbolAssignment(oldValues); 1320 } 1321 1322 // Creates program headers as instructed by PHDRS linker script command. 1323 SmallVector<PhdrEntry *, 0> LinkerScript::createPhdrs() { 1324 SmallVector<PhdrEntry *, 0> ret; 1325 1326 // Process PHDRS and FILEHDR keywords because they are not 1327 // real output sections and cannot be added in the following loop. 1328 for (const PhdrsCommand &cmd : phdrsCommands) { 1329 PhdrEntry *phdr = make<PhdrEntry>(cmd.type, cmd.flags.getValueOr(PF_R)); 1330 1331 if (cmd.hasFilehdr) 1332 phdr->add(Out::elfHeader); 1333 if (cmd.hasPhdrs) 1334 phdr->add(Out::programHeaders); 1335 1336 if (cmd.lmaExpr) { 1337 phdr->p_paddr = cmd.lmaExpr().getValue(); 1338 phdr->hasLMA = true; 1339 } 1340 ret.push_back(phdr); 1341 } 1342 1343 // Add output sections to program headers. 1344 for (OutputSection *sec : outputSections) { 1345 // Assign headers specified by linker script 1346 for (size_t id : getPhdrIndices(sec)) { 1347 ret[id]->add(sec); 1348 if (!phdrsCommands[id].flags.hasValue()) 1349 ret[id]->p_flags |= sec->getPhdrFlags(); 1350 } 1351 } 1352 return ret; 1353 } 1354 1355 // Returns true if we should emit an .interp section. 1356 // 1357 // We usually do. But if PHDRS commands are given, and 1358 // no PT_INTERP is there, there's no place to emit an 1359 // .interp, so we don't do that in that case. 1360 bool LinkerScript::needsInterpSection() { 1361 if (phdrsCommands.empty()) 1362 return true; 1363 for (PhdrsCommand &cmd : phdrsCommands) 1364 if (cmd.type == PT_INTERP) 1365 return true; 1366 return false; 1367 } 1368 1369 ExprValue LinkerScript::getSymbolValue(StringRef name, const Twine &loc) { 1370 if (name == ".") { 1371 if (ctx) 1372 return {ctx->outSec, false, dot - ctx->outSec->addr, loc}; 1373 error(loc + ": unable to get location counter value"); 1374 return 0; 1375 } 1376 1377 if (Symbol *sym = symtab->find(name)) { 1378 if (auto *ds = dyn_cast<Defined>(sym)) { 1379 ExprValue v{ds->section, false, ds->value, loc}; 1380 // Retain the original st_type, so that the alias will get the same 1381 // behavior in relocation processing. Any operation will reset st_type to 1382 // STT_NOTYPE. 1383 v.type = ds->type; 1384 return v; 1385 } 1386 if (isa<SharedSymbol>(sym)) 1387 if (!errorOnMissingSection) 1388 return {nullptr, false, 0, loc}; 1389 } 1390 1391 error(loc + ": symbol not found: " + name); 1392 return 0; 1393 } 1394 1395 // Returns the index of the segment named Name. 1396 static Optional<size_t> getPhdrIndex(ArrayRef<PhdrsCommand> vec, 1397 StringRef name) { 1398 for (size_t i = 0; i < vec.size(); ++i) 1399 if (vec[i].name == name) 1400 return i; 1401 return None; 1402 } 1403 1404 // Returns indices of ELF headers containing specific section. Each index is a 1405 // zero based number of ELF header listed within PHDRS {} script block. 1406 SmallVector<size_t, 0> LinkerScript::getPhdrIndices(OutputSection *cmd) { 1407 SmallVector<size_t, 0> ret; 1408 1409 for (StringRef s : cmd->phdrs) { 1410 if (Optional<size_t> idx = getPhdrIndex(phdrsCommands, s)) 1411 ret.push_back(*idx); 1412 else if (s != "NONE") 1413 error(cmd->location + ": program header '" + s + 1414 "' is not listed in PHDRS"); 1415 } 1416 return ret; 1417 } 1418