1 //===- LinkerScript.cpp ---------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the parser/evaluator of the linker script.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "LinkerScript.h"
14 #include "Config.h"
15 #include "InputSection.h"
16 #include "OutputSections.h"
17 #include "SymbolTable.h"
18 #include "Symbols.h"
19 #include "SyntheticSections.h"
20 #include "Target.h"
21 #include "Writer.h"
22 #include "lld/Common/Memory.h"
23 #include "lld/Common/Strings.h"
24 #include "lld/Common/Threads.h"
25 #include "llvm/ADT/STLExtras.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/BinaryFormat/ELF.h"
28 #include "llvm/Support/Casting.h"
29 #include "llvm/Support/Endian.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/Support/FileSystem.h"
32 #include "llvm/Support/Path.h"
33 #include <algorithm>
34 #include <cassert>
35 #include <cstddef>
36 #include <cstdint>
37 #include <iterator>
38 #include <limits>
39 #include <string>
40 #include <vector>
41 
42 using namespace llvm;
43 using namespace llvm::ELF;
44 using namespace llvm::object;
45 using namespace llvm::support::endian;
46 
47 namespace lld {
48 namespace elf {
49 LinkerScript *script;
50 
51 static uint64_t getOutputSectionVA(SectionBase *sec) {
52   OutputSection *os = sec->getOutputSection();
53   assert(os && "input section has no output section assigned");
54   return os ? os->addr : 0;
55 }
56 
57 uint64_t ExprValue::getValue() const {
58   if (sec)
59     return alignTo(sec->getOffset(val) + getOutputSectionVA(sec),
60                    alignment);
61   return alignTo(val, alignment);
62 }
63 
64 uint64_t ExprValue::getSecAddr() const {
65   if (sec)
66     return sec->getOffset(0) + getOutputSectionVA(sec);
67   return 0;
68 }
69 
70 uint64_t ExprValue::getSectionOffset() const {
71   // If the alignment is trivial, we don't have to compute the full
72   // value to know the offset. This allows this function to succeed in
73   // cases where the output section is not yet known.
74   if (alignment == 1 && !sec)
75     return val;
76   return getValue() - getSecAddr();
77 }
78 
79 OutputSection *LinkerScript::createOutputSection(StringRef name,
80                                                  StringRef location) {
81   OutputSection *&secRef = nameToOutputSection[name];
82   OutputSection *sec;
83   if (secRef && secRef->location.empty()) {
84     // There was a forward reference.
85     sec = secRef;
86   } else {
87     sec = make<OutputSection>(name, SHT_PROGBITS, 0);
88     if (!secRef)
89       secRef = sec;
90   }
91   sec->location = std::string(location);
92   return sec;
93 }
94 
95 OutputSection *LinkerScript::getOrCreateOutputSection(StringRef name) {
96   OutputSection *&cmdRef = nameToOutputSection[name];
97   if (!cmdRef)
98     cmdRef = make<OutputSection>(name, SHT_PROGBITS, 0);
99   return cmdRef;
100 }
101 
102 // Expands the memory region by the specified size.
103 static void expandMemoryRegion(MemoryRegion *memRegion, uint64_t size,
104                                StringRef regionName, StringRef secName) {
105   memRegion->curPos += size;
106   uint64_t newSize = memRegion->curPos - memRegion->origin;
107   if (newSize > memRegion->length)
108     error("section '" + secName + "' will not fit in region '" + regionName +
109           "': overflowed by " + Twine(newSize - memRegion->length) + " bytes");
110 }
111 
112 void LinkerScript::expandMemoryRegions(uint64_t size) {
113   if (ctx->memRegion)
114     expandMemoryRegion(ctx->memRegion, size, ctx->memRegion->name,
115                        ctx->outSec->name);
116   // Only expand the LMARegion if it is different from memRegion.
117   if (ctx->lmaRegion && ctx->memRegion != ctx->lmaRegion)
118     expandMemoryRegion(ctx->lmaRegion, size, ctx->lmaRegion->name,
119                        ctx->outSec->name);
120 }
121 
122 void LinkerScript::expandOutputSection(uint64_t size) {
123   ctx->outSec->size += size;
124   expandMemoryRegions(size);
125 }
126 
127 void LinkerScript::setDot(Expr e, const Twine &loc, bool inSec) {
128   uint64_t val = e().getValue();
129   if (val < dot && inSec)
130     error(loc + ": unable to move location counter backward for: " +
131           ctx->outSec->name);
132 
133   // Update to location counter means update to section size.
134   if (inSec)
135     expandOutputSection(val - dot);
136 
137   dot = val;
138 }
139 
140 // Used for handling linker symbol assignments, for both finalizing
141 // their values and doing early declarations. Returns true if symbol
142 // should be defined from linker script.
143 static bool shouldDefineSym(SymbolAssignment *cmd) {
144   if (cmd->name == ".")
145     return false;
146 
147   if (!cmd->provide)
148     return true;
149 
150   // If a symbol was in PROVIDE(), we need to define it only
151   // when it is a referenced undefined symbol.
152   Symbol *b = symtab->find(cmd->name);
153   if (b && !b->isDefined())
154     return true;
155   return false;
156 }
157 
158 // Called by processSymbolAssignments() to assign definitions to
159 // linker-script-defined symbols.
160 void LinkerScript::addSymbol(SymbolAssignment *cmd) {
161   if (!shouldDefineSym(cmd))
162     return;
163 
164   // Define a symbol.
165   ExprValue value = cmd->expression();
166   SectionBase *sec = value.isAbsolute() ? nullptr : value.sec;
167   uint8_t visibility = cmd->hidden ? STV_HIDDEN : STV_DEFAULT;
168 
169   // When this function is called, section addresses have not been
170   // fixed yet. So, we may or may not know the value of the RHS
171   // expression.
172   //
173   // For example, if an expression is `x = 42`, we know x is always 42.
174   // However, if an expression is `x = .`, there's no way to know its
175   // value at the moment.
176   //
177   // We want to set symbol values early if we can. This allows us to
178   // use symbols as variables in linker scripts. Doing so allows us to
179   // write expressions like this: `alignment = 16; . = ALIGN(., alignment)`.
180   uint64_t symValue = value.sec ? 0 : value.getValue();
181 
182   Defined newSym(nullptr, cmd->name, STB_GLOBAL, visibility, STT_NOTYPE,
183                  symValue, 0, sec);
184 
185   Symbol *sym = symtab->insert(cmd->name);
186   sym->mergeProperties(newSym);
187   sym->replace(newSym);
188   cmd->sym = cast<Defined>(sym);
189 }
190 
191 // This function is called from LinkerScript::declareSymbols.
192 // It creates a placeholder symbol if needed.
193 static void declareSymbol(SymbolAssignment *cmd) {
194   if (!shouldDefineSym(cmd))
195     return;
196 
197   uint8_t visibility = cmd->hidden ? STV_HIDDEN : STV_DEFAULT;
198   Defined newSym(nullptr, cmd->name, STB_GLOBAL, visibility, STT_NOTYPE, 0, 0,
199                  nullptr);
200 
201   // We can't calculate final value right now.
202   Symbol *sym = symtab->insert(cmd->name);
203   sym->mergeProperties(newSym);
204   sym->replace(newSym);
205 
206   cmd->sym = cast<Defined>(sym);
207   cmd->provide = false;
208   sym->scriptDefined = true;
209 }
210 
211 using SymbolAssignmentMap =
212     DenseMap<const Defined *, std::pair<SectionBase *, uint64_t>>;
213 
214 // Collect section/value pairs of linker-script-defined symbols. This is used to
215 // check whether symbol values converge.
216 static SymbolAssignmentMap
217 getSymbolAssignmentValues(const std::vector<BaseCommand *> &sectionCommands) {
218   SymbolAssignmentMap ret;
219   for (BaseCommand *base : sectionCommands) {
220     if (auto *cmd = dyn_cast<SymbolAssignment>(base)) {
221       if (cmd->sym) // sym is nullptr for dot.
222         ret.try_emplace(cmd->sym,
223                         std::make_pair(cmd->sym->section, cmd->sym->value));
224       continue;
225     }
226     for (BaseCommand *sub_base : cast<OutputSection>(base)->sectionCommands)
227       if (auto *cmd = dyn_cast<SymbolAssignment>(sub_base))
228         if (cmd->sym)
229           ret.try_emplace(cmd->sym,
230                           std::make_pair(cmd->sym->section, cmd->sym->value));
231   }
232   return ret;
233 }
234 
235 // Returns the lexicographical smallest (for determinism) Defined whose
236 // section/value has changed.
237 static const Defined *
238 getChangedSymbolAssignment(const SymbolAssignmentMap &oldValues) {
239   const Defined *changed = nullptr;
240   for (auto &it : oldValues) {
241     const Defined *sym = it.first;
242     if (std::make_pair(sym->section, sym->value) != it.second &&
243         (!changed || sym->getName() < changed->getName()))
244       changed = sym;
245   }
246   return changed;
247 }
248 
249 // Process INSERT [AFTER|BEFORE] commands. For each command, we move the
250 // specified output section to the designated place.
251 void LinkerScript::processInsertCommands() {
252   for (const InsertCommand &cmd : insertCommands) {
253     // If cmd.os is empty, it may have been discarded by
254     // adjustSectionsBeforeSorting(). We do not handle such output sections.
255     auto from = llvm::find(sectionCommands, cmd.os);
256     if (from == sectionCommands.end())
257       continue;
258     sectionCommands.erase(from);
259 
260     auto insertPos = llvm::find_if(sectionCommands, [&cmd](BaseCommand *base) {
261       auto *to = dyn_cast<OutputSection>(base);
262       return to != nullptr && to->name == cmd.where;
263     });
264     if (insertPos == sectionCommands.end()) {
265       error("unable to insert " + cmd.os->name +
266             (cmd.isAfter ? " after " : " before ") + cmd.where);
267     } else {
268       if (cmd.isAfter)
269         ++insertPos;
270       sectionCommands.insert(insertPos, cmd.os);
271     }
272   }
273 }
274 
275 // Symbols defined in script should not be inlined by LTO. At the same time
276 // we don't know their final values until late stages of link. Here we scan
277 // over symbol assignment commands and create placeholder symbols if needed.
278 void LinkerScript::declareSymbols() {
279   assert(!ctx);
280   for (BaseCommand *base : sectionCommands) {
281     if (auto *cmd = dyn_cast<SymbolAssignment>(base)) {
282       declareSymbol(cmd);
283       continue;
284     }
285 
286     // If the output section directive has constraints,
287     // we can't say for sure if it is going to be included or not.
288     // Skip such sections for now. Improve the checks if we ever
289     // need symbols from that sections to be declared early.
290     auto *sec = cast<OutputSection>(base);
291     if (sec->constraint != ConstraintKind::NoConstraint)
292       continue;
293     for (BaseCommand *base2 : sec->sectionCommands)
294       if (auto *cmd = dyn_cast<SymbolAssignment>(base2))
295         declareSymbol(cmd);
296   }
297 }
298 
299 // This function is called from assignAddresses, while we are
300 // fixing the output section addresses. This function is supposed
301 // to set the final value for a given symbol assignment.
302 void LinkerScript::assignSymbol(SymbolAssignment *cmd, bool inSec) {
303   if (cmd->name == ".") {
304     setDot(cmd->expression, cmd->location, inSec);
305     return;
306   }
307 
308   if (!cmd->sym)
309     return;
310 
311   ExprValue v = cmd->expression();
312   if (v.isAbsolute()) {
313     cmd->sym->section = nullptr;
314     cmd->sym->value = v.getValue();
315   } else {
316     cmd->sym->section = v.sec;
317     cmd->sym->value = v.getSectionOffset();
318   }
319 }
320 
321 static std::string getFilename(InputFile *file) {
322   if (!file)
323     return "";
324   if (file->archiveName.empty())
325     return std::string(file->getName());
326   return (file->archiveName + "(" + file->getName() + ")").str();
327 }
328 
329 bool LinkerScript::shouldKeep(InputSectionBase *s) {
330   if (keptSections.empty())
331     return false;
332   std::string filename = getFilename(s->file);
333   for (InputSectionDescription *id : keptSections)
334     if (id->filePat.match(filename))
335       for (SectionPattern &p : id->sectionPatterns)
336         if (p.sectionPat.match(s->name) &&
337             (s->flags & id->withFlags) == id->withFlags &&
338             (s->flags & id->withoutFlags) == 0)
339           return true;
340   return false;
341 }
342 
343 // A helper function for the SORT() command.
344 static bool matchConstraints(ArrayRef<InputSectionBase *> sections,
345                              ConstraintKind kind) {
346   if (kind == ConstraintKind::NoConstraint)
347     return true;
348 
349   bool isRW = llvm::any_of(
350       sections, [](InputSectionBase *sec) { return sec->flags & SHF_WRITE; });
351 
352   return (isRW && kind == ConstraintKind::ReadWrite) ||
353          (!isRW && kind == ConstraintKind::ReadOnly);
354 }
355 
356 static void sortSections(MutableArrayRef<InputSectionBase *> vec,
357                          SortSectionPolicy k) {
358   auto alignmentComparator = [](InputSectionBase *a, InputSectionBase *b) {
359     // ">" is not a mistake. Sections with larger alignments are placed
360     // before sections with smaller alignments in order to reduce the
361     // amount of padding necessary. This is compatible with GNU.
362     return a->alignment > b->alignment;
363   };
364   auto nameComparator = [](InputSectionBase *a, InputSectionBase *b) {
365     return a->name < b->name;
366   };
367   auto priorityComparator = [](InputSectionBase *a, InputSectionBase *b) {
368     return getPriority(a->name) < getPriority(b->name);
369   };
370 
371   switch (k) {
372   case SortSectionPolicy::Default:
373   case SortSectionPolicy::None:
374     return;
375   case SortSectionPolicy::Alignment:
376     return llvm::stable_sort(vec, alignmentComparator);
377   case SortSectionPolicy::Name:
378     return llvm::stable_sort(vec, nameComparator);
379   case SortSectionPolicy::Priority:
380     return llvm::stable_sort(vec, priorityComparator);
381   }
382 }
383 
384 // Sort sections as instructed by SORT-family commands and --sort-section
385 // option. Because SORT-family commands can be nested at most two depth
386 // (e.g. SORT_BY_NAME(SORT_BY_ALIGNMENT(.text.*))) and because the command
387 // line option is respected even if a SORT command is given, the exact
388 // behavior we have here is a bit complicated. Here are the rules.
389 //
390 // 1. If two SORT commands are given, --sort-section is ignored.
391 // 2. If one SORT command is given, and if it is not SORT_NONE,
392 //    --sort-section is handled as an inner SORT command.
393 // 3. If one SORT command is given, and if it is SORT_NONE, don't sort.
394 // 4. If no SORT command is given, sort according to --sort-section.
395 static void sortInputSections(MutableArrayRef<InputSectionBase *> vec,
396                               const SectionPattern &pat) {
397   if (pat.sortOuter == SortSectionPolicy::None)
398     return;
399 
400   if (pat.sortInner == SortSectionPolicy::Default)
401     sortSections(vec, config->sortSection);
402   else
403     sortSections(vec, pat.sortInner);
404   sortSections(vec, pat.sortOuter);
405 }
406 
407 // Compute and remember which sections the InputSectionDescription matches.
408 std::vector<InputSectionBase *>
409 LinkerScript::computeInputSections(const InputSectionDescription *cmd) {
410   std::vector<InputSectionBase *> ret;
411 
412   // Collects all sections that satisfy constraints of Cmd.
413   for (const SectionPattern &pat : cmd->sectionPatterns) {
414     size_t sizeBefore = ret.size();
415 
416     for (InputSectionBase *sec : inputSections) {
417       if (!sec->isLive() || sec->parent)
418         continue;
419 
420       // For -emit-relocs we have to ignore entries like
421       //   .rela.dyn : { *(.rela.data) }
422       // which are common because they are in the default bfd script.
423       // We do not ignore SHT_REL[A] linker-synthesized sections here because
424       // want to support scripts that do custom layout for them.
425       if (isa<InputSection>(sec) &&
426           cast<InputSection>(sec)->getRelocatedSection())
427         continue;
428 
429       // Check the name early to improve performance in the common case.
430       if (!pat.sectionPat.match(sec->name))
431         continue;
432 
433       std::string filename = getFilename(sec->file);
434       if (!cmd->filePat.match(filename) ||
435           pat.excludedFilePat.match(filename) ||
436           (sec->flags & cmd->withFlags) != cmd->withFlags ||
437           (sec->flags & cmd->withoutFlags) != 0)
438         continue;
439 
440       ret.push_back(sec);
441     }
442 
443     sortInputSections(
444         MutableArrayRef<InputSectionBase *>(ret).slice(sizeBefore), pat);
445   }
446   return ret;
447 }
448 
449 void LinkerScript::discard(InputSectionBase *s) {
450   if (s == in.shStrTab || s == mainPart->relrDyn)
451     error("discarding " + s->name + " section is not allowed");
452 
453   // You can discard .hash and .gnu.hash sections by linker scripts. Since
454   // they are synthesized sections, we need to handle them differently than
455   // other regular sections.
456   if (s == mainPart->gnuHashTab)
457     mainPart->gnuHashTab = nullptr;
458   if (s == mainPart->hashTab)
459     mainPart->hashTab = nullptr;
460 
461   s->markDead();
462   s->parent = nullptr;
463   for (InputSection *ds : s->dependentSections)
464     discard(ds);
465 }
466 
467 std::vector<InputSectionBase *>
468 LinkerScript::createInputSectionList(OutputSection &outCmd) {
469   std::vector<InputSectionBase *> ret;
470 
471   for (BaseCommand *base : outCmd.sectionCommands) {
472     if (auto *cmd = dyn_cast<InputSectionDescription>(base)) {
473       cmd->sectionBases = computeInputSections(cmd);
474       for (InputSectionBase *s : cmd->sectionBases)
475         s->parent = &outCmd;
476       ret.insert(ret.end(), cmd->sectionBases.begin(), cmd->sectionBases.end());
477     }
478   }
479   return ret;
480 }
481 
482 // Create output sections described by SECTIONS commands.
483 void LinkerScript::processSectionCommands() {
484   size_t i = 0;
485   for (BaseCommand *base : sectionCommands) {
486     if (auto *sec = dyn_cast<OutputSection>(base)) {
487       std::vector<InputSectionBase *> v = createInputSectionList(*sec);
488 
489       // The output section name `/DISCARD/' is special.
490       // Any input section assigned to it is discarded.
491       if (sec->name == "/DISCARD/") {
492         for (InputSectionBase *s : v)
493           discard(s);
494         sec->sectionCommands.clear();
495         continue;
496       }
497 
498       // This is for ONLY_IF_RO and ONLY_IF_RW. An output section directive
499       // ".foo : ONLY_IF_R[OW] { ... }" is handled only if all member input
500       // sections satisfy a given constraint. If not, a directive is handled
501       // as if it wasn't present from the beginning.
502       //
503       // Because we'll iterate over SectionCommands many more times, the easy
504       // way to "make it as if it wasn't present" is to make it empty.
505       if (!matchConstraints(v, sec->constraint)) {
506         for (InputSectionBase *s : v)
507           s->parent = nullptr;
508         sec->sectionCommands.clear();
509         continue;
510       }
511 
512       // Handle subalign (e.g. ".foo : SUBALIGN(32) { ... }"). If subalign
513       // is given, input sections are aligned to that value, whether the
514       // given value is larger or smaller than the original section alignment.
515       if (sec->subalignExpr) {
516         uint32_t subalign = sec->subalignExpr().getValue();
517         for (InputSectionBase *s : v)
518           s->alignment = subalign;
519       }
520 
521       // Set the partition field the same way OutputSection::recordSection()
522       // does. Partitions cannot be used with the SECTIONS command, so this is
523       // always 1.
524       sec->partition = 1;
525 
526       sec->sectionIndex = i++;
527     }
528   }
529 }
530 
531 void LinkerScript::processSymbolAssignments() {
532   // Dot outside an output section still represents a relative address, whose
533   // sh_shndx should not be SHN_UNDEF or SHN_ABS. Create a dummy aether section
534   // that fills the void outside a section. It has an index of one, which is
535   // indistinguishable from any other regular section index.
536   aether = make<OutputSection>("", 0, SHF_ALLOC);
537   aether->sectionIndex = 1;
538 
539   // ctx captures the local AddressState and makes it accessible deliberately.
540   // This is needed as there are some cases where we cannot just thread the
541   // current state through to a lambda function created by the script parser.
542   AddressState state;
543   ctx = &state;
544   ctx->outSec = aether;
545 
546   for (BaseCommand *base : sectionCommands) {
547     if (auto *cmd = dyn_cast<SymbolAssignment>(base))
548       addSymbol(cmd);
549     else
550       for (BaseCommand *sub_base : cast<OutputSection>(base)->sectionCommands)
551         if (auto *cmd = dyn_cast<SymbolAssignment>(sub_base))
552           addSymbol(cmd);
553   }
554 
555   ctx = nullptr;
556 }
557 
558 static OutputSection *findByName(ArrayRef<BaseCommand *> vec,
559                                  StringRef name) {
560   for (BaseCommand *base : vec)
561     if (auto *sec = dyn_cast<OutputSection>(base))
562       if (sec->name == name)
563         return sec;
564   return nullptr;
565 }
566 
567 static OutputSection *createSection(InputSectionBase *isec,
568                                     StringRef outsecName) {
569   OutputSection *sec = script->createOutputSection(outsecName, "<internal>");
570   sec->recordSection(isec);
571   return sec;
572 }
573 
574 static OutputSection *
575 addInputSec(StringMap<TinyPtrVector<OutputSection *>> &map,
576             InputSectionBase *isec, StringRef outsecName) {
577   // Sections with SHT_GROUP or SHF_GROUP attributes reach here only when the -r
578   // option is given. A section with SHT_GROUP defines a "section group", and
579   // its members have SHF_GROUP attribute. Usually these flags have already been
580   // stripped by InputFiles.cpp as section groups are processed and uniquified.
581   // However, for the -r option, we want to pass through all section groups
582   // as-is because adding/removing members or merging them with other groups
583   // change their semantics.
584   if (isec->type == SHT_GROUP || (isec->flags & SHF_GROUP))
585     return createSection(isec, outsecName);
586 
587   // Imagine .zed : { *(.foo) *(.bar) } script. Both foo and bar may have
588   // relocation sections .rela.foo and .rela.bar for example. Most tools do
589   // not allow multiple REL[A] sections for output section. Hence we
590   // should combine these relocation sections into single output.
591   // We skip synthetic sections because it can be .rela.dyn/.rela.plt or any
592   // other REL[A] sections created by linker itself.
593   if (!isa<SyntheticSection>(isec) &&
594       (isec->type == SHT_REL || isec->type == SHT_RELA)) {
595     auto *sec = cast<InputSection>(isec);
596     OutputSection *out = sec->getRelocatedSection()->getOutputSection();
597 
598     if (out->relocationSection) {
599       out->relocationSection->recordSection(sec);
600       return nullptr;
601     }
602 
603     out->relocationSection = createSection(isec, outsecName);
604     return out->relocationSection;
605   }
606 
607   //  The ELF spec just says
608   // ----------------------------------------------------------------
609   // In the first phase, input sections that match in name, type and
610   // attribute flags should be concatenated into single sections.
611   // ----------------------------------------------------------------
612   //
613   // However, it is clear that at least some flags have to be ignored for
614   // section merging. At the very least SHF_GROUP and SHF_COMPRESSED have to be
615   // ignored. We should not have two output .text sections just because one was
616   // in a group and another was not for example.
617   //
618   // It also seems that wording was a late addition and didn't get the
619   // necessary scrutiny.
620   //
621   // Merging sections with different flags is expected by some users. One
622   // reason is that if one file has
623   //
624   // int *const bar __attribute__((section(".foo"))) = (int *)0;
625   //
626   // gcc with -fPIC will produce a read only .foo section. But if another
627   // file has
628   //
629   // int zed;
630   // int *const bar __attribute__((section(".foo"))) = (int *)&zed;
631   //
632   // gcc with -fPIC will produce a read write section.
633   //
634   // Last but not least, when using linker script the merge rules are forced by
635   // the script. Unfortunately, linker scripts are name based. This means that
636   // expressions like *(.foo*) can refer to multiple input sections with
637   // different flags. We cannot put them in different output sections or we
638   // would produce wrong results for
639   //
640   // start = .; *(.foo.*) end = .; *(.bar)
641   //
642   // and a mapping of .foo1 and .bar1 to one section and .foo2 and .bar2 to
643   // another. The problem is that there is no way to layout those output
644   // sections such that the .foo sections are the only thing between the start
645   // and end symbols.
646   //
647   // Given the above issues, we instead merge sections by name and error on
648   // incompatible types and flags.
649   TinyPtrVector<OutputSection *> &v = map[outsecName];
650   for (OutputSection *sec : v) {
651     if (sec->partition != isec->partition)
652       continue;
653 
654     if (config->relocatable && (isec->flags & SHF_LINK_ORDER)) {
655       // Merging two SHF_LINK_ORDER sections with different sh_link fields will
656       // change their semantics, so we only merge them in -r links if they will
657       // end up being linked to the same output section. The casts are fine
658       // because everything in the map was created by the orphan placement code.
659       auto *firstIsec = cast<InputSectionBase>(
660           cast<InputSectionDescription>(sec->sectionCommands[0])
661               ->sectionBases[0]);
662       if (firstIsec->getLinkOrderDep()->getOutputSection() !=
663           isec->getLinkOrderDep()->getOutputSection())
664         continue;
665     }
666 
667     sec->recordSection(isec);
668     return nullptr;
669   }
670 
671   OutputSection *sec = createSection(isec, outsecName);
672   v.push_back(sec);
673   return sec;
674 }
675 
676 // Add sections that didn't match any sections command.
677 void LinkerScript::addOrphanSections() {
678   StringMap<TinyPtrVector<OutputSection *>> map;
679   std::vector<OutputSection *> v;
680 
681   std::function<void(InputSectionBase *)> add;
682   add = [&](InputSectionBase *s) {
683     if (s->isLive() && !s->parent) {
684       StringRef name = getOutputSectionName(s);
685 
686       if (config->orphanHandling == OrphanHandlingPolicy::Error)
687         error(toString(s) + " is being placed in '" + name + "'");
688       else if (config->orphanHandling == OrphanHandlingPolicy::Warn)
689         warn(toString(s) + " is being placed in '" + name + "'");
690 
691       if (OutputSection *sec = findByName(sectionCommands, name)) {
692         sec->recordSection(s);
693       } else {
694         if (OutputSection *os = addInputSec(map, s, name))
695           v.push_back(os);
696         assert(isa<MergeInputSection>(s) ||
697                s->getOutputSection()->sectionIndex == UINT32_MAX);
698       }
699     }
700 
701     if (config->relocatable)
702       for (InputSectionBase *depSec : s->dependentSections)
703         if (depSec->flags & SHF_LINK_ORDER)
704           add(depSec);
705   };
706 
707   // For futher --emit-reloc handling code we need target output section
708   // to be created before we create relocation output section, so we want
709   // to create target sections first. We do not want priority handling
710   // for synthetic sections because them are special.
711   for (InputSectionBase *isec : inputSections) {
712     // In -r links, SHF_LINK_ORDER sections are added while adding their parent
713     // sections because we need to know the parent's output section before we
714     // can select an output section for the SHF_LINK_ORDER section.
715     if (config->relocatable && (isec->flags & SHF_LINK_ORDER))
716       continue;
717 
718     if (auto *sec = dyn_cast<InputSection>(isec))
719       if (InputSectionBase *rel = sec->getRelocatedSection())
720         if (auto *relIS = dyn_cast_or_null<InputSectionBase>(rel->parent))
721           add(relIS);
722     add(isec);
723   }
724 
725   // If no SECTIONS command was given, we should insert sections commands
726   // before others, so that we can handle scripts which refers them,
727   // for example: "foo = ABSOLUTE(ADDR(.text)));".
728   // When SECTIONS command is present we just add all orphans to the end.
729   if (hasSectionsCommand)
730     sectionCommands.insert(sectionCommands.end(), v.begin(), v.end());
731   else
732     sectionCommands.insert(sectionCommands.begin(), v.begin(), v.end());
733 }
734 
735 uint64_t LinkerScript::advance(uint64_t size, unsigned alignment) {
736   bool isTbss =
737       (ctx->outSec->flags & SHF_TLS) && ctx->outSec->type == SHT_NOBITS;
738   uint64_t start = isTbss ? dot + ctx->threadBssOffset : dot;
739   start = alignTo(start, alignment);
740   uint64_t end = start + size;
741 
742   if (isTbss)
743     ctx->threadBssOffset = end - dot;
744   else
745     dot = end;
746   return end;
747 }
748 
749 void LinkerScript::output(InputSection *s) {
750   assert(ctx->outSec == s->getParent());
751   uint64_t before = advance(0, 1);
752   uint64_t pos = advance(s->getSize(), s->alignment);
753   s->outSecOff = pos - s->getSize() - ctx->outSec->addr;
754 
755   // Update output section size after adding each section. This is so that
756   // SIZEOF works correctly in the case below:
757   // .foo { *(.aaa) a = SIZEOF(.foo); *(.bbb) }
758   expandOutputSection(pos - before);
759 }
760 
761 void LinkerScript::switchTo(OutputSection *sec) {
762   ctx->outSec = sec;
763 
764   uint64_t before = advance(0, 1);
765   ctx->outSec->addr = advance(0, ctx->outSec->alignment);
766   expandMemoryRegions(ctx->outSec->addr - before);
767 }
768 
769 // This function searches for a memory region to place the given output
770 // section in. If found, a pointer to the appropriate memory region is
771 // returned. Otherwise, a nullptr is returned.
772 MemoryRegion *LinkerScript::findMemoryRegion(OutputSection *sec) {
773   // If a memory region name was specified in the output section command,
774   // then try to find that region first.
775   if (!sec->memoryRegionName.empty()) {
776     if (MemoryRegion *m = memoryRegions.lookup(sec->memoryRegionName))
777       return m;
778     error("memory region '" + sec->memoryRegionName + "' not declared");
779     return nullptr;
780   }
781 
782   // If at least one memory region is defined, all sections must
783   // belong to some memory region. Otherwise, we don't need to do
784   // anything for memory regions.
785   if (memoryRegions.empty())
786     return nullptr;
787 
788   // See if a region can be found by matching section flags.
789   for (auto &pair : memoryRegions) {
790     MemoryRegion *m = pair.second;
791     if ((m->flags & sec->flags) && (m->negFlags & sec->flags) == 0)
792       return m;
793   }
794 
795   // Otherwise, no suitable region was found.
796   if (sec->flags & SHF_ALLOC)
797     error("no memory region specified for section '" + sec->name + "'");
798   return nullptr;
799 }
800 
801 static OutputSection *findFirstSection(PhdrEntry *load) {
802   for (OutputSection *sec : outputSections)
803     if (sec->ptLoad == load)
804       return sec;
805   return nullptr;
806 }
807 
808 // This function assigns offsets to input sections and an output section
809 // for a single sections command (e.g. ".text { *(.text); }").
810 void LinkerScript::assignOffsets(OutputSection *sec) {
811   if (!(sec->flags & SHF_ALLOC))
812     dot = 0;
813 
814   ctx->memRegion = sec->memRegion;
815   ctx->lmaRegion = sec->lmaRegion;
816   if (ctx->memRegion)
817     dot = ctx->memRegion->curPos;
818 
819   if ((sec->flags & SHF_ALLOC) && sec->addrExpr)
820     setDot(sec->addrExpr, sec->location, false);
821 
822   // If the address of the section has been moved forward by an explicit
823   // expression so that it now starts past the current curPos of the enclosing
824   // region, we need to expand the current region to account for the space
825   // between the previous section, if any, and the start of this section.
826   if (ctx->memRegion && ctx->memRegion->curPos < dot)
827     expandMemoryRegion(ctx->memRegion, dot - ctx->memRegion->curPos,
828                        ctx->memRegion->name, sec->name);
829 
830   switchTo(sec);
831 
832   ctx->lmaOffset = 0;
833 
834   if (sec->lmaExpr)
835     ctx->lmaOffset = sec->lmaExpr().getValue() - dot;
836   if (MemoryRegion *mr = sec->lmaRegion)
837     ctx->lmaOffset = alignTo(mr->curPos, sec->alignment) - dot;
838 
839   // If neither AT nor AT> is specified for an allocatable section, the linker
840   // will set the LMA such that the difference between VMA and LMA for the
841   // section is the same as the preceding output section in the same region
842   // https://sourceware.org/binutils/docs-2.20/ld/Output-Section-LMA.html
843   // This, however, should only be done by the first "non-header" section
844   // in the segment.
845   if (PhdrEntry *l = ctx->outSec->ptLoad)
846     if (sec == findFirstSection(l))
847       l->lmaOffset = ctx->lmaOffset;
848 
849   // We can call this method multiple times during the creation of
850   // thunks and want to start over calculation each time.
851   sec->size = 0;
852 
853   // We visited SectionsCommands from processSectionCommands to
854   // layout sections. Now, we visit SectionsCommands again to fix
855   // section offsets.
856   for (BaseCommand *base : sec->sectionCommands) {
857     // This handles the assignments to symbol or to the dot.
858     if (auto *cmd = dyn_cast<SymbolAssignment>(base)) {
859       cmd->addr = dot;
860       assignSymbol(cmd, true);
861       cmd->size = dot - cmd->addr;
862       continue;
863     }
864 
865     // Handle BYTE(), SHORT(), LONG(), or QUAD().
866     if (auto *cmd = dyn_cast<ByteCommand>(base)) {
867       cmd->offset = dot - ctx->outSec->addr;
868       dot += cmd->size;
869       expandOutputSection(cmd->size);
870       continue;
871     }
872 
873     // Handle a single input section description command.
874     // It calculates and assigns the offsets for each section and also
875     // updates the output section size.
876     for (InputSection *sec : cast<InputSectionDescription>(base)->sections)
877       output(sec);
878   }
879 }
880 
881 static bool isDiscardable(OutputSection &sec) {
882   if (sec.name == "/DISCARD/")
883     return true;
884 
885   // We do not remove empty sections that are explicitly
886   // assigned to any segment.
887   if (!sec.phdrs.empty())
888     return false;
889 
890   // We do not want to remove OutputSections with expressions that reference
891   // symbols even if the OutputSection is empty. We want to ensure that the
892   // expressions can be evaluated and report an error if they cannot.
893   if (sec.expressionsUseSymbols)
894     return false;
895 
896   // OutputSections may be referenced by name in ADDR and LOADADDR expressions,
897   // as an empty Section can has a valid VMA and LMA we keep the OutputSection
898   // to maintain the integrity of the other Expression.
899   if (sec.usedInExpression)
900     return false;
901 
902   for (BaseCommand *base : sec.sectionCommands) {
903     if (auto cmd = dyn_cast<SymbolAssignment>(base))
904       // Don't create empty output sections just for unreferenced PROVIDE
905       // symbols.
906       if (cmd->name != "." && !cmd->sym)
907         continue;
908 
909     if (!isa<InputSectionDescription>(*base))
910       return false;
911   }
912   return true;
913 }
914 
915 void LinkerScript::adjustSectionsBeforeSorting() {
916   // If the output section contains only symbol assignments, create a
917   // corresponding output section. The issue is what to do with linker script
918   // like ".foo : { symbol = 42; }". One option would be to convert it to
919   // "symbol = 42;". That is, move the symbol out of the empty section
920   // description. That seems to be what bfd does for this simple case. The
921   // problem is that this is not completely general. bfd will give up and
922   // create a dummy section too if there is a ". = . + 1" inside the section
923   // for example.
924   // Given that we want to create the section, we have to worry what impact
925   // it will have on the link. For example, if we just create a section with
926   // 0 for flags, it would change which PT_LOADs are created.
927   // We could remember that particular section is dummy and ignore it in
928   // other parts of the linker, but unfortunately there are quite a few places
929   // that would need to change:
930   //   * The program header creation.
931   //   * The orphan section placement.
932   //   * The address assignment.
933   // The other option is to pick flags that minimize the impact the section
934   // will have on the rest of the linker. That is why we copy the flags from
935   // the previous sections. Only a few flags are needed to keep the impact low.
936   uint64_t flags = SHF_ALLOC;
937 
938   for (BaseCommand *&cmd : sectionCommands) {
939     auto *sec = dyn_cast<OutputSection>(cmd);
940     if (!sec)
941       continue;
942 
943     // Handle align (e.g. ".foo : ALIGN(16) { ... }").
944     if (sec->alignExpr)
945       sec->alignment =
946           std::max<uint32_t>(sec->alignment, sec->alignExpr().getValue());
947 
948     // The input section might have been removed (if it was an empty synthetic
949     // section), but we at least know the flags.
950     if (sec->hasInputSections)
951       flags = sec->flags;
952 
953     // We do not want to keep any special flags for output section
954     // in case it is empty.
955     bool isEmpty = (getFirstInputSection(sec) == nullptr);
956     if (isEmpty)
957       sec->flags = flags & ((sec->nonAlloc ? 0 : (uint64_t)SHF_ALLOC) |
958                             SHF_WRITE | SHF_EXECINSTR);
959 
960     if (isEmpty && isDiscardable(*sec)) {
961       sec->markDead();
962       cmd = nullptr;
963     }
964   }
965 
966   // It is common practice to use very generic linker scripts. So for any
967   // given run some of the output sections in the script will be empty.
968   // We could create corresponding empty output sections, but that would
969   // clutter the output.
970   // We instead remove trivially empty sections. The bfd linker seems even
971   // more aggressive at removing them.
972   llvm::erase_if(sectionCommands, [&](BaseCommand *base) { return !base; });
973 }
974 
975 void LinkerScript::adjustSectionsAfterSorting() {
976   // Try and find an appropriate memory region to assign offsets in.
977   for (BaseCommand *base : sectionCommands) {
978     if (auto *sec = dyn_cast<OutputSection>(base)) {
979       if (!sec->lmaRegionName.empty()) {
980         if (MemoryRegion *m = memoryRegions.lookup(sec->lmaRegionName))
981           sec->lmaRegion = m;
982         else
983           error("memory region '" + sec->lmaRegionName + "' not declared");
984       }
985       sec->memRegion = findMemoryRegion(sec);
986     }
987   }
988 
989   // If output section command doesn't specify any segments,
990   // and we haven't previously assigned any section to segment,
991   // then we simply assign section to the very first load segment.
992   // Below is an example of such linker script:
993   // PHDRS { seg PT_LOAD; }
994   // SECTIONS { .aaa : { *(.aaa) } }
995   std::vector<StringRef> defPhdrs;
996   auto firstPtLoad = llvm::find_if(phdrsCommands, [](const PhdrsCommand &cmd) {
997     return cmd.type == PT_LOAD;
998   });
999   if (firstPtLoad != phdrsCommands.end())
1000     defPhdrs.push_back(firstPtLoad->name);
1001 
1002   // Walk the commands and propagate the program headers to commands that don't
1003   // explicitly specify them.
1004   for (BaseCommand *base : sectionCommands) {
1005     auto *sec = dyn_cast<OutputSection>(base);
1006     if (!sec)
1007       continue;
1008 
1009     if (sec->phdrs.empty()) {
1010       // To match the bfd linker script behaviour, only propagate program
1011       // headers to sections that are allocated.
1012       if (sec->flags & SHF_ALLOC)
1013         sec->phdrs = defPhdrs;
1014     } else {
1015       defPhdrs = sec->phdrs;
1016     }
1017   }
1018 }
1019 
1020 static uint64_t computeBase(uint64_t min, bool allocateHeaders) {
1021   // If there is no SECTIONS or if the linkerscript is explicit about program
1022   // headers, do our best to allocate them.
1023   if (!script->hasSectionsCommand || allocateHeaders)
1024     return 0;
1025   // Otherwise only allocate program headers if that would not add a page.
1026   return alignDown(min, config->maxPageSize);
1027 }
1028 
1029 // When the SECTIONS command is used, try to find an address for the file and
1030 // program headers output sections, which can be added to the first PT_LOAD
1031 // segment when program headers are created.
1032 //
1033 // We check if the headers fit below the first allocated section. If there isn't
1034 // enough space for these sections, we'll remove them from the PT_LOAD segment,
1035 // and we'll also remove the PT_PHDR segment.
1036 void LinkerScript::allocateHeaders(std::vector<PhdrEntry *> &phdrs) {
1037   uint64_t min = std::numeric_limits<uint64_t>::max();
1038   for (OutputSection *sec : outputSections)
1039     if (sec->flags & SHF_ALLOC)
1040       min = std::min<uint64_t>(min, sec->addr);
1041 
1042   auto it = llvm::find_if(
1043       phdrs, [](const PhdrEntry *e) { return e->p_type == PT_LOAD; });
1044   if (it == phdrs.end())
1045     return;
1046   PhdrEntry *firstPTLoad = *it;
1047 
1048   bool hasExplicitHeaders =
1049       llvm::any_of(phdrsCommands, [](const PhdrsCommand &cmd) {
1050         return cmd.hasPhdrs || cmd.hasFilehdr;
1051       });
1052   bool paged = !config->omagic && !config->nmagic;
1053   uint64_t headerSize = getHeaderSize();
1054   if ((paged || hasExplicitHeaders) &&
1055       headerSize <= min - computeBase(min, hasExplicitHeaders)) {
1056     min = alignDown(min - headerSize, config->maxPageSize);
1057     Out::elfHeader->addr = min;
1058     Out::programHeaders->addr = min + Out::elfHeader->size;
1059     return;
1060   }
1061 
1062   // Error if we were explicitly asked to allocate headers.
1063   if (hasExplicitHeaders)
1064     error("could not allocate headers");
1065 
1066   Out::elfHeader->ptLoad = nullptr;
1067   Out::programHeaders->ptLoad = nullptr;
1068   firstPTLoad->firstSec = findFirstSection(firstPTLoad);
1069 
1070   llvm::erase_if(phdrs,
1071                  [](const PhdrEntry *e) { return e->p_type == PT_PHDR; });
1072 }
1073 
1074 LinkerScript::AddressState::AddressState() {
1075   for (auto &mri : script->memoryRegions) {
1076     MemoryRegion *mr = mri.second;
1077     mr->curPos = mr->origin;
1078   }
1079 }
1080 
1081 // Here we assign addresses as instructed by linker script SECTIONS
1082 // sub-commands. Doing that allows us to use final VA values, so here
1083 // we also handle rest commands like symbol assignments and ASSERTs.
1084 // Returns a symbol that has changed its section or value, or nullptr if no
1085 // symbol has changed.
1086 const Defined *LinkerScript::assignAddresses() {
1087   if (script->hasSectionsCommand) {
1088     // With a linker script, assignment of addresses to headers is covered by
1089     // allocateHeaders().
1090     dot = config->imageBase.getValueOr(0);
1091   } else {
1092     // Assign addresses to headers right now.
1093     dot = target->getImageBase();
1094     Out::elfHeader->addr = dot;
1095     Out::programHeaders->addr = dot + Out::elfHeader->size;
1096     dot += getHeaderSize();
1097   }
1098 
1099   auto deleter = std::make_unique<AddressState>();
1100   ctx = deleter.get();
1101   errorOnMissingSection = true;
1102   switchTo(aether);
1103 
1104   SymbolAssignmentMap oldValues = getSymbolAssignmentValues(sectionCommands);
1105   for (BaseCommand *base : sectionCommands) {
1106     if (auto *cmd = dyn_cast<SymbolAssignment>(base)) {
1107       cmd->addr = dot;
1108       assignSymbol(cmd, false);
1109       cmd->size = dot - cmd->addr;
1110       continue;
1111     }
1112     assignOffsets(cast<OutputSection>(base));
1113   }
1114 
1115   ctx = nullptr;
1116   return getChangedSymbolAssignment(oldValues);
1117 }
1118 
1119 // Creates program headers as instructed by PHDRS linker script command.
1120 std::vector<PhdrEntry *> LinkerScript::createPhdrs() {
1121   std::vector<PhdrEntry *> ret;
1122 
1123   // Process PHDRS and FILEHDR keywords because they are not
1124   // real output sections and cannot be added in the following loop.
1125   for (const PhdrsCommand &cmd : phdrsCommands) {
1126     PhdrEntry *phdr = make<PhdrEntry>(cmd.type, cmd.flags ? *cmd.flags : PF_R);
1127 
1128     if (cmd.hasFilehdr)
1129       phdr->add(Out::elfHeader);
1130     if (cmd.hasPhdrs)
1131       phdr->add(Out::programHeaders);
1132 
1133     if (cmd.lmaExpr) {
1134       phdr->p_paddr = cmd.lmaExpr().getValue();
1135       phdr->hasLMA = true;
1136     }
1137     ret.push_back(phdr);
1138   }
1139 
1140   // Add output sections to program headers.
1141   for (OutputSection *sec : outputSections) {
1142     // Assign headers specified by linker script
1143     for (size_t id : getPhdrIndices(sec)) {
1144       ret[id]->add(sec);
1145       if (!phdrsCommands[id].flags.hasValue())
1146         ret[id]->p_flags |= sec->getPhdrFlags();
1147     }
1148   }
1149   return ret;
1150 }
1151 
1152 // Returns true if we should emit an .interp section.
1153 //
1154 // We usually do. But if PHDRS commands are given, and
1155 // no PT_INTERP is there, there's no place to emit an
1156 // .interp, so we don't do that in that case.
1157 bool LinkerScript::needsInterpSection() {
1158   if (phdrsCommands.empty())
1159     return true;
1160   for (PhdrsCommand &cmd : phdrsCommands)
1161     if (cmd.type == PT_INTERP)
1162       return true;
1163   return false;
1164 }
1165 
1166 ExprValue LinkerScript::getSymbolValue(StringRef name, const Twine &loc) {
1167   if (name == ".") {
1168     if (ctx)
1169       return {ctx->outSec, false, dot - ctx->outSec->addr, loc};
1170     error(loc + ": unable to get location counter value");
1171     return 0;
1172   }
1173 
1174   if (Symbol *sym = symtab->find(name)) {
1175     if (auto *ds = dyn_cast<Defined>(sym))
1176       return {ds->section, false, ds->value, loc};
1177     if (isa<SharedSymbol>(sym))
1178       if (!errorOnMissingSection)
1179         return {nullptr, false, 0, loc};
1180   }
1181 
1182   error(loc + ": symbol not found: " + name);
1183   return 0;
1184 }
1185 
1186 // Returns the index of the segment named Name.
1187 static Optional<size_t> getPhdrIndex(ArrayRef<PhdrsCommand> vec,
1188                                      StringRef name) {
1189   for (size_t i = 0; i < vec.size(); ++i)
1190     if (vec[i].name == name)
1191       return i;
1192   return None;
1193 }
1194 
1195 // Returns indices of ELF headers containing specific section. Each index is a
1196 // zero based number of ELF header listed within PHDRS {} script block.
1197 std::vector<size_t> LinkerScript::getPhdrIndices(OutputSection *cmd) {
1198   std::vector<size_t> ret;
1199 
1200   for (StringRef s : cmd->phdrs) {
1201     if (Optional<size_t> idx = getPhdrIndex(phdrsCommands, s))
1202       ret.push_back(*idx);
1203     else if (s != "NONE")
1204       error(cmd->location + ": section header '" + s +
1205             "' is not listed in PHDRS");
1206   }
1207   return ret;
1208 }
1209 
1210 } // namespace elf
1211 } // namespace lld
1212