1 //===- LinkerScript.cpp ---------------------------------------------------===// 2 // 3 // The LLVM Linker 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the parser/evaluator of the linker script. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "LinkerScript.h" 15 #include "Config.h" 16 #include "InputSection.h" 17 #include "Memory.h" 18 #include "OutputSections.h" 19 #include "Strings.h" 20 #include "SymbolTable.h" 21 #include "Symbols.h" 22 #include "SyntheticSections.h" 23 #include "Target.h" 24 #include "Writer.h" 25 #include "lld/Common/Threads.h" 26 #include "llvm/ADT/STLExtras.h" 27 #include "llvm/ADT/StringRef.h" 28 #include "llvm/BinaryFormat/ELF.h" 29 #include "llvm/Support/Casting.h" 30 #include "llvm/Support/Endian.h" 31 #include "llvm/Support/ErrorHandling.h" 32 #include "llvm/Support/FileSystem.h" 33 #include "llvm/Support/Path.h" 34 #include <algorithm> 35 #include <cassert> 36 #include <cstddef> 37 #include <cstdint> 38 #include <iterator> 39 #include <limits> 40 #include <string> 41 #include <vector> 42 43 using namespace llvm; 44 using namespace llvm::ELF; 45 using namespace llvm::object; 46 using namespace llvm::support::endian; 47 using namespace lld; 48 using namespace lld::elf; 49 50 LinkerScript *elf::Script; 51 52 static uint64_t getOutputSectionVA(SectionBase *InputSec, StringRef Loc) { 53 if (OutputSection *OS = InputSec->getOutputSection()) 54 return OS->Addr; 55 error(Loc + ": unable to evaluate expression: input section " + 56 InputSec->Name + " has no output section assigned"); 57 return 0; 58 } 59 60 uint64_t ExprValue::getValue() const { 61 if (Sec) 62 return alignTo(Sec->getOffset(Val) + getOutputSectionVA(Sec, Loc), 63 Alignment); 64 return alignTo(Val, Alignment); 65 } 66 67 uint64_t ExprValue::getSecAddr() const { 68 if (Sec) 69 return Sec->getOffset(0) + getOutputSectionVA(Sec, Loc); 70 return 0; 71 } 72 73 uint64_t ExprValue::getSectionOffset() const { 74 // If the alignment is trivial, we don't have to compute the full 75 // value to know the offset. This allows this function to succeed in 76 // cases where the output section is not yet known. 77 if (Alignment == 1) 78 return Val; 79 return getValue() - getSecAddr(); 80 } 81 82 OutputSection *LinkerScript::createOutputSection(StringRef Name, 83 StringRef Location) { 84 OutputSection *&SecRef = NameToOutputSection[Name]; 85 OutputSection *Sec; 86 if (SecRef && SecRef->Location.empty()) { 87 // There was a forward reference. 88 Sec = SecRef; 89 } else { 90 Sec = make<OutputSection>(Name, SHT_PROGBITS, 0); 91 if (!SecRef) 92 SecRef = Sec; 93 } 94 Sec->Location = Location; 95 return Sec; 96 } 97 98 OutputSection *LinkerScript::getOrCreateOutputSection(StringRef Name) { 99 OutputSection *&CmdRef = NameToOutputSection[Name]; 100 if (!CmdRef) 101 CmdRef = make<OutputSection>(Name, SHT_PROGBITS, 0); 102 return CmdRef; 103 } 104 105 void LinkerScript::setDot(Expr E, const Twine &Loc, bool InSec) { 106 uint64_t Val = E().getValue(); 107 if (Val < Dot && InSec) 108 error(Loc + ": unable to move location counter backward for: " + 109 Ctx->OutSec->Name); 110 Dot = Val; 111 112 // Update to location counter means update to section size. 113 if (InSec) 114 Ctx->OutSec->Size = Dot - Ctx->OutSec->Addr; 115 } 116 117 // This function is called from processSectionCommands, 118 // while we are fixing the output section layout. 119 void LinkerScript::addSymbol(SymbolAssignment *Cmd) { 120 if (Cmd->Name == ".") 121 return; 122 123 // If a symbol was in PROVIDE(), we need to define it only when 124 // it is a referenced undefined symbol. 125 Symbol *B = Symtab->find(Cmd->Name); 126 if (Cmd->Provide && (!B || B->isDefined())) 127 return; 128 129 // Define a symbol. 130 Symbol *Sym; 131 uint8_t Visibility = Cmd->Hidden ? STV_HIDDEN : STV_DEFAULT; 132 std::tie(Sym, std::ignore) = Symtab->insert(Cmd->Name, /*Type*/ 0, Visibility, 133 /*CanOmitFromDynSym*/ false, 134 /*File*/ nullptr); 135 ExprValue Value = Cmd->Expression(); 136 SectionBase *Sec = Value.isAbsolute() ? nullptr : Value.Sec; 137 138 // When this function is called, section addresses have not been 139 // fixed yet. So, we may or may not know the value of the RHS 140 // expression. 141 // 142 // For example, if an expression is `x = 42`, we know x is always 42. 143 // However, if an expression is `x = .`, there's no way to know its 144 // value at the moment. 145 // 146 // We want to set symbol values early if we can. This allows us to 147 // use symbols as variables in linker scripts. Doing so allows us to 148 // write expressions like this: `alignment = 16; . = ALIGN(., alignment)`. 149 uint64_t SymValue = Value.Sec ? 0 : Value.getValue(); 150 151 replaceSymbol<Defined>(Sym, nullptr, Cmd->Name, STB_GLOBAL, Visibility, 152 STT_NOTYPE, SymValue, 0, Sec); 153 Cmd->Sym = cast<Defined>(Sym); 154 } 155 156 // This function is called from assignAddresses, while we are 157 // fixing the output section addresses. This function is supposed 158 // to set the final value for a given symbol assignment. 159 void LinkerScript::assignSymbol(SymbolAssignment *Cmd, bool InSec) { 160 if (Cmd->Name == ".") { 161 setDot(Cmd->Expression, Cmd->Location, InSec); 162 return; 163 } 164 165 if (!Cmd->Sym) 166 return; 167 168 ExprValue V = Cmd->Expression(); 169 if (V.isAbsolute()) { 170 Cmd->Sym->Section = nullptr; 171 Cmd->Sym->Value = V.getValue(); 172 } else { 173 Cmd->Sym->Section = V.Sec; 174 Cmd->Sym->Value = V.getSectionOffset(); 175 } 176 } 177 178 static std::string getFilename(InputFile *File) { 179 if (!File) 180 return ""; 181 if (File->ArchiveName.empty()) 182 return File->getName(); 183 return (File->ArchiveName + "(" + File->getName() + ")").str(); 184 } 185 186 bool LinkerScript::shouldKeep(InputSectionBase *S) { 187 std::string Filename = getFilename(S->File); 188 for (InputSectionDescription *ID : KeptSections) 189 if (ID->FilePat.match(Filename)) 190 for (SectionPattern &P : ID->SectionPatterns) 191 if (P.SectionPat.match(S->Name)) 192 return true; 193 return false; 194 } 195 196 // A helper function for the SORT() command. 197 static std::function<bool(InputSectionBase *, InputSectionBase *)> 198 getComparator(SortSectionPolicy K) { 199 switch (K) { 200 case SortSectionPolicy::Alignment: 201 return [](InputSectionBase *A, InputSectionBase *B) { 202 // ">" is not a mistake. Sections with larger alignments are placed 203 // before sections with smaller alignments in order to reduce the 204 // amount of padding necessary. This is compatible with GNU. 205 return A->Alignment > B->Alignment; 206 }; 207 case SortSectionPolicy::Name: 208 return [](InputSectionBase *A, InputSectionBase *B) { 209 return A->Name < B->Name; 210 }; 211 case SortSectionPolicy::Priority: 212 return [](InputSectionBase *A, InputSectionBase *B) { 213 return getPriority(A->Name) < getPriority(B->Name); 214 }; 215 default: 216 llvm_unreachable("unknown sort policy"); 217 } 218 } 219 220 // A helper function for the SORT() command. 221 static bool matchConstraints(ArrayRef<InputSection *> Sections, 222 ConstraintKind Kind) { 223 if (Kind == ConstraintKind::NoConstraint) 224 return true; 225 226 bool IsRW = llvm::any_of( 227 Sections, [](InputSection *Sec) { return Sec->Flags & SHF_WRITE; }); 228 229 return (IsRW && Kind == ConstraintKind::ReadWrite) || 230 (!IsRW && Kind == ConstraintKind::ReadOnly); 231 } 232 233 static void sortSections(MutableArrayRef<InputSection *> Vec, 234 SortSectionPolicy K) { 235 if (K != SortSectionPolicy::Default && K != SortSectionPolicy::None) 236 std::stable_sort(Vec.begin(), Vec.end(), getComparator(K)); 237 } 238 239 // Sort sections as instructed by SORT-family commands and --sort-section 240 // option. Because SORT-family commands can be nested at most two depth 241 // (e.g. SORT_BY_NAME(SORT_BY_ALIGNMENT(.text.*))) and because the command 242 // line option is respected even if a SORT command is given, the exact 243 // behavior we have here is a bit complicated. Here are the rules. 244 // 245 // 1. If two SORT commands are given, --sort-section is ignored. 246 // 2. If one SORT command is given, and if it is not SORT_NONE, 247 // --sort-section is handled as an inner SORT command. 248 // 3. If one SORT command is given, and if it is SORT_NONE, don't sort. 249 // 4. If no SORT command is given, sort according to --sort-section. 250 // 5. If no SORT commands are given and --sort-section is not specified, 251 // apply sorting provided by --symbol-ordering-file if any exist. 252 static void sortInputSections( 253 MutableArrayRef<InputSection *> Vec, const SectionPattern &Pat, 254 const DenseMap<SectionBase *, int> &Order) { 255 if (Pat.SortOuter == SortSectionPolicy::None) 256 return; 257 258 if (Pat.SortOuter == SortSectionPolicy::Default && 259 Config->SortSection == SortSectionPolicy::Default) { 260 // If -symbol-ordering-file was given, sort accordingly. 261 // Usually, Order is empty. 262 if (!Order.empty()) 263 sortByOrder(Vec, [&](InputSectionBase *S) { return Order.lookup(S); }); 264 return; 265 } 266 267 if (Pat.SortInner == SortSectionPolicy::Default) 268 sortSections(Vec, Config->SortSection); 269 else 270 sortSections(Vec, Pat.SortInner); 271 sortSections(Vec, Pat.SortOuter); 272 } 273 274 // Compute and remember which sections the InputSectionDescription matches. 275 std::vector<InputSection *> 276 LinkerScript::computeInputSections(const InputSectionDescription *Cmd, 277 const DenseMap<SectionBase *, int> &Order) { 278 std::vector<InputSection *> Ret; 279 280 // Collects all sections that satisfy constraints of Cmd. 281 for (const SectionPattern &Pat : Cmd->SectionPatterns) { 282 size_t SizeBefore = Ret.size(); 283 284 for (InputSectionBase *Sec : InputSections) { 285 if (!Sec->Live || Sec->Assigned) 286 continue; 287 288 // For -emit-relocs we have to ignore entries like 289 // .rela.dyn : { *(.rela.data) } 290 // which are common because they are in the default bfd script. 291 if (Sec->Type == SHT_REL || Sec->Type == SHT_RELA) 292 continue; 293 294 std::string Filename = getFilename(Sec->File); 295 if (!Cmd->FilePat.match(Filename) || 296 Pat.ExcludedFilePat.match(Filename) || 297 !Pat.SectionPat.match(Sec->Name)) 298 continue; 299 300 // It is safe to assume that Sec is an InputSection 301 // because mergeable or EH input sections have already been 302 // handled and eliminated. 303 Ret.push_back(cast<InputSection>(Sec)); 304 Sec->Assigned = true; 305 } 306 307 sortInputSections(MutableArrayRef<InputSection *>(Ret).slice(SizeBefore), 308 Pat, Order); 309 } 310 return Ret; 311 } 312 313 void LinkerScript::discard(ArrayRef<InputSection *> V) { 314 for (InputSection *S : V) { 315 if (S == InX::ShStrTab || S == InX::Dynamic || S == InX::DynSymTab || 316 S == InX::DynStrTab) 317 error("discarding " + S->Name + " section is not allowed"); 318 319 S->Assigned = false; 320 S->Live = false; 321 discard(S->DependentSections); 322 } 323 } 324 325 std::vector<InputSection *> LinkerScript::createInputSectionList( 326 OutputSection &OutCmd, const DenseMap<SectionBase *, int> &Order) { 327 std::vector<InputSection *> Ret; 328 329 for (BaseCommand *Base : OutCmd.SectionCommands) { 330 if (auto *Cmd = dyn_cast<InputSectionDescription>(Base)) { 331 Cmd->Sections = computeInputSections(Cmd, Order); 332 Ret.insert(Ret.end(), Cmd->Sections.begin(), Cmd->Sections.end()); 333 } 334 } 335 return Ret; 336 } 337 338 void LinkerScript::processSectionCommands() { 339 // A symbol can be assigned before any section is mentioned in the linker 340 // script. In an DSO, the symbol values are addresses, so the only important 341 // section values are: 342 // * SHN_UNDEF 343 // * SHN_ABS 344 // * Any value meaning a regular section. 345 // To handle that, create a dummy aether section that fills the void before 346 // the linker scripts switches to another section. It has an index of one 347 // which will map to whatever the first actual section is. 348 Aether = make<OutputSection>("", 0, SHF_ALLOC); 349 Aether->SectionIndex = 1; 350 351 // Ctx captures the local AddressState and makes it accessible deliberately. 352 // This is needed as there are some cases where we cannot just 353 // thread the current state through to a lambda function created by the 354 // script parser. 355 auto Deleter = make_unique<AddressState>(); 356 Ctx = Deleter.get(); 357 Ctx->OutSec = Aether; 358 359 size_t I = 0; 360 DenseMap<SectionBase *, int> Order = buildSectionOrder(); 361 // Add input sections to output sections. 362 for (BaseCommand *Base : SectionCommands) { 363 // Handle symbol assignments outside of any output section. 364 if (auto *Cmd = dyn_cast<SymbolAssignment>(Base)) { 365 addSymbol(Cmd); 366 continue; 367 } 368 369 if (auto *Sec = dyn_cast<OutputSection>(Base)) { 370 std::vector<InputSection *> V = createInputSectionList(*Sec, Order); 371 372 // The output section name `/DISCARD/' is special. 373 // Any input section assigned to it is discarded. 374 if (Sec->Name == "/DISCARD/") { 375 discard(V); 376 continue; 377 } 378 379 // This is for ONLY_IF_RO and ONLY_IF_RW. An output section directive 380 // ".foo : ONLY_IF_R[OW] { ... }" is handled only if all member input 381 // sections satisfy a given constraint. If not, a directive is handled 382 // as if it wasn't present from the beginning. 383 // 384 // Because we'll iterate over SectionCommands many more times, the easy 385 // way to "make it as if it wasn't present" is to make it empty. 386 if (!matchConstraints(V, Sec->Constraint)) { 387 for (InputSectionBase *S : V) 388 S->Assigned = false; 389 Sec->SectionCommands.clear(); 390 continue; 391 } 392 393 // A directive may contain symbol definitions like this: 394 // ".foo : { ...; bar = .; }". Handle them. 395 for (BaseCommand *Base : Sec->SectionCommands) 396 if (auto *OutCmd = dyn_cast<SymbolAssignment>(Base)) 397 addSymbol(OutCmd); 398 399 // Handle subalign (e.g. ".foo : SUBALIGN(32) { ... }"). If subalign 400 // is given, input sections are aligned to that value, whether the 401 // given value is larger or smaller than the original section alignment. 402 if (Sec->SubalignExpr) { 403 uint32_t Subalign = Sec->SubalignExpr().getValue(); 404 for (InputSectionBase *S : V) 405 S->Alignment = Subalign; 406 } 407 408 // Add input sections to an output section. 409 for (InputSection *S : V) 410 Sec->addSection(S); 411 412 Sec->SectionIndex = I++; 413 if (Sec->Noload) 414 Sec->Type = SHT_NOBITS; 415 } 416 } 417 Ctx = nullptr; 418 } 419 420 static OutputSection *findByName(ArrayRef<BaseCommand *> Vec, 421 StringRef Name) { 422 for (BaseCommand *Base : Vec) 423 if (auto *Sec = dyn_cast<OutputSection>(Base)) 424 if (Sec->Name == Name) 425 return Sec; 426 return nullptr; 427 } 428 429 static OutputSection *createSection(InputSectionBase *IS, 430 StringRef OutsecName) { 431 OutputSection *Sec = Script->createOutputSection(OutsecName, "<internal>"); 432 Sec->addSection(cast<InputSection>(IS)); 433 return Sec; 434 } 435 436 static OutputSection *addInputSec(StringMap<OutputSection *> &Map, 437 InputSectionBase *IS, StringRef OutsecName) { 438 // Sections with SHT_GROUP or SHF_GROUP attributes reach here only when the -r 439 // option is given. A section with SHT_GROUP defines a "section group", and 440 // its members have SHF_GROUP attribute. Usually these flags have already been 441 // stripped by InputFiles.cpp as section groups are processed and uniquified. 442 // However, for the -r option, we want to pass through all section groups 443 // as-is because adding/removing members or merging them with other groups 444 // change their semantics. 445 if (IS->Type == SHT_GROUP || (IS->Flags & SHF_GROUP)) 446 return createSection(IS, OutsecName); 447 448 // Imagine .zed : { *(.foo) *(.bar) } script. Both foo and bar may have 449 // relocation sections .rela.foo and .rela.bar for example. Most tools do 450 // not allow multiple REL[A] sections for output section. Hence we 451 // should combine these relocation sections into single output. 452 // We skip synthetic sections because it can be .rela.dyn/.rela.plt or any 453 // other REL[A] sections created by linker itself. 454 if (!isa<SyntheticSection>(IS) && 455 (IS->Type == SHT_REL || IS->Type == SHT_RELA)) { 456 auto *Sec = cast<InputSection>(IS); 457 OutputSection *Out = Sec->getRelocatedSection()->getOutputSection(); 458 459 if (Out->RelocationSection) { 460 Out->RelocationSection->addSection(Sec); 461 return nullptr; 462 } 463 464 Out->RelocationSection = createSection(IS, OutsecName); 465 return Out->RelocationSection; 466 } 467 468 // When control reaches here, mergeable sections have already been merged into 469 // synthetic sections. For relocatable case we want to create one output 470 // section per syntetic section so that they have a valid sh_entsize. 471 if (Config->Relocatable && (IS->Flags & SHF_MERGE)) 472 return createSection(IS, OutsecName); 473 474 // The ELF spec just says 475 // ---------------------------------------------------------------- 476 // In the first phase, input sections that match in name, type and 477 // attribute flags should be concatenated into single sections. 478 // ---------------------------------------------------------------- 479 // 480 // However, it is clear that at least some flags have to be ignored for 481 // section merging. At the very least SHF_GROUP and SHF_COMPRESSED have to be 482 // ignored. We should not have two output .text sections just because one was 483 // in a group and another was not for example. 484 // 485 // It also seems that that wording was a late addition and didn't get the 486 // necessary scrutiny. 487 // 488 // Merging sections with different flags is expected by some users. One 489 // reason is that if one file has 490 // 491 // int *const bar __attribute__((section(".foo"))) = (int *)0; 492 // 493 // gcc with -fPIC will produce a read only .foo section. But if another 494 // file has 495 // 496 // int zed; 497 // int *const bar __attribute__((section(".foo"))) = (int *)&zed; 498 // 499 // gcc with -fPIC will produce a read write section. 500 // 501 // Last but not least, when using linker script the merge rules are forced by 502 // the script. Unfortunately, linker scripts are name based. This means that 503 // expressions like *(.foo*) can refer to multiple input sections with 504 // different flags. We cannot put them in different output sections or we 505 // would produce wrong results for 506 // 507 // start = .; *(.foo.*) end = .; *(.bar) 508 // 509 // and a mapping of .foo1 and .bar1 to one section and .foo2 and .bar2 to 510 // another. The problem is that there is no way to layout those output 511 // sections such that the .foo sections are the only thing between the start 512 // and end symbols. 513 // 514 // Given the above issues, we instead merge sections by name and error on 515 // incompatible types and flags. 516 OutputSection *&Sec = Map[OutsecName]; 517 if (Sec) { 518 Sec->addSection(cast<InputSection>(IS)); 519 return nullptr; 520 } 521 522 Sec = createSection(IS, OutsecName); 523 return Sec; 524 } 525 526 // Add sections that didn't match any sections command. 527 void LinkerScript::addOrphanSections() { 528 unsigned End = SectionCommands.size(); 529 StringMap<OutputSection *> Map; 530 531 std::vector<OutputSection *> V; 532 for (InputSectionBase *S : InputSections) { 533 if (!S->Live || S->Parent) 534 continue; 535 536 StringRef Name = getOutputSectionName(S->Name); 537 538 if (Config->OrphanHandling == OrphanHandlingPolicy::Error) 539 error(toString(S) + " is being placed in '" + Name + "'"); 540 else if (Config->OrphanHandling == OrphanHandlingPolicy::Warn) 541 warn(toString(S) + " is being placed in '" + Name + "'"); 542 543 if (OutputSection *Sec = 544 findByName(makeArrayRef(SectionCommands).slice(0, End), Name)) { 545 Sec->addSection(cast<InputSection>(S)); 546 continue; 547 } 548 549 if (OutputSection *OS = addInputSec(Map, S, Name)) 550 V.push_back(OS); 551 assert(S->getOutputSection()->SectionIndex == INT_MAX); 552 } 553 554 // If no SECTIONS command was given, we should insert sections commands 555 // before others, so that we can handle scripts which refers them, 556 // for example: "foo = ABSOLUTE(ADDR(.text)));". 557 // When SECTIONS command is present we just add all orphans to the end. 558 if (HasSectionsCommand) 559 SectionCommands.insert(SectionCommands.end(), V.begin(), V.end()); 560 else 561 SectionCommands.insert(SectionCommands.begin(), V.begin(), V.end()); 562 } 563 564 uint64_t LinkerScript::advance(uint64_t Size, unsigned Alignment) { 565 bool IsTbss = 566 (Ctx->OutSec->Flags & SHF_TLS) && Ctx->OutSec->Type == SHT_NOBITS; 567 uint64_t Start = IsTbss ? Dot + Ctx->ThreadBssOffset : Dot; 568 Start = alignTo(Start, Alignment); 569 uint64_t End = Start + Size; 570 571 if (IsTbss) 572 Ctx->ThreadBssOffset = End - Dot; 573 else 574 Dot = End; 575 return End; 576 } 577 578 void LinkerScript::output(InputSection *S) { 579 uint64_t Before = advance(0, 1); 580 uint64_t Pos = advance(S->getSize(), S->Alignment); 581 S->OutSecOff = Pos - S->getSize() - Ctx->OutSec->Addr; 582 583 // Update output section size after adding each section. This is so that 584 // SIZEOF works correctly in the case below: 585 // .foo { *(.aaa) a = SIZEOF(.foo); *(.bbb) } 586 Ctx->OutSec->Size = Pos - Ctx->OutSec->Addr; 587 588 // If there is a memory region associated with this input section, then 589 // place the section in that region and update the region index. 590 if (Ctx->MemRegion) { 591 uint64_t &CurOffset = Ctx->MemRegionOffset[Ctx->MemRegion]; 592 CurOffset += Pos - Before; 593 uint64_t CurSize = CurOffset - Ctx->MemRegion->Origin; 594 if (CurSize > Ctx->MemRegion->Length) { 595 uint64_t OverflowAmt = CurSize - Ctx->MemRegion->Length; 596 error("section '" + Ctx->OutSec->Name + "' will not fit in region '" + 597 Ctx->MemRegion->Name + "': overflowed by " + Twine(OverflowAmt) + 598 " bytes"); 599 } 600 } 601 } 602 603 void LinkerScript::switchTo(OutputSection *Sec) { 604 if (Ctx->OutSec == Sec) 605 return; 606 607 Ctx->OutSec = Sec; 608 Ctx->OutSec->Addr = advance(0, Ctx->OutSec->Alignment); 609 610 // If neither AT nor AT> is specified for an allocatable section, the linker 611 // will set the LMA such that the difference between VMA and LMA for the 612 // section is the same as the preceding output section in the same region 613 // https://sourceware.org/binutils/docs-2.20/ld/Output-Section-LMA.html 614 if (Ctx->LMAOffset) 615 Ctx->OutSec->LMAOffset = Ctx->LMAOffset(); 616 } 617 618 // This function searches for a memory region to place the given output 619 // section in. If found, a pointer to the appropriate memory region is 620 // returned. Otherwise, a nullptr is returned. 621 MemoryRegion *LinkerScript::findMemoryRegion(OutputSection *Sec) { 622 // If a memory region name was specified in the output section command, 623 // then try to find that region first. 624 if (!Sec->MemoryRegionName.empty()) { 625 auto It = MemoryRegions.find(Sec->MemoryRegionName); 626 if (It != MemoryRegions.end()) 627 return It->second; 628 error("memory region '" + Sec->MemoryRegionName + "' not declared"); 629 return nullptr; 630 } 631 632 // If at least one memory region is defined, all sections must 633 // belong to some memory region. Otherwise, we don't need to do 634 // anything for memory regions. 635 if (MemoryRegions.empty()) 636 return nullptr; 637 638 // See if a region can be found by matching section flags. 639 for (auto &Pair : MemoryRegions) { 640 MemoryRegion *M = Pair.second; 641 if ((M->Flags & Sec->Flags) && (M->NegFlags & Sec->Flags) == 0) 642 return M; 643 } 644 645 // Otherwise, no suitable region was found. 646 if (Sec->Flags & SHF_ALLOC) 647 error("no memory region specified for section '" + Sec->Name + "'"); 648 return nullptr; 649 } 650 651 // This function assigns offsets to input sections and an output section 652 // for a single sections command (e.g. ".text { *(.text); }"). 653 void LinkerScript::assignOffsets(OutputSection *Sec) { 654 if (!(Sec->Flags & SHF_ALLOC)) 655 Dot = 0; 656 else if (Sec->AddrExpr) 657 setDot(Sec->AddrExpr, Sec->Location, false); 658 659 Ctx->MemRegion = Sec->MemRegion; 660 if (Ctx->MemRegion) 661 Dot = Ctx->MemRegionOffset[Ctx->MemRegion]; 662 663 if (Sec->LMAExpr) { 664 uint64_t D = Dot; 665 Ctx->LMAOffset = [=] { return Sec->LMAExpr().getValue() - D; }; 666 } 667 668 switchTo(Sec); 669 670 // We do not support custom layout for compressed debug sectons. 671 // At this point we already know their size and have compressed content. 672 if (Ctx->OutSec->Flags & SHF_COMPRESSED) 673 return; 674 675 // We visited SectionsCommands from processSectionCommands to 676 // layout sections. Now, we visit SectionsCommands again to fix 677 // section offsets. 678 for (BaseCommand *Base : Sec->SectionCommands) { 679 // This handles the assignments to symbol or to the dot. 680 if (auto *Cmd = dyn_cast<SymbolAssignment>(Base)) { 681 assignSymbol(Cmd, true); 682 continue; 683 } 684 685 // Handle BYTE(), SHORT(), LONG(), or QUAD(). 686 if (auto *Cmd = dyn_cast<ByteCommand>(Base)) { 687 Cmd->Offset = Dot - Ctx->OutSec->Addr; 688 Dot += Cmd->Size; 689 Ctx->OutSec->Size = Dot - Ctx->OutSec->Addr; 690 continue; 691 } 692 693 // Handle ASSERT(). 694 if (auto *Cmd = dyn_cast<AssertCommand>(Base)) { 695 Cmd->Expression(); 696 continue; 697 } 698 699 // Handle a single input section description command. 700 // It calculates and assigns the offsets for each section and also 701 // updates the output section size. 702 auto *Cmd = cast<InputSectionDescription>(Base); 703 for (InputSection *Sec : Cmd->Sections) { 704 // We tentatively added all synthetic sections at the beginning and 705 // removed empty ones afterwards (because there is no way to know 706 // whether they were going be empty or not other than actually running 707 // linker scripts.) We need to ignore remains of empty sections. 708 if (auto *S = dyn_cast<SyntheticSection>(Sec)) 709 if (S->empty()) 710 continue; 711 712 if (!Sec->Live) 713 continue; 714 assert(Ctx->OutSec == Sec->getParent()); 715 output(Sec); 716 } 717 } 718 } 719 720 void LinkerScript::removeEmptyCommands() { 721 // It is common practice to use very generic linker scripts. So for any 722 // given run some of the output sections in the script will be empty. 723 // We could create corresponding empty output sections, but that would 724 // clutter the output. 725 // We instead remove trivially empty sections. The bfd linker seems even 726 // more aggressive at removing them. 727 llvm::erase_if(SectionCommands, [&](BaseCommand *Base) { 728 if (auto *Sec = dyn_cast<OutputSection>(Base)) 729 return !Sec->Live; 730 return false; 731 }); 732 } 733 734 static bool isAllSectionDescription(const OutputSection &Cmd) { 735 for (BaseCommand *Base : Cmd.SectionCommands) 736 if (!isa<InputSectionDescription>(*Base)) 737 return false; 738 return true; 739 } 740 741 void LinkerScript::adjustSectionsBeforeSorting() { 742 // If the output section contains only symbol assignments, create a 743 // corresponding output section. The issue is what to do with linker script 744 // like ".foo : { symbol = 42; }". One option would be to convert it to 745 // "symbol = 42;". That is, move the symbol out of the empty section 746 // description. That seems to be what bfd does for this simple case. The 747 // problem is that this is not completely general. bfd will give up and 748 // create a dummy section too if there is a ". = . + 1" inside the section 749 // for example. 750 // Given that we want to create the section, we have to worry what impact 751 // it will have on the link. For example, if we just create a section with 752 // 0 for flags, it would change which PT_LOADs are created. 753 // We could remember that that particular section is dummy and ignore it in 754 // other parts of the linker, but unfortunately there are quite a few places 755 // that would need to change: 756 // * The program header creation. 757 // * The orphan section placement. 758 // * The address assignment. 759 // The other option is to pick flags that minimize the impact the section 760 // will have on the rest of the linker. That is why we copy the flags from 761 // the previous sections. Only a few flags are needed to keep the impact low. 762 uint64_t Flags = SHF_ALLOC; 763 764 for (BaseCommand *Cmd : SectionCommands) { 765 auto *Sec = dyn_cast<OutputSection>(Cmd); 766 if (!Sec) 767 continue; 768 if (Sec->Live) { 769 Flags = Sec->Flags & (SHF_ALLOC | SHF_WRITE | SHF_EXECINSTR); 770 continue; 771 } 772 773 if (isAllSectionDescription(*Sec)) 774 continue; 775 776 Sec->Live = true; 777 Sec->Flags = Flags; 778 } 779 } 780 781 void LinkerScript::adjustSectionsAfterSorting() { 782 // Try and find an appropriate memory region to assign offsets in. 783 for (BaseCommand *Base : SectionCommands) { 784 if (auto *Sec = dyn_cast<OutputSection>(Base)) { 785 if (!Sec->Live) 786 continue; 787 Sec->MemRegion = findMemoryRegion(Sec); 788 // Handle align (e.g. ".foo : ALIGN(16) { ... }"). 789 if (Sec->AlignExpr) 790 Sec->Alignment = 791 std::max<uint32_t>(Sec->Alignment, Sec->AlignExpr().getValue()); 792 } 793 } 794 795 // If output section command doesn't specify any segments, 796 // and we haven't previously assigned any section to segment, 797 // then we simply assign section to the very first load segment. 798 // Below is an example of such linker script: 799 // PHDRS { seg PT_LOAD; } 800 // SECTIONS { .aaa : { *(.aaa) } } 801 std::vector<StringRef> DefPhdrs; 802 auto FirstPtLoad = 803 std::find_if(PhdrsCommands.begin(), PhdrsCommands.end(), 804 [](const PhdrsCommand &Cmd) { return Cmd.Type == PT_LOAD; }); 805 if (FirstPtLoad != PhdrsCommands.end()) 806 DefPhdrs.push_back(FirstPtLoad->Name); 807 808 // Walk the commands and propagate the program headers to commands that don't 809 // explicitly specify them. 810 for (BaseCommand *Base : SectionCommands) { 811 auto *Sec = dyn_cast<OutputSection>(Base); 812 if (!Sec) 813 continue; 814 815 if (Sec->Phdrs.empty()) { 816 // To match the bfd linker script behaviour, only propagate program 817 // headers to sections that are allocated. 818 if (Sec->Flags & SHF_ALLOC) 819 Sec->Phdrs = DefPhdrs; 820 } else { 821 DefPhdrs = Sec->Phdrs; 822 } 823 } 824 } 825 826 static OutputSection *findFirstSection(PhdrEntry *Load) { 827 for (OutputSection *Sec : OutputSections) 828 if (Sec->PtLoad == Load) 829 return Sec; 830 return nullptr; 831 } 832 833 // Try to find an address for the file and program headers output sections, 834 // which were unconditionally added to the first PT_LOAD segment earlier. 835 // 836 // When using the default layout, we check if the headers fit below the first 837 // allocated section. When using a linker script, we also check if the headers 838 // are covered by the output section. This allows omitting the headers by not 839 // leaving enough space for them in the linker script; this pattern is common 840 // in embedded systems. 841 // 842 // If there isn't enough space for these sections, we'll remove them from the 843 // PT_LOAD segment, and we'll also remove the PT_PHDR segment. 844 void LinkerScript::allocateHeaders(std::vector<PhdrEntry *> &Phdrs) { 845 uint64_t Min = std::numeric_limits<uint64_t>::max(); 846 for (OutputSection *Sec : OutputSections) 847 if (Sec->Flags & SHF_ALLOC) 848 Min = std::min<uint64_t>(Min, Sec->Addr); 849 850 auto It = llvm::find_if( 851 Phdrs, [](const PhdrEntry *E) { return E->p_type == PT_LOAD; }); 852 if (It == Phdrs.end()) 853 return; 854 PhdrEntry *FirstPTLoad = *It; 855 856 uint64_t HeaderSize = getHeaderSize(); 857 // When linker script with SECTIONS is being used, don't output headers 858 // unless there's a space for them. 859 uint64_t Base = HasSectionsCommand ? alignDown(Min, Config->MaxPageSize) : 0; 860 if (HeaderSize <= Min - Base || Script->hasPhdrsCommands()) { 861 Min = alignDown(Min - HeaderSize, Config->MaxPageSize); 862 Out::ElfHeader->Addr = Min; 863 Out::ProgramHeaders->Addr = Min + Out::ElfHeader->Size; 864 return; 865 } 866 867 Out::ElfHeader->PtLoad = nullptr; 868 Out::ProgramHeaders->PtLoad = nullptr; 869 FirstPTLoad->FirstSec = findFirstSection(FirstPTLoad); 870 871 llvm::erase_if(Phdrs, 872 [](const PhdrEntry *E) { return E->p_type == PT_PHDR; }); 873 } 874 875 LinkerScript::AddressState::AddressState() { 876 for (auto &MRI : Script->MemoryRegions) { 877 const MemoryRegion *MR = MRI.second; 878 MemRegionOffset[MR] = MR->Origin; 879 } 880 } 881 882 static uint64_t getInitialDot() { 883 // By default linker scripts use an initial value of 0 for '.', 884 // but prefer -image-base if set. 885 if (Script->HasSectionsCommand) 886 return Config->ImageBase ? *Config->ImageBase : 0; 887 888 uint64_t StartAddr = UINT64_MAX; 889 // The Sections with -T<section> have been sorted in order of ascending 890 // address. We must lower StartAddr if the lowest -T<section address> as 891 // calls to setDot() must be monotonically increasing. 892 for (auto &KV : Config->SectionStartMap) 893 StartAddr = std::min(StartAddr, KV.second); 894 return std::min(StartAddr, Target->getImageBase() + elf::getHeaderSize()); 895 } 896 897 // Here we assign addresses as instructed by linker script SECTIONS 898 // sub-commands. Doing that allows us to use final VA values, so here 899 // we also handle rest commands like symbol assignments and ASSERTs. 900 void LinkerScript::assignAddresses() { 901 Dot = getInitialDot(); 902 903 auto Deleter = make_unique<AddressState>(); 904 Ctx = Deleter.get(); 905 ErrorOnMissingSection = true; 906 switchTo(Aether); 907 908 for (BaseCommand *Base : SectionCommands) { 909 if (auto *Cmd = dyn_cast<SymbolAssignment>(Base)) { 910 assignSymbol(Cmd, false); 911 continue; 912 } 913 914 if (auto *Cmd = dyn_cast<AssertCommand>(Base)) { 915 Cmd->Expression(); 916 continue; 917 } 918 919 assignOffsets(cast<OutputSection>(Base)); 920 } 921 Ctx = nullptr; 922 } 923 924 // Creates program headers as instructed by PHDRS linker script command. 925 std::vector<PhdrEntry *> LinkerScript::createPhdrs() { 926 std::vector<PhdrEntry *> Ret; 927 928 // Process PHDRS and FILEHDR keywords because they are not 929 // real output sections and cannot be added in the following loop. 930 for (const PhdrsCommand &Cmd : PhdrsCommands) { 931 PhdrEntry *Phdr = make<PhdrEntry>(Cmd.Type, Cmd.Flags ? *Cmd.Flags : PF_R); 932 933 if (Cmd.HasFilehdr) 934 Phdr->add(Out::ElfHeader); 935 if (Cmd.HasPhdrs) 936 Phdr->add(Out::ProgramHeaders); 937 938 if (Cmd.LMAExpr) { 939 Phdr->p_paddr = Cmd.LMAExpr().getValue(); 940 Phdr->HasLMA = true; 941 } 942 Ret.push_back(Phdr); 943 } 944 945 // Add output sections to program headers. 946 for (OutputSection *Sec : OutputSections) { 947 // Assign headers specified by linker script 948 for (size_t Id : getPhdrIndices(Sec)) { 949 Ret[Id]->add(Sec); 950 if (!PhdrsCommands[Id].Flags.hasValue()) 951 Ret[Id]->p_flags |= Sec->getPhdrFlags(); 952 } 953 } 954 return Ret; 955 } 956 957 // Returns true if we should emit an .interp section. 958 // 959 // We usually do. But if PHDRS commands are given, and 960 // no PT_INTERP is there, there's no place to emit an 961 // .interp, so we don't do that in that case. 962 bool LinkerScript::needsInterpSection() { 963 if (PhdrsCommands.empty()) 964 return true; 965 for (PhdrsCommand &Cmd : PhdrsCommands) 966 if (Cmd.Type == PT_INTERP) 967 return true; 968 return false; 969 } 970 971 ExprValue LinkerScript::getSymbolValue(StringRef Name, const Twine &Loc) { 972 if (Name == ".") { 973 if (Ctx) 974 return {Ctx->OutSec, false, Dot - Ctx->OutSec->Addr, Loc}; 975 error(Loc + ": unable to get location counter value"); 976 return 0; 977 } 978 979 if (auto *Sym = dyn_cast_or_null<Defined>(Symtab->find(Name))) 980 return {Sym->Section, false, Sym->Value, Loc}; 981 982 error(Loc + ": symbol not found: " + Name); 983 return 0; 984 } 985 986 // Returns the index of the segment named Name. 987 static Optional<size_t> getPhdrIndex(ArrayRef<PhdrsCommand> Vec, 988 StringRef Name) { 989 for (size_t I = 0; I < Vec.size(); ++I) 990 if (Vec[I].Name == Name) 991 return I; 992 return None; 993 } 994 995 // Returns indices of ELF headers containing specific section. Each index is a 996 // zero based number of ELF header listed within PHDRS {} script block. 997 std::vector<size_t> LinkerScript::getPhdrIndices(OutputSection *Cmd) { 998 std::vector<size_t> Ret; 999 1000 for (StringRef S : Cmd->Phdrs) { 1001 if (Optional<size_t> Idx = getPhdrIndex(PhdrsCommands, S)) 1002 Ret.push_back(*Idx); 1003 else if (S != "NONE") 1004 error(Cmd->Location + ": section header '" + S + 1005 "' is not listed in PHDRS"); 1006 } 1007 return Ret; 1008 } 1009