1 //===- LinkerScript.cpp ---------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the parser/evaluator of the linker script. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "LinkerScript.h" 14 #include "Config.h" 15 #include "InputFiles.h" 16 #include "InputSection.h" 17 #include "OutputSections.h" 18 #include "SymbolTable.h" 19 #include "Symbols.h" 20 #include "SyntheticSections.h" 21 #include "Target.h" 22 #include "Writer.h" 23 #include "lld/Common/CommonLinkerContext.h" 24 #include "lld/Common/Strings.h" 25 #include "llvm/ADT/STLExtras.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/BinaryFormat/ELF.h" 28 #include "llvm/Support/Casting.h" 29 #include "llvm/Support/Endian.h" 30 #include "llvm/Support/ErrorHandling.h" 31 #include "llvm/Support/TimeProfiler.h" 32 #include <algorithm> 33 #include <cassert> 34 #include <cstddef> 35 #include <cstdint> 36 #include <limits> 37 #include <string> 38 #include <vector> 39 40 using namespace llvm; 41 using namespace llvm::ELF; 42 using namespace llvm::object; 43 using namespace llvm::support::endian; 44 using namespace lld; 45 using namespace lld::elf; 46 47 std::unique_ptr<LinkerScript> elf::script; 48 49 static bool isSectionPrefix(StringRef prefix, StringRef name) { 50 return name.consume_front(prefix) && (name.empty() || name[0] == '.'); 51 } 52 53 static StringRef getOutputSectionName(const InputSectionBase *s) { 54 if (config->relocatable) 55 return s->name; 56 57 // This is for --emit-relocs. If .text.foo is emitted as .text.bar, we want 58 // to emit .rela.text.foo as .rela.text.bar for consistency (this is not 59 // technically required, but not doing it is odd). This code guarantees that. 60 if (auto *isec = dyn_cast<InputSection>(s)) { 61 if (InputSectionBase *rel = isec->getRelocatedSection()) { 62 OutputSection *out = rel->getOutputSection(); 63 if (s->type == SHT_RELA) 64 return saver().save(".rela" + out->name); 65 return saver().save(".rel" + out->name); 66 } 67 } 68 69 // A BssSection created for a common symbol is identified as "COMMON" in 70 // linker scripts. It should go to .bss section. 71 if (s->name == "COMMON") 72 return ".bss"; 73 74 if (script->hasSectionsCommand) 75 return s->name; 76 77 // When no SECTIONS is specified, emulate GNU ld's internal linker scripts 78 // by grouping sections with certain prefixes. 79 80 // GNU ld places text sections with prefix ".text.hot.", ".text.unknown.", 81 // ".text.unlikely.", ".text.startup." or ".text.exit." before others. 82 // We provide an option -z keep-text-section-prefix to group such sections 83 // into separate output sections. This is more flexible. See also 84 // sortISDBySectionOrder(). 85 // ".text.unknown" means the hotness of the section is unknown. When 86 // SampleFDO is used, if a function doesn't have sample, it could be very 87 // cold or it could be a new function never being sampled. Those functions 88 // will be kept in the ".text.unknown" section. 89 // ".text.split." holds symbols which are split out from functions in other 90 // input sections. For example, with -fsplit-machine-functions, placing the 91 // cold parts in .text.split instead of .text.unlikely mitigates against poor 92 // profile inaccuracy. Techniques such as hugepage remapping can make 93 // conservative decisions at the section granularity. 94 if (isSectionPrefix(".text", s->name)) { 95 if (config->zKeepTextSectionPrefix) 96 for (StringRef v : {".text.hot", ".text.unknown", ".text.unlikely", 97 ".text.startup", ".text.exit", ".text.split"}) 98 if (isSectionPrefix(v.substr(5), s->name.substr(5))) 99 return v; 100 return ".text"; 101 } 102 103 for (StringRef v : 104 {".data.rel.ro", ".data", ".rodata", ".bss.rel.ro", ".bss", 105 ".gcc_except_table", ".init_array", ".fini_array", ".tbss", ".tdata", 106 ".ARM.exidx", ".ARM.extab", ".ctors", ".dtors"}) 107 if (isSectionPrefix(v, s->name)) 108 return v; 109 110 return s->name; 111 } 112 113 uint64_t ExprValue::getValue() const { 114 if (sec) 115 return alignTo(sec->getOutputSection()->addr + sec->getOffset(val), 116 alignment); 117 return alignTo(val, alignment); 118 } 119 120 uint64_t ExprValue::getSecAddr() const { 121 return sec ? sec->getOutputSection()->addr + sec->getOffset(0) : 0; 122 } 123 124 uint64_t ExprValue::getSectionOffset() const { 125 // If the alignment is trivial, we don't have to compute the full 126 // value to know the offset. This allows this function to succeed in 127 // cases where the output section is not yet known. 128 if (alignment == 1 && !sec) 129 return val; 130 return getValue() - getSecAddr(); 131 } 132 133 OutputSection *LinkerScript::createOutputSection(StringRef name, 134 StringRef location) { 135 OutputSection *&secRef = nameToOutputSection[CachedHashStringRef(name)]; 136 OutputSection *sec; 137 if (secRef && secRef->location.empty()) { 138 // There was a forward reference. 139 sec = secRef; 140 } else { 141 sec = make<OutputSection>(name, SHT_PROGBITS, 0); 142 if (!secRef) 143 secRef = sec; 144 } 145 sec->location = std::string(location); 146 return sec; 147 } 148 149 OutputSection *LinkerScript::getOrCreateOutputSection(StringRef name) { 150 OutputSection *&cmdRef = nameToOutputSection[CachedHashStringRef(name)]; 151 if (!cmdRef) 152 cmdRef = make<OutputSection>(name, SHT_PROGBITS, 0); 153 return cmdRef; 154 } 155 156 // Expands the memory region by the specified size. 157 static void expandMemoryRegion(MemoryRegion *memRegion, uint64_t size, 158 StringRef secName) { 159 memRegion->curPos += size; 160 uint64_t newSize = memRegion->curPos - (memRegion->origin)().getValue(); 161 uint64_t length = (memRegion->length)().getValue(); 162 if (newSize > length) 163 error("section '" + secName + "' will not fit in region '" + 164 memRegion->name + "': overflowed by " + Twine(newSize - length) + 165 " bytes"); 166 } 167 168 void LinkerScript::expandMemoryRegions(uint64_t size) { 169 if (ctx->memRegion) 170 expandMemoryRegion(ctx->memRegion, size, ctx->outSec->name); 171 // Only expand the LMARegion if it is different from memRegion. 172 if (ctx->lmaRegion && ctx->memRegion != ctx->lmaRegion) 173 expandMemoryRegion(ctx->lmaRegion, size, ctx->outSec->name); 174 } 175 176 void LinkerScript::expandOutputSection(uint64_t size) { 177 ctx->outSec->size += size; 178 expandMemoryRegions(size); 179 } 180 181 void LinkerScript::setDot(Expr e, const Twine &loc, bool inSec) { 182 uint64_t val = e().getValue(); 183 if (val < dot && inSec) 184 error(loc + ": unable to move location counter backward for: " + 185 ctx->outSec->name); 186 187 // Update to location counter means update to section size. 188 if (inSec) 189 expandOutputSection(val - dot); 190 191 dot = val; 192 } 193 194 // Used for handling linker symbol assignments, for both finalizing 195 // their values and doing early declarations. Returns true if symbol 196 // should be defined from linker script. 197 static bool shouldDefineSym(SymbolAssignment *cmd) { 198 if (cmd->name == ".") 199 return false; 200 201 if (!cmd->provide) 202 return true; 203 204 // If a symbol was in PROVIDE(), we need to define it only 205 // when it is a referenced undefined symbol. 206 Symbol *b = symtab->find(cmd->name); 207 if (b && !b->isDefined() && !b->isCommon()) 208 return true; 209 return false; 210 } 211 212 // Called by processSymbolAssignments() to assign definitions to 213 // linker-script-defined symbols. 214 void LinkerScript::addSymbol(SymbolAssignment *cmd) { 215 if (!shouldDefineSym(cmd)) 216 return; 217 218 // Define a symbol. 219 ExprValue value = cmd->expression(); 220 SectionBase *sec = value.isAbsolute() ? nullptr : value.sec; 221 uint8_t visibility = cmd->hidden ? STV_HIDDEN : STV_DEFAULT; 222 223 // When this function is called, section addresses have not been 224 // fixed yet. So, we may or may not know the value of the RHS 225 // expression. 226 // 227 // For example, if an expression is `x = 42`, we know x is always 42. 228 // However, if an expression is `x = .`, there's no way to know its 229 // value at the moment. 230 // 231 // We want to set symbol values early if we can. This allows us to 232 // use symbols as variables in linker scripts. Doing so allows us to 233 // write expressions like this: `alignment = 16; . = ALIGN(., alignment)`. 234 uint64_t symValue = value.sec ? 0 : value.getValue(); 235 236 Defined newSym(nullptr, cmd->name, STB_GLOBAL, visibility, value.type, 237 symValue, 0, sec); 238 239 Symbol *sym = symtab->insert(cmd->name); 240 sym->mergeProperties(newSym); 241 sym->replace(newSym); 242 cmd->sym = cast<Defined>(sym); 243 } 244 245 // This function is called from LinkerScript::declareSymbols. 246 // It creates a placeholder symbol if needed. 247 static void declareSymbol(SymbolAssignment *cmd) { 248 if (!shouldDefineSym(cmd)) 249 return; 250 251 uint8_t visibility = cmd->hidden ? STV_HIDDEN : STV_DEFAULT; 252 Defined newSym(nullptr, cmd->name, STB_GLOBAL, visibility, STT_NOTYPE, 0, 0, 253 nullptr); 254 255 // We can't calculate final value right now. 256 Symbol *sym = symtab->insert(cmd->name); 257 sym->mergeProperties(newSym); 258 sym->replace(newSym); 259 260 cmd->sym = cast<Defined>(sym); 261 cmd->provide = false; 262 sym->scriptDefined = true; 263 } 264 265 using SymbolAssignmentMap = 266 DenseMap<const Defined *, std::pair<SectionBase *, uint64_t>>; 267 268 // Collect section/value pairs of linker-script-defined symbols. This is used to 269 // check whether symbol values converge. 270 static SymbolAssignmentMap 271 getSymbolAssignmentValues(ArrayRef<SectionCommand *> sectionCommands) { 272 SymbolAssignmentMap ret; 273 for (SectionCommand *cmd : sectionCommands) { 274 if (auto *assign = dyn_cast<SymbolAssignment>(cmd)) { 275 if (assign->sym) // sym is nullptr for dot. 276 ret.try_emplace(assign->sym, std::make_pair(assign->sym->section, 277 assign->sym->value)); 278 continue; 279 } 280 for (SectionCommand *subCmd : cast<OutputSection>(cmd)->commands) 281 if (auto *assign = dyn_cast<SymbolAssignment>(subCmd)) 282 if (assign->sym) 283 ret.try_emplace(assign->sym, std::make_pair(assign->sym->section, 284 assign->sym->value)); 285 } 286 return ret; 287 } 288 289 // Returns the lexicographical smallest (for determinism) Defined whose 290 // section/value has changed. 291 static const Defined * 292 getChangedSymbolAssignment(const SymbolAssignmentMap &oldValues) { 293 const Defined *changed = nullptr; 294 for (auto &it : oldValues) { 295 const Defined *sym = it.first; 296 if (std::make_pair(sym->section, sym->value) != it.second && 297 (!changed || sym->getName() < changed->getName())) 298 changed = sym; 299 } 300 return changed; 301 } 302 303 // Process INSERT [AFTER|BEFORE] commands. For each command, we move the 304 // specified output section to the designated place. 305 void LinkerScript::processInsertCommands() { 306 SmallVector<OutputSection *, 0> moves; 307 for (const InsertCommand &cmd : insertCommands) { 308 for (StringRef name : cmd.names) { 309 // If base is empty, it may have been discarded by 310 // adjustOutputSections(). We do not handle such output sections. 311 auto from = llvm::find_if(sectionCommands, [&](SectionCommand *subCmd) { 312 return isa<OutputSection>(subCmd) && 313 cast<OutputSection>(subCmd)->name == name; 314 }); 315 if (from == sectionCommands.end()) 316 continue; 317 moves.push_back(cast<OutputSection>(*from)); 318 sectionCommands.erase(from); 319 } 320 321 auto insertPos = 322 llvm::find_if(sectionCommands, [&cmd](SectionCommand *subCmd) { 323 auto *to = dyn_cast<OutputSection>(subCmd); 324 return to != nullptr && to->name == cmd.where; 325 }); 326 if (insertPos == sectionCommands.end()) { 327 error("unable to insert " + cmd.names[0] + 328 (cmd.isAfter ? " after " : " before ") + cmd.where); 329 } else { 330 if (cmd.isAfter) 331 ++insertPos; 332 sectionCommands.insert(insertPos, moves.begin(), moves.end()); 333 } 334 moves.clear(); 335 } 336 } 337 338 // Symbols defined in script should not be inlined by LTO. At the same time 339 // we don't know their final values until late stages of link. Here we scan 340 // over symbol assignment commands and create placeholder symbols if needed. 341 void LinkerScript::declareSymbols() { 342 assert(!ctx); 343 for (SectionCommand *cmd : sectionCommands) { 344 if (auto *assign = dyn_cast<SymbolAssignment>(cmd)) { 345 declareSymbol(assign); 346 continue; 347 } 348 349 // If the output section directive has constraints, 350 // we can't say for sure if it is going to be included or not. 351 // Skip such sections for now. Improve the checks if we ever 352 // need symbols from that sections to be declared early. 353 auto *sec = cast<OutputSection>(cmd); 354 if (sec->constraint != ConstraintKind::NoConstraint) 355 continue; 356 for (SectionCommand *cmd : sec->commands) 357 if (auto *assign = dyn_cast<SymbolAssignment>(cmd)) 358 declareSymbol(assign); 359 } 360 } 361 362 // This function is called from assignAddresses, while we are 363 // fixing the output section addresses. This function is supposed 364 // to set the final value for a given symbol assignment. 365 void LinkerScript::assignSymbol(SymbolAssignment *cmd, bool inSec) { 366 if (cmd->name == ".") { 367 setDot(cmd->expression, cmd->location, inSec); 368 return; 369 } 370 371 if (!cmd->sym) 372 return; 373 374 ExprValue v = cmd->expression(); 375 if (v.isAbsolute()) { 376 cmd->sym->section = nullptr; 377 cmd->sym->value = v.getValue(); 378 } else { 379 cmd->sym->section = v.sec; 380 cmd->sym->value = v.getSectionOffset(); 381 } 382 cmd->sym->type = v.type; 383 } 384 385 static inline StringRef getFilename(const InputFile *file) { 386 return file ? file->getNameForScript() : StringRef(); 387 } 388 389 bool InputSectionDescription::matchesFile(const InputFile *file) const { 390 if (filePat.isTrivialMatchAll()) 391 return true; 392 393 if (!matchesFileCache || matchesFileCache->first != file) 394 matchesFileCache.emplace(file, filePat.match(getFilename(file))); 395 396 return matchesFileCache->second; 397 } 398 399 bool SectionPattern::excludesFile(const InputFile *file) const { 400 if (excludedFilePat.empty()) 401 return false; 402 403 if (!excludesFileCache || excludesFileCache->first != file) 404 excludesFileCache.emplace(file, excludedFilePat.match(getFilename(file))); 405 406 return excludesFileCache->second; 407 } 408 409 bool LinkerScript::shouldKeep(InputSectionBase *s) { 410 for (InputSectionDescription *id : keptSections) 411 if (id->matchesFile(s->file)) 412 for (SectionPattern &p : id->sectionPatterns) 413 if (p.sectionPat.match(s->name) && 414 (s->flags & id->withFlags) == id->withFlags && 415 (s->flags & id->withoutFlags) == 0) 416 return true; 417 return false; 418 } 419 420 // A helper function for the SORT() command. 421 static bool matchConstraints(ArrayRef<InputSectionBase *> sections, 422 ConstraintKind kind) { 423 if (kind == ConstraintKind::NoConstraint) 424 return true; 425 426 bool isRW = llvm::any_of( 427 sections, [](InputSectionBase *sec) { return sec->flags & SHF_WRITE; }); 428 429 return (isRW && kind == ConstraintKind::ReadWrite) || 430 (!isRW && kind == ConstraintKind::ReadOnly); 431 } 432 433 static void sortSections(MutableArrayRef<InputSectionBase *> vec, 434 SortSectionPolicy k) { 435 auto alignmentComparator = [](InputSectionBase *a, InputSectionBase *b) { 436 // ">" is not a mistake. Sections with larger alignments are placed 437 // before sections with smaller alignments in order to reduce the 438 // amount of padding necessary. This is compatible with GNU. 439 return a->alignment > b->alignment; 440 }; 441 auto nameComparator = [](InputSectionBase *a, InputSectionBase *b) { 442 return a->name < b->name; 443 }; 444 auto priorityComparator = [](InputSectionBase *a, InputSectionBase *b) { 445 return getPriority(a->name) < getPriority(b->name); 446 }; 447 448 switch (k) { 449 case SortSectionPolicy::Default: 450 case SortSectionPolicy::None: 451 return; 452 case SortSectionPolicy::Alignment: 453 return llvm::stable_sort(vec, alignmentComparator); 454 case SortSectionPolicy::Name: 455 return llvm::stable_sort(vec, nameComparator); 456 case SortSectionPolicy::Priority: 457 return llvm::stable_sort(vec, priorityComparator); 458 } 459 } 460 461 // Sort sections as instructed by SORT-family commands and --sort-section 462 // option. Because SORT-family commands can be nested at most two depth 463 // (e.g. SORT_BY_NAME(SORT_BY_ALIGNMENT(.text.*))) and because the command 464 // line option is respected even if a SORT command is given, the exact 465 // behavior we have here is a bit complicated. Here are the rules. 466 // 467 // 1. If two SORT commands are given, --sort-section is ignored. 468 // 2. If one SORT command is given, and if it is not SORT_NONE, 469 // --sort-section is handled as an inner SORT command. 470 // 3. If one SORT command is given, and if it is SORT_NONE, don't sort. 471 // 4. If no SORT command is given, sort according to --sort-section. 472 static void sortInputSections(MutableArrayRef<InputSectionBase *> vec, 473 SortSectionPolicy outer, 474 SortSectionPolicy inner) { 475 if (outer == SortSectionPolicy::None) 476 return; 477 478 if (inner == SortSectionPolicy::Default) 479 sortSections(vec, config->sortSection); 480 else 481 sortSections(vec, inner); 482 sortSections(vec, outer); 483 } 484 485 // Compute and remember which sections the InputSectionDescription matches. 486 SmallVector<InputSectionBase *, 0> 487 LinkerScript::computeInputSections(const InputSectionDescription *cmd, 488 ArrayRef<InputSectionBase *> sections) { 489 SmallVector<InputSectionBase *, 0> ret; 490 SmallVector<size_t, 0> indexes; 491 DenseSet<size_t> seen; 492 auto sortByPositionThenCommandLine = [&](size_t begin, size_t end) { 493 llvm::sort(MutableArrayRef<size_t>(indexes).slice(begin, end - begin)); 494 for (size_t i = begin; i != end; ++i) 495 ret[i] = sections[indexes[i]]; 496 sortInputSections( 497 MutableArrayRef<InputSectionBase *>(ret).slice(begin, end - begin), 498 config->sortSection, SortSectionPolicy::None); 499 }; 500 501 // Collects all sections that satisfy constraints of Cmd. 502 size_t sizeAfterPrevSort = 0; 503 for (const SectionPattern &pat : cmd->sectionPatterns) { 504 size_t sizeBeforeCurrPat = ret.size(); 505 506 for (size_t i = 0, e = sections.size(); i != e; ++i) { 507 // Skip if the section is dead or has been matched by a previous input 508 // section description or a previous pattern. 509 InputSectionBase *sec = sections[i]; 510 if (!sec->isLive() || sec->parent || seen.contains(i)) 511 continue; 512 513 // For --emit-relocs we have to ignore entries like 514 // .rela.dyn : { *(.rela.data) } 515 // which are common because they are in the default bfd script. 516 // We do not ignore SHT_REL[A] linker-synthesized sections here because 517 // want to support scripts that do custom layout for them. 518 if (isa<InputSection>(sec) && 519 cast<InputSection>(sec)->getRelocatedSection()) 520 continue; 521 522 // Check the name early to improve performance in the common case. 523 if (!pat.sectionPat.match(sec->name)) 524 continue; 525 526 if (!cmd->matchesFile(sec->file) || pat.excludesFile(sec->file) || 527 (sec->flags & cmd->withFlags) != cmd->withFlags || 528 (sec->flags & cmd->withoutFlags) != 0) 529 continue; 530 531 ret.push_back(sec); 532 indexes.push_back(i); 533 seen.insert(i); 534 } 535 536 if (pat.sortOuter == SortSectionPolicy::Default) 537 continue; 538 539 // Matched sections are ordered by radix sort with the keys being (SORT*, 540 // --sort-section, input order), where SORT* (if present) is most 541 // significant. 542 // 543 // Matched sections between the previous SORT* and this SORT* are sorted by 544 // (--sort-alignment, input order). 545 sortByPositionThenCommandLine(sizeAfterPrevSort, sizeBeforeCurrPat); 546 // Matched sections by this SORT* pattern are sorted using all 3 keys. 547 // ret[sizeBeforeCurrPat,ret.size()) are already in the input order, so we 548 // just sort by sortOuter and sortInner. 549 sortInputSections( 550 MutableArrayRef<InputSectionBase *>(ret).slice(sizeBeforeCurrPat), 551 pat.sortOuter, pat.sortInner); 552 sizeAfterPrevSort = ret.size(); 553 } 554 // Matched sections after the last SORT* are sorted by (--sort-alignment, 555 // input order). 556 sortByPositionThenCommandLine(sizeAfterPrevSort, ret.size()); 557 return ret; 558 } 559 560 void LinkerScript::discard(InputSectionBase &s) { 561 if (&s == in.shStrTab.get()) 562 error("discarding " + s.name + " section is not allowed"); 563 564 s.markDead(); 565 s.parent = nullptr; 566 for (InputSection *sec : s.dependentSections) 567 discard(*sec); 568 } 569 570 void LinkerScript::discardSynthetic(OutputSection &outCmd) { 571 for (Partition &part : partitions) { 572 if (!part.armExidx || !part.armExidx->isLive()) 573 continue; 574 SmallVector<InputSectionBase *, 0> secs( 575 part.armExidx->exidxSections.begin(), 576 part.armExidx->exidxSections.end()); 577 for (SectionCommand *cmd : outCmd.commands) 578 if (auto *isd = dyn_cast<InputSectionDescription>(cmd)) 579 for (InputSectionBase *s : computeInputSections(isd, secs)) 580 discard(*s); 581 } 582 } 583 584 SmallVector<InputSectionBase *, 0> 585 LinkerScript::createInputSectionList(OutputSection &outCmd) { 586 SmallVector<InputSectionBase *, 0> ret; 587 588 for (SectionCommand *cmd : outCmd.commands) { 589 if (auto *isd = dyn_cast<InputSectionDescription>(cmd)) { 590 isd->sectionBases = computeInputSections(isd, inputSections); 591 for (InputSectionBase *s : isd->sectionBases) 592 s->parent = &outCmd; 593 ret.insert(ret.end(), isd->sectionBases.begin(), isd->sectionBases.end()); 594 } 595 } 596 return ret; 597 } 598 599 // Create output sections described by SECTIONS commands. 600 void LinkerScript::processSectionCommands() { 601 auto process = [this](OutputSection *osec) { 602 SmallVector<InputSectionBase *, 0> v = createInputSectionList(*osec); 603 604 // The output section name `/DISCARD/' is special. 605 // Any input section assigned to it is discarded. 606 if (osec->name == "/DISCARD/") { 607 for (InputSectionBase *s : v) 608 discard(*s); 609 discardSynthetic(*osec); 610 osec->commands.clear(); 611 return false; 612 } 613 614 // This is for ONLY_IF_RO and ONLY_IF_RW. An output section directive 615 // ".foo : ONLY_IF_R[OW] { ... }" is handled only if all member input 616 // sections satisfy a given constraint. If not, a directive is handled 617 // as if it wasn't present from the beginning. 618 // 619 // Because we'll iterate over SectionCommands many more times, the easy 620 // way to "make it as if it wasn't present" is to make it empty. 621 if (!matchConstraints(v, osec->constraint)) { 622 for (InputSectionBase *s : v) 623 s->parent = nullptr; 624 osec->commands.clear(); 625 return false; 626 } 627 628 // Handle subalign (e.g. ".foo : SUBALIGN(32) { ... }"). If subalign 629 // is given, input sections are aligned to that value, whether the 630 // given value is larger or smaller than the original section alignment. 631 if (osec->subalignExpr) { 632 uint32_t subalign = osec->subalignExpr().getValue(); 633 for (InputSectionBase *s : v) 634 s->alignment = subalign; 635 } 636 637 // Set the partition field the same way OutputSection::recordSection() 638 // does. Partitions cannot be used with the SECTIONS command, so this is 639 // always 1. 640 osec->partition = 1; 641 return true; 642 }; 643 644 // Process OVERWRITE_SECTIONS first so that it can overwrite the main script 645 // or orphans. 646 DenseMap<CachedHashStringRef, OutputSection *> map; 647 size_t i = 0; 648 for (OutputSection *osec : overwriteSections) 649 if (process(osec) && 650 !map.try_emplace(CachedHashStringRef(osec->name), osec).second) 651 warn("OVERWRITE_SECTIONS specifies duplicate " + osec->name); 652 for (SectionCommand *&base : sectionCommands) 653 if (auto *osec = dyn_cast<OutputSection>(base)) { 654 if (OutputSection *overwrite = 655 map.lookup(CachedHashStringRef(osec->name))) { 656 log(overwrite->location + " overwrites " + osec->name); 657 overwrite->sectionIndex = i++; 658 base = overwrite; 659 } else if (process(osec)) { 660 osec->sectionIndex = i++; 661 } 662 } 663 664 // If an OVERWRITE_SECTIONS specified output section is not in 665 // sectionCommands, append it to the end. The section will be inserted by 666 // orphan placement. 667 for (OutputSection *osec : overwriteSections) 668 if (osec->partition == 1 && osec->sectionIndex == UINT32_MAX) 669 sectionCommands.push_back(osec); 670 } 671 672 void LinkerScript::processSymbolAssignments() { 673 // Dot outside an output section still represents a relative address, whose 674 // sh_shndx should not be SHN_UNDEF or SHN_ABS. Create a dummy aether section 675 // that fills the void outside a section. It has an index of one, which is 676 // indistinguishable from any other regular section index. 677 aether = make<OutputSection>("", 0, SHF_ALLOC); 678 aether->sectionIndex = 1; 679 680 // ctx captures the local AddressState and makes it accessible deliberately. 681 // This is needed as there are some cases where we cannot just thread the 682 // current state through to a lambda function created by the script parser. 683 AddressState state; 684 ctx = &state; 685 ctx->outSec = aether; 686 687 for (SectionCommand *cmd : sectionCommands) { 688 if (auto *assign = dyn_cast<SymbolAssignment>(cmd)) 689 addSymbol(assign); 690 else 691 for (SectionCommand *subCmd : cast<OutputSection>(cmd)->commands) 692 if (auto *assign = dyn_cast<SymbolAssignment>(subCmd)) 693 addSymbol(assign); 694 } 695 696 ctx = nullptr; 697 } 698 699 static OutputSection *findByName(ArrayRef<SectionCommand *> vec, 700 StringRef name) { 701 for (SectionCommand *cmd : vec) 702 if (auto *sec = dyn_cast<OutputSection>(cmd)) 703 if (sec->name == name) 704 return sec; 705 return nullptr; 706 } 707 708 static OutputSection *createSection(InputSectionBase *isec, 709 StringRef outsecName) { 710 OutputSection *sec = script->createOutputSection(outsecName, "<internal>"); 711 sec->recordSection(isec); 712 return sec; 713 } 714 715 static OutputSection * 716 addInputSec(StringMap<TinyPtrVector<OutputSection *>> &map, 717 InputSectionBase *isec, StringRef outsecName) { 718 // Sections with SHT_GROUP or SHF_GROUP attributes reach here only when the -r 719 // option is given. A section with SHT_GROUP defines a "section group", and 720 // its members have SHF_GROUP attribute. Usually these flags have already been 721 // stripped by InputFiles.cpp as section groups are processed and uniquified. 722 // However, for the -r option, we want to pass through all section groups 723 // as-is because adding/removing members or merging them with other groups 724 // change their semantics. 725 if (isec->type == SHT_GROUP || (isec->flags & SHF_GROUP)) 726 return createSection(isec, outsecName); 727 728 // Imagine .zed : { *(.foo) *(.bar) } script. Both foo and bar may have 729 // relocation sections .rela.foo and .rela.bar for example. Most tools do 730 // not allow multiple REL[A] sections for output section. Hence we 731 // should combine these relocation sections into single output. 732 // We skip synthetic sections because it can be .rela.dyn/.rela.plt or any 733 // other REL[A] sections created by linker itself. 734 if (!isa<SyntheticSection>(isec) && 735 (isec->type == SHT_REL || isec->type == SHT_RELA)) { 736 auto *sec = cast<InputSection>(isec); 737 OutputSection *out = sec->getRelocatedSection()->getOutputSection(); 738 739 if (out->relocationSection) { 740 out->relocationSection->recordSection(sec); 741 return nullptr; 742 } 743 744 out->relocationSection = createSection(isec, outsecName); 745 return out->relocationSection; 746 } 747 748 // The ELF spec just says 749 // ---------------------------------------------------------------- 750 // In the first phase, input sections that match in name, type and 751 // attribute flags should be concatenated into single sections. 752 // ---------------------------------------------------------------- 753 // 754 // However, it is clear that at least some flags have to be ignored for 755 // section merging. At the very least SHF_GROUP and SHF_COMPRESSED have to be 756 // ignored. We should not have two output .text sections just because one was 757 // in a group and another was not for example. 758 // 759 // It also seems that wording was a late addition and didn't get the 760 // necessary scrutiny. 761 // 762 // Merging sections with different flags is expected by some users. One 763 // reason is that if one file has 764 // 765 // int *const bar __attribute__((section(".foo"))) = (int *)0; 766 // 767 // gcc with -fPIC will produce a read only .foo section. But if another 768 // file has 769 // 770 // int zed; 771 // int *const bar __attribute__((section(".foo"))) = (int *)&zed; 772 // 773 // gcc with -fPIC will produce a read write section. 774 // 775 // Last but not least, when using linker script the merge rules are forced by 776 // the script. Unfortunately, linker scripts are name based. This means that 777 // expressions like *(.foo*) can refer to multiple input sections with 778 // different flags. We cannot put them in different output sections or we 779 // would produce wrong results for 780 // 781 // start = .; *(.foo.*) end = .; *(.bar) 782 // 783 // and a mapping of .foo1 and .bar1 to one section and .foo2 and .bar2 to 784 // another. The problem is that there is no way to layout those output 785 // sections such that the .foo sections are the only thing between the start 786 // and end symbols. 787 // 788 // Given the above issues, we instead merge sections by name and error on 789 // incompatible types and flags. 790 TinyPtrVector<OutputSection *> &v = map[outsecName]; 791 for (OutputSection *sec : v) { 792 if (sec->partition != isec->partition) 793 continue; 794 795 if (config->relocatable && (isec->flags & SHF_LINK_ORDER)) { 796 // Merging two SHF_LINK_ORDER sections with different sh_link fields will 797 // change their semantics, so we only merge them in -r links if they will 798 // end up being linked to the same output section. The casts are fine 799 // because everything in the map was created by the orphan placement code. 800 auto *firstIsec = cast<InputSectionBase>( 801 cast<InputSectionDescription>(sec->commands[0])->sectionBases[0]); 802 OutputSection *firstIsecOut = 803 firstIsec->flags & SHF_LINK_ORDER 804 ? firstIsec->getLinkOrderDep()->getOutputSection() 805 : nullptr; 806 if (firstIsecOut != isec->getLinkOrderDep()->getOutputSection()) 807 continue; 808 } 809 810 sec->recordSection(isec); 811 return nullptr; 812 } 813 814 OutputSection *sec = createSection(isec, outsecName); 815 v.push_back(sec); 816 return sec; 817 } 818 819 // Add sections that didn't match any sections command. 820 void LinkerScript::addOrphanSections() { 821 StringMap<TinyPtrVector<OutputSection *>> map; 822 SmallVector<OutputSection *, 0> v; 823 824 auto add = [&](InputSectionBase *s) { 825 if (s->isLive() && !s->parent) { 826 orphanSections.push_back(s); 827 828 StringRef name = getOutputSectionName(s); 829 if (config->unique) { 830 v.push_back(createSection(s, name)); 831 } else if (OutputSection *sec = findByName(sectionCommands, name)) { 832 sec->recordSection(s); 833 } else { 834 if (OutputSection *os = addInputSec(map, s, name)) 835 v.push_back(os); 836 assert(isa<MergeInputSection>(s) || 837 s->getOutputSection()->sectionIndex == UINT32_MAX); 838 } 839 } 840 }; 841 842 // For further --emit-reloc handling code we need target output section 843 // to be created before we create relocation output section, so we want 844 // to create target sections first. We do not want priority handling 845 // for synthetic sections because them are special. 846 for (InputSectionBase *isec : inputSections) { 847 // In -r links, SHF_LINK_ORDER sections are added while adding their parent 848 // sections because we need to know the parent's output section before we 849 // can select an output section for the SHF_LINK_ORDER section. 850 if (config->relocatable && (isec->flags & SHF_LINK_ORDER)) 851 continue; 852 853 if (auto *sec = dyn_cast<InputSection>(isec)) 854 if (InputSectionBase *rel = sec->getRelocatedSection()) 855 if (auto *relIS = dyn_cast_or_null<InputSectionBase>(rel->parent)) 856 add(relIS); 857 add(isec); 858 if (config->relocatable) 859 for (InputSectionBase *depSec : isec->dependentSections) 860 if (depSec->flags & SHF_LINK_ORDER) 861 add(depSec); 862 } 863 864 // If no SECTIONS command was given, we should insert sections commands 865 // before others, so that we can handle scripts which refers them, 866 // for example: "foo = ABSOLUTE(ADDR(.text)));". 867 // When SECTIONS command is present we just add all orphans to the end. 868 if (hasSectionsCommand) 869 sectionCommands.insert(sectionCommands.end(), v.begin(), v.end()); 870 else 871 sectionCommands.insert(sectionCommands.begin(), v.begin(), v.end()); 872 } 873 874 void LinkerScript::diagnoseOrphanHandling() const { 875 llvm::TimeTraceScope timeScope("Diagnose orphan sections"); 876 if (config->orphanHandling == OrphanHandlingPolicy::Place) 877 return; 878 for (const InputSectionBase *sec : orphanSections) { 879 // Input SHT_REL[A] retained by --emit-relocs are ignored by 880 // computeInputSections(). Don't warn/error. 881 if (isa<InputSection>(sec) && 882 cast<InputSection>(sec)->getRelocatedSection()) 883 continue; 884 885 StringRef name = getOutputSectionName(sec); 886 if (config->orphanHandling == OrphanHandlingPolicy::Error) 887 error(toString(sec) + " is being placed in '" + name + "'"); 888 else 889 warn(toString(sec) + " is being placed in '" + name + "'"); 890 } 891 } 892 893 // This function searches for a memory region to place the given output 894 // section in. If found, a pointer to the appropriate memory region is 895 // returned in the first member of the pair. Otherwise, a nullptr is returned. 896 // The second member of the pair is a hint that should be passed to the 897 // subsequent call of this method. 898 std::pair<MemoryRegion *, MemoryRegion *> 899 LinkerScript::findMemoryRegion(OutputSection *sec, MemoryRegion *hint) { 900 // Non-allocatable sections are not part of the process image. 901 if (!(sec->flags & SHF_ALLOC)) { 902 if (!sec->memoryRegionName.empty()) 903 warn("ignoring memory region assignment for non-allocatable section '" + 904 sec->name + "'"); 905 return {nullptr, nullptr}; 906 } 907 908 // If a memory region name was specified in the output section command, 909 // then try to find that region first. 910 if (!sec->memoryRegionName.empty()) { 911 if (MemoryRegion *m = memoryRegions.lookup(sec->memoryRegionName)) 912 return {m, m}; 913 error("memory region '" + sec->memoryRegionName + "' not declared"); 914 return {nullptr, nullptr}; 915 } 916 917 // If at least one memory region is defined, all sections must 918 // belong to some memory region. Otherwise, we don't need to do 919 // anything for memory regions. 920 if (memoryRegions.empty()) 921 return {nullptr, nullptr}; 922 923 // An orphan section should continue the previous memory region. 924 if (sec->sectionIndex == UINT32_MAX && hint) 925 return {hint, hint}; 926 927 // See if a region can be found by matching section flags. 928 for (auto &pair : memoryRegions) { 929 MemoryRegion *m = pair.second; 930 if (m->compatibleWith(sec->flags)) 931 return {m, nullptr}; 932 } 933 934 // Otherwise, no suitable region was found. 935 error("no memory region specified for section '" + sec->name + "'"); 936 return {nullptr, nullptr}; 937 } 938 939 static OutputSection *findFirstSection(PhdrEntry *load) { 940 for (OutputSection *sec : outputSections) 941 if (sec->ptLoad == load) 942 return sec; 943 return nullptr; 944 } 945 946 // This function assigns offsets to input sections and an output section 947 // for a single sections command (e.g. ".text { *(.text); }"). 948 void LinkerScript::assignOffsets(OutputSection *sec) { 949 const bool isTbss = (sec->flags & SHF_TLS) && sec->type == SHT_NOBITS; 950 const bool sameMemRegion = ctx->memRegion == sec->memRegion; 951 const bool prevLMARegionIsDefault = ctx->lmaRegion == nullptr; 952 const uint64_t savedDot = dot; 953 ctx->memRegion = sec->memRegion; 954 ctx->lmaRegion = sec->lmaRegion; 955 956 if (!(sec->flags & SHF_ALLOC)) { 957 // Non-SHF_ALLOC sections have zero addresses. 958 dot = 0; 959 } else if (isTbss) { 960 // Allow consecutive SHF_TLS SHT_NOBITS output sections. The address range 961 // starts from the end address of the previous tbss section. 962 if (ctx->tbssAddr == 0) 963 ctx->tbssAddr = dot; 964 else 965 dot = ctx->tbssAddr; 966 } else { 967 if (ctx->memRegion) 968 dot = ctx->memRegion->curPos; 969 if (sec->addrExpr) 970 setDot(sec->addrExpr, sec->location, false); 971 972 // If the address of the section has been moved forward by an explicit 973 // expression so that it now starts past the current curPos of the enclosing 974 // region, we need to expand the current region to account for the space 975 // between the previous section, if any, and the start of this section. 976 if (ctx->memRegion && ctx->memRegion->curPos < dot) 977 expandMemoryRegion(ctx->memRegion, dot - ctx->memRegion->curPos, 978 sec->name); 979 } 980 981 ctx->outSec = sec; 982 if (sec->addrExpr && script->hasSectionsCommand) { 983 // The alignment is ignored. 984 sec->addr = dot; 985 } else { 986 // sec->alignment is the max of ALIGN and the maximum of input 987 // section alignments. 988 const uint64_t pos = dot; 989 dot = alignTo(dot, sec->alignment); 990 sec->addr = dot; 991 expandMemoryRegions(dot - pos); 992 } 993 994 // ctx->lmaOffset is LMA minus VMA. If LMA is explicitly specified via AT() or 995 // AT>, recompute ctx->lmaOffset; otherwise, if both previous/current LMA 996 // region is the default, and the two sections are in the same memory region, 997 // reuse previous lmaOffset; otherwise, reset lmaOffset to 0. This emulates 998 // heuristics described in 999 // https://sourceware.org/binutils/docs/ld/Output-Section-LMA.html 1000 if (sec->lmaExpr) { 1001 ctx->lmaOffset = sec->lmaExpr().getValue() - dot; 1002 } else if (MemoryRegion *mr = sec->lmaRegion) { 1003 uint64_t lmaStart = alignTo(mr->curPos, sec->alignment); 1004 if (mr->curPos < lmaStart) 1005 expandMemoryRegion(mr, lmaStart - mr->curPos, sec->name); 1006 ctx->lmaOffset = lmaStart - dot; 1007 } else if (!sameMemRegion || !prevLMARegionIsDefault) { 1008 ctx->lmaOffset = 0; 1009 } 1010 1011 // Propagate ctx->lmaOffset to the first "non-header" section. 1012 if (PhdrEntry *l = sec->ptLoad) 1013 if (sec == findFirstSection(l)) 1014 l->lmaOffset = ctx->lmaOffset; 1015 1016 // We can call this method multiple times during the creation of 1017 // thunks and want to start over calculation each time. 1018 sec->size = 0; 1019 1020 // We visited SectionsCommands from processSectionCommands to 1021 // layout sections. Now, we visit SectionsCommands again to fix 1022 // section offsets. 1023 for (SectionCommand *cmd : sec->commands) { 1024 // This handles the assignments to symbol or to the dot. 1025 if (auto *assign = dyn_cast<SymbolAssignment>(cmd)) { 1026 assign->addr = dot; 1027 assignSymbol(assign, true); 1028 assign->size = dot - assign->addr; 1029 continue; 1030 } 1031 1032 // Handle BYTE(), SHORT(), LONG(), or QUAD(). 1033 if (auto *data = dyn_cast<ByteCommand>(cmd)) { 1034 data->offset = dot - sec->addr; 1035 dot += data->size; 1036 expandOutputSection(data->size); 1037 continue; 1038 } 1039 1040 // Handle a single input section description command. 1041 // It calculates and assigns the offsets for each section and also 1042 // updates the output section size. 1043 for (InputSection *isec : cast<InputSectionDescription>(cmd)->sections) { 1044 assert(isec->getParent() == sec); 1045 const uint64_t pos = dot; 1046 dot = alignTo(dot, isec->alignment); 1047 isec->outSecOff = dot - sec->addr; 1048 dot += isec->getSize(); 1049 1050 // Update output section size after adding each section. This is so that 1051 // SIZEOF works correctly in the case below: 1052 // .foo { *(.aaa) a = SIZEOF(.foo); *(.bbb) } 1053 expandOutputSection(dot - pos); 1054 } 1055 } 1056 1057 // Non-SHF_ALLOC sections do not affect the addresses of other OutputSections 1058 // as they are not part of the process image. 1059 if (!(sec->flags & SHF_ALLOC)) { 1060 dot = savedDot; 1061 } else if (isTbss) { 1062 // NOBITS TLS sections are similar. Additionally save the end address. 1063 ctx->tbssAddr = dot; 1064 dot = savedDot; 1065 } 1066 } 1067 1068 static bool isDiscardable(const OutputSection &sec) { 1069 if (sec.name == "/DISCARD/") 1070 return true; 1071 1072 // We do not want to remove OutputSections with expressions that reference 1073 // symbols even if the OutputSection is empty. We want to ensure that the 1074 // expressions can be evaluated and report an error if they cannot. 1075 if (sec.expressionsUseSymbols) 1076 return false; 1077 1078 // OutputSections may be referenced by name in ADDR and LOADADDR expressions, 1079 // as an empty Section can has a valid VMA and LMA we keep the OutputSection 1080 // to maintain the integrity of the other Expression. 1081 if (sec.usedInExpression) 1082 return false; 1083 1084 for (SectionCommand *cmd : sec.commands) { 1085 if (auto assign = dyn_cast<SymbolAssignment>(cmd)) 1086 // Don't create empty output sections just for unreferenced PROVIDE 1087 // symbols. 1088 if (assign->name != "." && !assign->sym) 1089 continue; 1090 1091 if (!isa<InputSectionDescription>(*cmd)) 1092 return false; 1093 } 1094 return true; 1095 } 1096 1097 bool LinkerScript::isDiscarded(const OutputSection *sec) const { 1098 return hasSectionsCommand && (getFirstInputSection(sec) == nullptr) && 1099 isDiscardable(*sec); 1100 } 1101 1102 static void maybePropagatePhdrs(OutputSection &sec, 1103 SmallVector<StringRef, 0> &phdrs) { 1104 if (sec.phdrs.empty()) { 1105 // To match the bfd linker script behaviour, only propagate program 1106 // headers to sections that are allocated. 1107 if (sec.flags & SHF_ALLOC) 1108 sec.phdrs = phdrs; 1109 } else { 1110 phdrs = sec.phdrs; 1111 } 1112 } 1113 1114 void LinkerScript::adjustOutputSections() { 1115 // If the output section contains only symbol assignments, create a 1116 // corresponding output section. The issue is what to do with linker script 1117 // like ".foo : { symbol = 42; }". One option would be to convert it to 1118 // "symbol = 42;". That is, move the symbol out of the empty section 1119 // description. That seems to be what bfd does for this simple case. The 1120 // problem is that this is not completely general. bfd will give up and 1121 // create a dummy section too if there is a ". = . + 1" inside the section 1122 // for example. 1123 // Given that we want to create the section, we have to worry what impact 1124 // it will have on the link. For example, if we just create a section with 1125 // 0 for flags, it would change which PT_LOADs are created. 1126 // We could remember that particular section is dummy and ignore it in 1127 // other parts of the linker, but unfortunately there are quite a few places 1128 // that would need to change: 1129 // * The program header creation. 1130 // * The orphan section placement. 1131 // * The address assignment. 1132 // The other option is to pick flags that minimize the impact the section 1133 // will have on the rest of the linker. That is why we copy the flags from 1134 // the previous sections. Only a few flags are needed to keep the impact low. 1135 uint64_t flags = SHF_ALLOC; 1136 1137 SmallVector<StringRef, 0> defPhdrs; 1138 for (SectionCommand *&cmd : sectionCommands) { 1139 auto *sec = dyn_cast<OutputSection>(cmd); 1140 if (!sec) 1141 continue; 1142 1143 // Handle align (e.g. ".foo : ALIGN(16) { ... }"). 1144 if (sec->alignExpr) 1145 sec->alignment = 1146 std::max<uint32_t>(sec->alignment, sec->alignExpr().getValue()); 1147 1148 bool isEmpty = (getFirstInputSection(sec) == nullptr); 1149 bool discardable = isEmpty && isDiscardable(*sec); 1150 // If sec has at least one input section and not discarded, remember its 1151 // flags to be inherited by subsequent output sections. (sec may contain 1152 // just one empty synthetic section.) 1153 if (sec->hasInputSections && !discardable) 1154 flags = sec->flags; 1155 1156 // We do not want to keep any special flags for output section 1157 // in case it is empty. 1158 if (isEmpty) 1159 sec->flags = flags & ((sec->nonAlloc ? 0 : (uint64_t)SHF_ALLOC) | 1160 SHF_WRITE | SHF_EXECINSTR); 1161 1162 // The code below may remove empty output sections. We should save the 1163 // specified program headers (if exist) and propagate them to subsequent 1164 // sections which do not specify program headers. 1165 // An example of such a linker script is: 1166 // SECTIONS { .empty : { *(.empty) } :rw 1167 // .foo : { *(.foo) } } 1168 // Note: at this point the order of output sections has not been finalized, 1169 // because orphans have not been inserted into their expected positions. We 1170 // will handle them in adjustSectionsAfterSorting(). 1171 if (sec->sectionIndex != UINT32_MAX) 1172 maybePropagatePhdrs(*sec, defPhdrs); 1173 1174 if (discardable) { 1175 sec->markDead(); 1176 cmd = nullptr; 1177 } 1178 } 1179 1180 // It is common practice to use very generic linker scripts. So for any 1181 // given run some of the output sections in the script will be empty. 1182 // We could create corresponding empty output sections, but that would 1183 // clutter the output. 1184 // We instead remove trivially empty sections. The bfd linker seems even 1185 // more aggressive at removing them. 1186 llvm::erase_if(sectionCommands, [&](SectionCommand *cmd) { return !cmd; }); 1187 } 1188 1189 void LinkerScript::adjustSectionsAfterSorting() { 1190 // Try and find an appropriate memory region to assign offsets in. 1191 MemoryRegion *hint = nullptr; 1192 for (SectionCommand *cmd : sectionCommands) { 1193 if (auto *sec = dyn_cast<OutputSection>(cmd)) { 1194 if (!sec->lmaRegionName.empty()) { 1195 if (MemoryRegion *m = memoryRegions.lookup(sec->lmaRegionName)) 1196 sec->lmaRegion = m; 1197 else 1198 error("memory region '" + sec->lmaRegionName + "' not declared"); 1199 } 1200 std::tie(sec->memRegion, hint) = findMemoryRegion(sec, hint); 1201 } 1202 } 1203 1204 // If output section command doesn't specify any segments, 1205 // and we haven't previously assigned any section to segment, 1206 // then we simply assign section to the very first load segment. 1207 // Below is an example of such linker script: 1208 // PHDRS { seg PT_LOAD; } 1209 // SECTIONS { .aaa : { *(.aaa) } } 1210 SmallVector<StringRef, 0> defPhdrs; 1211 auto firstPtLoad = llvm::find_if(phdrsCommands, [](const PhdrsCommand &cmd) { 1212 return cmd.type == PT_LOAD; 1213 }); 1214 if (firstPtLoad != phdrsCommands.end()) 1215 defPhdrs.push_back(firstPtLoad->name); 1216 1217 // Walk the commands and propagate the program headers to commands that don't 1218 // explicitly specify them. 1219 for (SectionCommand *cmd : sectionCommands) 1220 if (auto *sec = dyn_cast<OutputSection>(cmd)) 1221 maybePropagatePhdrs(*sec, defPhdrs); 1222 } 1223 1224 static uint64_t computeBase(uint64_t min, bool allocateHeaders) { 1225 // If there is no SECTIONS or if the linkerscript is explicit about program 1226 // headers, do our best to allocate them. 1227 if (!script->hasSectionsCommand || allocateHeaders) 1228 return 0; 1229 // Otherwise only allocate program headers if that would not add a page. 1230 return alignDown(min, config->maxPageSize); 1231 } 1232 1233 // When the SECTIONS command is used, try to find an address for the file and 1234 // program headers output sections, which can be added to the first PT_LOAD 1235 // segment when program headers are created. 1236 // 1237 // We check if the headers fit below the first allocated section. If there isn't 1238 // enough space for these sections, we'll remove them from the PT_LOAD segment, 1239 // and we'll also remove the PT_PHDR segment. 1240 void LinkerScript::allocateHeaders(SmallVector<PhdrEntry *, 0> &phdrs) { 1241 uint64_t min = std::numeric_limits<uint64_t>::max(); 1242 for (OutputSection *sec : outputSections) 1243 if (sec->flags & SHF_ALLOC) 1244 min = std::min<uint64_t>(min, sec->addr); 1245 1246 auto it = llvm::find_if( 1247 phdrs, [](const PhdrEntry *e) { return e->p_type == PT_LOAD; }); 1248 if (it == phdrs.end()) 1249 return; 1250 PhdrEntry *firstPTLoad = *it; 1251 1252 bool hasExplicitHeaders = 1253 llvm::any_of(phdrsCommands, [](const PhdrsCommand &cmd) { 1254 return cmd.hasPhdrs || cmd.hasFilehdr; 1255 }); 1256 bool paged = !config->omagic && !config->nmagic; 1257 uint64_t headerSize = getHeaderSize(); 1258 if ((paged || hasExplicitHeaders) && 1259 headerSize <= min - computeBase(min, hasExplicitHeaders)) { 1260 min = alignDown(min - headerSize, config->maxPageSize); 1261 Out::elfHeader->addr = min; 1262 Out::programHeaders->addr = min + Out::elfHeader->size; 1263 return; 1264 } 1265 1266 // Error if we were explicitly asked to allocate headers. 1267 if (hasExplicitHeaders) 1268 error("could not allocate headers"); 1269 1270 Out::elfHeader->ptLoad = nullptr; 1271 Out::programHeaders->ptLoad = nullptr; 1272 firstPTLoad->firstSec = findFirstSection(firstPTLoad); 1273 1274 llvm::erase_if(phdrs, 1275 [](const PhdrEntry *e) { return e->p_type == PT_PHDR; }); 1276 } 1277 1278 LinkerScript::AddressState::AddressState() { 1279 for (auto &mri : script->memoryRegions) { 1280 MemoryRegion *mr = mri.second; 1281 mr->curPos = (mr->origin)().getValue(); 1282 } 1283 } 1284 1285 // Here we assign addresses as instructed by linker script SECTIONS 1286 // sub-commands. Doing that allows us to use final VA values, so here 1287 // we also handle rest commands like symbol assignments and ASSERTs. 1288 // Returns a symbol that has changed its section or value, or nullptr if no 1289 // symbol has changed. 1290 const Defined *LinkerScript::assignAddresses() { 1291 if (script->hasSectionsCommand) { 1292 // With a linker script, assignment of addresses to headers is covered by 1293 // allocateHeaders(). 1294 dot = config->imageBase.getValueOr(0); 1295 } else { 1296 // Assign addresses to headers right now. 1297 dot = target->getImageBase(); 1298 Out::elfHeader->addr = dot; 1299 Out::programHeaders->addr = dot + Out::elfHeader->size; 1300 dot += getHeaderSize(); 1301 } 1302 1303 AddressState state; 1304 ctx = &state; 1305 errorOnMissingSection = true; 1306 ctx->outSec = aether; 1307 1308 SymbolAssignmentMap oldValues = getSymbolAssignmentValues(sectionCommands); 1309 for (SectionCommand *cmd : sectionCommands) { 1310 if (auto *assign = dyn_cast<SymbolAssignment>(cmd)) { 1311 assign->addr = dot; 1312 assignSymbol(assign, false); 1313 assign->size = dot - assign->addr; 1314 continue; 1315 } 1316 assignOffsets(cast<OutputSection>(cmd)); 1317 } 1318 1319 ctx = nullptr; 1320 return getChangedSymbolAssignment(oldValues); 1321 } 1322 1323 // Creates program headers as instructed by PHDRS linker script command. 1324 SmallVector<PhdrEntry *, 0> LinkerScript::createPhdrs() { 1325 SmallVector<PhdrEntry *, 0> ret; 1326 1327 // Process PHDRS and FILEHDR keywords because they are not 1328 // real output sections and cannot be added in the following loop. 1329 for (const PhdrsCommand &cmd : phdrsCommands) { 1330 PhdrEntry *phdr = make<PhdrEntry>(cmd.type, cmd.flags.getValueOr(PF_R)); 1331 1332 if (cmd.hasFilehdr) 1333 phdr->add(Out::elfHeader); 1334 if (cmd.hasPhdrs) 1335 phdr->add(Out::programHeaders); 1336 1337 if (cmd.lmaExpr) { 1338 phdr->p_paddr = cmd.lmaExpr().getValue(); 1339 phdr->hasLMA = true; 1340 } 1341 ret.push_back(phdr); 1342 } 1343 1344 // Add output sections to program headers. 1345 for (OutputSection *sec : outputSections) { 1346 // Assign headers specified by linker script 1347 for (size_t id : getPhdrIndices(sec)) { 1348 ret[id]->add(sec); 1349 if (!phdrsCommands[id].flags.hasValue()) 1350 ret[id]->p_flags |= sec->getPhdrFlags(); 1351 } 1352 } 1353 return ret; 1354 } 1355 1356 // Returns true if we should emit an .interp section. 1357 // 1358 // We usually do. But if PHDRS commands are given, and 1359 // no PT_INTERP is there, there's no place to emit an 1360 // .interp, so we don't do that in that case. 1361 bool LinkerScript::needsInterpSection() { 1362 if (phdrsCommands.empty()) 1363 return true; 1364 for (PhdrsCommand &cmd : phdrsCommands) 1365 if (cmd.type == PT_INTERP) 1366 return true; 1367 return false; 1368 } 1369 1370 ExprValue LinkerScript::getSymbolValue(StringRef name, const Twine &loc) { 1371 if (name == ".") { 1372 if (ctx) 1373 return {ctx->outSec, false, dot - ctx->outSec->addr, loc}; 1374 error(loc + ": unable to get location counter value"); 1375 return 0; 1376 } 1377 1378 if (Symbol *sym = symtab->find(name)) { 1379 if (auto *ds = dyn_cast<Defined>(sym)) { 1380 ExprValue v{ds->section, false, ds->value, loc}; 1381 // Retain the original st_type, so that the alias will get the same 1382 // behavior in relocation processing. Any operation will reset st_type to 1383 // STT_NOTYPE. 1384 v.type = ds->type; 1385 return v; 1386 } 1387 if (isa<SharedSymbol>(sym)) 1388 if (!errorOnMissingSection) 1389 return {nullptr, false, 0, loc}; 1390 } 1391 1392 error(loc + ": symbol not found: " + name); 1393 return 0; 1394 } 1395 1396 // Returns the index of the segment named Name. 1397 static Optional<size_t> getPhdrIndex(ArrayRef<PhdrsCommand> vec, 1398 StringRef name) { 1399 for (size_t i = 0; i < vec.size(); ++i) 1400 if (vec[i].name == name) 1401 return i; 1402 return None; 1403 } 1404 1405 // Returns indices of ELF headers containing specific section. Each index is a 1406 // zero based number of ELF header listed within PHDRS {} script block. 1407 SmallVector<size_t, 0> LinkerScript::getPhdrIndices(OutputSection *cmd) { 1408 SmallVector<size_t, 0> ret; 1409 1410 for (StringRef s : cmd->phdrs) { 1411 if (Optional<size_t> idx = getPhdrIndex(phdrsCommands, s)) 1412 ret.push_back(*idx); 1413 else if (s != "NONE") 1414 error(cmd->location + ": program header '" + s + 1415 "' is not listed in PHDRS"); 1416 } 1417 return ret; 1418 } 1419