1 //===- LinkerScript.cpp ---------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the parser/evaluator of the linker script. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "LinkerScript.h" 14 #include "Config.h" 15 #include "InputSection.h" 16 #include "OutputSections.h" 17 #include "SymbolTable.h" 18 #include "Symbols.h" 19 #include "SyntheticSections.h" 20 #include "Target.h" 21 #include "Writer.h" 22 #include "lld/Common/Memory.h" 23 #include "lld/Common/Strings.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/BinaryFormat/ELF.h" 27 #include "llvm/Support/Casting.h" 28 #include "llvm/Support/Endian.h" 29 #include "llvm/Support/ErrorHandling.h" 30 #include "llvm/Support/FileSystem.h" 31 #include "llvm/Support/Parallel.h" 32 #include "llvm/Support/Path.h" 33 #include "llvm/Support/TimeProfiler.h" 34 #include <algorithm> 35 #include <cassert> 36 #include <cstddef> 37 #include <cstdint> 38 #include <iterator> 39 #include <limits> 40 #include <string> 41 #include <vector> 42 43 using namespace llvm; 44 using namespace llvm::ELF; 45 using namespace llvm::object; 46 using namespace llvm::support::endian; 47 using namespace lld; 48 using namespace lld::elf; 49 50 LinkerScript *elf::script; 51 52 static uint64_t getOutputSectionVA(SectionBase *sec) { 53 OutputSection *os = sec->getOutputSection(); 54 assert(os && "input section has no output section assigned"); 55 return os ? os->addr : 0; 56 } 57 58 uint64_t ExprValue::getValue() const { 59 if (sec) 60 return alignTo(sec->getOffset(val) + getOutputSectionVA(sec), 61 alignment); 62 return alignTo(val, alignment); 63 } 64 65 uint64_t ExprValue::getSecAddr() const { 66 if (sec) 67 return sec->getOffset(0) + getOutputSectionVA(sec); 68 return 0; 69 } 70 71 uint64_t ExprValue::getSectionOffset() const { 72 // If the alignment is trivial, we don't have to compute the full 73 // value to know the offset. This allows this function to succeed in 74 // cases where the output section is not yet known. 75 if (alignment == 1 && !sec) 76 return val; 77 return getValue() - getSecAddr(); 78 } 79 80 OutputSection *LinkerScript::createOutputSection(StringRef name, 81 StringRef location) { 82 OutputSection *&secRef = nameToOutputSection[name]; 83 OutputSection *sec; 84 if (secRef && secRef->location.empty()) { 85 // There was a forward reference. 86 sec = secRef; 87 } else { 88 sec = make<OutputSection>(name, SHT_PROGBITS, 0); 89 if (!secRef) 90 secRef = sec; 91 } 92 sec->location = std::string(location); 93 return sec; 94 } 95 96 OutputSection *LinkerScript::getOrCreateOutputSection(StringRef name) { 97 OutputSection *&cmdRef = nameToOutputSection[name]; 98 if (!cmdRef) 99 cmdRef = make<OutputSection>(name, SHT_PROGBITS, 0); 100 return cmdRef; 101 } 102 103 // Expands the memory region by the specified size. 104 static void expandMemoryRegion(MemoryRegion *memRegion, uint64_t size, 105 StringRef regionName, StringRef secName) { 106 memRegion->curPos += size; 107 uint64_t newSize = memRegion->curPos - (memRegion->origin)().getValue(); 108 uint64_t length = (memRegion->length)().getValue(); 109 if (newSize > length) 110 error("section '" + secName + "' will not fit in region '" + regionName + 111 "': overflowed by " + Twine(newSize - length) + " bytes"); 112 } 113 114 void LinkerScript::expandMemoryRegions(uint64_t size) { 115 if (ctx->memRegion) 116 expandMemoryRegion(ctx->memRegion, size, ctx->memRegion->name, 117 ctx->outSec->name); 118 // Only expand the LMARegion if it is different from memRegion. 119 if (ctx->lmaRegion && ctx->memRegion != ctx->lmaRegion) 120 expandMemoryRegion(ctx->lmaRegion, size, ctx->lmaRegion->name, 121 ctx->outSec->name); 122 } 123 124 void LinkerScript::expandOutputSection(uint64_t size) { 125 ctx->outSec->size += size; 126 expandMemoryRegions(size); 127 } 128 129 void LinkerScript::setDot(Expr e, const Twine &loc, bool inSec) { 130 uint64_t val = e().getValue(); 131 if (val < dot && inSec) 132 error(loc + ": unable to move location counter backward for: " + 133 ctx->outSec->name); 134 135 // Update to location counter means update to section size. 136 if (inSec) 137 expandOutputSection(val - dot); 138 139 dot = val; 140 } 141 142 // Used for handling linker symbol assignments, for both finalizing 143 // their values and doing early declarations. Returns true if symbol 144 // should be defined from linker script. 145 static bool shouldDefineSym(SymbolAssignment *cmd) { 146 if (cmd->name == ".") 147 return false; 148 149 if (!cmd->provide) 150 return true; 151 152 // If a symbol was in PROVIDE(), we need to define it only 153 // when it is a referenced undefined symbol. 154 Symbol *b = symtab->find(cmd->name); 155 if (b && !b->isDefined()) 156 return true; 157 return false; 158 } 159 160 // Called by processSymbolAssignments() to assign definitions to 161 // linker-script-defined symbols. 162 void LinkerScript::addSymbol(SymbolAssignment *cmd) { 163 if (!shouldDefineSym(cmd)) 164 return; 165 166 // Define a symbol. 167 ExprValue value = cmd->expression(); 168 SectionBase *sec = value.isAbsolute() ? nullptr : value.sec; 169 uint8_t visibility = cmd->hidden ? STV_HIDDEN : STV_DEFAULT; 170 171 // When this function is called, section addresses have not been 172 // fixed yet. So, we may or may not know the value of the RHS 173 // expression. 174 // 175 // For example, if an expression is `x = 42`, we know x is always 42. 176 // However, if an expression is `x = .`, there's no way to know its 177 // value at the moment. 178 // 179 // We want to set symbol values early if we can. This allows us to 180 // use symbols as variables in linker scripts. Doing so allows us to 181 // write expressions like this: `alignment = 16; . = ALIGN(., alignment)`. 182 uint64_t symValue = value.sec ? 0 : value.getValue(); 183 184 Defined newSym(nullptr, cmd->name, STB_GLOBAL, visibility, value.type, 185 symValue, 0, sec); 186 187 Symbol *sym = symtab->insert(cmd->name); 188 sym->mergeProperties(newSym); 189 sym->replace(newSym); 190 cmd->sym = cast<Defined>(sym); 191 } 192 193 // This function is called from LinkerScript::declareSymbols. 194 // It creates a placeholder symbol if needed. 195 static void declareSymbol(SymbolAssignment *cmd) { 196 if (!shouldDefineSym(cmd)) 197 return; 198 199 uint8_t visibility = cmd->hidden ? STV_HIDDEN : STV_DEFAULT; 200 Defined newSym(nullptr, cmd->name, STB_GLOBAL, visibility, STT_NOTYPE, 0, 0, 201 nullptr); 202 203 // We can't calculate final value right now. 204 Symbol *sym = symtab->insert(cmd->name); 205 sym->mergeProperties(newSym); 206 sym->replace(newSym); 207 208 cmd->sym = cast<Defined>(sym); 209 cmd->provide = false; 210 sym->scriptDefined = true; 211 } 212 213 using SymbolAssignmentMap = 214 DenseMap<const Defined *, std::pair<SectionBase *, uint64_t>>; 215 216 // Collect section/value pairs of linker-script-defined symbols. This is used to 217 // check whether symbol values converge. 218 static SymbolAssignmentMap 219 getSymbolAssignmentValues(const std::vector<BaseCommand *> §ionCommands) { 220 SymbolAssignmentMap ret; 221 for (BaseCommand *base : sectionCommands) { 222 if (auto *cmd = dyn_cast<SymbolAssignment>(base)) { 223 if (cmd->sym) // sym is nullptr for dot. 224 ret.try_emplace(cmd->sym, 225 std::make_pair(cmd->sym->section, cmd->sym->value)); 226 continue; 227 } 228 for (BaseCommand *sub_base : cast<OutputSection>(base)->sectionCommands) 229 if (auto *cmd = dyn_cast<SymbolAssignment>(sub_base)) 230 if (cmd->sym) 231 ret.try_emplace(cmd->sym, 232 std::make_pair(cmd->sym->section, cmd->sym->value)); 233 } 234 return ret; 235 } 236 237 // Returns the lexicographical smallest (for determinism) Defined whose 238 // section/value has changed. 239 static const Defined * 240 getChangedSymbolAssignment(const SymbolAssignmentMap &oldValues) { 241 const Defined *changed = nullptr; 242 for (auto &it : oldValues) { 243 const Defined *sym = it.first; 244 if (std::make_pair(sym->section, sym->value) != it.second && 245 (!changed || sym->getName() < changed->getName())) 246 changed = sym; 247 } 248 return changed; 249 } 250 251 // Process INSERT [AFTER|BEFORE] commands. For each command, we move the 252 // specified output section to the designated place. 253 void LinkerScript::processInsertCommands() { 254 for (const InsertCommand &cmd : insertCommands) { 255 // If cmd.os is empty, it may have been discarded by 256 // adjustSectionsBeforeSorting(). We do not handle such output sections. 257 auto from = llvm::find(sectionCommands, cmd.os); 258 if (from == sectionCommands.end()) 259 continue; 260 sectionCommands.erase(from); 261 262 auto insertPos = llvm::find_if(sectionCommands, [&cmd](BaseCommand *base) { 263 auto *to = dyn_cast<OutputSection>(base); 264 return to != nullptr && to->name == cmd.where; 265 }); 266 if (insertPos == sectionCommands.end()) { 267 error("unable to insert " + cmd.os->name + 268 (cmd.isAfter ? " after " : " before ") + cmd.where); 269 } else { 270 if (cmd.isAfter) 271 ++insertPos; 272 sectionCommands.insert(insertPos, cmd.os); 273 } 274 } 275 } 276 277 // Symbols defined in script should not be inlined by LTO. At the same time 278 // we don't know their final values until late stages of link. Here we scan 279 // over symbol assignment commands and create placeholder symbols if needed. 280 void LinkerScript::declareSymbols() { 281 assert(!ctx); 282 for (BaseCommand *base : sectionCommands) { 283 if (auto *cmd = dyn_cast<SymbolAssignment>(base)) { 284 declareSymbol(cmd); 285 continue; 286 } 287 288 // If the output section directive has constraints, 289 // we can't say for sure if it is going to be included or not. 290 // Skip such sections for now. Improve the checks if we ever 291 // need symbols from that sections to be declared early. 292 auto *sec = cast<OutputSection>(base); 293 if (sec->constraint != ConstraintKind::NoConstraint) 294 continue; 295 for (BaseCommand *base2 : sec->sectionCommands) 296 if (auto *cmd = dyn_cast<SymbolAssignment>(base2)) 297 declareSymbol(cmd); 298 } 299 } 300 301 // This function is called from assignAddresses, while we are 302 // fixing the output section addresses. This function is supposed 303 // to set the final value for a given symbol assignment. 304 void LinkerScript::assignSymbol(SymbolAssignment *cmd, bool inSec) { 305 if (cmd->name == ".") { 306 setDot(cmd->expression, cmd->location, inSec); 307 return; 308 } 309 310 if (!cmd->sym) 311 return; 312 313 ExprValue v = cmd->expression(); 314 if (v.isAbsolute()) { 315 cmd->sym->section = nullptr; 316 cmd->sym->value = v.getValue(); 317 } else { 318 cmd->sym->section = v.sec; 319 cmd->sym->value = v.getSectionOffset(); 320 } 321 cmd->sym->type = v.type; 322 } 323 324 static inline StringRef getFilename(const InputFile *file) { 325 return file ? file->getNameForScript() : StringRef(); 326 } 327 328 bool InputSectionDescription::matchesFile(const InputFile *file) const { 329 if (filePat.isTrivialMatchAll()) 330 return true; 331 332 if (!matchesFileCache || matchesFileCache->first != file) 333 matchesFileCache.emplace(file, filePat.match(getFilename(file))); 334 335 return matchesFileCache->second; 336 } 337 338 bool SectionPattern::excludesFile(const InputFile *file) const { 339 if (excludedFilePat.empty()) 340 return false; 341 342 if (!excludesFileCache || excludesFileCache->first != file) 343 excludesFileCache.emplace(file, excludedFilePat.match(getFilename(file))); 344 345 return excludesFileCache->second; 346 } 347 348 bool LinkerScript::shouldKeep(InputSectionBase *s) { 349 for (InputSectionDescription *id : keptSections) 350 if (id->matchesFile(s->file)) 351 for (SectionPattern &p : id->sectionPatterns) 352 if (p.sectionPat.match(s->name) && 353 (s->flags & id->withFlags) == id->withFlags && 354 (s->flags & id->withoutFlags) == 0) 355 return true; 356 return false; 357 } 358 359 // A helper function for the SORT() command. 360 static bool matchConstraints(ArrayRef<InputSectionBase *> sections, 361 ConstraintKind kind) { 362 if (kind == ConstraintKind::NoConstraint) 363 return true; 364 365 bool isRW = llvm::any_of( 366 sections, [](InputSectionBase *sec) { return sec->flags & SHF_WRITE; }); 367 368 return (isRW && kind == ConstraintKind::ReadWrite) || 369 (!isRW && kind == ConstraintKind::ReadOnly); 370 } 371 372 static void sortSections(MutableArrayRef<InputSectionBase *> vec, 373 SortSectionPolicy k) { 374 auto alignmentComparator = [](InputSectionBase *a, InputSectionBase *b) { 375 // ">" is not a mistake. Sections with larger alignments are placed 376 // before sections with smaller alignments in order to reduce the 377 // amount of padding necessary. This is compatible with GNU. 378 return a->alignment > b->alignment; 379 }; 380 auto nameComparator = [](InputSectionBase *a, InputSectionBase *b) { 381 return a->name < b->name; 382 }; 383 auto priorityComparator = [](InputSectionBase *a, InputSectionBase *b) { 384 return getPriority(a->name) < getPriority(b->name); 385 }; 386 387 switch (k) { 388 case SortSectionPolicy::Default: 389 case SortSectionPolicy::None: 390 return; 391 case SortSectionPolicy::Alignment: 392 return llvm::stable_sort(vec, alignmentComparator); 393 case SortSectionPolicy::Name: 394 return llvm::stable_sort(vec, nameComparator); 395 case SortSectionPolicy::Priority: 396 return llvm::stable_sort(vec, priorityComparator); 397 } 398 } 399 400 // Sort sections as instructed by SORT-family commands and --sort-section 401 // option. Because SORT-family commands can be nested at most two depth 402 // (e.g. SORT_BY_NAME(SORT_BY_ALIGNMENT(.text.*))) and because the command 403 // line option is respected even if a SORT command is given, the exact 404 // behavior we have here is a bit complicated. Here are the rules. 405 // 406 // 1. If two SORT commands are given, --sort-section is ignored. 407 // 2. If one SORT command is given, and if it is not SORT_NONE, 408 // --sort-section is handled as an inner SORT command. 409 // 3. If one SORT command is given, and if it is SORT_NONE, don't sort. 410 // 4. If no SORT command is given, sort according to --sort-section. 411 static void sortInputSections(MutableArrayRef<InputSectionBase *> vec, 412 const SectionPattern &pat) { 413 if (pat.sortOuter == SortSectionPolicy::None) 414 return; 415 416 if (pat.sortInner == SortSectionPolicy::Default) 417 sortSections(vec, config->sortSection); 418 else 419 sortSections(vec, pat.sortInner); 420 sortSections(vec, pat.sortOuter); 421 } 422 423 // Compute and remember which sections the InputSectionDescription matches. 424 std::vector<InputSectionBase *> 425 LinkerScript::computeInputSections(const InputSectionDescription *cmd, 426 ArrayRef<InputSectionBase *> sections) { 427 std::vector<InputSectionBase *> ret; 428 429 // Collects all sections that satisfy constraints of Cmd. 430 for (const SectionPattern &pat : cmd->sectionPatterns) { 431 size_t sizeBefore = ret.size(); 432 433 for (InputSectionBase *sec : sections) { 434 if (!sec->isLive() || sec->parent) 435 continue; 436 437 // For -emit-relocs we have to ignore entries like 438 // .rela.dyn : { *(.rela.data) } 439 // which are common because they are in the default bfd script. 440 // We do not ignore SHT_REL[A] linker-synthesized sections here because 441 // want to support scripts that do custom layout for them. 442 if (isa<InputSection>(sec) && 443 cast<InputSection>(sec)->getRelocatedSection()) 444 continue; 445 446 // Check the name early to improve performance in the common case. 447 if (!pat.sectionPat.match(sec->name)) 448 continue; 449 450 if (!cmd->matchesFile(sec->file) || pat.excludesFile(sec->file) || 451 (sec->flags & cmd->withFlags) != cmd->withFlags || 452 (sec->flags & cmd->withoutFlags) != 0) 453 continue; 454 455 ret.push_back(sec); 456 } 457 458 sortInputSections( 459 MutableArrayRef<InputSectionBase *>(ret).slice(sizeBefore), pat); 460 } 461 return ret; 462 } 463 464 void LinkerScript::discard(InputSectionBase *s) { 465 if (s == in.shStrTab || s == mainPart->relrDyn) 466 error("discarding " + s->name + " section is not allowed"); 467 468 // You can discard .hash and .gnu.hash sections by linker scripts. Since 469 // they are synthesized sections, we need to handle them differently than 470 // other regular sections. 471 if (s == mainPart->gnuHashTab) 472 mainPart->gnuHashTab = nullptr; 473 if (s == mainPart->hashTab) 474 mainPart->hashTab = nullptr; 475 476 s->markDead(); 477 s->parent = nullptr; 478 for (InputSection *ds : s->dependentSections) 479 discard(ds); 480 } 481 482 void LinkerScript::discardSynthetic(OutputSection &outCmd) { 483 for (Partition &part : partitions) { 484 if (!part.armExidx || !part.armExidx->isLive()) 485 continue; 486 std::vector<InputSectionBase *> secs(part.armExidx->exidxSections.begin(), 487 part.armExidx->exidxSections.end()); 488 for (BaseCommand *base : outCmd.sectionCommands) 489 if (auto *cmd = dyn_cast<InputSectionDescription>(base)) { 490 std::vector<InputSectionBase *> matches = 491 computeInputSections(cmd, secs); 492 for (InputSectionBase *s : matches) 493 discard(s); 494 } 495 } 496 } 497 498 std::vector<InputSectionBase *> 499 LinkerScript::createInputSectionList(OutputSection &outCmd) { 500 std::vector<InputSectionBase *> ret; 501 502 for (BaseCommand *base : outCmd.sectionCommands) { 503 if (auto *cmd = dyn_cast<InputSectionDescription>(base)) { 504 cmd->sectionBases = computeInputSections(cmd, inputSections); 505 for (InputSectionBase *s : cmd->sectionBases) 506 s->parent = &outCmd; 507 ret.insert(ret.end(), cmd->sectionBases.begin(), cmd->sectionBases.end()); 508 } 509 } 510 return ret; 511 } 512 513 // Create output sections described by SECTIONS commands. 514 void LinkerScript::processSectionCommands() { 515 size_t i = 0; 516 for (BaseCommand *base : sectionCommands) { 517 if (auto *sec = dyn_cast<OutputSection>(base)) { 518 std::vector<InputSectionBase *> v = createInputSectionList(*sec); 519 520 // The output section name `/DISCARD/' is special. 521 // Any input section assigned to it is discarded. 522 if (sec->name == "/DISCARD/") { 523 for (InputSectionBase *s : v) 524 discard(s); 525 discardSynthetic(*sec); 526 sec->sectionCommands.clear(); 527 continue; 528 } 529 530 // This is for ONLY_IF_RO and ONLY_IF_RW. An output section directive 531 // ".foo : ONLY_IF_R[OW] { ... }" is handled only if all member input 532 // sections satisfy a given constraint. If not, a directive is handled 533 // as if it wasn't present from the beginning. 534 // 535 // Because we'll iterate over SectionCommands many more times, the easy 536 // way to "make it as if it wasn't present" is to make it empty. 537 if (!matchConstraints(v, sec->constraint)) { 538 for (InputSectionBase *s : v) 539 s->parent = nullptr; 540 sec->sectionCommands.clear(); 541 continue; 542 } 543 544 // Handle subalign (e.g. ".foo : SUBALIGN(32) { ... }"). If subalign 545 // is given, input sections are aligned to that value, whether the 546 // given value is larger or smaller than the original section alignment. 547 if (sec->subalignExpr) { 548 uint32_t subalign = sec->subalignExpr().getValue(); 549 for (InputSectionBase *s : v) 550 s->alignment = subalign; 551 } 552 553 // Set the partition field the same way OutputSection::recordSection() 554 // does. Partitions cannot be used with the SECTIONS command, so this is 555 // always 1. 556 sec->partition = 1; 557 558 sec->sectionIndex = i++; 559 } 560 } 561 } 562 563 void LinkerScript::processSymbolAssignments() { 564 // Dot outside an output section still represents a relative address, whose 565 // sh_shndx should not be SHN_UNDEF or SHN_ABS. Create a dummy aether section 566 // that fills the void outside a section. It has an index of one, which is 567 // indistinguishable from any other regular section index. 568 aether = make<OutputSection>("", 0, SHF_ALLOC); 569 aether->sectionIndex = 1; 570 571 // ctx captures the local AddressState and makes it accessible deliberately. 572 // This is needed as there are some cases where we cannot just thread the 573 // current state through to a lambda function created by the script parser. 574 AddressState state; 575 ctx = &state; 576 ctx->outSec = aether; 577 578 for (BaseCommand *base : sectionCommands) { 579 if (auto *cmd = dyn_cast<SymbolAssignment>(base)) 580 addSymbol(cmd); 581 else 582 for (BaseCommand *sub_base : cast<OutputSection>(base)->sectionCommands) 583 if (auto *cmd = dyn_cast<SymbolAssignment>(sub_base)) 584 addSymbol(cmd); 585 } 586 587 ctx = nullptr; 588 } 589 590 static OutputSection *findByName(ArrayRef<BaseCommand *> vec, 591 StringRef name) { 592 for (BaseCommand *base : vec) 593 if (auto *sec = dyn_cast<OutputSection>(base)) 594 if (sec->name == name) 595 return sec; 596 return nullptr; 597 } 598 599 static OutputSection *createSection(InputSectionBase *isec, 600 StringRef outsecName) { 601 OutputSection *sec = script->createOutputSection(outsecName, "<internal>"); 602 sec->recordSection(isec); 603 return sec; 604 } 605 606 static OutputSection * 607 addInputSec(StringMap<TinyPtrVector<OutputSection *>> &map, 608 InputSectionBase *isec, StringRef outsecName) { 609 // Sections with SHT_GROUP or SHF_GROUP attributes reach here only when the -r 610 // option is given. A section with SHT_GROUP defines a "section group", and 611 // its members have SHF_GROUP attribute. Usually these flags have already been 612 // stripped by InputFiles.cpp as section groups are processed and uniquified. 613 // However, for the -r option, we want to pass through all section groups 614 // as-is because adding/removing members or merging them with other groups 615 // change their semantics. 616 if (isec->type == SHT_GROUP || (isec->flags & SHF_GROUP)) 617 return createSection(isec, outsecName); 618 619 // Imagine .zed : { *(.foo) *(.bar) } script. Both foo and bar may have 620 // relocation sections .rela.foo and .rela.bar for example. Most tools do 621 // not allow multiple REL[A] sections for output section. Hence we 622 // should combine these relocation sections into single output. 623 // We skip synthetic sections because it can be .rela.dyn/.rela.plt or any 624 // other REL[A] sections created by linker itself. 625 if (!isa<SyntheticSection>(isec) && 626 (isec->type == SHT_REL || isec->type == SHT_RELA)) { 627 auto *sec = cast<InputSection>(isec); 628 OutputSection *out = sec->getRelocatedSection()->getOutputSection(); 629 630 if (out->relocationSection) { 631 out->relocationSection->recordSection(sec); 632 return nullptr; 633 } 634 635 out->relocationSection = createSection(isec, outsecName); 636 return out->relocationSection; 637 } 638 639 // The ELF spec just says 640 // ---------------------------------------------------------------- 641 // In the first phase, input sections that match in name, type and 642 // attribute flags should be concatenated into single sections. 643 // ---------------------------------------------------------------- 644 // 645 // However, it is clear that at least some flags have to be ignored for 646 // section merging. At the very least SHF_GROUP and SHF_COMPRESSED have to be 647 // ignored. We should not have two output .text sections just because one was 648 // in a group and another was not for example. 649 // 650 // It also seems that wording was a late addition and didn't get the 651 // necessary scrutiny. 652 // 653 // Merging sections with different flags is expected by some users. One 654 // reason is that if one file has 655 // 656 // int *const bar __attribute__((section(".foo"))) = (int *)0; 657 // 658 // gcc with -fPIC will produce a read only .foo section. But if another 659 // file has 660 // 661 // int zed; 662 // int *const bar __attribute__((section(".foo"))) = (int *)&zed; 663 // 664 // gcc with -fPIC will produce a read write section. 665 // 666 // Last but not least, when using linker script the merge rules are forced by 667 // the script. Unfortunately, linker scripts are name based. This means that 668 // expressions like *(.foo*) can refer to multiple input sections with 669 // different flags. We cannot put them in different output sections or we 670 // would produce wrong results for 671 // 672 // start = .; *(.foo.*) end = .; *(.bar) 673 // 674 // and a mapping of .foo1 and .bar1 to one section and .foo2 and .bar2 to 675 // another. The problem is that there is no way to layout those output 676 // sections such that the .foo sections are the only thing between the start 677 // and end symbols. 678 // 679 // Given the above issues, we instead merge sections by name and error on 680 // incompatible types and flags. 681 TinyPtrVector<OutputSection *> &v = map[outsecName]; 682 for (OutputSection *sec : v) { 683 if (sec->partition != isec->partition) 684 continue; 685 686 if (config->relocatable && (isec->flags & SHF_LINK_ORDER)) { 687 // Merging two SHF_LINK_ORDER sections with different sh_link fields will 688 // change their semantics, so we only merge them in -r links if they will 689 // end up being linked to the same output section. The casts are fine 690 // because everything in the map was created by the orphan placement code. 691 auto *firstIsec = cast<InputSectionBase>( 692 cast<InputSectionDescription>(sec->sectionCommands[0]) 693 ->sectionBases[0]); 694 OutputSection *firstIsecOut = 695 firstIsec->flags & SHF_LINK_ORDER 696 ? firstIsec->getLinkOrderDep()->getOutputSection() 697 : nullptr; 698 if (firstIsecOut != isec->getLinkOrderDep()->getOutputSection()) 699 continue; 700 } 701 702 sec->recordSection(isec); 703 return nullptr; 704 } 705 706 OutputSection *sec = createSection(isec, outsecName); 707 v.push_back(sec); 708 return sec; 709 } 710 711 // Add sections that didn't match any sections command. 712 void LinkerScript::addOrphanSections() { 713 StringMap<TinyPtrVector<OutputSection *>> map; 714 std::vector<OutputSection *> v; 715 716 std::function<void(InputSectionBase *)> add; 717 add = [&](InputSectionBase *s) { 718 if (s->isLive() && !s->parent) { 719 orphanSections.push_back(s); 720 721 StringRef name = getOutputSectionName(s); 722 if (config->unique) { 723 v.push_back(createSection(s, name)); 724 } else if (OutputSection *sec = findByName(sectionCommands, name)) { 725 sec->recordSection(s); 726 } else { 727 if (OutputSection *os = addInputSec(map, s, name)) 728 v.push_back(os); 729 assert(isa<MergeInputSection>(s) || 730 s->getOutputSection()->sectionIndex == UINT32_MAX); 731 } 732 } 733 734 if (config->relocatable) 735 for (InputSectionBase *depSec : s->dependentSections) 736 if (depSec->flags & SHF_LINK_ORDER) 737 add(depSec); 738 }; 739 740 // For futher --emit-reloc handling code we need target output section 741 // to be created before we create relocation output section, so we want 742 // to create target sections first. We do not want priority handling 743 // for synthetic sections because them are special. 744 for (InputSectionBase *isec : inputSections) { 745 // In -r links, SHF_LINK_ORDER sections are added while adding their parent 746 // sections because we need to know the parent's output section before we 747 // can select an output section for the SHF_LINK_ORDER section. 748 if (config->relocatable && (isec->flags & SHF_LINK_ORDER)) 749 continue; 750 751 if (auto *sec = dyn_cast<InputSection>(isec)) 752 if (InputSectionBase *rel = sec->getRelocatedSection()) 753 if (auto *relIS = dyn_cast_or_null<InputSectionBase>(rel->parent)) 754 add(relIS); 755 add(isec); 756 } 757 758 // If no SECTIONS command was given, we should insert sections commands 759 // before others, so that we can handle scripts which refers them, 760 // for example: "foo = ABSOLUTE(ADDR(.text)));". 761 // When SECTIONS command is present we just add all orphans to the end. 762 if (hasSectionsCommand) 763 sectionCommands.insert(sectionCommands.end(), v.begin(), v.end()); 764 else 765 sectionCommands.insert(sectionCommands.begin(), v.begin(), v.end()); 766 } 767 768 void LinkerScript::diagnoseOrphanHandling() const { 769 llvm::TimeTraceScope timeScope("Diagnose orphan sections"); 770 for (const InputSectionBase *sec : orphanSections) { 771 // Input SHT_REL[A] retained by --emit-relocs are ignored by 772 // computeInputSections(). Don't warn/error. 773 if (isa<InputSection>(sec) && 774 cast<InputSection>(sec)->getRelocatedSection()) 775 continue; 776 777 StringRef name = getOutputSectionName(sec); 778 if (config->orphanHandling == OrphanHandlingPolicy::Error) 779 error(toString(sec) + " is being placed in '" + name + "'"); 780 else if (config->orphanHandling == OrphanHandlingPolicy::Warn) 781 warn(toString(sec) + " is being placed in '" + name + "'"); 782 } 783 } 784 785 uint64_t LinkerScript::advance(uint64_t size, unsigned alignment) { 786 bool isTbss = 787 (ctx->outSec->flags & SHF_TLS) && ctx->outSec->type == SHT_NOBITS; 788 uint64_t start = isTbss ? dot + ctx->threadBssOffset : dot; 789 start = alignTo(start, alignment); 790 uint64_t end = start + size; 791 792 if (isTbss) 793 ctx->threadBssOffset = end - dot; 794 else 795 dot = end; 796 return end; 797 } 798 799 void LinkerScript::output(InputSection *s) { 800 assert(ctx->outSec == s->getParent()); 801 uint64_t before = advance(0, 1); 802 uint64_t pos = advance(s->getSize(), s->alignment); 803 s->outSecOff = pos - s->getSize() - ctx->outSec->addr; 804 805 // Update output section size after adding each section. This is so that 806 // SIZEOF works correctly in the case below: 807 // .foo { *(.aaa) a = SIZEOF(.foo); *(.bbb) } 808 expandOutputSection(pos - before); 809 } 810 811 void LinkerScript::switchTo(OutputSection *sec) { 812 ctx->outSec = sec; 813 814 uint64_t pos = advance(0, 1); 815 if (sec->addrExpr && script->hasSectionsCommand) { 816 // The alignment is ignored. 817 ctx->outSec->addr = pos; 818 } else { 819 // ctx->outSec->alignment is the max of ALIGN and the maximum of input 820 // section alignments. 821 ctx->outSec->addr = advance(0, ctx->outSec->alignment); 822 expandMemoryRegions(ctx->outSec->addr - pos); 823 } 824 } 825 826 // This function searches for a memory region to place the given output 827 // section in. If found, a pointer to the appropriate memory region is 828 // returned. Otherwise, a nullptr is returned. 829 MemoryRegion *LinkerScript::findMemoryRegion(OutputSection *sec) { 830 // If a memory region name was specified in the output section command, 831 // then try to find that region first. 832 if (!sec->memoryRegionName.empty()) { 833 if (MemoryRegion *m = memoryRegions.lookup(sec->memoryRegionName)) 834 return m; 835 error("memory region '" + sec->memoryRegionName + "' not declared"); 836 return nullptr; 837 } 838 839 // If at least one memory region is defined, all sections must 840 // belong to some memory region. Otherwise, we don't need to do 841 // anything for memory regions. 842 if (memoryRegions.empty()) 843 return nullptr; 844 845 // See if a region can be found by matching section flags. 846 for (auto &pair : memoryRegions) { 847 MemoryRegion *m = pair.second; 848 if ((m->flags & sec->flags) && (m->negFlags & sec->flags) == 0) 849 return m; 850 } 851 852 // Otherwise, no suitable region was found. 853 if (sec->flags & SHF_ALLOC) 854 error("no memory region specified for section '" + sec->name + "'"); 855 return nullptr; 856 } 857 858 static OutputSection *findFirstSection(PhdrEntry *load) { 859 for (OutputSection *sec : outputSections) 860 if (sec->ptLoad == load) 861 return sec; 862 return nullptr; 863 } 864 865 // This function assigns offsets to input sections and an output section 866 // for a single sections command (e.g. ".text { *(.text); }"). 867 void LinkerScript::assignOffsets(OutputSection *sec) { 868 const bool sameMemRegion = ctx->memRegion == sec->memRegion; 869 const bool prevLMARegionIsDefault = ctx->lmaRegion == nullptr; 870 const uint64_t savedDot = dot; 871 ctx->memRegion = sec->memRegion; 872 ctx->lmaRegion = sec->lmaRegion; 873 874 if (sec->flags & SHF_ALLOC) { 875 if (ctx->memRegion) 876 dot = ctx->memRegion->curPos; 877 if (sec->addrExpr) 878 setDot(sec->addrExpr, sec->location, false); 879 880 // If the address of the section has been moved forward by an explicit 881 // expression so that it now starts past the current curPos of the enclosing 882 // region, we need to expand the current region to account for the space 883 // between the previous section, if any, and the start of this section. 884 if (ctx->memRegion && ctx->memRegion->curPos < dot) 885 expandMemoryRegion(ctx->memRegion, dot - ctx->memRegion->curPos, 886 ctx->memRegion->name, sec->name); 887 } else { 888 // Non-SHF_ALLOC sections have zero addresses. 889 dot = 0; 890 } 891 892 switchTo(sec); 893 894 // ctx->lmaOffset is LMA minus VMA. If LMA is explicitly specified via AT() or 895 // AT>, recompute ctx->lmaOffset; otherwise, if both previous/current LMA 896 // region is the default, and the two sections are in the same memory region, 897 // reuse previous lmaOffset; otherwise, reset lmaOffset to 0. This emulates 898 // heuristics described in 899 // https://sourceware.org/binutils/docs/ld/Output-Section-LMA.html 900 if (sec->lmaExpr) 901 ctx->lmaOffset = sec->lmaExpr().getValue() - dot; 902 else if (MemoryRegion *mr = sec->lmaRegion) 903 ctx->lmaOffset = alignTo(mr->curPos, sec->alignment) - dot; 904 else if (!sameMemRegion || !prevLMARegionIsDefault) 905 ctx->lmaOffset = 0; 906 907 // Propagate ctx->lmaOffset to the first "non-header" section. 908 if (PhdrEntry *l = ctx->outSec->ptLoad) 909 if (sec == findFirstSection(l)) 910 l->lmaOffset = ctx->lmaOffset; 911 912 // We can call this method multiple times during the creation of 913 // thunks and want to start over calculation each time. 914 sec->size = 0; 915 916 // We visited SectionsCommands from processSectionCommands to 917 // layout sections. Now, we visit SectionsCommands again to fix 918 // section offsets. 919 for (BaseCommand *base : sec->sectionCommands) { 920 // This handles the assignments to symbol or to the dot. 921 if (auto *cmd = dyn_cast<SymbolAssignment>(base)) { 922 cmd->addr = dot; 923 assignSymbol(cmd, true); 924 cmd->size = dot - cmd->addr; 925 continue; 926 } 927 928 // Handle BYTE(), SHORT(), LONG(), or QUAD(). 929 if (auto *cmd = dyn_cast<ByteCommand>(base)) { 930 cmd->offset = dot - ctx->outSec->addr; 931 dot += cmd->size; 932 expandOutputSection(cmd->size); 933 continue; 934 } 935 936 // Handle a single input section description command. 937 // It calculates and assigns the offsets for each section and also 938 // updates the output section size. 939 for (InputSection *sec : cast<InputSectionDescription>(base)->sections) 940 output(sec); 941 } 942 943 // Non-SHF_ALLOC sections do not affect the addresses of other OutputSections 944 // as they are not part of the process image. 945 if (!(sec->flags & SHF_ALLOC)) 946 dot = savedDot; 947 } 948 949 static bool isDiscardable(OutputSection &sec) { 950 if (sec.name == "/DISCARD/") 951 return true; 952 953 // We do not remove empty sections that are explicitly 954 // assigned to any segment. 955 if (!sec.phdrs.empty()) 956 return false; 957 958 // We do not want to remove OutputSections with expressions that reference 959 // symbols even if the OutputSection is empty. We want to ensure that the 960 // expressions can be evaluated and report an error if they cannot. 961 if (sec.expressionsUseSymbols) 962 return false; 963 964 // OutputSections may be referenced by name in ADDR and LOADADDR expressions, 965 // as an empty Section can has a valid VMA and LMA we keep the OutputSection 966 // to maintain the integrity of the other Expression. 967 if (sec.usedInExpression) 968 return false; 969 970 for (BaseCommand *base : sec.sectionCommands) { 971 if (auto cmd = dyn_cast<SymbolAssignment>(base)) 972 // Don't create empty output sections just for unreferenced PROVIDE 973 // symbols. 974 if (cmd->name != "." && !cmd->sym) 975 continue; 976 977 if (!isa<InputSectionDescription>(*base)) 978 return false; 979 } 980 return true; 981 } 982 983 void LinkerScript::adjustSectionsBeforeSorting() { 984 // If the output section contains only symbol assignments, create a 985 // corresponding output section. The issue is what to do with linker script 986 // like ".foo : { symbol = 42; }". One option would be to convert it to 987 // "symbol = 42;". That is, move the symbol out of the empty section 988 // description. That seems to be what bfd does for this simple case. The 989 // problem is that this is not completely general. bfd will give up and 990 // create a dummy section too if there is a ". = . + 1" inside the section 991 // for example. 992 // Given that we want to create the section, we have to worry what impact 993 // it will have on the link. For example, if we just create a section with 994 // 0 for flags, it would change which PT_LOADs are created. 995 // We could remember that particular section is dummy and ignore it in 996 // other parts of the linker, but unfortunately there are quite a few places 997 // that would need to change: 998 // * The program header creation. 999 // * The orphan section placement. 1000 // * The address assignment. 1001 // The other option is to pick flags that minimize the impact the section 1002 // will have on the rest of the linker. That is why we copy the flags from 1003 // the previous sections. Only a few flags are needed to keep the impact low. 1004 uint64_t flags = SHF_ALLOC; 1005 1006 for (BaseCommand *&cmd : sectionCommands) { 1007 auto *sec = dyn_cast<OutputSection>(cmd); 1008 if (!sec) 1009 continue; 1010 1011 // Handle align (e.g. ".foo : ALIGN(16) { ... }"). 1012 if (sec->alignExpr) 1013 sec->alignment = 1014 std::max<uint32_t>(sec->alignment, sec->alignExpr().getValue()); 1015 1016 // The input section might have been removed (if it was an empty synthetic 1017 // section), but we at least know the flags. 1018 if (sec->hasInputSections) 1019 flags = sec->flags; 1020 1021 // We do not want to keep any special flags for output section 1022 // in case it is empty. 1023 bool isEmpty = (getFirstInputSection(sec) == nullptr); 1024 if (isEmpty) 1025 sec->flags = flags & ((sec->nonAlloc ? 0 : (uint64_t)SHF_ALLOC) | 1026 SHF_WRITE | SHF_EXECINSTR); 1027 1028 if (isEmpty && isDiscardable(*sec)) { 1029 sec->markDead(); 1030 cmd = nullptr; 1031 } 1032 } 1033 1034 // It is common practice to use very generic linker scripts. So for any 1035 // given run some of the output sections in the script will be empty. 1036 // We could create corresponding empty output sections, but that would 1037 // clutter the output. 1038 // We instead remove trivially empty sections. The bfd linker seems even 1039 // more aggressive at removing them. 1040 llvm::erase_if(sectionCommands, [&](BaseCommand *base) { return !base; }); 1041 } 1042 1043 void LinkerScript::adjustSectionsAfterSorting() { 1044 // Try and find an appropriate memory region to assign offsets in. 1045 for (BaseCommand *base : sectionCommands) { 1046 if (auto *sec = dyn_cast<OutputSection>(base)) { 1047 if (!sec->lmaRegionName.empty()) { 1048 if (MemoryRegion *m = memoryRegions.lookup(sec->lmaRegionName)) 1049 sec->lmaRegion = m; 1050 else 1051 error("memory region '" + sec->lmaRegionName + "' not declared"); 1052 } 1053 sec->memRegion = findMemoryRegion(sec); 1054 } 1055 } 1056 1057 // If output section command doesn't specify any segments, 1058 // and we haven't previously assigned any section to segment, 1059 // then we simply assign section to the very first load segment. 1060 // Below is an example of such linker script: 1061 // PHDRS { seg PT_LOAD; } 1062 // SECTIONS { .aaa : { *(.aaa) } } 1063 std::vector<StringRef> defPhdrs; 1064 auto firstPtLoad = llvm::find_if(phdrsCommands, [](const PhdrsCommand &cmd) { 1065 return cmd.type == PT_LOAD; 1066 }); 1067 if (firstPtLoad != phdrsCommands.end()) 1068 defPhdrs.push_back(firstPtLoad->name); 1069 1070 // Walk the commands and propagate the program headers to commands that don't 1071 // explicitly specify them. 1072 for (BaseCommand *base : sectionCommands) { 1073 auto *sec = dyn_cast<OutputSection>(base); 1074 if (!sec) 1075 continue; 1076 1077 if (sec->phdrs.empty()) { 1078 // To match the bfd linker script behaviour, only propagate program 1079 // headers to sections that are allocated. 1080 if (sec->flags & SHF_ALLOC) 1081 sec->phdrs = defPhdrs; 1082 } else { 1083 defPhdrs = sec->phdrs; 1084 } 1085 } 1086 } 1087 1088 static uint64_t computeBase(uint64_t min, bool allocateHeaders) { 1089 // If there is no SECTIONS or if the linkerscript is explicit about program 1090 // headers, do our best to allocate them. 1091 if (!script->hasSectionsCommand || allocateHeaders) 1092 return 0; 1093 // Otherwise only allocate program headers if that would not add a page. 1094 return alignDown(min, config->maxPageSize); 1095 } 1096 1097 // When the SECTIONS command is used, try to find an address for the file and 1098 // program headers output sections, which can be added to the first PT_LOAD 1099 // segment when program headers are created. 1100 // 1101 // We check if the headers fit below the first allocated section. If there isn't 1102 // enough space for these sections, we'll remove them from the PT_LOAD segment, 1103 // and we'll also remove the PT_PHDR segment. 1104 void LinkerScript::allocateHeaders(std::vector<PhdrEntry *> &phdrs) { 1105 uint64_t min = std::numeric_limits<uint64_t>::max(); 1106 for (OutputSection *sec : outputSections) 1107 if (sec->flags & SHF_ALLOC) 1108 min = std::min<uint64_t>(min, sec->addr); 1109 1110 auto it = llvm::find_if( 1111 phdrs, [](const PhdrEntry *e) { return e->p_type == PT_LOAD; }); 1112 if (it == phdrs.end()) 1113 return; 1114 PhdrEntry *firstPTLoad = *it; 1115 1116 bool hasExplicitHeaders = 1117 llvm::any_of(phdrsCommands, [](const PhdrsCommand &cmd) { 1118 return cmd.hasPhdrs || cmd.hasFilehdr; 1119 }); 1120 bool paged = !config->omagic && !config->nmagic; 1121 uint64_t headerSize = getHeaderSize(); 1122 if ((paged || hasExplicitHeaders) && 1123 headerSize <= min - computeBase(min, hasExplicitHeaders)) { 1124 min = alignDown(min - headerSize, config->maxPageSize); 1125 Out::elfHeader->addr = min; 1126 Out::programHeaders->addr = min + Out::elfHeader->size; 1127 return; 1128 } 1129 1130 // Error if we were explicitly asked to allocate headers. 1131 if (hasExplicitHeaders) 1132 error("could not allocate headers"); 1133 1134 Out::elfHeader->ptLoad = nullptr; 1135 Out::programHeaders->ptLoad = nullptr; 1136 firstPTLoad->firstSec = findFirstSection(firstPTLoad); 1137 1138 llvm::erase_if(phdrs, 1139 [](const PhdrEntry *e) { return e->p_type == PT_PHDR; }); 1140 } 1141 1142 LinkerScript::AddressState::AddressState() { 1143 for (auto &mri : script->memoryRegions) { 1144 MemoryRegion *mr = mri.second; 1145 mr->curPos = (mr->origin)().getValue(); 1146 } 1147 } 1148 1149 // Here we assign addresses as instructed by linker script SECTIONS 1150 // sub-commands. Doing that allows us to use final VA values, so here 1151 // we also handle rest commands like symbol assignments and ASSERTs. 1152 // Returns a symbol that has changed its section or value, or nullptr if no 1153 // symbol has changed. 1154 const Defined *LinkerScript::assignAddresses() { 1155 if (script->hasSectionsCommand) { 1156 // With a linker script, assignment of addresses to headers is covered by 1157 // allocateHeaders(). 1158 dot = config->imageBase.getValueOr(0); 1159 } else { 1160 // Assign addresses to headers right now. 1161 dot = target->getImageBase(); 1162 Out::elfHeader->addr = dot; 1163 Out::programHeaders->addr = dot + Out::elfHeader->size; 1164 dot += getHeaderSize(); 1165 } 1166 1167 auto deleter = std::make_unique<AddressState>(); 1168 ctx = deleter.get(); 1169 errorOnMissingSection = true; 1170 switchTo(aether); 1171 1172 SymbolAssignmentMap oldValues = getSymbolAssignmentValues(sectionCommands); 1173 for (BaseCommand *base : sectionCommands) { 1174 if (auto *cmd = dyn_cast<SymbolAssignment>(base)) { 1175 cmd->addr = dot; 1176 assignSymbol(cmd, false); 1177 cmd->size = dot - cmd->addr; 1178 continue; 1179 } 1180 assignOffsets(cast<OutputSection>(base)); 1181 } 1182 1183 ctx = nullptr; 1184 return getChangedSymbolAssignment(oldValues); 1185 } 1186 1187 // Creates program headers as instructed by PHDRS linker script command. 1188 std::vector<PhdrEntry *> LinkerScript::createPhdrs() { 1189 std::vector<PhdrEntry *> ret; 1190 1191 // Process PHDRS and FILEHDR keywords because they are not 1192 // real output sections and cannot be added in the following loop. 1193 for (const PhdrsCommand &cmd : phdrsCommands) { 1194 PhdrEntry *phdr = make<PhdrEntry>(cmd.type, cmd.flags ? *cmd.flags : PF_R); 1195 1196 if (cmd.hasFilehdr) 1197 phdr->add(Out::elfHeader); 1198 if (cmd.hasPhdrs) 1199 phdr->add(Out::programHeaders); 1200 1201 if (cmd.lmaExpr) { 1202 phdr->p_paddr = cmd.lmaExpr().getValue(); 1203 phdr->hasLMA = true; 1204 } 1205 ret.push_back(phdr); 1206 } 1207 1208 // Add output sections to program headers. 1209 for (OutputSection *sec : outputSections) { 1210 // Assign headers specified by linker script 1211 for (size_t id : getPhdrIndices(sec)) { 1212 ret[id]->add(sec); 1213 if (!phdrsCommands[id].flags.hasValue()) 1214 ret[id]->p_flags |= sec->getPhdrFlags(); 1215 } 1216 } 1217 return ret; 1218 } 1219 1220 // Returns true if we should emit an .interp section. 1221 // 1222 // We usually do. But if PHDRS commands are given, and 1223 // no PT_INTERP is there, there's no place to emit an 1224 // .interp, so we don't do that in that case. 1225 bool LinkerScript::needsInterpSection() { 1226 if (phdrsCommands.empty()) 1227 return true; 1228 for (PhdrsCommand &cmd : phdrsCommands) 1229 if (cmd.type == PT_INTERP) 1230 return true; 1231 return false; 1232 } 1233 1234 ExprValue LinkerScript::getSymbolValue(StringRef name, const Twine &loc) { 1235 if (name == ".") { 1236 if (ctx) 1237 return {ctx->outSec, false, dot - ctx->outSec->addr, loc}; 1238 error(loc + ": unable to get location counter value"); 1239 return 0; 1240 } 1241 1242 if (Symbol *sym = symtab->find(name)) { 1243 if (auto *ds = dyn_cast<Defined>(sym)) { 1244 ExprValue v{ds->section, false, ds->value, loc}; 1245 // Retain the original st_type, so that the alias will get the same 1246 // behavior in relocation processing. Any operation will reset st_type to 1247 // STT_NOTYPE. 1248 v.type = ds->type; 1249 return v; 1250 } 1251 if (isa<SharedSymbol>(sym)) 1252 if (!errorOnMissingSection) 1253 return {nullptr, false, 0, loc}; 1254 } 1255 1256 error(loc + ": symbol not found: " + name); 1257 return 0; 1258 } 1259 1260 // Returns the index of the segment named Name. 1261 static Optional<size_t> getPhdrIndex(ArrayRef<PhdrsCommand> vec, 1262 StringRef name) { 1263 for (size_t i = 0; i < vec.size(); ++i) 1264 if (vec[i].name == name) 1265 return i; 1266 return None; 1267 } 1268 1269 // Returns indices of ELF headers containing specific section. Each index is a 1270 // zero based number of ELF header listed within PHDRS {} script block. 1271 std::vector<size_t> LinkerScript::getPhdrIndices(OutputSection *cmd) { 1272 std::vector<size_t> ret; 1273 1274 for (StringRef s : cmd->phdrs) { 1275 if (Optional<size_t> idx = getPhdrIndex(phdrsCommands, s)) 1276 ret.push_back(*idx); 1277 else if (s != "NONE") 1278 error(cmd->location + ": program header '" + s + 1279 "' is not listed in PHDRS"); 1280 } 1281 return ret; 1282 } 1283