1 //===- LinkerScript.cpp ---------------------------------------------------===//
2 //
3 //                             The LLVM Linker
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the parser/evaluator of the linker script.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "LinkerScript.h"
15 #include "Config.h"
16 #include "Driver.h"
17 #include "InputSection.h"
18 #include "Memory.h"
19 #include "OutputSections.h"
20 #include "ScriptParser.h"
21 #include "Strings.h"
22 #include "SymbolTable.h"
23 #include "Symbols.h"
24 #include "SyntheticSections.h"
25 #include "Target.h"
26 #include "Writer.h"
27 #include "llvm/ADT/STLExtras.h"
28 #include "llvm/ADT/SmallString.h"
29 #include "llvm/ADT/StringRef.h"
30 #include "llvm/ADT/StringSwitch.h"
31 #include "llvm/Support/Casting.h"
32 #include "llvm/Support/ELF.h"
33 #include "llvm/Support/Endian.h"
34 #include "llvm/Support/ErrorHandling.h"
35 #include "llvm/Support/FileSystem.h"
36 #include "llvm/Support/MathExtras.h"
37 #include "llvm/Support/Path.h"
38 #include <algorithm>
39 #include <cassert>
40 #include <cstddef>
41 #include <cstdint>
42 #include <iterator>
43 #include <limits>
44 #include <memory>
45 #include <string>
46 #include <tuple>
47 #include <vector>
48 
49 using namespace llvm;
50 using namespace llvm::ELF;
51 using namespace llvm::object;
52 using namespace llvm::support::endian;
53 using namespace lld;
54 using namespace lld::elf;
55 
56 LinkerScriptBase *elf::ScriptBase;
57 ScriptConfiguration *elf::ScriptConfig;
58 
59 template <class ELFT> static SymbolBody *addRegular(SymbolAssignment *Cmd) {
60   uint8_t Visibility = Cmd->Hidden ? STV_HIDDEN : STV_DEFAULT;
61   Symbol *Sym = Symtab<ELFT>::X->addUndefined(
62       Cmd->Name, /*IsLocal=*/false, STB_GLOBAL, Visibility,
63       /*Type*/ 0,
64       /*CanOmitFromDynSym*/ false, /*File*/ nullptr);
65 
66   replaceBody<DefinedRegular<ELFT>>(Sym, Cmd->Name, /*IsLocal=*/false,
67                                     Visibility, STT_NOTYPE, 0, 0, nullptr,
68                                     nullptr);
69   return Sym->body();
70 }
71 
72 template <class ELFT> static SymbolBody *addSynthetic(SymbolAssignment *Cmd) {
73   uint8_t Visibility = Cmd->Hidden ? STV_HIDDEN : STV_DEFAULT;
74   const OutputSectionBase *Sec =
75       ScriptConfig->HasSections ? nullptr : Cmd->Expression.Section();
76   Symbol *Sym = Symtab<ELFT>::X->addUndefined(
77       Cmd->Name, /*IsLocal=*/false, STB_GLOBAL, Visibility,
78       /*Type*/ 0,
79       /*CanOmitFromDynSym*/ false, /*File*/ nullptr);
80 
81   replaceBody<DefinedSynthetic>(Sym, Cmd->Name, 0, Sec);
82   return Sym->body();
83 }
84 
85 static bool isUnderSysroot(StringRef Path) {
86   if (Config->Sysroot == "")
87     return false;
88   for (; !Path.empty(); Path = sys::path::parent_path(Path))
89     if (sys::fs::equivalent(Config->Sysroot, Path))
90       return true;
91   return false;
92 }
93 
94 template <class ELFT> static void assignSymbol(SymbolAssignment *Cmd) {
95   // If there are sections, then let the value be assigned later in
96   // `assignAddresses`.
97   if (ScriptConfig->HasSections)
98     return;
99 
100   uint64_t Value = Cmd->Expression(0);
101   if (Cmd->Expression.IsAbsolute()) {
102     cast<DefinedRegular<ELFT>>(Cmd->Sym)->Value = Value;
103   } else {
104     const OutputSectionBase *Sec = Cmd->Expression.Section();
105     if (Sec)
106       cast<DefinedSynthetic>(Cmd->Sym)->Value = Value - Sec->Addr;
107   }
108 }
109 
110 template <class ELFT> static void addSymbol(SymbolAssignment *Cmd) {
111   if (Cmd->Name == ".")
112     return;
113 
114   // If a symbol was in PROVIDE(), we need to define it only when
115   // it is a referenced undefined symbol.
116   SymbolBody *B = Symtab<ELFT>::X->find(Cmd->Name);
117   if (Cmd->Provide && (!B || B->isDefined()))
118     return;
119 
120   // Otherwise, create a new symbol if one does not exist or an
121   // undefined one does exist.
122   if (Cmd->Expression.IsAbsolute())
123     Cmd->Sym = addRegular<ELFT>(Cmd);
124   else
125     Cmd->Sym = addSynthetic<ELFT>(Cmd);
126   assignSymbol<ELFT>(Cmd);
127 }
128 
129 bool SymbolAssignment::classof(const BaseCommand *C) {
130   return C->Kind == AssignmentKind;
131 }
132 
133 bool OutputSectionCommand::classof(const BaseCommand *C) {
134   return C->Kind == OutputSectionKind;
135 }
136 
137 bool InputSectionDescription::classof(const BaseCommand *C) {
138   return C->Kind == InputSectionKind;
139 }
140 
141 bool AssertCommand::classof(const BaseCommand *C) {
142   return C->Kind == AssertKind;
143 }
144 
145 bool BytesDataCommand::classof(const BaseCommand *C) {
146   return C->Kind == BytesDataKind;
147 }
148 
149 template <class ELFT> LinkerScript<ELFT>::LinkerScript() = default;
150 template <class ELFT> LinkerScript<ELFT>::~LinkerScript() = default;
151 
152 template <class ELFT> static StringRef basename(InputSectionBase<ELFT> *S) {
153   if (S->getFile())
154     return sys::path::filename(S->getFile()->getName());
155   return "";
156 }
157 
158 template <class ELFT>
159 bool LinkerScript<ELFT>::shouldKeep(InputSectionBase<ELFT> *S) {
160   for (InputSectionDescription *ID : Opt.KeptSections)
161     if (ID->FilePat.match(basename(S)))
162       for (SectionPattern &P : ID->SectionPatterns)
163         if (P.SectionPat.match(S->Name))
164           return true;
165   return false;
166 }
167 
168 static bool comparePriority(InputSectionData *A, InputSectionData *B) {
169   return getPriority(A->Name) < getPriority(B->Name);
170 }
171 
172 static bool compareName(InputSectionData *A, InputSectionData *B) {
173   return A->Name < B->Name;
174 }
175 
176 static bool compareAlignment(InputSectionData *A, InputSectionData *B) {
177   // ">" is not a mistake. Larger alignments are placed before smaller
178   // alignments in order to reduce the amount of padding necessary.
179   // This is compatible with GNU.
180   return A->Alignment > B->Alignment;
181 }
182 
183 static std::function<bool(InputSectionData *, InputSectionData *)>
184 getComparator(SortSectionPolicy K) {
185   switch (K) {
186   case SortSectionPolicy::Alignment:
187     return compareAlignment;
188   case SortSectionPolicy::Name:
189     return compareName;
190   case SortSectionPolicy::Priority:
191     return comparePriority;
192   default:
193     llvm_unreachable("unknown sort policy");
194   }
195 }
196 
197 template <class ELFT>
198 static bool matchConstraints(ArrayRef<InputSectionBase<ELFT> *> Sections,
199                              ConstraintKind Kind) {
200   if (Kind == ConstraintKind::NoConstraint)
201     return true;
202   bool IsRW = llvm::any_of(Sections, [=](InputSectionData *Sec2) {
203     auto *Sec = static_cast<InputSectionBase<ELFT> *>(Sec2);
204     return Sec->Flags & SHF_WRITE;
205   });
206   return (IsRW && Kind == ConstraintKind::ReadWrite) ||
207          (!IsRW && Kind == ConstraintKind::ReadOnly);
208 }
209 
210 static void sortSections(InputSectionData **Begin, InputSectionData **End,
211                          SortSectionPolicy K) {
212   if (K != SortSectionPolicy::Default && K != SortSectionPolicy::None)
213     std::stable_sort(Begin, End, getComparator(K));
214 }
215 
216 // Compute and remember which sections the InputSectionDescription matches.
217 template <class ELFT>
218 void LinkerScript<ELFT>::computeInputSections(InputSectionDescription *I) {
219   // Collects all sections that satisfy constraints of I
220   // and attach them to I.
221   for (SectionPattern &Pat : I->SectionPatterns) {
222     size_t SizeBefore = I->Sections.size();
223 
224     for (InputSectionBase<ELFT> *S : Symtab<ELFT>::X->Sections) {
225       if (!S->Live || S->Assigned)
226         continue;
227 
228       StringRef Filename = basename(S);
229       if (!I->FilePat.match(Filename) || Pat.ExcludedFilePat.match(Filename))
230         continue;
231       if (!Pat.SectionPat.match(S->Name))
232         continue;
233       I->Sections.push_back(S);
234       S->Assigned = true;
235     }
236 
237     // Sort sections as instructed by SORT-family commands and --sort-section
238     // option. Because SORT-family commands can be nested at most two depth
239     // (e.g. SORT_BY_NAME(SORT_BY_ALIGNMENT(.text.*))) and because the command
240     // line option is respected even if a SORT command is given, the exact
241     // behavior we have here is a bit complicated. Here are the rules.
242     //
243     // 1. If two SORT commands are given, --sort-section is ignored.
244     // 2. If one SORT command is given, and if it is not SORT_NONE,
245     //    --sort-section is handled as an inner SORT command.
246     // 3. If one SORT command is given, and if it is SORT_NONE, don't sort.
247     // 4. If no SORT command is given, sort according to --sort-section.
248     InputSectionData **Begin = I->Sections.data() + SizeBefore;
249     InputSectionData **End = I->Sections.data() + I->Sections.size();
250     if (Pat.SortOuter != SortSectionPolicy::None) {
251       if (Pat.SortInner == SortSectionPolicy::Default)
252         sortSections(Begin, End, Config->SortSection);
253       else
254         sortSections(Begin, End, Pat.SortInner);
255       sortSections(Begin, End, Pat.SortOuter);
256     }
257   }
258 }
259 
260 template <class ELFT>
261 void LinkerScript<ELFT>::discard(ArrayRef<InputSectionBase<ELFT> *> V) {
262   for (InputSectionBase<ELFT> *S : V) {
263     S->Live = false;
264     reportDiscarded(S);
265   }
266 }
267 
268 template <class ELFT>
269 std::vector<InputSectionBase<ELFT> *>
270 LinkerScript<ELFT>::createInputSectionList(OutputSectionCommand &OutCmd) {
271   std::vector<InputSectionBase<ELFT> *> Ret;
272 
273   for (const std::unique_ptr<BaseCommand> &Base : OutCmd.Commands) {
274     auto *Cmd = dyn_cast<InputSectionDescription>(Base.get());
275     if (!Cmd)
276       continue;
277     computeInputSections(Cmd);
278     for (InputSectionData *S : Cmd->Sections)
279       Ret.push_back(static_cast<InputSectionBase<ELFT> *>(S));
280   }
281 
282   return Ret;
283 }
284 
285 template <class ELFT>
286 void LinkerScript<ELFT>::addSection(OutputSectionFactory<ELFT> &Factory,
287                                     InputSectionBase<ELFT> *Sec,
288                                     StringRef Name) {
289   OutputSectionBase *OutSec;
290   bool IsNew;
291   std::tie(OutSec, IsNew) = Factory.create(Sec, Name);
292   if (IsNew)
293     OutputSections->push_back(OutSec);
294   OutSec->addSection(Sec);
295 }
296 
297 template <class ELFT>
298 void LinkerScript<ELFT>::processCommands(OutputSectionFactory<ELFT> &Factory) {
299   for (unsigned I = 0; I < Opt.Commands.size(); ++I) {
300     auto Iter = Opt.Commands.begin() + I;
301     const std::unique_ptr<BaseCommand> &Base1 = *Iter;
302 
303     // Handle symbol assignments outside of any output section.
304     if (auto *Cmd = dyn_cast<SymbolAssignment>(Base1.get())) {
305       addSymbol<ELFT>(Cmd);
306       continue;
307     }
308 
309     if (auto *Cmd = dyn_cast<AssertCommand>(Base1.get())) {
310       // If we don't have SECTIONS then output sections have already been
311       // created by Writer<ELFT>. The LinkerScript<ELFT>::assignAddresses
312       // will not be called, so ASSERT should be evaluated now.
313       if (!Opt.HasSections)
314         Cmd->Expression(0);
315       continue;
316     }
317 
318     if (auto *Cmd = dyn_cast<OutputSectionCommand>(Base1.get())) {
319       std::vector<InputSectionBase<ELFT> *> V = createInputSectionList(*Cmd);
320 
321       // The output section name `/DISCARD/' is special.
322       // Any input section assigned to it is discarded.
323       if (Cmd->Name == "/DISCARD/") {
324         discard(V);
325         continue;
326       }
327 
328       // This is for ONLY_IF_RO and ONLY_IF_RW. An output section directive
329       // ".foo : ONLY_IF_R[OW] { ... }" is handled only if all member input
330       // sections satisfy a given constraint. If not, a directive is handled
331       // as if it wasn't present from the beginning.
332       //
333       // Because we'll iterate over Commands many more times, the easiest
334       // way to "make it as if it wasn't present" is to just remove it.
335       if (!matchConstraints<ELFT>(V, Cmd->Constraint)) {
336         for (InputSectionBase<ELFT> *S : V)
337           S->Assigned = false;
338         Opt.Commands.erase(Iter);
339         --I;
340         continue;
341       }
342 
343       // A directive may contain symbol definitions like this:
344       // ".foo : { ...; bar = .; }". Handle them.
345       for (const std::unique_ptr<BaseCommand> &Base : Cmd->Commands)
346         if (auto *OutCmd = dyn_cast<SymbolAssignment>(Base.get()))
347           addSymbol<ELFT>(OutCmd);
348 
349       // Handle subalign (e.g. ".foo : SUBALIGN(32) { ... }"). If subalign
350       // is given, input sections are aligned to that value, whether the
351       // given value is larger or smaller than the original section alignment.
352       if (Cmd->SubalignExpr) {
353         uint32_t Subalign = Cmd->SubalignExpr(0);
354         for (InputSectionBase<ELFT> *S : V)
355           S->Alignment = Subalign;
356       }
357 
358       // Add input sections to an output section.
359       for (InputSectionBase<ELFT> *S : V)
360         addSection(Factory, S, Cmd->Name);
361     }
362   }
363 }
364 
365 // Add sections that didn't match any sections command.
366 template <class ELFT>
367 void LinkerScript<ELFT>::addOrphanSections(
368     OutputSectionFactory<ELFT> &Factory) {
369   for (InputSectionBase<ELFT> *S : Symtab<ELFT>::X->Sections)
370     if (S->Live && !S->OutSec)
371       addSection(Factory, S, getOutputSectionName(S->Name));
372 }
373 
374 // Sets value of a section-defined symbol. Two kinds of
375 // symbols are processed: synthetic symbols, whose value
376 // is an offset from beginning of section and regular
377 // symbols whose value is absolute.
378 template <class ELFT>
379 static void assignSectionSymbol(SymbolAssignment *Cmd,
380                                 typename ELFT::uint Value) {
381   if (!Cmd->Sym)
382     return;
383 
384   if (auto *Body = dyn_cast<DefinedSynthetic>(Cmd->Sym)) {
385     Body->Section = Cmd->Expression.Section();
386     Body->Value = Cmd->Expression(Value) - Body->Section->Addr;
387     return;
388   }
389   auto *Body = cast<DefinedRegular<ELFT>>(Cmd->Sym);
390   Body->Value = Cmd->Expression(Value);
391 }
392 
393 template <class ELFT> static bool isTbss(OutputSectionBase *Sec) {
394   return (Sec->Flags & SHF_TLS) && Sec->Type == SHT_NOBITS;
395 }
396 
397 template <class ELFT> void LinkerScript<ELFT>::output(InputSection<ELFT> *S) {
398   if (!AlreadyOutputIS.insert(S).second)
399     return;
400   bool IsTbss = isTbss<ELFT>(CurOutSec);
401 
402   uintX_t Pos = IsTbss ? Dot + ThreadBssOffset : Dot;
403   Pos = alignTo(Pos, S->Alignment);
404   S->OutSecOff = Pos - CurOutSec->Addr;
405   Pos += S->getSize();
406 
407   // Update output section size after adding each section. This is so that
408   // SIZEOF works correctly in the case below:
409   // .foo { *(.aaa) a = SIZEOF(.foo); *(.bbb) }
410   CurOutSec->Size = Pos - CurOutSec->Addr;
411 
412   // If there is a memory region associated with this input section, then
413   // place the section in that region and update the region index.
414   if (CurMemRegion) {
415     CurMemRegion->Offset += CurOutSec->Size;
416     uint64_t CurSize = CurMemRegion->Offset - CurMemRegion->Origin;
417     if (CurSize > CurMemRegion->Length) {
418       uint64_t OverflowAmt = CurSize - CurMemRegion->Length;
419       error("section '" + CurOutSec->Name + "' will not fit in region '" +
420             CurMemRegion->Name + "': overflowed by " + Twine(OverflowAmt) +
421             " bytes");
422     }
423   }
424 
425   if (IsTbss)
426     ThreadBssOffset = Pos - Dot;
427   else
428     Dot = Pos;
429 }
430 
431 template <class ELFT> void LinkerScript<ELFT>::flush() {
432   if (!CurOutSec || !AlreadyOutputOS.insert(CurOutSec).second)
433     return;
434   if (auto *OutSec = dyn_cast<OutputSection<ELFT>>(CurOutSec)) {
435     for (InputSection<ELFT> *I : OutSec->Sections)
436       output(I);
437   } else {
438     Dot += CurOutSec->Size;
439   }
440 }
441 
442 template <class ELFT>
443 void LinkerScript<ELFT>::switchTo(OutputSectionBase *Sec) {
444   if (CurOutSec == Sec)
445     return;
446   if (AlreadyOutputOS.count(Sec))
447     return;
448 
449   flush();
450   CurOutSec = Sec;
451 
452   Dot = alignTo(Dot, CurOutSec->Addralign);
453   CurOutSec->Addr = isTbss<ELFT>(CurOutSec) ? Dot + ThreadBssOffset : Dot;
454 
455   // If neither AT nor AT> is specified for an allocatable section, the linker
456   // will set the LMA such that the difference between VMA and LMA for the
457   // section is the same as the preceding output section in the same region
458   // https://sourceware.org/binutils/docs-2.20/ld/Output-Section-LMA.html
459   CurOutSec->setLMAOffset(LMAOffset);
460 }
461 
462 template <class ELFT> void LinkerScript<ELFT>::process(BaseCommand &Base) {
463   // This handles the assignments to symbol or to a location counter (.)
464   if (auto *AssignCmd = dyn_cast<SymbolAssignment>(&Base)) {
465     if (AssignCmd->Name == ".") {
466       // Update to location counter means update to section size.
467       uintX_t Val = AssignCmd->Expression(Dot);
468       if (Val < Dot)
469         error("unable to move location counter backward for: " +
470               CurOutSec->Name);
471       Dot = Val;
472       CurOutSec->Size = Dot - CurOutSec->Addr;
473       return;
474     }
475     assignSectionSymbol<ELFT>(AssignCmd, Dot);
476     return;
477   }
478 
479   // Handle BYTE(), SHORT(), LONG(), or QUAD().
480   if (auto *DataCmd = dyn_cast<BytesDataCommand>(&Base)) {
481     DataCmd->Offset = Dot - CurOutSec->Addr;
482     Dot += DataCmd->Size;
483     CurOutSec->Size = Dot - CurOutSec->Addr;
484     return;
485   }
486 
487   if (auto *AssertCmd = dyn_cast<AssertCommand>(&Base)) {
488     AssertCmd->Expression(Dot);
489     return;
490   }
491 
492   // It handles single input section description command,
493   // calculates and assigns the offsets for each section and also
494   // updates the output section size.
495   auto &ICmd = cast<InputSectionDescription>(Base);
496   for (InputSectionData *ID : ICmd.Sections) {
497     // We tentatively added all synthetic sections at the beginning and removed
498     // empty ones afterwards (because there is no way to know whether they were
499     // going be empty or not other than actually running linker scripts.)
500     // We need to ignore remains of empty sections.
501     if (auto *Sec = dyn_cast<SyntheticSection<ELFT>>(ID))
502       if (Sec->empty())
503         continue;
504 
505     auto *IB = static_cast<InputSectionBase<ELFT> *>(ID);
506     switchTo(IB->OutSec);
507     if (auto *I = dyn_cast<InputSection<ELFT>>(IB))
508       output(I);
509     else
510       flush();
511   }
512 }
513 
514 template <class ELFT>
515 static std::vector<OutputSectionBase *>
516 findSections(StringRef Name, const std::vector<OutputSectionBase *> &Sections) {
517   std::vector<OutputSectionBase *> Ret;
518   for (OutputSectionBase *Sec : Sections)
519     if (Sec->getName() == Name)
520       Ret.push_back(Sec);
521   return Ret;
522 }
523 
524 // This function searches for a memory region to place the given output
525 // section in. If found, a pointer to the appropriate memory region is
526 // returned. Otherwise, a nullptr is returned.
527 template <class ELFT>
528 MemoryRegion *LinkerScript<ELFT>::findMemoryRegion(OutputSectionCommand *Cmd,
529                                                    OutputSectionBase *Sec) {
530   // If a memory region name was specified in the output section command,
531   // then try to find that region first.
532   if (!Cmd->MemoryRegionName.empty()) {
533     auto It = Opt.MemoryRegions.find(Cmd->MemoryRegionName);
534     if (It != Opt.MemoryRegions.end())
535       return &It->second;
536     error("memory region '" + Cmd->MemoryRegionName + "' not declared");
537     return nullptr;
538   }
539 
540   // The memory region name is empty, thus a suitable region must be
541   // searched for in the region map. If the region map is empty, just
542   // return. Note that this check doesn't happen at the very beginning
543   // so that uses of undeclared regions can be caught.
544   if (!Opt.MemoryRegions.size())
545     return nullptr;
546 
547   // See if a region can be found by matching section flags.
548   for (auto &MRI : Opt.MemoryRegions) {
549     MemoryRegion &MR = MRI.second;
550     if ((MR.Flags & Sec->Flags) != 0 && (MR.NegFlags & Sec->Flags) == 0)
551       return &MR;
552   }
553 
554   // Otherwise, no suitable region was found.
555   if (Sec->Flags & SHF_ALLOC)
556     error("no memory region specified for section '" + Sec->Name + "'");
557   return nullptr;
558 }
559 
560 // This function assigns offsets to input sections and an output section
561 // for a single sections command (e.g. ".text { *(.text); }").
562 template <class ELFT>
563 void LinkerScript<ELFT>::assignOffsets(OutputSectionCommand *Cmd) {
564   if (Cmd->LMAExpr)
565     LMAOffset = Cmd->LMAExpr(Dot) - Dot;
566   std::vector<OutputSectionBase *> Sections =
567       findSections<ELFT>(Cmd->Name, *OutputSections);
568   if (Sections.empty())
569     return;
570 
571   OutputSectionBase *Sec = Sections[0];
572   // Try and find an appropriate memory region to assign offsets in.
573   CurMemRegion = findMemoryRegion(Cmd, Sec);
574   if (CurMemRegion)
575     Dot = CurMemRegion->Offset;
576   switchTo(Sec);
577 
578   // Find the last section output location. We will output orphan sections
579   // there so that end symbols point to the correct location.
580   auto E = std::find_if(Cmd->Commands.rbegin(), Cmd->Commands.rend(),
581                         [](const std::unique_ptr<BaseCommand> &Cmd) {
582                           return !isa<SymbolAssignment>(*Cmd);
583                         })
584                .base();
585   for (auto I = Cmd->Commands.begin(); I != E; ++I)
586     process(**I);
587   for (OutputSectionBase *Base : Sections)
588     switchTo(Base);
589   flush();
590   std::for_each(E, Cmd->Commands.end(),
591                 [this](std::unique_ptr<BaseCommand> &B) { process(*B.get()); });
592 }
593 
594 template <class ELFT> void LinkerScript<ELFT>::removeEmptyCommands() {
595   // It is common practice to use very generic linker scripts. So for any
596   // given run some of the output sections in the script will be empty.
597   // We could create corresponding empty output sections, but that would
598   // clutter the output.
599   // We instead remove trivially empty sections. The bfd linker seems even
600   // more aggressive at removing them.
601   auto Pos = std::remove_if(
602       Opt.Commands.begin(), Opt.Commands.end(),
603       [&](const std::unique_ptr<BaseCommand> &Base) {
604         if (auto *Cmd = dyn_cast<OutputSectionCommand>(Base.get()))
605           return findSections<ELFT>(Cmd->Name, *OutputSections).empty();
606         return false;
607       });
608   Opt.Commands.erase(Pos, Opt.Commands.end());
609 }
610 
611 static bool isAllSectionDescription(const OutputSectionCommand &Cmd) {
612   for (const std::unique_ptr<BaseCommand> &I : Cmd.Commands)
613     if (!isa<InputSectionDescription>(*I))
614       return false;
615   return true;
616 }
617 
618 template <class ELFT> void LinkerScript<ELFT>::adjustSectionsBeforeSorting() {
619   // If the output section contains only symbol assignments, create a
620   // corresponding output section. The bfd linker seems to only create them if
621   // '.' is assigned to, but creating these section should not have any bad
622   // consequeces and gives us a section to put the symbol in.
623   uintX_t Flags = SHF_ALLOC;
624   uint32_t Type = SHT_NOBITS;
625   for (const std::unique_ptr<BaseCommand> &Base : Opt.Commands) {
626     auto *Cmd = dyn_cast<OutputSectionCommand>(Base.get());
627     if (!Cmd)
628       continue;
629     std::vector<OutputSectionBase *> Secs =
630         findSections<ELFT>(Cmd->Name, *OutputSections);
631     if (!Secs.empty()) {
632       Flags = Secs[0]->Flags;
633       Type = Secs[0]->Type;
634       continue;
635     }
636 
637     if (isAllSectionDescription(*Cmd))
638       continue;
639 
640     auto *OutSec = make<OutputSection<ELFT>>(Cmd->Name, Type, Flags);
641     OutputSections->push_back(OutSec);
642   }
643 }
644 
645 template <class ELFT> void LinkerScript<ELFT>::adjustSectionsAfterSorting() {
646   placeOrphanSections();
647 
648   // If output section command doesn't specify any segments,
649   // and we haven't previously assigned any section to segment,
650   // then we simply assign section to the very first load segment.
651   // Below is an example of such linker script:
652   // PHDRS { seg PT_LOAD; }
653   // SECTIONS { .aaa : { *(.aaa) } }
654   std::vector<StringRef> DefPhdrs;
655   auto FirstPtLoad =
656       std::find_if(Opt.PhdrsCommands.begin(), Opt.PhdrsCommands.end(),
657                    [](const PhdrsCommand &Cmd) { return Cmd.Type == PT_LOAD; });
658   if (FirstPtLoad != Opt.PhdrsCommands.end())
659     DefPhdrs.push_back(FirstPtLoad->Name);
660 
661   // Walk the commands and propagate the program headers to commands that don't
662   // explicitly specify them.
663   for (const std::unique_ptr<BaseCommand> &Base : Opt.Commands) {
664     auto *Cmd = dyn_cast<OutputSectionCommand>(Base.get());
665     if (!Cmd)
666       continue;
667     if (Cmd->Phdrs.empty())
668       Cmd->Phdrs = DefPhdrs;
669     else
670       DefPhdrs = Cmd->Phdrs;
671   }
672 
673   removeEmptyCommands();
674 }
675 
676 // When placing orphan sections, we want to place them after symbol assignments
677 // so that an orphan after
678 //   begin_foo = .;
679 //   foo : { *(foo) }
680 //   end_foo = .;
681 // doesn't break the intended meaning of the begin/end symbols.
682 // We don't want to go over sections since Writer<ELFT>::sortSections is the
683 // one in charge of deciding the order of the sections.
684 // We don't want to go over alignments, since doing so in
685 //  rx_sec : { *(rx_sec) }
686 //  . = ALIGN(0x1000);
687 //  /* The RW PT_LOAD starts here*/
688 //  rw_sec : { *(rw_sec) }
689 // would mean that the RW PT_LOAD would become unaligned.
690 static bool shouldSkip(const BaseCommand &Cmd) {
691   if (isa<OutputSectionCommand>(Cmd))
692     return false;
693   const auto *Assign = dyn_cast<SymbolAssignment>(&Cmd);
694   if (!Assign)
695     return true;
696   return Assign->Name != ".";
697 }
698 
699 // Orphan sections are sections present in the input files which are not
700 // explicitly placed into the output file by the linker script. This just
701 // places them in the order already decided in OutputSections.
702 template <class ELFT> void LinkerScript<ELFT>::placeOrphanSections() {
703   // The OutputSections are already in the correct order.
704   // This loops creates or moves commands as needed so that they are in the
705   // correct order.
706   int CmdIndex = 0;
707 
708   // As a horrible special case, skip the first . assignment if it is before any
709   // section. We do this because it is common to set a load address by starting
710   // the script with ". = 0xabcd" and the expectation is that every section is
711   // after that.
712   auto FirstSectionOrDotAssignment =
713       std::find_if(Opt.Commands.begin(), Opt.Commands.end(),
714                    [](const std::unique_ptr<BaseCommand> &Cmd) {
715                      if (isa<OutputSectionCommand>(*Cmd))
716                        return true;
717                      const auto *Assign = dyn_cast<SymbolAssignment>(Cmd.get());
718                      if (!Assign)
719                        return false;
720                      return Assign->Name == ".";
721                    });
722   if (FirstSectionOrDotAssignment != Opt.Commands.end()) {
723     CmdIndex = FirstSectionOrDotAssignment - Opt.Commands.begin();
724     if (isa<SymbolAssignment>(**FirstSectionOrDotAssignment))
725       ++CmdIndex;
726   }
727 
728   for (OutputSectionBase *Sec : *OutputSections) {
729     StringRef Name = Sec->getName();
730 
731     // Find the last spot where we can insert a command and still get the
732     // correct result.
733     auto CmdIter = Opt.Commands.begin() + CmdIndex;
734     auto E = Opt.Commands.end();
735     while (CmdIter != E && shouldSkip(**CmdIter)) {
736       ++CmdIter;
737       ++CmdIndex;
738     }
739 
740     auto Pos =
741         std::find_if(CmdIter, E, [&](const std::unique_ptr<BaseCommand> &Base) {
742           auto *Cmd = dyn_cast<OutputSectionCommand>(Base.get());
743           return Cmd && Cmd->Name == Name;
744         });
745     if (Pos == E) {
746       Opt.Commands.insert(CmdIter,
747                           llvm::make_unique<OutputSectionCommand>(Name));
748       ++CmdIndex;
749       continue;
750     }
751 
752     // Continue from where we found it.
753     CmdIndex = (Pos - Opt.Commands.begin()) + 1;
754   }
755 }
756 
757 template <class ELFT>
758 void LinkerScript<ELFT>::assignAddresses(std::vector<PhdrEntry> &Phdrs) {
759   // Assign addresses as instructed by linker script SECTIONS sub-commands.
760   Dot = 0;
761 
762   for (const std::unique_ptr<BaseCommand> &Base : Opt.Commands) {
763     if (auto *Cmd = dyn_cast<SymbolAssignment>(Base.get())) {
764       if (Cmd->Name == ".") {
765         Dot = Cmd->Expression(Dot);
766       } else if (Cmd->Sym) {
767         assignSectionSymbol<ELFT>(Cmd, Dot);
768       }
769       continue;
770     }
771 
772     if (auto *Cmd = dyn_cast<AssertCommand>(Base.get())) {
773       Cmd->Expression(Dot);
774       continue;
775     }
776 
777     auto *Cmd = cast<OutputSectionCommand>(Base.get());
778     if (Cmd->AddrExpr)
779       Dot = Cmd->AddrExpr(Dot);
780     assignOffsets(Cmd);
781   }
782 
783   uintX_t MinVA = std::numeric_limits<uintX_t>::max();
784   for (OutputSectionBase *Sec : *OutputSections) {
785     if (Sec->Flags & SHF_ALLOC)
786       MinVA = std::min<uint64_t>(MinVA, Sec->Addr);
787     else
788       Sec->Addr = 0;
789   }
790 
791   allocateHeaders<ELFT>(Phdrs, *OutputSections, MinVA);
792 }
793 
794 // Creates program headers as instructed by PHDRS linker script command.
795 template <class ELFT> std::vector<PhdrEntry> LinkerScript<ELFT>::createPhdrs() {
796   std::vector<PhdrEntry> Ret;
797 
798   // Process PHDRS and FILEHDR keywords because they are not
799   // real output sections and cannot be added in the following loop.
800   for (const PhdrsCommand &Cmd : Opt.PhdrsCommands) {
801     Ret.emplace_back(Cmd.Type, Cmd.Flags == UINT_MAX ? PF_R : Cmd.Flags);
802     PhdrEntry &Phdr = Ret.back();
803 
804     if (Cmd.HasFilehdr)
805       Phdr.add(Out<ELFT>::ElfHeader);
806     if (Cmd.HasPhdrs)
807       Phdr.add(Out<ELFT>::ProgramHeaders);
808 
809     if (Cmd.LMAExpr) {
810       Phdr.p_paddr = Cmd.LMAExpr(0);
811       Phdr.HasLMA = true;
812     }
813   }
814 
815   // Add output sections to program headers.
816   for (OutputSectionBase *Sec : *OutputSections) {
817     if (!(Sec->Flags & SHF_ALLOC))
818       break;
819 
820     // Assign headers specified by linker script
821     for (size_t Id : getPhdrIndices(Sec->getName())) {
822       Ret[Id].add(Sec);
823       if (Opt.PhdrsCommands[Id].Flags == UINT_MAX)
824         Ret[Id].p_flags |= Sec->getPhdrFlags();
825     }
826   }
827   return Ret;
828 }
829 
830 template <class ELFT> bool LinkerScript<ELFT>::ignoreInterpSection() {
831   // Ignore .interp section in case we have PHDRS specification
832   // and PT_INTERP isn't listed.
833   return !Opt.PhdrsCommands.empty() &&
834          llvm::find_if(Opt.PhdrsCommands, [](const PhdrsCommand &Cmd) {
835            return Cmd.Type == PT_INTERP;
836          }) == Opt.PhdrsCommands.end();
837 }
838 
839 template <class ELFT> uint32_t LinkerScript<ELFT>::getFiller(StringRef Name) {
840   for (const std::unique_ptr<BaseCommand> &Base : Opt.Commands)
841     if (auto *Cmd = dyn_cast<OutputSectionCommand>(Base.get()))
842       if (Cmd->Name == Name)
843         return Cmd->Filler;
844   return 0;
845 }
846 
847 template <class ELFT>
848 static void writeInt(uint8_t *Buf, uint64_t Data, uint64_t Size) {
849   const endianness E = ELFT::TargetEndianness;
850 
851   switch (Size) {
852   case 1:
853     *Buf = (uint8_t)Data;
854     break;
855   case 2:
856     write16<E>(Buf, Data);
857     break;
858   case 4:
859     write32<E>(Buf, Data);
860     break;
861   case 8:
862     write64<E>(Buf, Data);
863     break;
864   default:
865     llvm_unreachable("unsupported Size argument");
866   }
867 }
868 
869 template <class ELFT>
870 void LinkerScript<ELFT>::writeDataBytes(StringRef Name, uint8_t *Buf) {
871   int I = getSectionIndex(Name);
872   if (I == INT_MAX)
873     return;
874 
875   auto *Cmd = dyn_cast<OutputSectionCommand>(Opt.Commands[I].get());
876   for (const std::unique_ptr<BaseCommand> &Base : Cmd->Commands)
877     if (auto *Data = dyn_cast<BytesDataCommand>(Base.get()))
878       writeInt<ELFT>(Buf + Data->Offset, Data->Expression(0), Data->Size);
879 }
880 
881 template <class ELFT> bool LinkerScript<ELFT>::hasLMA(StringRef Name) {
882   for (const std::unique_ptr<BaseCommand> &Base : Opt.Commands)
883     if (auto *Cmd = dyn_cast<OutputSectionCommand>(Base.get()))
884       if (Cmd->LMAExpr && Cmd->Name == Name)
885         return true;
886   return false;
887 }
888 
889 // Returns the index of the given section name in linker script
890 // SECTIONS commands. Sections are laid out as the same order as they
891 // were in the script. If a given name did not appear in the script,
892 // it returns INT_MAX, so that it will be laid out at end of file.
893 template <class ELFT> int LinkerScript<ELFT>::getSectionIndex(StringRef Name) {
894   for (int I = 0, E = Opt.Commands.size(); I != E; ++I)
895     if (auto *Cmd = dyn_cast<OutputSectionCommand>(Opt.Commands[I].get()))
896       if (Cmd->Name == Name)
897         return I;
898   return INT_MAX;
899 }
900 
901 template <class ELFT> bool LinkerScript<ELFT>::hasPhdrsCommands() {
902   return !Opt.PhdrsCommands.empty();
903 }
904 
905 template <class ELFT>
906 const OutputSectionBase *LinkerScript<ELFT>::getOutputSection(const Twine &Loc,
907                                                               StringRef Name) {
908   static OutputSectionBase FakeSec("", 0, 0);
909 
910   for (OutputSectionBase *Sec : *OutputSections)
911     if (Sec->getName() == Name)
912       return Sec;
913 
914   error(Loc + ": undefined section " + Name);
915   return &FakeSec;
916 }
917 
918 // This function is essentially the same as getOutputSection(Name)->Size,
919 // but it won't print out an error message if a given section is not found.
920 //
921 // Linker script does not create an output section if its content is empty.
922 // We want to allow SIZEOF(.foo) where .foo is a section which happened to
923 // be empty. That is why this function is different from getOutputSection().
924 template <class ELFT>
925 uint64_t LinkerScript<ELFT>::getOutputSectionSize(StringRef Name) {
926   for (OutputSectionBase *Sec : *OutputSections)
927     if (Sec->getName() == Name)
928       return Sec->Size;
929   return 0;
930 }
931 
932 template <class ELFT> uint64_t LinkerScript<ELFT>::getHeaderSize() {
933   return elf::getHeaderSize<ELFT>();
934 }
935 
936 template <class ELFT>
937 uint64_t LinkerScript<ELFT>::getSymbolValue(const Twine &Loc, StringRef S) {
938   if (SymbolBody *B = Symtab<ELFT>::X->find(S))
939     return B->getVA<ELFT>();
940   error(Loc + ": symbol not found: " + S);
941   return 0;
942 }
943 
944 template <class ELFT> bool LinkerScript<ELFT>::isDefined(StringRef S) {
945   return Symtab<ELFT>::X->find(S) != nullptr;
946 }
947 
948 template <class ELFT> bool LinkerScript<ELFT>::isAbsolute(StringRef S) {
949   SymbolBody *Sym = Symtab<ELFT>::X->find(S);
950   auto *DR = dyn_cast_or_null<DefinedRegular<ELFT>>(Sym);
951   return DR && !DR->Section;
952 }
953 
954 // Gets section symbol belongs to. Symbol "." doesn't belong to any
955 // specific section but isn't absolute at the same time, so we try
956 // to find suitable section for it as well.
957 template <class ELFT>
958 const OutputSectionBase *LinkerScript<ELFT>::getSymbolSection(StringRef S) {
959   SymbolBody *Sym = Symtab<ELFT>::X->find(S);
960   if (!Sym) {
961     if (OutputSections->empty())
962       return nullptr;
963     return CurOutSec ? CurOutSec : (*OutputSections)[0];
964   }
965 
966   return SymbolTableSection<ELFT>::getOutputSection(Sym);
967 }
968 
969 // Returns indices of ELF headers containing specific section, identified
970 // by Name. Each index is a zero based number of ELF header listed within
971 // PHDRS {} script block.
972 template <class ELFT>
973 std::vector<size_t> LinkerScript<ELFT>::getPhdrIndices(StringRef SectionName) {
974   for (const std::unique_ptr<BaseCommand> &Base : Opt.Commands) {
975     auto *Cmd = dyn_cast<OutputSectionCommand>(Base.get());
976     if (!Cmd || Cmd->Name != SectionName)
977       continue;
978 
979     std::vector<size_t> Ret;
980     for (StringRef PhdrName : Cmd->Phdrs)
981       Ret.push_back(getPhdrIndex(Cmd->Location, PhdrName));
982     return Ret;
983   }
984   return {};
985 }
986 
987 template <class ELFT>
988 size_t LinkerScript<ELFT>::getPhdrIndex(const Twine &Loc, StringRef PhdrName) {
989   size_t I = 0;
990   for (PhdrsCommand &Cmd : Opt.PhdrsCommands) {
991     if (Cmd.Name == PhdrName)
992       return I;
993     ++I;
994   }
995   error(Loc + ": section header '" + PhdrName + "' is not listed in PHDRS");
996   return 0;
997 }
998 
999 class elf::ScriptParser final : public ScriptParserBase {
1000   typedef void (ScriptParser::*Handler)();
1001 
1002 public:
1003   ScriptParser(MemoryBufferRef MB)
1004       : ScriptParserBase(MB),
1005         IsUnderSysroot(isUnderSysroot(MB.getBufferIdentifier())) {}
1006 
1007   void readLinkerScript();
1008   void readVersionScript();
1009   void readDynamicList();
1010 
1011 private:
1012   void addFile(StringRef Path);
1013 
1014   void readAsNeeded();
1015   void readEntry();
1016   void readExtern();
1017   void readGroup();
1018   void readInclude();
1019   void readMemory();
1020   void readOutput();
1021   void readOutputArch();
1022   void readOutputFormat();
1023   void readPhdrs();
1024   void readSearchDir();
1025   void readSections();
1026   void readVersion();
1027   void readVersionScriptCommand();
1028 
1029   SymbolAssignment *readAssignment(StringRef Name);
1030   BytesDataCommand *readBytesDataCommand(StringRef Tok);
1031   uint32_t readFill();
1032   OutputSectionCommand *readOutputSectionDescription(StringRef OutSec);
1033   uint32_t readOutputSectionFiller(StringRef Tok);
1034   std::vector<StringRef> readOutputSectionPhdrs();
1035   InputSectionDescription *readInputSectionDescription(StringRef Tok);
1036   StringMatcher readFilePatterns();
1037   std::vector<SectionPattern> readInputSectionsList();
1038   InputSectionDescription *readInputSectionRules(StringRef FilePattern);
1039   unsigned readPhdrType();
1040   SortSectionPolicy readSortKind();
1041   SymbolAssignment *readProvideHidden(bool Provide, bool Hidden);
1042   SymbolAssignment *readProvideOrAssignment(StringRef Tok);
1043   void readSort();
1044   Expr readAssert();
1045 
1046   uint64_t readMemoryAssignment(StringRef, StringRef, StringRef);
1047   std::pair<uint32_t, uint32_t> readMemoryAttributes();
1048 
1049   Expr readExpr();
1050   Expr readExpr1(Expr Lhs, int MinPrec);
1051   StringRef readParenLiteral();
1052   Expr readPrimary();
1053   Expr readTernary(Expr Cond);
1054   Expr readParenExpr();
1055 
1056   // For parsing version script.
1057   std::vector<SymbolVersion> readVersionExtern();
1058   void readAnonymousDeclaration();
1059   void readVersionDeclaration(StringRef VerStr);
1060   std::vector<SymbolVersion> readSymbols();
1061   void readLocals();
1062 
1063   ScriptConfiguration &Opt = *ScriptConfig;
1064   bool IsUnderSysroot;
1065 };
1066 
1067 void ScriptParser::readDynamicList() {
1068   expect("{");
1069   readAnonymousDeclaration();
1070   if (!atEOF())
1071     setError("EOF expected, but got " + next());
1072 }
1073 
1074 void ScriptParser::readVersionScript() {
1075   readVersionScriptCommand();
1076   if (!atEOF())
1077     setError("EOF expected, but got " + next());
1078 }
1079 
1080 void ScriptParser::readVersionScriptCommand() {
1081   if (consume("{")) {
1082     readAnonymousDeclaration();
1083     return;
1084   }
1085 
1086   while (!atEOF() && !Error && peek() != "}") {
1087     StringRef VerStr = next();
1088     if (VerStr == "{") {
1089       setError("anonymous version definition is used in "
1090                "combination with other version definitions");
1091       return;
1092     }
1093     expect("{");
1094     readVersionDeclaration(VerStr);
1095   }
1096 }
1097 
1098 void ScriptParser::readVersion() {
1099   expect("{");
1100   readVersionScriptCommand();
1101   expect("}");
1102 }
1103 
1104 void ScriptParser::readLinkerScript() {
1105   while (!atEOF()) {
1106     StringRef Tok = next();
1107     if (Tok == ";")
1108       continue;
1109 
1110     if (Tok == "ASSERT") {
1111       Opt.Commands.emplace_back(new AssertCommand(readAssert()));
1112     } else if (Tok == "ENTRY") {
1113       readEntry();
1114     } else if (Tok == "EXTERN") {
1115       readExtern();
1116     } else if (Tok == "GROUP" || Tok == "INPUT") {
1117       readGroup();
1118     } else if (Tok == "INCLUDE") {
1119       readInclude();
1120     } else if (Tok == "MEMORY") {
1121       readMemory();
1122     } else if (Tok == "OUTPUT") {
1123       readOutput();
1124     } else if (Tok == "OUTPUT_ARCH") {
1125       readOutputArch();
1126     } else if (Tok == "OUTPUT_FORMAT") {
1127       readOutputFormat();
1128     } else if (Tok == "PHDRS") {
1129       readPhdrs();
1130     } else if (Tok == "SEARCH_DIR") {
1131       readSearchDir();
1132     } else if (Tok == "SECTIONS") {
1133       readSections();
1134     } else if (Tok == "VERSION") {
1135       readVersion();
1136     } else if (SymbolAssignment *Cmd = readProvideOrAssignment(Tok)) {
1137       Opt.Commands.emplace_back(Cmd);
1138     } else {
1139       setError("unknown directive: " + Tok);
1140     }
1141   }
1142 }
1143 
1144 void ScriptParser::addFile(StringRef S) {
1145   if (IsUnderSysroot && S.startswith("/")) {
1146     SmallString<128> PathData;
1147     StringRef Path = (Config->Sysroot + S).toStringRef(PathData);
1148     if (sys::fs::exists(Path)) {
1149       Driver->addFile(Saver.save(Path));
1150       return;
1151     }
1152   }
1153 
1154   if (sys::path::is_absolute(S)) {
1155     Driver->addFile(S);
1156   } else if (S.startswith("=")) {
1157     if (Config->Sysroot.empty())
1158       Driver->addFile(S.substr(1));
1159     else
1160       Driver->addFile(Saver.save(Config->Sysroot + "/" + S.substr(1)));
1161   } else if (S.startswith("-l")) {
1162     Driver->addLibrary(S.substr(2));
1163   } else if (sys::fs::exists(S)) {
1164     Driver->addFile(S);
1165   } else {
1166     if (Optional<std::string> Path = findFromSearchPaths(S))
1167       Driver->addFile(Saver.save(*Path));
1168     else
1169       setError("unable to find " + S);
1170   }
1171 }
1172 
1173 void ScriptParser::readAsNeeded() {
1174   expect("(");
1175   bool Orig = Config->AsNeeded;
1176   Config->AsNeeded = true;
1177   while (!Error && !consume(")"))
1178     addFile(unquote(next()));
1179   Config->AsNeeded = Orig;
1180 }
1181 
1182 void ScriptParser::readEntry() {
1183   // -e <symbol> takes predecence over ENTRY(<symbol>).
1184   expect("(");
1185   StringRef Tok = next();
1186   if (Config->Entry.empty())
1187     Config->Entry = Tok;
1188   expect(")");
1189 }
1190 
1191 void ScriptParser::readExtern() {
1192   expect("(");
1193   while (!Error && !consume(")"))
1194     Config->Undefined.push_back(next());
1195 }
1196 
1197 void ScriptParser::readGroup() {
1198   expect("(");
1199   while (!Error && !consume(")")) {
1200     StringRef Tok = next();
1201     if (Tok == "AS_NEEDED")
1202       readAsNeeded();
1203     else
1204       addFile(unquote(Tok));
1205   }
1206 }
1207 
1208 void ScriptParser::readInclude() {
1209   StringRef Tok = unquote(next());
1210 
1211   // https://sourceware.org/binutils/docs/ld/File-Commands.html:
1212   // The file will be searched for in the current directory, and in any
1213   // directory specified with the -L option.
1214   if (sys::fs::exists(Tok)) {
1215     if (Optional<MemoryBufferRef> MB = readFile(Tok))
1216       tokenize(*MB);
1217     return;
1218   }
1219   if (Optional<std::string> Path = findFromSearchPaths(Tok)) {
1220     if (Optional<MemoryBufferRef> MB = readFile(*Path))
1221       tokenize(*MB);
1222     return;
1223   }
1224   setError("cannot open " + Tok);
1225 }
1226 
1227 void ScriptParser::readOutput() {
1228   // -o <file> takes predecence over OUTPUT(<file>).
1229   expect("(");
1230   StringRef Tok = next();
1231   if (Config->OutputFile.empty())
1232     Config->OutputFile = unquote(Tok);
1233   expect(")");
1234 }
1235 
1236 void ScriptParser::readOutputArch() {
1237   // Error checking only for now.
1238   expect("(");
1239   skip();
1240   expect(")");
1241 }
1242 
1243 void ScriptParser::readOutputFormat() {
1244   // Error checking only for now.
1245   expect("(");
1246   skip();
1247   StringRef Tok = next();
1248   if (Tok == ")")
1249     return;
1250   if (Tok != ",") {
1251     setError("unexpected token: " + Tok);
1252     return;
1253   }
1254   skip();
1255   expect(",");
1256   skip();
1257   expect(")");
1258 }
1259 
1260 void ScriptParser::readPhdrs() {
1261   expect("{");
1262   while (!Error && !consume("}")) {
1263     StringRef Tok = next();
1264     Opt.PhdrsCommands.push_back(
1265         {Tok, PT_NULL, false, false, UINT_MAX, nullptr});
1266     PhdrsCommand &PhdrCmd = Opt.PhdrsCommands.back();
1267 
1268     PhdrCmd.Type = readPhdrType();
1269     do {
1270       Tok = next();
1271       if (Tok == ";")
1272         break;
1273       if (Tok == "FILEHDR")
1274         PhdrCmd.HasFilehdr = true;
1275       else if (Tok == "PHDRS")
1276         PhdrCmd.HasPhdrs = true;
1277       else if (Tok == "AT")
1278         PhdrCmd.LMAExpr = readParenExpr();
1279       else if (Tok == "FLAGS") {
1280         expect("(");
1281         // Passing 0 for the value of dot is a bit of a hack. It means that
1282         // we accept expressions like ".|1".
1283         PhdrCmd.Flags = readExpr()(0);
1284         expect(")");
1285       } else
1286         setError("unexpected header attribute: " + Tok);
1287     } while (!Error);
1288   }
1289 }
1290 
1291 void ScriptParser::readSearchDir() {
1292   expect("(");
1293   StringRef Tok = next();
1294   if (!Config->Nostdlib)
1295     Config->SearchPaths.push_back(unquote(Tok));
1296   expect(")");
1297 }
1298 
1299 void ScriptParser::readSections() {
1300   Opt.HasSections = true;
1301   // -no-rosegment is used to avoid placing read only non-executable sections in
1302   // their own segment. We do the same if SECTIONS command is present in linker
1303   // script. See comment for computeFlags().
1304   Config->SingleRoRx = true;
1305 
1306   expect("{");
1307   while (!Error && !consume("}")) {
1308     StringRef Tok = next();
1309     BaseCommand *Cmd = readProvideOrAssignment(Tok);
1310     if (!Cmd) {
1311       if (Tok == "ASSERT")
1312         Cmd = new AssertCommand(readAssert());
1313       else
1314         Cmd = readOutputSectionDescription(Tok);
1315     }
1316     Opt.Commands.emplace_back(Cmd);
1317   }
1318 }
1319 
1320 static int precedence(StringRef Op) {
1321   return StringSwitch<int>(Op)
1322       .Cases("*", "/", 5)
1323       .Cases("+", "-", 4)
1324       .Cases("<<", ">>", 3)
1325       .Cases("<", "<=", ">", ">=", "==", "!=", 2)
1326       .Cases("&", "|", 1)
1327       .Default(-1);
1328 }
1329 
1330 StringMatcher ScriptParser::readFilePatterns() {
1331   std::vector<StringRef> V;
1332   while (!Error && !consume(")"))
1333     V.push_back(next());
1334   return StringMatcher(V);
1335 }
1336 
1337 SortSectionPolicy ScriptParser::readSortKind() {
1338   if (consume("SORT") || consume("SORT_BY_NAME"))
1339     return SortSectionPolicy::Name;
1340   if (consume("SORT_BY_ALIGNMENT"))
1341     return SortSectionPolicy::Alignment;
1342   if (consume("SORT_BY_INIT_PRIORITY"))
1343     return SortSectionPolicy::Priority;
1344   if (consume("SORT_NONE"))
1345     return SortSectionPolicy::None;
1346   return SortSectionPolicy::Default;
1347 }
1348 
1349 // Method reads a list of sequence of excluded files and section globs given in
1350 // a following form: ((EXCLUDE_FILE(file_pattern+))? section_pattern+)+
1351 // Example: *(.foo.1 EXCLUDE_FILE (*a.o) .foo.2 EXCLUDE_FILE (*b.o) .foo.3)
1352 // The semantics of that is next:
1353 // * Include .foo.1 from every file.
1354 // * Include .foo.2 from every file but a.o
1355 // * Include .foo.3 from every file but b.o
1356 std::vector<SectionPattern> ScriptParser::readInputSectionsList() {
1357   std::vector<SectionPattern> Ret;
1358   while (!Error && peek() != ")") {
1359     StringMatcher ExcludeFilePat;
1360     if (consume("EXCLUDE_FILE")) {
1361       expect("(");
1362       ExcludeFilePat = readFilePatterns();
1363     }
1364 
1365     std::vector<StringRef> V;
1366     while (!Error && peek() != ")" && peek() != "EXCLUDE_FILE")
1367       V.push_back(next());
1368 
1369     if (!V.empty())
1370       Ret.push_back({std::move(ExcludeFilePat), StringMatcher(V)});
1371     else
1372       setError("section pattern is expected");
1373   }
1374   return Ret;
1375 }
1376 
1377 // Reads contents of "SECTIONS" directive. That directive contains a
1378 // list of glob patterns for input sections. The grammar is as follows.
1379 //
1380 // <patterns> ::= <section-list>
1381 //              | <sort> "(" <section-list> ")"
1382 //              | <sort> "(" <sort> "(" <section-list> ")" ")"
1383 //
1384 // <sort>     ::= "SORT" | "SORT_BY_NAME" | "SORT_BY_ALIGNMENT"
1385 //              | "SORT_BY_INIT_PRIORITY" | "SORT_NONE"
1386 //
1387 // <section-list> is parsed by readInputSectionsList().
1388 InputSectionDescription *
1389 ScriptParser::readInputSectionRules(StringRef FilePattern) {
1390   auto *Cmd = new InputSectionDescription(FilePattern);
1391   expect("(");
1392   while (!Error && !consume(")")) {
1393     SortSectionPolicy Outer = readSortKind();
1394     SortSectionPolicy Inner = SortSectionPolicy::Default;
1395     std::vector<SectionPattern> V;
1396     if (Outer != SortSectionPolicy::Default) {
1397       expect("(");
1398       Inner = readSortKind();
1399       if (Inner != SortSectionPolicy::Default) {
1400         expect("(");
1401         V = readInputSectionsList();
1402         expect(")");
1403       } else {
1404         V = readInputSectionsList();
1405       }
1406       expect(")");
1407     } else {
1408       V = readInputSectionsList();
1409     }
1410 
1411     for (SectionPattern &Pat : V) {
1412       Pat.SortInner = Inner;
1413       Pat.SortOuter = Outer;
1414     }
1415 
1416     std::move(V.begin(), V.end(), std::back_inserter(Cmd->SectionPatterns));
1417   }
1418   return Cmd;
1419 }
1420 
1421 InputSectionDescription *
1422 ScriptParser::readInputSectionDescription(StringRef Tok) {
1423   // Input section wildcard can be surrounded by KEEP.
1424   // https://sourceware.org/binutils/docs/ld/Input-Section-Keep.html#Input-Section-Keep
1425   if (Tok == "KEEP") {
1426     expect("(");
1427     StringRef FilePattern = next();
1428     InputSectionDescription *Cmd = readInputSectionRules(FilePattern);
1429     expect(")");
1430     Opt.KeptSections.push_back(Cmd);
1431     return Cmd;
1432   }
1433   return readInputSectionRules(Tok);
1434 }
1435 
1436 void ScriptParser::readSort() {
1437   expect("(");
1438   expect("CONSTRUCTORS");
1439   expect(")");
1440 }
1441 
1442 Expr ScriptParser::readAssert() {
1443   expect("(");
1444   Expr E = readExpr();
1445   expect(",");
1446   StringRef Msg = unquote(next());
1447   expect(")");
1448   return [=](uint64_t Dot) {
1449     uint64_t V = E(Dot);
1450     if (!V)
1451       error(Msg);
1452     return V;
1453   };
1454 }
1455 
1456 // Reads a FILL(expr) command. We handle the FILL command as an
1457 // alias for =fillexp section attribute, which is different from
1458 // what GNU linkers do.
1459 // https://sourceware.org/binutils/docs/ld/Output-Section-Data.html
1460 uint32_t ScriptParser::readFill() {
1461   expect("(");
1462   uint32_t V = readOutputSectionFiller(next());
1463   expect(")");
1464   expect(";");
1465   return V;
1466 }
1467 
1468 OutputSectionCommand *
1469 ScriptParser::readOutputSectionDescription(StringRef OutSec) {
1470   OutputSectionCommand *Cmd = new OutputSectionCommand(OutSec);
1471   Cmd->Location = getCurrentLocation();
1472 
1473   // Read an address expression.
1474   // https://sourceware.org/binutils/docs/ld/Output-Section-Address.html#Output-Section-Address
1475   if (peek() != ":")
1476     Cmd->AddrExpr = readExpr();
1477 
1478   expect(":");
1479 
1480   if (consume("AT"))
1481     Cmd->LMAExpr = readParenExpr();
1482   if (consume("ALIGN"))
1483     Cmd->AlignExpr = readParenExpr();
1484   if (consume("SUBALIGN"))
1485     Cmd->SubalignExpr = readParenExpr();
1486 
1487   // Parse constraints.
1488   if (consume("ONLY_IF_RO"))
1489     Cmd->Constraint = ConstraintKind::ReadOnly;
1490   if (consume("ONLY_IF_RW"))
1491     Cmd->Constraint = ConstraintKind::ReadWrite;
1492   expect("{");
1493 
1494   while (!Error && !consume("}")) {
1495     StringRef Tok = next();
1496     if (SymbolAssignment *Assignment = readProvideOrAssignment(Tok)) {
1497       Cmd->Commands.emplace_back(Assignment);
1498     } else if (BytesDataCommand *Data = readBytesDataCommand(Tok)) {
1499       Cmd->Commands.emplace_back(Data);
1500     } else if (Tok == "ASSERT") {
1501       Cmd->Commands.emplace_back(new AssertCommand(readAssert()));
1502       expect(";");
1503     } else if (Tok == "CONSTRUCTORS") {
1504       // CONSTRUCTORS is a keyword to make the linker recognize C++ ctors/dtors
1505       // by name. This is for very old file formats such as ECOFF/XCOFF.
1506       // For ELF, we should ignore.
1507     } else if (Tok == "FILL") {
1508       Cmd->Filler = readFill();
1509     } else if (Tok == "SORT") {
1510       readSort();
1511     } else if (peek() == "(") {
1512       Cmd->Commands.emplace_back(readInputSectionDescription(Tok));
1513     } else {
1514       setError("unknown command " + Tok);
1515     }
1516   }
1517 
1518   if (consume(">"))
1519     Cmd->MemoryRegionName = next();
1520 
1521   Cmd->Phdrs = readOutputSectionPhdrs();
1522 
1523   if (consume("="))
1524     Cmd->Filler = readOutputSectionFiller(next());
1525   else if (peek().startswith("="))
1526     Cmd->Filler = readOutputSectionFiller(next().drop_front());
1527 
1528   // Consume optional comma following output section command.
1529   consume(",");
1530 
1531   return Cmd;
1532 }
1533 
1534 // Read "=<number>" where <number> is an octal/decimal/hexadecimal number.
1535 // https://sourceware.org/binutils/docs/ld/Output-Section-Fill.html
1536 //
1537 // ld.gold is not fully compatible with ld.bfd. ld.bfd handles
1538 // hexstrings as blobs of arbitrary sizes, while ld.gold handles them
1539 // as 32-bit big-endian values. We will do the same as ld.gold does
1540 // because it's simpler than what ld.bfd does.
1541 uint32_t ScriptParser::readOutputSectionFiller(StringRef Tok) {
1542   uint32_t V;
1543   if (!Tok.getAsInteger(0, V))
1544     return V;
1545   setError("invalid filler expression: " + Tok);
1546   return 0;
1547 }
1548 
1549 SymbolAssignment *ScriptParser::readProvideHidden(bool Provide, bool Hidden) {
1550   expect("(");
1551   SymbolAssignment *Cmd = readAssignment(next());
1552   Cmd->Provide = Provide;
1553   Cmd->Hidden = Hidden;
1554   expect(")");
1555   expect(";");
1556   return Cmd;
1557 }
1558 
1559 SymbolAssignment *ScriptParser::readProvideOrAssignment(StringRef Tok) {
1560   SymbolAssignment *Cmd = nullptr;
1561   if (peek() == "=" || peek() == "+=") {
1562     Cmd = readAssignment(Tok);
1563     expect(";");
1564   } else if (Tok == "PROVIDE") {
1565     Cmd = readProvideHidden(true, false);
1566   } else if (Tok == "HIDDEN") {
1567     Cmd = readProvideHidden(false, true);
1568   } else if (Tok == "PROVIDE_HIDDEN") {
1569     Cmd = readProvideHidden(true, true);
1570   }
1571   return Cmd;
1572 }
1573 
1574 static uint64_t getSymbolValue(const Twine &Loc, StringRef S, uint64_t Dot) {
1575   if (S == ".")
1576     return Dot;
1577   return ScriptBase->getSymbolValue(Loc, S);
1578 }
1579 
1580 static bool isAbsolute(StringRef S) {
1581   if (S == ".")
1582     return false;
1583   return ScriptBase->isAbsolute(S);
1584 }
1585 
1586 SymbolAssignment *ScriptParser::readAssignment(StringRef Name) {
1587   StringRef Op = next();
1588   Expr E;
1589   assert(Op == "=" || Op == "+=");
1590   if (consume("ABSOLUTE")) {
1591     // The RHS may be something like "ABSOLUTE(.) & 0xff".
1592     // Call readExpr1 to read the whole expression.
1593     E = readExpr1(readParenExpr(), 0);
1594     E.IsAbsolute = [] { return true; };
1595   } else {
1596     E = readExpr();
1597   }
1598   if (Op == "+=") {
1599     std::string Loc = getCurrentLocation();
1600     E = [=](uint64_t Dot) {
1601       return getSymbolValue(Loc, Name, Dot) + E(Dot);
1602     };
1603   }
1604   return new SymbolAssignment(Name, E);
1605 }
1606 
1607 // This is an operator-precedence parser to parse a linker
1608 // script expression.
1609 Expr ScriptParser::readExpr() { return readExpr1(readPrimary(), 0); }
1610 
1611 static Expr combine(StringRef Op, Expr L, Expr R) {
1612   if (Op == "*")
1613     return [=](uint64_t Dot) { return L(Dot) * R(Dot); };
1614   if (Op == "/") {
1615     return [=](uint64_t Dot) -> uint64_t {
1616       uint64_t RHS = R(Dot);
1617       if (RHS == 0) {
1618         error("division by zero");
1619         return 0;
1620       }
1621       return L(Dot) / RHS;
1622     };
1623   }
1624   if (Op == "+")
1625     return {[=](uint64_t Dot) { return L(Dot) + R(Dot); },
1626             [=] { return L.IsAbsolute() && R.IsAbsolute(); },
1627             [=] {
1628               const OutputSectionBase *S = L.Section();
1629               return S ? S : R.Section();
1630             }};
1631   if (Op == "-")
1632     return [=](uint64_t Dot) { return L(Dot) - R(Dot); };
1633   if (Op == "<<")
1634     return [=](uint64_t Dot) { return L(Dot) << R(Dot); };
1635   if (Op == ">>")
1636     return [=](uint64_t Dot) { return L(Dot) >> R(Dot); };
1637   if (Op == "<")
1638     return [=](uint64_t Dot) { return L(Dot) < R(Dot); };
1639   if (Op == ">")
1640     return [=](uint64_t Dot) { return L(Dot) > R(Dot); };
1641   if (Op == ">=")
1642     return [=](uint64_t Dot) { return L(Dot) >= R(Dot); };
1643   if (Op == "<=")
1644     return [=](uint64_t Dot) { return L(Dot) <= R(Dot); };
1645   if (Op == "==")
1646     return [=](uint64_t Dot) { return L(Dot) == R(Dot); };
1647   if (Op == "!=")
1648     return [=](uint64_t Dot) { return L(Dot) != R(Dot); };
1649   if (Op == "&")
1650     return [=](uint64_t Dot) { return L(Dot) & R(Dot); };
1651   if (Op == "|")
1652     return [=](uint64_t Dot) { return L(Dot) | R(Dot); };
1653   llvm_unreachable("invalid operator");
1654 }
1655 
1656 // This is a part of the operator-precedence parser. This function
1657 // assumes that the remaining token stream starts with an operator.
1658 Expr ScriptParser::readExpr1(Expr Lhs, int MinPrec) {
1659   while (!atEOF() && !Error) {
1660     // Read an operator and an expression.
1661     if (consume("?"))
1662       return readTernary(Lhs);
1663     StringRef Op1 = peek();
1664     if (precedence(Op1) < MinPrec)
1665       break;
1666     skip();
1667     Expr Rhs = readPrimary();
1668 
1669     // Evaluate the remaining part of the expression first if the
1670     // next operator has greater precedence than the previous one.
1671     // For example, if we have read "+" and "3", and if the next
1672     // operator is "*", then we'll evaluate 3 * ... part first.
1673     while (!atEOF()) {
1674       StringRef Op2 = peek();
1675       if (precedence(Op2) <= precedence(Op1))
1676         break;
1677       Rhs = readExpr1(Rhs, precedence(Op2));
1678     }
1679 
1680     Lhs = combine(Op1, Lhs, Rhs);
1681   }
1682   return Lhs;
1683 }
1684 
1685 uint64_t static getConstant(StringRef S) {
1686   if (S == "COMMONPAGESIZE")
1687     return Target->PageSize;
1688   if (S == "MAXPAGESIZE")
1689     return Config->MaxPageSize;
1690   error("unknown constant: " + S);
1691   return 0;
1692 }
1693 
1694 // Parses Tok as an integer. Returns true if successful.
1695 // It recognizes hexadecimal (prefixed with "0x" or suffixed with "H")
1696 // and decimal numbers. Decimal numbers may have "K" (kilo) or
1697 // "M" (mega) prefixes.
1698 static bool readInteger(StringRef Tok, uint64_t &Result) {
1699   // Negative number
1700   if (Tok.startswith("-")) {
1701     if (!readInteger(Tok.substr(1), Result))
1702       return false;
1703     Result = -Result;
1704     return true;
1705   }
1706 
1707   // Hexadecimal
1708   if (Tok.startswith_lower("0x"))
1709     return !Tok.substr(2).getAsInteger(16, Result);
1710   if (Tok.endswith_lower("H"))
1711     return !Tok.drop_back().getAsInteger(16, Result);
1712 
1713   // Decimal
1714   int Suffix = 1;
1715   if (Tok.endswith_lower("K")) {
1716     Suffix = 1024;
1717     Tok = Tok.drop_back();
1718   } else if (Tok.endswith_lower("M")) {
1719     Suffix = 1024 * 1024;
1720     Tok = Tok.drop_back();
1721   }
1722   if (Tok.getAsInteger(10, Result))
1723     return false;
1724   Result *= Suffix;
1725   return true;
1726 }
1727 
1728 BytesDataCommand *ScriptParser::readBytesDataCommand(StringRef Tok) {
1729   int Size = StringSwitch<unsigned>(Tok)
1730                  .Case("BYTE", 1)
1731                  .Case("SHORT", 2)
1732                  .Case("LONG", 4)
1733                  .Case("QUAD", 8)
1734                  .Default(-1);
1735   if (Size == -1)
1736     return nullptr;
1737 
1738   return new BytesDataCommand(readParenExpr(), Size);
1739 }
1740 
1741 StringRef ScriptParser::readParenLiteral() {
1742   expect("(");
1743   StringRef Tok = next();
1744   expect(")");
1745   return Tok;
1746 }
1747 
1748 Expr ScriptParser::readPrimary() {
1749   if (peek() == "(")
1750     return readParenExpr();
1751 
1752   StringRef Tok = next();
1753   std::string Location = getCurrentLocation();
1754 
1755   if (Tok == "~") {
1756     Expr E = readPrimary();
1757     return [=](uint64_t Dot) { return ~E(Dot); };
1758   }
1759   if (Tok == "-") {
1760     Expr E = readPrimary();
1761     return [=](uint64_t Dot) { return -E(Dot); };
1762   }
1763 
1764   // Built-in functions are parsed here.
1765   // https://sourceware.org/binutils/docs/ld/Builtin-Functions.html.
1766   if (Tok == "ADDR") {
1767     StringRef Name = readParenLiteral();
1768     return {[=](uint64_t Dot) {
1769               return ScriptBase->getOutputSection(Location, Name)->Addr;
1770             },
1771             [=] { return false; },
1772             [=] { return ScriptBase->getOutputSection(Location, Name); }};
1773   }
1774   if (Tok == "LOADADDR") {
1775     StringRef Name = readParenLiteral();
1776     return [=](uint64_t Dot) {
1777       return ScriptBase->getOutputSection(Location, Name)->getLMA();
1778     };
1779   }
1780   if (Tok == "ASSERT")
1781     return readAssert();
1782   if (Tok == "ALIGN") {
1783     expect("(");
1784     Expr E = readExpr();
1785     if (consume(",")) {
1786       Expr E2 = readExpr();
1787       expect(")");
1788       return [=](uint64_t Dot) { return alignTo(E(Dot), E2(Dot)); };
1789     }
1790     expect(")");
1791     return [=](uint64_t Dot) { return alignTo(Dot, E(Dot)); };
1792   }
1793   if (Tok == "CONSTANT") {
1794     StringRef Name = readParenLiteral();
1795     return [=](uint64_t Dot) { return getConstant(Name); };
1796   }
1797   if (Tok == "DEFINED") {
1798     StringRef Name = readParenLiteral();
1799     return [=](uint64_t Dot) { return ScriptBase->isDefined(Name) ? 1 : 0; };
1800   }
1801   if (Tok == "SEGMENT_START") {
1802     expect("(");
1803     skip();
1804     expect(",");
1805     Expr E = readExpr();
1806     expect(")");
1807     return [=](uint64_t Dot) { return E(Dot); };
1808   }
1809   if (Tok == "DATA_SEGMENT_ALIGN") {
1810     expect("(");
1811     Expr E = readExpr();
1812     expect(",");
1813     readExpr();
1814     expect(")");
1815     return [=](uint64_t Dot) { return alignTo(Dot, E(Dot)); };
1816   }
1817   if (Tok == "DATA_SEGMENT_END") {
1818     expect("(");
1819     expect(".");
1820     expect(")");
1821     return [](uint64_t Dot) { return Dot; };
1822   }
1823   // GNU linkers implements more complicated logic to handle
1824   // DATA_SEGMENT_RELRO_END. We instead ignore the arguments and just align to
1825   // the next page boundary for simplicity.
1826   if (Tok == "DATA_SEGMENT_RELRO_END") {
1827     expect("(");
1828     readExpr();
1829     expect(",");
1830     readExpr();
1831     expect(")");
1832     return [](uint64_t Dot) { return alignTo(Dot, Target->PageSize); };
1833   }
1834   if (Tok == "SIZEOF") {
1835     StringRef Name = readParenLiteral();
1836     return [=](uint64_t Dot) { return ScriptBase->getOutputSectionSize(Name); };
1837   }
1838   if (Tok == "ALIGNOF") {
1839     StringRef Name = readParenLiteral();
1840     return [=](uint64_t Dot) {
1841       return ScriptBase->getOutputSection(Location, Name)->Addralign;
1842     };
1843   }
1844   if (Tok == "SIZEOF_HEADERS")
1845     return [=](uint64_t Dot) { return ScriptBase->getHeaderSize(); };
1846 
1847   // Tok is a literal number.
1848   uint64_t V;
1849   if (readInteger(Tok, V))
1850     return [=](uint64_t Dot) { return V; };
1851 
1852   // Tok is a symbol name.
1853   if (Tok != "." && !isValidCIdentifier(Tok))
1854     setError("malformed number: " + Tok);
1855   return {[=](uint64_t Dot) { return getSymbolValue(Location, Tok, Dot); },
1856           [=] { return isAbsolute(Tok); },
1857           [=] { return ScriptBase->getSymbolSection(Tok); }};
1858 }
1859 
1860 Expr ScriptParser::readTernary(Expr Cond) {
1861   Expr L = readExpr();
1862   expect(":");
1863   Expr R = readExpr();
1864   return [=](uint64_t Dot) { return Cond(Dot) ? L(Dot) : R(Dot); };
1865 }
1866 
1867 Expr ScriptParser::readParenExpr() {
1868   expect("(");
1869   Expr E = readExpr();
1870   expect(")");
1871   return E;
1872 }
1873 
1874 std::vector<StringRef> ScriptParser::readOutputSectionPhdrs() {
1875   std::vector<StringRef> Phdrs;
1876   while (!Error && peek().startswith(":")) {
1877     StringRef Tok = next();
1878     Phdrs.push_back((Tok.size() == 1) ? next() : Tok.substr(1));
1879   }
1880   return Phdrs;
1881 }
1882 
1883 // Read a program header type name. The next token must be a
1884 // name of a program header type or a constant (e.g. "0x3").
1885 unsigned ScriptParser::readPhdrType() {
1886   StringRef Tok = next();
1887   uint64_t Val;
1888   if (readInteger(Tok, Val))
1889     return Val;
1890 
1891   unsigned Ret = StringSwitch<unsigned>(Tok)
1892                      .Case("PT_NULL", PT_NULL)
1893                      .Case("PT_LOAD", PT_LOAD)
1894                      .Case("PT_DYNAMIC", PT_DYNAMIC)
1895                      .Case("PT_INTERP", PT_INTERP)
1896                      .Case("PT_NOTE", PT_NOTE)
1897                      .Case("PT_SHLIB", PT_SHLIB)
1898                      .Case("PT_PHDR", PT_PHDR)
1899                      .Case("PT_TLS", PT_TLS)
1900                      .Case("PT_GNU_EH_FRAME", PT_GNU_EH_FRAME)
1901                      .Case("PT_GNU_STACK", PT_GNU_STACK)
1902                      .Case("PT_GNU_RELRO", PT_GNU_RELRO)
1903                      .Case("PT_OPENBSD_RANDOMIZE", PT_OPENBSD_RANDOMIZE)
1904                      .Case("PT_OPENBSD_WXNEEDED", PT_OPENBSD_WXNEEDED)
1905                      .Case("PT_OPENBSD_BOOTDATA", PT_OPENBSD_BOOTDATA)
1906                      .Default(-1);
1907 
1908   if (Ret == (unsigned)-1) {
1909     setError("invalid program header type: " + Tok);
1910     return PT_NULL;
1911   }
1912   return Ret;
1913 }
1914 
1915 // Reads a list of symbols, e.g. "{ global: foo; bar; local: *; };".
1916 void ScriptParser::readAnonymousDeclaration() {
1917   // Read global symbols first. "global:" is default, so if there's
1918   // no label, we assume global symbols.
1919   if (consume("global:") || peek() != "local:")
1920     Config->VersionScriptGlobals = readSymbols();
1921 
1922   readLocals();
1923   expect("}");
1924   expect(";");
1925 }
1926 
1927 void ScriptParser::readLocals() {
1928   if (!consume("local:"))
1929     return;
1930   std::vector<SymbolVersion> Locals = readSymbols();
1931   for (SymbolVersion V : Locals) {
1932     if (V.Name == "*") {
1933       Config->DefaultSymbolVersion = VER_NDX_LOCAL;
1934       continue;
1935     }
1936     Config->VersionScriptLocals.push_back(V);
1937   }
1938 }
1939 
1940 // Reads a list of symbols, e.g. "VerStr { global: foo; bar; local: *; };".
1941 void ScriptParser::readVersionDeclaration(StringRef VerStr) {
1942   // Identifiers start at 2 because 0 and 1 are reserved
1943   // for VER_NDX_LOCAL and VER_NDX_GLOBAL constants.
1944   uint16_t VersionId = Config->VersionDefinitions.size() + 2;
1945   Config->VersionDefinitions.push_back({VerStr, VersionId});
1946 
1947   // Read global symbols.
1948   if (consume("global:") || peek() != "local:")
1949     Config->VersionDefinitions.back().Globals = readSymbols();
1950 
1951   readLocals();
1952   expect("}");
1953 
1954   // Each version may have a parent version. For example, "Ver2"
1955   // defined as "Ver2 { global: foo; local: *; } Ver1;" has "Ver1"
1956   // as a parent. This version hierarchy is, probably against your
1957   // instinct, purely for hint; the runtime doesn't care about it
1958   // at all. In LLD, we simply ignore it.
1959   if (peek() != ";")
1960     skip();
1961   expect(";");
1962 }
1963 
1964 // Reads a list of symbols for a versions cript.
1965 std::vector<SymbolVersion> ScriptParser::readSymbols() {
1966   std::vector<SymbolVersion> Ret;
1967   for (;;) {
1968     if (consume("extern")) {
1969       for (SymbolVersion V : readVersionExtern())
1970         Ret.push_back(V);
1971       continue;
1972     }
1973 
1974     if (peek() == "}" || peek() == "local:" || Error)
1975       break;
1976     StringRef Tok = next();
1977     Ret.push_back({unquote(Tok), false, hasWildcard(Tok)});
1978     expect(";");
1979   }
1980   return Ret;
1981 }
1982 
1983 // Reads an "extern C++" directive, e.g.,
1984 // "extern "C++" { ns::*; "f(int, double)"; };"
1985 std::vector<SymbolVersion> ScriptParser::readVersionExtern() {
1986   StringRef Tok = next();
1987   bool IsCXX = Tok == "\"C++\"";
1988   if (!IsCXX && Tok != "\"C\"")
1989     setError("Unknown language");
1990   expect("{");
1991 
1992   std::vector<SymbolVersion> Ret;
1993   while (!Error && peek() != "}") {
1994     StringRef Tok = next();
1995     bool HasWildcard = !Tok.startswith("\"") && hasWildcard(Tok);
1996     Ret.push_back({unquote(Tok), IsCXX, HasWildcard});
1997     expect(";");
1998   }
1999 
2000   expect("}");
2001   expect(";");
2002   return Ret;
2003 }
2004 
2005 uint64_t ScriptParser::readMemoryAssignment(
2006     StringRef S1, StringRef S2, StringRef S3) {
2007   if (!(consume(S1) || consume(S2) || consume(S3))) {
2008     setError("expected one of: " + S1 + ", " + S2 + ", or " + S3);
2009     return 0;
2010   }
2011   expect("=");
2012 
2013   // TODO: Fully support constant expressions.
2014   uint64_t Val;
2015   if (!readInteger(next(), Val))
2016     setError("nonconstant expression for "+ S1);
2017   return Val;
2018 }
2019 
2020 // Parse the MEMORY command as specified in:
2021 // https://sourceware.org/binutils/docs/ld/MEMORY.html
2022 //
2023 // MEMORY { name [(attr)] : ORIGIN = origin, LENGTH = len ... }
2024 void ScriptParser::readMemory() {
2025   expect("{");
2026   while (!Error && !consume("}")) {
2027     StringRef Name = next();
2028 
2029     uint32_t Flags = 0;
2030     uint32_t NegFlags = 0;
2031     if (consume("(")) {
2032       std::tie(Flags, NegFlags) = readMemoryAttributes();
2033       expect(")");
2034     }
2035     expect(":");
2036 
2037     uint64_t Origin = readMemoryAssignment("ORIGIN", "org", "o");
2038     expect(",");
2039     uint64_t Length = readMemoryAssignment("LENGTH", "len", "l");
2040 
2041     // Add the memory region to the region map (if it doesn't already exist).
2042     auto It = Opt.MemoryRegions.find(Name);
2043     if (It != Opt.MemoryRegions.end())
2044       setError("region '" + Name + "' already defined");
2045     else
2046       Opt.MemoryRegions[Name] = {Name, Origin, Length, Origin, Flags, NegFlags};
2047   }
2048 }
2049 
2050 // This function parses the attributes used to match against section
2051 // flags when placing output sections in a memory region. These flags
2052 // are only used when an explicit memory region name is not used.
2053 std::pair<uint32_t, uint32_t> ScriptParser::readMemoryAttributes() {
2054   uint32_t Flags = 0;
2055   uint32_t NegFlags = 0;
2056   bool Invert = false;
2057 
2058   for (char C : next().lower()) {
2059     uint32_t Flag = 0;
2060     if (C == '!')
2061       Invert = !Invert;
2062     else if (C == 'w')
2063       Flag = SHF_WRITE;
2064     else if (C == 'x')
2065       Flag = SHF_EXECINSTR;
2066     else if (C == 'a')
2067       Flag = SHF_ALLOC;
2068     else if (C != 'r')
2069       setError("invalid memory region attribute");
2070 
2071     if (Invert)
2072       NegFlags |= Flag;
2073     else
2074       Flags |= Flag;
2075   }
2076   return {Flags, NegFlags};
2077 }
2078 
2079 void elf::readLinkerScript(MemoryBufferRef MB) {
2080   ScriptParser(MB).readLinkerScript();
2081 }
2082 
2083 void elf::readVersionScript(MemoryBufferRef MB) {
2084   ScriptParser(MB).readVersionScript();
2085 }
2086 
2087 void elf::readDynamicList(MemoryBufferRef MB) {
2088   ScriptParser(MB).readDynamicList();
2089 }
2090 
2091 template class elf::LinkerScript<ELF32LE>;
2092 template class elf::LinkerScript<ELF32BE>;
2093 template class elf::LinkerScript<ELF64LE>;
2094 template class elf::LinkerScript<ELF64BE>;
2095