1 //===- LinkerScript.cpp ---------------------------------------------------===//
2 //
3 //                             The LLVM Linker
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the parser/evaluator of the linker script.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "LinkerScript.h"
15 #include "Config.h"
16 #include "InputSection.h"
17 #include "Memory.h"
18 #include "OutputSections.h"
19 #include "Strings.h"
20 #include "SymbolTable.h"
21 #include "Symbols.h"
22 #include "SyntheticSections.h"
23 #include "Target.h"
24 #include "Writer.h"
25 #include "lld/Common/Threads.h"
26 #include "llvm/ADT/STLExtras.h"
27 #include "llvm/ADT/StringRef.h"
28 #include "llvm/BinaryFormat/ELF.h"
29 #include "llvm/Support/Casting.h"
30 #include "llvm/Support/Endian.h"
31 #include "llvm/Support/ErrorHandling.h"
32 #include "llvm/Support/FileSystem.h"
33 #include "llvm/Support/Path.h"
34 #include <algorithm>
35 #include <cassert>
36 #include <cstddef>
37 #include <cstdint>
38 #include <iterator>
39 #include <limits>
40 #include <string>
41 #include <vector>
42 
43 using namespace llvm;
44 using namespace llvm::ELF;
45 using namespace llvm::object;
46 using namespace llvm::support::endian;
47 using namespace lld;
48 using namespace lld::elf;
49 
50 LinkerScript *elf::Script;
51 
52 static uint64_t getOutputSectionVA(SectionBase *InputSec, StringRef Loc) {
53   if (OutputSection *OS = InputSec->getOutputSection())
54     return OS->Addr;
55   error(Loc + ": unable to evaluate expression: input section " +
56         InputSec->Name + " has no output section assigned");
57   return 0;
58 }
59 
60 uint64_t ExprValue::getValue() const {
61   if (Sec)
62     return alignTo(Sec->getOffset(Val) + getOutputSectionVA(Sec, Loc),
63                    Alignment);
64   return alignTo(Val, Alignment);
65 }
66 
67 uint64_t ExprValue::getSecAddr() const {
68   if (Sec)
69     return Sec->getOffset(0) + getOutputSectionVA(Sec, Loc);
70   return 0;
71 }
72 
73 uint64_t ExprValue::getSectionOffset() const {
74   // If the alignment is trivial, we don't have to compute the full
75   // value to know the offset. This allows this function to succeed in
76   // cases where the output section is not yet known.
77   if (Alignment == 1)
78     return Val;
79   return getValue() - getSecAddr();
80 }
81 
82 OutputSection *LinkerScript::createOutputSection(StringRef Name,
83                                                  StringRef Location) {
84   OutputSection *&SecRef = NameToOutputSection[Name];
85   OutputSection *Sec;
86   if (SecRef && SecRef->Location.empty()) {
87     // There was a forward reference.
88     Sec = SecRef;
89   } else {
90     Sec = make<OutputSection>(Name, SHT_PROGBITS, 0);
91     if (!SecRef)
92       SecRef = Sec;
93   }
94   Sec->Location = Location;
95   return Sec;
96 }
97 
98 OutputSection *LinkerScript::getOrCreateOutputSection(StringRef Name) {
99   OutputSection *&CmdRef = NameToOutputSection[Name];
100   if (!CmdRef)
101     CmdRef = make<OutputSection>(Name, SHT_PROGBITS, 0);
102   return CmdRef;
103 }
104 
105 void LinkerScript::setDot(Expr E, const Twine &Loc, bool InSec) {
106   uint64_t Val = E().getValue();
107   if (Val < Dot && InSec)
108     error(Loc + ": unable to move location counter backward for: " +
109           Ctx->OutSec->Name);
110   Dot = Val;
111 
112   // Update to location counter means update to section size.
113   if (InSec)
114     Ctx->OutSec->Size = Dot - Ctx->OutSec->Addr;
115 }
116 
117 // This function is called from processSectionCommands,
118 // while we are fixing the output section layout.
119 void LinkerScript::addSymbol(SymbolAssignment *Cmd) {
120   if (Cmd->Name == ".")
121     return;
122 
123   // If a symbol was in PROVIDE(), we need to define it only when
124   // it is a referenced undefined symbol.
125   SymbolBody *B = Symtab->find(Cmd->Name);
126   if (Cmd->Provide && (!B || B->isDefined()))
127     return;
128 
129   // Define a symbol.
130   Symbol *Sym;
131   uint8_t Visibility = Cmd->Hidden ? STV_HIDDEN : STV_DEFAULT;
132   std::tie(Sym, std::ignore) = Symtab->insert(Cmd->Name, /*Type*/ 0, Visibility,
133                                               /*CanOmitFromDynSym*/ false,
134                                               /*File*/ nullptr);
135   Sym->Binding = STB_GLOBAL;
136   ExprValue Value = Cmd->Expression();
137   SectionBase *Sec = Value.isAbsolute() ? nullptr : Value.Sec;
138 
139   // When this function is called, section addresses have not been
140   // fixed yet. So, we may or may not know the value of the RHS
141   // expression.
142   //
143   // For example, if an expression is `x = 42`, we know x is always 42.
144   // However, if an expression is `x = .`, there's no way to know its
145   // value at the moment.
146   //
147   // We want to set symbol values early if we can. This allows us to
148   // use symbols as variables in linker scripts. Doing so allows us to
149   // write expressions like this: `alignment = 16; . = ALIGN(., alignment)`.
150   uint64_t SymValue = Value.Sec ? 0 : Value.getValue();
151 
152   replaceBody<DefinedRegular>(Sym, nullptr, Cmd->Name, /*IsLocal=*/false,
153                               Visibility, STT_NOTYPE, SymValue, 0, Sec);
154   Cmd->Sym = cast<DefinedRegular>(Sym->body());
155 }
156 
157 // This function is called from assignAddresses, while we are
158 // fixing the output section addresses. This function is supposed
159 // to set the final value for a given symbol assignment.
160 void LinkerScript::assignSymbol(SymbolAssignment *Cmd, bool InSec) {
161   if (Cmd->Name == ".") {
162     setDot(Cmd->Expression, Cmd->Location, InSec);
163     return;
164   }
165 
166   if (!Cmd->Sym)
167     return;
168 
169   ExprValue V = Cmd->Expression();
170   if (V.isAbsolute()) {
171     Cmd->Sym->Section = nullptr;
172     Cmd->Sym->Value = V.getValue();
173   } else {
174     Cmd->Sym->Section = V.Sec;
175     Cmd->Sym->Value = V.getSectionOffset();
176   }
177 }
178 
179 static std::string getFilename(InputFile *File) {
180   if (!File)
181     return "";
182   if (File->ArchiveName.empty())
183     return File->getName();
184   return (File->ArchiveName + "(" + File->getName() + ")").str();
185 }
186 
187 bool LinkerScript::shouldKeep(InputSectionBase *S) {
188   std::string Filename = getFilename(S->File);
189   for (InputSectionDescription *ID : KeptSections)
190     if (ID->FilePat.match(Filename))
191       for (SectionPattern &P : ID->SectionPatterns)
192         if (P.SectionPat.match(S->Name))
193           return true;
194   return false;
195 }
196 
197 // A helper function for the SORT() command.
198 static std::function<bool(InputSectionBase *, InputSectionBase *)>
199 getComparator(SortSectionPolicy K) {
200   switch (K) {
201   case SortSectionPolicy::Alignment:
202     return [](InputSectionBase *A, InputSectionBase *B) {
203       // ">" is not a mistake. Sections with larger alignments are placed
204       // before sections with smaller alignments in order to reduce the
205       // amount of padding necessary. This is compatible with GNU.
206       return A->Alignment > B->Alignment;
207     };
208   case SortSectionPolicy::Name:
209     return [](InputSectionBase *A, InputSectionBase *B) {
210       return A->Name < B->Name;
211     };
212   case SortSectionPolicy::Priority:
213     return [](InputSectionBase *A, InputSectionBase *B) {
214       return getPriority(A->Name) < getPriority(B->Name);
215     };
216   default:
217     llvm_unreachable("unknown sort policy");
218   }
219 }
220 
221 // A helper function for the SORT() command.
222 static bool matchConstraints(ArrayRef<InputSection *> Sections,
223                              ConstraintKind Kind) {
224   if (Kind == ConstraintKind::NoConstraint)
225     return true;
226 
227   bool IsRW = llvm::any_of(
228       Sections, [](InputSection *Sec) { return Sec->Flags & SHF_WRITE; });
229 
230   return (IsRW && Kind == ConstraintKind::ReadWrite) ||
231          (!IsRW && Kind == ConstraintKind::ReadOnly);
232 }
233 
234 static void sortSections(MutableArrayRef<InputSection *> Vec,
235                          SortSectionPolicy K) {
236   if (K != SortSectionPolicy::Default && K != SortSectionPolicy::None)
237     std::stable_sort(Vec.begin(), Vec.end(), getComparator(K));
238 }
239 
240 // Sort sections as instructed by SORT-family commands and --sort-section
241 // option. Because SORT-family commands can be nested at most two depth
242 // (e.g. SORT_BY_NAME(SORT_BY_ALIGNMENT(.text.*))) and because the command
243 // line option is respected even if a SORT command is given, the exact
244 // behavior we have here is a bit complicated. Here are the rules.
245 //
246 // 1. If two SORT commands are given, --sort-section is ignored.
247 // 2. If one SORT command is given, and if it is not SORT_NONE,
248 //    --sort-section is handled as an inner SORT command.
249 // 3. If one SORT command is given, and if it is SORT_NONE, don't sort.
250 // 4. If no SORT command is given, sort according to --sort-section.
251 // 5. If no SORT commands are given and --sort-section is not specified,
252 //    apply sorting provided by --symbol-ordering-file if any exist.
253 static void sortInputSections(
254     MutableArrayRef<InputSection *> Vec, const SectionPattern &Pat,
255     const DenseMap<SectionBase *, int> &Order) {
256   if (Pat.SortOuter == SortSectionPolicy::None)
257     return;
258 
259   if (Pat.SortOuter == SortSectionPolicy::Default &&
260       Config->SortSection == SortSectionPolicy::Default) {
261     // If -symbol-ordering-file was given, sort accordingly.
262     // Usually, Order is empty.
263     if (!Order.empty())
264       sortByOrder(Vec, [&](InputSectionBase *S) { return Order.lookup(S); });
265     return;
266   }
267 
268   if (Pat.SortInner == SortSectionPolicy::Default)
269     sortSections(Vec, Config->SortSection);
270   else
271     sortSections(Vec, Pat.SortInner);
272   sortSections(Vec, Pat.SortOuter);
273 }
274 
275 // Compute and remember which sections the InputSectionDescription matches.
276 std::vector<InputSection *>
277 LinkerScript::computeInputSections(const InputSectionDescription *Cmd,
278                                    const DenseMap<SectionBase *, int> &Order) {
279   std::vector<InputSection *> Ret;
280 
281   // Collects all sections that satisfy constraints of Cmd.
282   for (const SectionPattern &Pat : Cmd->SectionPatterns) {
283     size_t SizeBefore = Ret.size();
284 
285     for (InputSectionBase *Sec : InputSections) {
286       if (Sec->Assigned)
287         continue;
288 
289       if (!Sec->Live) {
290         reportDiscarded(Sec);
291         continue;
292       }
293 
294       // For -emit-relocs we have to ignore entries like
295       //   .rela.dyn : { *(.rela.data) }
296       // which are common because they are in the default bfd script.
297       if (Sec->Type == SHT_REL || Sec->Type == SHT_RELA)
298         continue;
299 
300       std::string Filename = getFilename(Sec->File);
301       if (!Cmd->FilePat.match(Filename) ||
302           Pat.ExcludedFilePat.match(Filename) ||
303           !Pat.SectionPat.match(Sec->Name))
304         continue;
305 
306       // It is safe to assume that Sec is an InputSection
307       // because mergeable or EH input sections have already been
308       // handled and eliminated.
309       Ret.push_back(cast<InputSection>(Sec));
310       Sec->Assigned = true;
311     }
312 
313     sortInputSections(MutableArrayRef<InputSection *>(Ret).slice(SizeBefore),
314                       Pat, Order);
315   }
316   return Ret;
317 }
318 
319 void LinkerScript::discard(ArrayRef<InputSection *> V) {
320   for (InputSection *S : V) {
321     S->Live = false;
322     if (S == InX::ShStrTab || S == InX::Dynamic || S == InX::DynSymTab ||
323         S == InX::DynStrTab)
324       error("discarding " + S->Name + " section is not allowed");
325     discard(S->DependentSections);
326   }
327 }
328 
329 std::vector<InputSection *> LinkerScript::createInputSectionList(
330     OutputSection &OutCmd, const DenseMap<SectionBase *, int> &Order) {
331   std::vector<InputSection *> Ret;
332 
333   for (BaseCommand *Base : OutCmd.SectionCommands) {
334     if (auto *Cmd = dyn_cast<InputSectionDescription>(Base)) {
335       Cmd->Sections = computeInputSections(Cmd, Order);
336       Ret.insert(Ret.end(), Cmd->Sections.begin(), Cmd->Sections.end());
337     }
338   }
339   return Ret;
340 }
341 
342 void LinkerScript::processSectionCommands() {
343   // A symbol can be assigned before any section is mentioned in the linker
344   // script. In an DSO, the symbol values are addresses, so the only important
345   // section values are:
346   // * SHN_UNDEF
347   // * SHN_ABS
348   // * Any value meaning a regular section.
349   // To handle that, create a dummy aether section that fills the void before
350   // the linker scripts switches to another section. It has an index of one
351   // which will map to whatever the first actual section is.
352   Aether = make<OutputSection>("", 0, SHF_ALLOC);
353   Aether->SectionIndex = 1;
354 
355   // Ctx captures the local AddressState and makes it accessible deliberately.
356   // This is needed as there are some cases where we cannot just
357   // thread the current state through to a lambda function created by the
358   // script parser.
359   auto Deleter = make_unique<AddressState>();
360   Ctx = Deleter.get();
361   Ctx->OutSec = Aether;
362 
363   DenseMap<SectionBase *, int> Order = buildSectionOrder();
364   // Add input sections to output sections.
365   for (size_t I = 0; I < SectionCommands.size(); ++I) {
366     // Handle symbol assignments outside of any output section.
367     if (auto *Cmd = dyn_cast<SymbolAssignment>(SectionCommands[I])) {
368       addSymbol(Cmd);
369       continue;
370     }
371 
372     if (auto *Sec = dyn_cast<OutputSection>(SectionCommands[I])) {
373       std::vector<InputSection *> V = createInputSectionList(*Sec, Order);
374 
375       // The output section name `/DISCARD/' is special.
376       // Any input section assigned to it is discarded.
377       if (Sec->Name == "/DISCARD/") {
378         discard(V);
379         continue;
380       }
381 
382       // This is for ONLY_IF_RO and ONLY_IF_RW. An output section directive
383       // ".foo : ONLY_IF_R[OW] { ... }" is handled only if all member input
384       // sections satisfy a given constraint. If not, a directive is handled
385       // as if it wasn't present from the beginning.
386       //
387       // Because we'll iterate over SectionCommands many more times, the easiest
388       // way to "make it as if it wasn't present" is to just remove it.
389       if (!matchConstraints(V, Sec->Constraint)) {
390         for (InputSectionBase *S : V)
391           S->Assigned = false;
392         SectionCommands.erase(SectionCommands.begin() + I);
393         --I;
394         continue;
395       }
396 
397       // A directive may contain symbol definitions like this:
398       // ".foo : { ...; bar = .; }". Handle them.
399       for (BaseCommand *Base : Sec->SectionCommands)
400         if (auto *OutCmd = dyn_cast<SymbolAssignment>(Base))
401           addSymbol(OutCmd);
402 
403       // Handle subalign (e.g. ".foo : SUBALIGN(32) { ... }"). If subalign
404       // is given, input sections are aligned to that value, whether the
405       // given value is larger or smaller than the original section alignment.
406       if (Sec->SubalignExpr) {
407         uint32_t Subalign = Sec->SubalignExpr().getValue();
408         for (InputSectionBase *S : V)
409           S->Alignment = Subalign;
410       }
411 
412       // Add input sections to an output section.
413       for (InputSection *S : V)
414         Sec->addSection(S);
415     }
416   }
417   Ctx = nullptr;
418 
419   // Output sections are emitted in the exact same order as
420   // appeared in SECTIONS command, so we know their section indices.
421   for (size_t I = 0; I < SectionCommands.size(); ++I) {
422     auto *Sec = dyn_cast<OutputSection>(SectionCommands[I]);
423     if (!Sec)
424       continue;
425     assert(Sec->SectionIndex == INT_MAX);
426     Sec->SectionIndex = I;
427     if (Sec->Noload)
428       Sec->Type = SHT_NOBITS;
429   }
430 }
431 
432 // If no SECTIONS command was given, we create simple SectionCommands
433 // as if a minimum SECTIONS command were given. This function does that.
434 void LinkerScript::fabricateDefaultCommands() {
435   // Define start address
436   uint64_t StartAddr = UINT64_MAX;
437 
438   // The Sections with -T<section> have been sorted in order of ascending
439   // address. We must lower StartAddr if the lowest -T<section address> as
440   // calls to setDot() must be monotonically increasing.
441   for (auto &KV : Config->SectionStartMap)
442     StartAddr = std::min(StartAddr, KV.second);
443 
444   auto Expr = [=] {
445     return std::min(StartAddr, Target->getImageBase() + elf::getHeaderSize());
446   };
447   SectionCommands.insert(SectionCommands.begin(),
448                          make<SymbolAssignment>(".", Expr, ""));
449 }
450 
451 static OutputSection *findByName(ArrayRef<BaseCommand *> Vec,
452                                  StringRef Name) {
453   for (BaseCommand *Base : Vec)
454     if (auto *Sec = dyn_cast<OutputSection>(Base))
455       if (Sec->Name == Name)
456         return Sec;
457   return nullptr;
458 }
459 
460 static void reportOrphan(InputSectionBase *IS, StringRef Name) {
461   if (Config->OrphanHandling == OrphanHandlingPolicy::Error)
462     error(toString(IS) + " is being placed in '" + Name + "'");
463   else if (Config->OrphanHandling == OrphanHandlingPolicy::Warn)
464     warn(toString(IS) + " is being placed in '" + Name + "'");
465 }
466 
467 // Add sections that didn't match any sections command.
468 void LinkerScript::addOrphanSections(OutputSectionFactory &Factory) {
469   unsigned End = SectionCommands.size();
470 
471   for (InputSectionBase *S : InputSections) {
472     if (!S->Live || S->Parent)
473       continue;
474 
475     StringRef Name = getOutputSectionName(S->Name);
476     reportOrphan(S, Name);
477 
478     if (OutputSection *Sec =
479             findByName(makeArrayRef(SectionCommands).slice(0, End), Name)) {
480       Sec->addSection(cast<InputSection>(S));
481       continue;
482     }
483 
484     if (OutputSection *OS = Factory.addInputSec(S, Name))
485       SectionCommands.push_back(OS);
486     assert(S->getOutputSection()->SectionIndex == INT_MAX);
487   }
488 }
489 
490 uint64_t LinkerScript::advance(uint64_t Size, unsigned Alignment) {
491   bool IsTbss =
492       (Ctx->OutSec->Flags & SHF_TLS) && Ctx->OutSec->Type == SHT_NOBITS;
493   uint64_t Start = IsTbss ? Dot + Ctx->ThreadBssOffset : Dot;
494   Start = alignTo(Start, Alignment);
495   uint64_t End = Start + Size;
496 
497   if (IsTbss)
498     Ctx->ThreadBssOffset = End - Dot;
499   else
500     Dot = End;
501   return End;
502 }
503 
504 void LinkerScript::output(InputSection *S) {
505   uint64_t Before = advance(0, 1);
506   uint64_t Pos = advance(S->getSize(), S->Alignment);
507   S->OutSecOff = Pos - S->getSize() - Ctx->OutSec->Addr;
508 
509   // Update output section size after adding each section. This is so that
510   // SIZEOF works correctly in the case below:
511   // .foo { *(.aaa) a = SIZEOF(.foo); *(.bbb) }
512   Ctx->OutSec->Size = Pos - Ctx->OutSec->Addr;
513 
514   // If there is a memory region associated with this input section, then
515   // place the section in that region and update the region index.
516   if (Ctx->MemRegion) {
517     uint64_t &CurOffset = Ctx->MemRegionOffset[Ctx->MemRegion];
518     CurOffset += Pos - Before;
519     uint64_t CurSize = CurOffset - Ctx->MemRegion->Origin;
520     if (CurSize > Ctx->MemRegion->Length) {
521       uint64_t OverflowAmt = CurSize - Ctx->MemRegion->Length;
522       error("section '" + Ctx->OutSec->Name + "' will not fit in region '" +
523             Ctx->MemRegion->Name + "': overflowed by " + Twine(OverflowAmt) +
524             " bytes");
525     }
526   }
527 }
528 
529 void LinkerScript::switchTo(OutputSection *Sec) {
530   if (Ctx->OutSec == Sec)
531     return;
532 
533   Ctx->OutSec = Sec;
534   Ctx->OutSec->Addr = advance(0, Ctx->OutSec->Alignment);
535 
536   // If neither AT nor AT> is specified for an allocatable section, the linker
537   // will set the LMA such that the difference between VMA and LMA for the
538   // section is the same as the preceding output section in the same region
539   // https://sourceware.org/binutils/docs-2.20/ld/Output-Section-LMA.html
540   if (Ctx->LMAOffset)
541     Ctx->OutSec->LMAOffset = Ctx->LMAOffset();
542 }
543 
544 // This function searches for a memory region to place the given output
545 // section in. If found, a pointer to the appropriate memory region is
546 // returned. Otherwise, a nullptr is returned.
547 MemoryRegion *LinkerScript::findMemoryRegion(OutputSection *Sec) {
548   // If a memory region name was specified in the output section command,
549   // then try to find that region first.
550   if (!Sec->MemoryRegionName.empty()) {
551     auto It = MemoryRegions.find(Sec->MemoryRegionName);
552     if (It != MemoryRegions.end())
553       return It->second;
554     error("memory region '" + Sec->MemoryRegionName + "' not declared");
555     return nullptr;
556   }
557 
558   // If at least one memory region is defined, all sections must
559   // belong to some memory region. Otherwise, we don't need to do
560   // anything for memory regions.
561   if (MemoryRegions.empty())
562     return nullptr;
563 
564   // See if a region can be found by matching section flags.
565   for (auto &Pair : MemoryRegions) {
566     MemoryRegion *M = Pair.second;
567     if ((M->Flags & Sec->Flags) && (M->NegFlags & Sec->Flags) == 0)
568       return M;
569   }
570 
571   // Otherwise, no suitable region was found.
572   if (Sec->Flags & SHF_ALLOC)
573     error("no memory region specified for section '" + Sec->Name + "'");
574   return nullptr;
575 }
576 
577 // This function assigns offsets to input sections and an output section
578 // for a single sections command (e.g. ".text { *(.text); }").
579 void LinkerScript::assignOffsets(OutputSection *Sec) {
580   if (!(Sec->Flags & SHF_ALLOC))
581     Dot = 0;
582   else if (Sec->AddrExpr)
583     setDot(Sec->AddrExpr, Sec->Location, false);
584 
585   Ctx->MemRegion = Sec->MemRegion;
586   if (Ctx->MemRegion)
587     Dot = Ctx->MemRegionOffset[Ctx->MemRegion];
588 
589   if (Sec->LMAExpr) {
590     uint64_t D = Dot;
591     Ctx->LMAOffset = [=] { return Sec->LMAExpr().getValue() - D; };
592   }
593 
594   switchTo(Sec);
595 
596   // We do not support custom layout for compressed debug sectons.
597   // At this point we already know their size and have compressed content.
598   if (Ctx->OutSec->Flags & SHF_COMPRESSED)
599     return;
600 
601   // We visited SectionsCommands from processSectionCommands to
602   // layout sections. Now, we visit SectionsCommands again to fix
603   // section offsets.
604   for (BaseCommand *Base : Sec->SectionCommands) {
605     // This handles the assignments to symbol or to the dot.
606     if (auto *Cmd = dyn_cast<SymbolAssignment>(Base)) {
607       assignSymbol(Cmd, true);
608       continue;
609     }
610 
611     // Handle BYTE(), SHORT(), LONG(), or QUAD().
612     if (auto *Cmd = dyn_cast<ByteCommand>(Base)) {
613       Cmd->Offset = Dot - Ctx->OutSec->Addr;
614       Dot += Cmd->Size;
615       Ctx->OutSec->Size = Dot - Ctx->OutSec->Addr;
616       continue;
617     }
618 
619     // Handle ASSERT().
620     if (auto *Cmd = dyn_cast<AssertCommand>(Base)) {
621       Cmd->Expression();
622       continue;
623     }
624 
625     // Handle a single input section description command.
626     // It calculates and assigns the offsets for each section and also
627     // updates the output section size.
628     auto *Cmd = cast<InputSectionDescription>(Base);
629     for (InputSection *Sec : Cmd->Sections) {
630       // We tentatively added all synthetic sections at the beginning and
631       // removed empty ones afterwards (because there is no way to know
632       // whether they were going be empty or not other than actually running
633       // linker scripts.) We need to ignore remains of empty sections.
634       if (auto *S = dyn_cast<SyntheticSection>(Sec))
635         if (S->empty())
636           continue;
637 
638       if (!Sec->Live)
639         continue;
640       assert(Ctx->OutSec == Sec->getParent());
641       output(Sec);
642     }
643   }
644 }
645 
646 void LinkerScript::removeEmptyCommands() {
647   // It is common practice to use very generic linker scripts. So for any
648   // given run some of the output sections in the script will be empty.
649   // We could create corresponding empty output sections, but that would
650   // clutter the output.
651   // We instead remove trivially empty sections. The bfd linker seems even
652   // more aggressive at removing them.
653   llvm::erase_if(SectionCommands, [&](BaseCommand *Base) {
654     if (auto *Sec = dyn_cast<OutputSection>(Base))
655       return !Sec->Live;
656     return false;
657   });
658 }
659 
660 static bool isAllSectionDescription(const OutputSection &Cmd) {
661   for (BaseCommand *Base : Cmd.SectionCommands)
662     if (!isa<InputSectionDescription>(*Base))
663       return false;
664   return true;
665 }
666 
667 void LinkerScript::adjustSectionsBeforeSorting() {
668   // If the output section contains only symbol assignments, create a
669   // corresponding output section. The issue is what to do with linker script
670   // like ".foo : { symbol = 42; }". One option would be to convert it to
671   // "symbol = 42;". That is, move the symbol out of the empty section
672   // description. That seems to be what bfd does for this simple case. The
673   // problem is that this is not completely general. bfd will give up and
674   // create a dummy section too if there is a ". = . + 1" inside the section
675   // for example.
676   // Given that we want to create the section, we have to worry what impact
677   // it will have on the link. For example, if we just create a section with
678   // 0 for flags, it would change which PT_LOADs are created.
679   // We could remember that that particular section is dummy and ignore it in
680   // other parts of the linker, but unfortunately there are quite a few places
681   // that would need to change:
682   //   * The program header creation.
683   //   * The orphan section placement.
684   //   * The address assignment.
685   // The other option is to pick flags that minimize the impact the section
686   // will have on the rest of the linker. That is why we copy the flags from
687   // the previous sections. Only a few flags are needed to keep the impact low.
688   uint64_t Flags = SHF_ALLOC;
689 
690   for (BaseCommand *Cmd : SectionCommands) {
691     auto *Sec = dyn_cast<OutputSection>(Cmd);
692     if (!Sec)
693       continue;
694     if (Sec->Live) {
695       Flags = Sec->Flags & (SHF_ALLOC | SHF_WRITE | SHF_EXECINSTR);
696       continue;
697     }
698 
699     if (isAllSectionDescription(*Sec))
700       continue;
701 
702     Sec->Live = true;
703     Sec->Flags = Flags;
704   }
705 }
706 
707 void LinkerScript::adjustSectionsAfterSorting() {
708   // Try and find an appropriate memory region to assign offsets in.
709   for (BaseCommand *Base : SectionCommands) {
710     if (auto *Sec = dyn_cast<OutputSection>(Base)) {
711       if (!Sec->Live)
712         continue;
713       Sec->MemRegion = findMemoryRegion(Sec);
714       // Handle align (e.g. ".foo : ALIGN(16) { ... }").
715       if (Sec->AlignExpr)
716         Sec->Alignment =
717             std::max<uint32_t>(Sec->Alignment, Sec->AlignExpr().getValue());
718     }
719   }
720 
721   // If output section command doesn't specify any segments,
722   // and we haven't previously assigned any section to segment,
723   // then we simply assign section to the very first load segment.
724   // Below is an example of such linker script:
725   // PHDRS { seg PT_LOAD; }
726   // SECTIONS { .aaa : { *(.aaa) } }
727   std::vector<StringRef> DefPhdrs;
728   auto FirstPtLoad =
729       std::find_if(PhdrsCommands.begin(), PhdrsCommands.end(),
730                    [](const PhdrsCommand &Cmd) { return Cmd.Type == PT_LOAD; });
731   if (FirstPtLoad != PhdrsCommands.end())
732     DefPhdrs.push_back(FirstPtLoad->Name);
733 
734   // Walk the commands and propagate the program headers to commands that don't
735   // explicitly specify them.
736   for (BaseCommand *Base : SectionCommands) {
737     auto *Sec = dyn_cast<OutputSection>(Base);
738     if (!Sec)
739       continue;
740 
741     if (Sec->Phdrs.empty()) {
742       // To match the bfd linker script behaviour, only propagate program
743       // headers to sections that are allocated.
744       if (Sec->Flags & SHF_ALLOC)
745         Sec->Phdrs = DefPhdrs;
746     } else {
747       DefPhdrs = Sec->Phdrs;
748     }
749   }
750 }
751 
752 static OutputSection *findFirstSection(PhdrEntry *Load) {
753   for (OutputSection *Sec : OutputSections)
754     if (Sec->PtLoad == Load)
755       return Sec;
756   return nullptr;
757 }
758 
759 // Try to find an address for the file and program headers output sections,
760 // which were unconditionally added to the first PT_LOAD segment earlier.
761 //
762 // When using the default layout, we check if the headers fit below the first
763 // allocated section. When using a linker script, we also check if the headers
764 // are covered by the output section. This allows omitting the headers by not
765 // leaving enough space for them in the linker script; this pattern is common
766 // in embedded systems.
767 //
768 // If there isn't enough space for these sections, we'll remove them from the
769 // PT_LOAD segment, and we'll also remove the PT_PHDR segment.
770 void LinkerScript::allocateHeaders(std::vector<PhdrEntry *> &Phdrs) {
771   uint64_t Min = std::numeric_limits<uint64_t>::max();
772   for (OutputSection *Sec : OutputSections)
773     if (Sec->Flags & SHF_ALLOC)
774       Min = std::min<uint64_t>(Min, Sec->Addr);
775 
776   auto It = llvm::find_if(
777       Phdrs, [](const PhdrEntry *E) { return E->p_type == PT_LOAD; });
778   if (It == Phdrs.end())
779     return;
780   PhdrEntry *FirstPTLoad = *It;
781 
782   uint64_t HeaderSize = getHeaderSize();
783   // When linker script with SECTIONS is being used, don't output headers
784   // unless there's a space for them.
785   uint64_t Base = HasSectionsCommand ? alignDown(Min, Config->MaxPageSize) : 0;
786   if (HeaderSize <= Min - Base || Script->hasPhdrsCommands()) {
787     Min = alignDown(Min - HeaderSize, Config->MaxPageSize);
788     Out::ElfHeader->Addr = Min;
789     Out::ProgramHeaders->Addr = Min + Out::ElfHeader->Size;
790     return;
791   }
792 
793   Out::ElfHeader->PtLoad = nullptr;
794   Out::ProgramHeaders->PtLoad = nullptr;
795   FirstPTLoad->FirstSec = findFirstSection(FirstPTLoad);
796 
797   llvm::erase_if(Phdrs,
798                  [](const PhdrEntry *E) { return E->p_type == PT_PHDR; });
799 }
800 
801 LinkerScript::AddressState::AddressState() {
802   for (auto &MRI : Script->MemoryRegions) {
803     const MemoryRegion *MR = MRI.second;
804     MemRegionOffset[MR] = MR->Origin;
805   }
806 }
807 
808 // Assign addresses as instructed by linker script SECTIONS sub-commands.
809 void LinkerScript::assignAddresses() {
810   // By default linker scripts use an initial value of 0 for '.', but prefer
811   // -image-base if set.
812   Dot = Config->ImageBase ? *Config->ImageBase : 0;
813 
814   auto Deleter = make_unique<AddressState>();
815   Ctx = Deleter.get();
816   ErrorOnMissingSection = true;
817   switchTo(Aether);
818 
819   for (BaseCommand *Base : SectionCommands) {
820     if (auto *Cmd = dyn_cast<SymbolAssignment>(Base)) {
821       assignSymbol(Cmd, false);
822       continue;
823     }
824 
825     if (auto *Cmd = dyn_cast<AssertCommand>(Base)) {
826       Cmd->Expression();
827       continue;
828     }
829 
830     assignOffsets(cast<OutputSection>(Base));
831   }
832   Ctx = nullptr;
833 }
834 
835 // Creates program headers as instructed by PHDRS linker script command.
836 std::vector<PhdrEntry *> LinkerScript::createPhdrs() {
837   std::vector<PhdrEntry *> Ret;
838 
839   // Process PHDRS and FILEHDR keywords because they are not
840   // real output sections and cannot be added in the following loop.
841   for (const PhdrsCommand &Cmd : PhdrsCommands) {
842     PhdrEntry *Phdr = make<PhdrEntry>(Cmd.Type, Cmd.Flags ? *Cmd.Flags : PF_R);
843 
844     if (Cmd.HasFilehdr)
845       Phdr->add(Out::ElfHeader);
846     if (Cmd.HasPhdrs)
847       Phdr->add(Out::ProgramHeaders);
848 
849     if (Cmd.LMAExpr) {
850       Phdr->p_paddr = Cmd.LMAExpr().getValue();
851       Phdr->HasLMA = true;
852     }
853     Ret.push_back(Phdr);
854   }
855 
856   // Add output sections to program headers.
857   for (OutputSection *Sec : OutputSections) {
858     // Assign headers specified by linker script
859     for (size_t Id : getPhdrIndices(Sec)) {
860       Ret[Id]->add(Sec);
861       if (!PhdrsCommands[Id].Flags.hasValue())
862         Ret[Id]->p_flags |= Sec->getPhdrFlags();
863     }
864   }
865   return Ret;
866 }
867 
868 // Returns true if we should emit an .interp section.
869 //
870 // We usually do. But if PHDRS commands are given, and
871 // no PT_INTERP is there, there's no place to emit an
872 // .interp, so we don't do that in that case.
873 bool LinkerScript::needsInterpSection() {
874   if (PhdrsCommands.empty())
875     return true;
876   for (PhdrsCommand &Cmd : PhdrsCommands)
877     if (Cmd.Type == PT_INTERP)
878       return true;
879   return false;
880 }
881 
882 ExprValue LinkerScript::getSymbolValue(StringRef Name, const Twine &Loc) {
883   if (Name == ".") {
884     if (Ctx)
885       return {Ctx->OutSec, false, Dot - Ctx->OutSec->Addr, Loc};
886     error(Loc + ": unable to get location counter value");
887     return 0;
888   }
889 
890   if (auto *Sym = dyn_cast_or_null<DefinedRegular>(Symtab->find(Name)))
891     return {Sym->Section, false, Sym->Value, Loc};
892 
893   error(Loc + ": symbol not found: " + Name);
894   return 0;
895 }
896 
897 // Returns the index of the segment named Name.
898 static Optional<size_t> getPhdrIndex(ArrayRef<PhdrsCommand> Vec,
899                                      StringRef Name) {
900   for (size_t I = 0; I < Vec.size(); ++I)
901     if (Vec[I].Name == Name)
902       return I;
903   return None;
904 }
905 
906 // Returns indices of ELF headers containing specific section. Each index is a
907 // zero based number of ELF header listed within PHDRS {} script block.
908 std::vector<size_t> LinkerScript::getPhdrIndices(OutputSection *Cmd) {
909   std::vector<size_t> Ret;
910 
911   for (StringRef S : Cmd->Phdrs) {
912     if (Optional<size_t> Idx = getPhdrIndex(PhdrsCommands, S))
913       Ret.push_back(*Idx);
914     else if (S != "NONE")
915       error(Cmd->Location + ": section header '" + S +
916             "' is not listed in PHDRS");
917   }
918   return Ret;
919 }
920