1 //===- LinkerScript.cpp ---------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the parser/evaluator of the linker script.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "LinkerScript.h"
14 #include "Config.h"
15 #include "InputSection.h"
16 #include "OutputSections.h"
17 #include "SymbolTable.h"
18 #include "Symbols.h"
19 #include "SyntheticSections.h"
20 #include "Target.h"
21 #include "Writer.h"
22 #include "lld/Common/Memory.h"
23 #include "lld/Common/Strings.h"
24 #include "lld/Common/Threads.h"
25 #include "llvm/ADT/STLExtras.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/BinaryFormat/ELF.h"
28 #include "llvm/Support/Casting.h"
29 #include "llvm/Support/Endian.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/Support/FileSystem.h"
32 #include "llvm/Support/Path.h"
33 #include <algorithm>
34 #include <cassert>
35 #include <cstddef>
36 #include <cstdint>
37 #include <iterator>
38 #include <limits>
39 #include <string>
40 #include <vector>
41 
42 using namespace llvm;
43 using namespace llvm::ELF;
44 using namespace llvm::object;
45 using namespace llvm::support::endian;
46 using namespace lld;
47 using namespace lld::elf;
48 
49 LinkerScript *elf::Script;
50 
51 static uint64_t getOutputSectionVA(SectionBase *InputSec, StringRef Loc) {
52   if (OutputSection *OS = InputSec->getOutputSection())
53     return OS->Addr;
54   error(Loc + ": unable to evaluate expression: input section " +
55         InputSec->Name + " has no output section assigned");
56   return 0;
57 }
58 
59 uint64_t ExprValue::getValue() const {
60   if (Sec)
61     return alignTo(Sec->getOffset(Val) + getOutputSectionVA(Sec, Loc),
62                    Alignment);
63   return alignTo(Val, Alignment);
64 }
65 
66 uint64_t ExprValue::getSecAddr() const {
67   if (Sec)
68     return Sec->getOffset(0) + getOutputSectionVA(Sec, Loc);
69   return 0;
70 }
71 
72 uint64_t ExprValue::getSectionOffset() const {
73   // If the alignment is trivial, we don't have to compute the full
74   // value to know the offset. This allows this function to succeed in
75   // cases where the output section is not yet known.
76   if (Alignment == 1 && (!Sec || !Sec->getOutputSection()))
77     return Val;
78   return getValue() - getSecAddr();
79 }
80 
81 OutputSection *LinkerScript::createOutputSection(StringRef Name,
82                                                  StringRef Location) {
83   OutputSection *&SecRef = NameToOutputSection[Name];
84   OutputSection *Sec;
85   if (SecRef && SecRef->Location.empty()) {
86     // There was a forward reference.
87     Sec = SecRef;
88   } else {
89     Sec = make<OutputSection>(Name, SHT_PROGBITS, 0);
90     if (!SecRef)
91       SecRef = Sec;
92   }
93   Sec->Location = Location;
94   return Sec;
95 }
96 
97 OutputSection *LinkerScript::getOrCreateOutputSection(StringRef Name) {
98   OutputSection *&CmdRef = NameToOutputSection[Name];
99   if (!CmdRef)
100     CmdRef = make<OutputSection>(Name, SHT_PROGBITS, 0);
101   return CmdRef;
102 }
103 
104 // Expands the memory region by the specified size.
105 static void expandMemoryRegion(MemoryRegion *MemRegion, uint64_t Size,
106                                StringRef RegionName, StringRef SecName) {
107   MemRegion->CurPos += Size;
108   uint64_t NewSize = MemRegion->CurPos - MemRegion->Origin;
109   if (NewSize > MemRegion->Length)
110     error("section '" + SecName + "' will not fit in region '" + RegionName +
111           "': overflowed by " + Twine(NewSize - MemRegion->Length) + " bytes");
112 }
113 
114 void LinkerScript::expandMemoryRegions(uint64_t Size) {
115   if (Ctx->MemRegion)
116     expandMemoryRegion(Ctx->MemRegion, Size, Ctx->MemRegion->Name,
117                        Ctx->OutSec->Name);
118   // Only expand the LMARegion if it is different from MemRegion.
119   if (Ctx->LMARegion && Ctx->MemRegion != Ctx->LMARegion)
120     expandMemoryRegion(Ctx->LMARegion, Size, Ctx->LMARegion->Name,
121                        Ctx->OutSec->Name);
122 }
123 
124 void LinkerScript::expandOutputSection(uint64_t Size) {
125   Ctx->OutSec->Size += Size;
126   expandMemoryRegions(Size);
127 }
128 
129 void LinkerScript::setDot(Expr E, const Twine &Loc, bool InSec) {
130   uint64_t Val = E().getValue();
131   if (Val < Dot && InSec)
132     error(Loc + ": unable to move location counter backward for: " +
133           Ctx->OutSec->Name);
134 
135   // Update to location counter means update to section size.
136   if (InSec)
137     expandOutputSection(Val - Dot);
138   else if (Val > Dot)
139     expandMemoryRegions(Val - Dot);
140 
141   Dot = Val;
142 }
143 
144 // Used for handling linker symbol assignments, for both finalizing
145 // their values and doing early declarations. Returns true if symbol
146 // should be defined from linker script.
147 static bool shouldDefineSym(SymbolAssignment *Cmd) {
148   if (Cmd->Name == ".")
149     return false;
150 
151   if (!Cmd->Provide)
152     return true;
153 
154   // If a symbol was in PROVIDE(), we need to define it only
155   // when it is a referenced undefined symbol.
156   Symbol *B = Symtab->find(Cmd->Name);
157   if (B && !B->isDefined())
158     return true;
159   return false;
160 }
161 
162 // This function is called from processSectionCommands,
163 // while we are fixing the output section layout.
164 void LinkerScript::addSymbol(SymbolAssignment *Cmd) {
165   if (!shouldDefineSym(Cmd))
166     return;
167 
168   // Define a symbol.
169   ExprValue Value = Cmd->Expression();
170   SectionBase *Sec = Value.isAbsolute() ? nullptr : Value.Sec;
171   uint8_t Visibility = Cmd->Hidden ? STV_HIDDEN : STV_DEFAULT;
172 
173   // When this function is called, section addresses have not been
174   // fixed yet. So, we may or may not know the value of the RHS
175   // expression.
176   //
177   // For example, if an expression is `x = 42`, we know x is always 42.
178   // However, if an expression is `x = .`, there's no way to know its
179   // value at the moment.
180   //
181   // We want to set symbol values early if we can. This allows us to
182   // use symbols as variables in linker scripts. Doing so allows us to
183   // write expressions like this: `alignment = 16; . = ALIGN(., alignment)`.
184   uint64_t SymValue = Value.Sec ? 0 : Value.getValue();
185 
186   Defined New(nullptr, Cmd->Name, STB_GLOBAL, Visibility, STT_NOTYPE, SymValue,
187               0, Sec);
188 
189   Symbol *Sym = Symtab->insert(New);
190   Symtab->mergeProperties(Sym, New);
191   replaceSymbol(Sym, &New);
192   Cmd->Sym = cast<Defined>(Sym);
193 }
194 
195 // This function is called from LinkerScript::declareSymbols.
196 // It creates a placeholder symbol if needed.
197 static void declareSymbol(SymbolAssignment *Cmd) {
198   if (!shouldDefineSym(Cmd))
199     return;
200 
201   uint8_t Visibility = Cmd->Hidden ? STV_HIDDEN : STV_DEFAULT;
202   Defined New(nullptr, Cmd->Name, STB_GLOBAL, Visibility, STT_NOTYPE, 0, 0,
203               nullptr);
204 
205   // We can't calculate final value right now.
206   Symbol *Sym = Symtab->insert(New);
207   Symtab->mergeProperties(Sym, New);
208   replaceSymbol(Sym, &New);
209 
210   Cmd->Sym = cast<Defined>(Sym);
211   Cmd->Provide = false;
212   Sym->ScriptDefined = true;
213 }
214 
215 // This method is used to handle INSERT AFTER statement. Here we rebuild
216 // the list of script commands to mix sections inserted into.
217 void LinkerScript::processInsertCommands() {
218   std::vector<BaseCommand *> V;
219   auto Insert = [&](std::vector<BaseCommand *> &From) {
220     V.insert(V.end(), From.begin(), From.end());
221     From.clear();
222   };
223 
224   for (BaseCommand *Base : SectionCommands) {
225     if (auto *OS = dyn_cast<OutputSection>(Base)) {
226       Insert(InsertBeforeCommands[OS->Name]);
227       V.push_back(Base);
228       Insert(InsertAfterCommands[OS->Name]);
229       continue;
230     }
231     V.push_back(Base);
232   }
233 
234   for (auto &Cmds : {InsertBeforeCommands, InsertAfterCommands})
235     for (const std::pair<StringRef, std::vector<BaseCommand *>> &P : Cmds)
236       if (!P.second.empty())
237         error("unable to INSERT AFTER/BEFORE " + P.first +
238               ": section not defined");
239 
240   SectionCommands = std::move(V);
241 }
242 
243 // Symbols defined in script should not be inlined by LTO. At the same time
244 // we don't know their final values until late stages of link. Here we scan
245 // over symbol assignment commands and create placeholder symbols if needed.
246 void LinkerScript::declareSymbols() {
247   assert(!Ctx);
248   for (BaseCommand *Base : SectionCommands) {
249     if (auto *Cmd = dyn_cast<SymbolAssignment>(Base)) {
250       declareSymbol(Cmd);
251       continue;
252     }
253 
254     // If the output section directive has constraints,
255     // we can't say for sure if it is going to be included or not.
256     // Skip such sections for now. Improve the checks if we ever
257     // need symbols from that sections to be declared early.
258     auto *Sec = cast<OutputSection>(Base);
259     if (Sec->Constraint != ConstraintKind::NoConstraint)
260       continue;
261     for (BaseCommand *Base2 : Sec->SectionCommands)
262       if (auto *Cmd = dyn_cast<SymbolAssignment>(Base2))
263         declareSymbol(Cmd);
264   }
265 }
266 
267 // This function is called from assignAddresses, while we are
268 // fixing the output section addresses. This function is supposed
269 // to set the final value for a given symbol assignment.
270 void LinkerScript::assignSymbol(SymbolAssignment *Cmd, bool InSec) {
271   if (Cmd->Name == ".") {
272     setDot(Cmd->Expression, Cmd->Location, InSec);
273     return;
274   }
275 
276   if (!Cmd->Sym)
277     return;
278 
279   ExprValue V = Cmd->Expression();
280   if (V.isAbsolute()) {
281     Cmd->Sym->Section = nullptr;
282     Cmd->Sym->Value = V.getValue();
283   } else {
284     Cmd->Sym->Section = V.Sec;
285     Cmd->Sym->Value = V.getSectionOffset();
286   }
287 }
288 
289 static std::string getFilename(InputFile *File) {
290   if (!File)
291     return "";
292   if (File->ArchiveName.empty())
293     return File->getName();
294   return (File->ArchiveName + "(" + File->getName() + ")").str();
295 }
296 
297 bool LinkerScript::shouldKeep(InputSectionBase *S) {
298   if (KeptSections.empty())
299     return false;
300   std::string Filename = getFilename(S->File);
301   for (InputSectionDescription *ID : KeptSections)
302     if (ID->FilePat.match(Filename))
303       for (SectionPattern &P : ID->SectionPatterns)
304         if (P.SectionPat.match(S->Name))
305           return true;
306   return false;
307 }
308 
309 // A helper function for the SORT() command.
310 static std::function<bool(InputSectionBase *, InputSectionBase *)>
311 getComparator(SortSectionPolicy K) {
312   switch (K) {
313   case SortSectionPolicy::Alignment:
314     return [](InputSectionBase *A, InputSectionBase *B) {
315       // ">" is not a mistake. Sections with larger alignments are placed
316       // before sections with smaller alignments in order to reduce the
317       // amount of padding necessary. This is compatible with GNU.
318       return A->Alignment > B->Alignment;
319     };
320   case SortSectionPolicy::Name:
321     return [](InputSectionBase *A, InputSectionBase *B) {
322       return A->Name < B->Name;
323     };
324   case SortSectionPolicy::Priority:
325     return [](InputSectionBase *A, InputSectionBase *B) {
326       return getPriority(A->Name) < getPriority(B->Name);
327     };
328   default:
329     llvm_unreachable("unknown sort policy");
330   }
331 }
332 
333 // A helper function for the SORT() command.
334 static bool matchConstraints(ArrayRef<InputSection *> Sections,
335                              ConstraintKind Kind) {
336   if (Kind == ConstraintKind::NoConstraint)
337     return true;
338 
339   bool IsRW = llvm::any_of(
340       Sections, [](InputSection *Sec) { return Sec->Flags & SHF_WRITE; });
341 
342   return (IsRW && Kind == ConstraintKind::ReadWrite) ||
343          (!IsRW && Kind == ConstraintKind::ReadOnly);
344 }
345 
346 static void sortSections(MutableArrayRef<InputSection *> Vec,
347                          SortSectionPolicy K) {
348   if (K != SortSectionPolicy::Default && K != SortSectionPolicy::None)
349     llvm::stable_sort(Vec, getComparator(K));
350 }
351 
352 // Sort sections as instructed by SORT-family commands and --sort-section
353 // option. Because SORT-family commands can be nested at most two depth
354 // (e.g. SORT_BY_NAME(SORT_BY_ALIGNMENT(.text.*))) and because the command
355 // line option is respected even if a SORT command is given, the exact
356 // behavior we have here is a bit complicated. Here are the rules.
357 //
358 // 1. If two SORT commands are given, --sort-section is ignored.
359 // 2. If one SORT command is given, and if it is not SORT_NONE,
360 //    --sort-section is handled as an inner SORT command.
361 // 3. If one SORT command is given, and if it is SORT_NONE, don't sort.
362 // 4. If no SORT command is given, sort according to --sort-section.
363 static void sortInputSections(MutableArrayRef<InputSection *> Vec,
364                               const SectionPattern &Pat) {
365   if (Pat.SortOuter == SortSectionPolicy::None)
366     return;
367 
368   if (Pat.SortInner == SortSectionPolicy::Default)
369     sortSections(Vec, Config->SortSection);
370   else
371     sortSections(Vec, Pat.SortInner);
372   sortSections(Vec, Pat.SortOuter);
373 }
374 
375 // Compute and remember which sections the InputSectionDescription matches.
376 std::vector<InputSection *>
377 LinkerScript::computeInputSections(const InputSectionDescription *Cmd) {
378   std::vector<InputSection *> Ret;
379 
380   // Collects all sections that satisfy constraints of Cmd.
381   for (const SectionPattern &Pat : Cmd->SectionPatterns) {
382     size_t SizeBefore = Ret.size();
383 
384     for (InputSectionBase *Sec : InputSections) {
385       if (!Sec->Live || Sec->Assigned)
386         continue;
387 
388       // For -emit-relocs we have to ignore entries like
389       //   .rela.dyn : { *(.rela.data) }
390       // which are common because they are in the default bfd script.
391       // We do not ignore SHT_REL[A] linker-synthesized sections here because
392       // want to support scripts that do custom layout for them.
393       if (auto *IS = dyn_cast<InputSection>(Sec))
394         if (IS->getRelocatedSection())
395           continue;
396 
397       std::string Filename = getFilename(Sec->File);
398       if (!Cmd->FilePat.match(Filename) ||
399           Pat.ExcludedFilePat.match(Filename) ||
400           !Pat.SectionPat.match(Sec->Name))
401         continue;
402 
403       // It is safe to assume that Sec is an InputSection
404       // because mergeable or EH input sections have already been
405       // handled and eliminated.
406       Ret.push_back(cast<InputSection>(Sec));
407       Sec->Assigned = true;
408     }
409 
410     sortInputSections(MutableArrayRef<InputSection *>(Ret).slice(SizeBefore),
411                       Pat);
412   }
413   return Ret;
414 }
415 
416 void LinkerScript::discard(ArrayRef<InputSection *> V) {
417   for (InputSection *S : V) {
418     if (S == In.ShStrTab || S == In.RelaDyn || S == In.RelrDyn)
419       error("discarding " + S->Name + " section is not allowed");
420 
421     // You can discard .hash and .gnu.hash sections by linker scripts. Since
422     // they are synthesized sections, we need to handle them differently than
423     // other regular sections.
424     if (S == In.GnuHashTab)
425       In.GnuHashTab = nullptr;
426     if (S == In.HashTab)
427       In.HashTab = nullptr;
428 
429     S->Assigned = false;
430     S->Live = false;
431     discard(S->DependentSections);
432   }
433 }
434 
435 std::vector<InputSection *>
436 LinkerScript::createInputSectionList(OutputSection &OutCmd) {
437   std::vector<InputSection *> Ret;
438 
439   for (BaseCommand *Base : OutCmd.SectionCommands) {
440     if (auto *Cmd = dyn_cast<InputSectionDescription>(Base)) {
441       Cmd->Sections = computeInputSections(Cmd);
442       Ret.insert(Ret.end(), Cmd->Sections.begin(), Cmd->Sections.end());
443     }
444   }
445   return Ret;
446 }
447 
448 void LinkerScript::processSectionCommands() {
449   // A symbol can be assigned before any section is mentioned in the linker
450   // script. In an DSO, the symbol values are addresses, so the only important
451   // section values are:
452   // * SHN_UNDEF
453   // * SHN_ABS
454   // * Any value meaning a regular section.
455   // To handle that, create a dummy aether section that fills the void before
456   // the linker scripts switches to another section. It has an index of one
457   // which will map to whatever the first actual section is.
458   Aether = make<OutputSection>("", 0, SHF_ALLOC);
459   Aether->SectionIndex = 1;
460 
461   // Ctx captures the local AddressState and makes it accessible deliberately.
462   // This is needed as there are some cases where we cannot just
463   // thread the current state through to a lambda function created by the
464   // script parser.
465   auto Deleter = make_unique<AddressState>();
466   Ctx = Deleter.get();
467   Ctx->OutSec = Aether;
468 
469   size_t I = 0;
470   // Add input sections to output sections.
471   for (BaseCommand *Base : SectionCommands) {
472     // Handle symbol assignments outside of any output section.
473     if (auto *Cmd = dyn_cast<SymbolAssignment>(Base)) {
474       addSymbol(Cmd);
475       continue;
476     }
477 
478     if (auto *Sec = dyn_cast<OutputSection>(Base)) {
479       std::vector<InputSection *> V = createInputSectionList(*Sec);
480 
481       // The output section name `/DISCARD/' is special.
482       // Any input section assigned to it is discarded.
483       if (Sec->Name == "/DISCARD/") {
484         discard(V);
485         Sec->SectionCommands.clear();
486         Sec->SectionIndex = 0; // Not an orphan.
487         continue;
488       }
489 
490       // This is for ONLY_IF_RO and ONLY_IF_RW. An output section directive
491       // ".foo : ONLY_IF_R[OW] { ... }" is handled only if all member input
492       // sections satisfy a given constraint. If not, a directive is handled
493       // as if it wasn't present from the beginning.
494       //
495       // Because we'll iterate over SectionCommands many more times, the easy
496       // way to "make it as if it wasn't present" is to make it empty.
497       if (!matchConstraints(V, Sec->Constraint)) {
498         for (InputSectionBase *S : V)
499           S->Assigned = false;
500         Sec->SectionCommands.clear();
501         continue;
502       }
503 
504       // A directive may contain symbol definitions like this:
505       // ".foo : { ...; bar = .; }". Handle them.
506       for (BaseCommand *Base : Sec->SectionCommands)
507         if (auto *OutCmd = dyn_cast<SymbolAssignment>(Base))
508           addSymbol(OutCmd);
509 
510       // Handle subalign (e.g. ".foo : SUBALIGN(32) { ... }"). If subalign
511       // is given, input sections are aligned to that value, whether the
512       // given value is larger or smaller than the original section alignment.
513       if (Sec->SubalignExpr) {
514         uint32_t Subalign = Sec->SubalignExpr().getValue();
515         for (InputSectionBase *S : V)
516           S->Alignment = Subalign;
517       }
518 
519       // Add input sections to an output section.
520       for (InputSection *S : V)
521         Sec->addSection(S);
522 
523       Sec->SectionIndex = I++;
524       if (Sec->Noload)
525         Sec->Type = SHT_NOBITS;
526       if (Sec->NonAlloc)
527         Sec->Flags &= ~(uint64_t)SHF_ALLOC;
528     }
529   }
530   Ctx = nullptr;
531 }
532 
533 static OutputSection *findByName(ArrayRef<BaseCommand *> Vec,
534                                  StringRef Name) {
535   for (BaseCommand *Base : Vec)
536     if (auto *Sec = dyn_cast<OutputSection>(Base))
537       if (Sec->Name == Name)
538         return Sec;
539   return nullptr;
540 }
541 
542 static OutputSection *createSection(InputSectionBase *IS,
543                                     StringRef OutsecName) {
544   OutputSection *Sec = Script->createOutputSection(OutsecName, "<internal>");
545   Sec->addSection(cast<InputSection>(IS));
546   return Sec;
547 }
548 
549 static OutputSection *addInputSec(StringMap<OutputSection *> &Map,
550                                   InputSectionBase *IS, StringRef OutsecName) {
551   // Sections with SHT_GROUP or SHF_GROUP attributes reach here only when the -r
552   // option is given. A section with SHT_GROUP defines a "section group", and
553   // its members have SHF_GROUP attribute. Usually these flags have already been
554   // stripped by InputFiles.cpp as section groups are processed and uniquified.
555   // However, for the -r option, we want to pass through all section groups
556   // as-is because adding/removing members or merging them with other groups
557   // change their semantics.
558   if (IS->Type == SHT_GROUP || (IS->Flags & SHF_GROUP))
559     return createSection(IS, OutsecName);
560 
561   // Imagine .zed : { *(.foo) *(.bar) } script. Both foo and bar may have
562   // relocation sections .rela.foo and .rela.bar for example. Most tools do
563   // not allow multiple REL[A] sections for output section. Hence we
564   // should combine these relocation sections into single output.
565   // We skip synthetic sections because it can be .rela.dyn/.rela.plt or any
566   // other REL[A] sections created by linker itself.
567   if (!isa<SyntheticSection>(IS) &&
568       (IS->Type == SHT_REL || IS->Type == SHT_RELA)) {
569     auto *Sec = cast<InputSection>(IS);
570     OutputSection *Out = Sec->getRelocatedSection()->getOutputSection();
571 
572     if (Out->RelocationSection) {
573       Out->RelocationSection->addSection(Sec);
574       return nullptr;
575     }
576 
577     Out->RelocationSection = createSection(IS, OutsecName);
578     return Out->RelocationSection;
579   }
580 
581   // When control reaches here, mergeable sections have already been merged into
582   // synthetic sections. For relocatable case we want to create one output
583   // section per syntetic section so that they have a valid sh_entsize.
584   if (Config->Relocatable && (IS->Flags & SHF_MERGE))
585     return createSection(IS, OutsecName);
586 
587   //  The ELF spec just says
588   // ----------------------------------------------------------------
589   // In the first phase, input sections that match in name, type and
590   // attribute flags should be concatenated into single sections.
591   // ----------------------------------------------------------------
592   //
593   // However, it is clear that at least some flags have to be ignored for
594   // section merging. At the very least SHF_GROUP and SHF_COMPRESSED have to be
595   // ignored. We should not have two output .text sections just because one was
596   // in a group and another was not for example.
597   //
598   // It also seems that wording was a late addition and didn't get the
599   // necessary scrutiny.
600   //
601   // Merging sections with different flags is expected by some users. One
602   // reason is that if one file has
603   //
604   // int *const bar __attribute__((section(".foo"))) = (int *)0;
605   //
606   // gcc with -fPIC will produce a read only .foo section. But if another
607   // file has
608   //
609   // int zed;
610   // int *const bar __attribute__((section(".foo"))) = (int *)&zed;
611   //
612   // gcc with -fPIC will produce a read write section.
613   //
614   // Last but not least, when using linker script the merge rules are forced by
615   // the script. Unfortunately, linker scripts are name based. This means that
616   // expressions like *(.foo*) can refer to multiple input sections with
617   // different flags. We cannot put them in different output sections or we
618   // would produce wrong results for
619   //
620   // start = .; *(.foo.*) end = .; *(.bar)
621   //
622   // and a mapping of .foo1 and .bar1 to one section and .foo2 and .bar2 to
623   // another. The problem is that there is no way to layout those output
624   // sections such that the .foo sections are the only thing between the start
625   // and end symbols.
626   //
627   // Given the above issues, we instead merge sections by name and error on
628   // incompatible types and flags.
629   OutputSection *&Sec = Map[OutsecName];
630   if (Sec) {
631     Sec->addSection(cast<InputSection>(IS));
632     return nullptr;
633   }
634 
635   Sec = createSection(IS, OutsecName);
636   return Sec;
637 }
638 
639 // Add sections that didn't match any sections command.
640 void LinkerScript::addOrphanSections() {
641   StringMap<OutputSection *> Map;
642   std::vector<OutputSection *> V;
643 
644   auto Add = [&](InputSectionBase *S) {
645     if (!S->Live || S->Parent)
646       return;
647 
648     StringRef Name = getOutputSectionName(S);
649 
650     if (Config->OrphanHandling == OrphanHandlingPolicy::Error)
651       error(toString(S) + " is being placed in '" + Name + "'");
652     else if (Config->OrphanHandling == OrphanHandlingPolicy::Warn)
653       warn(toString(S) + " is being placed in '" + Name + "'");
654 
655     if (OutputSection *Sec = findByName(SectionCommands, Name)) {
656       Sec->addSection(cast<InputSection>(S));
657       return;
658     }
659 
660     if (OutputSection *OS = addInputSec(Map, S, Name))
661       V.push_back(OS);
662     assert(S->getOutputSection()->SectionIndex == UINT32_MAX);
663   };
664 
665   // For futher --emit-reloc handling code we need target output section
666   // to be created before we create relocation output section, so we want
667   // to create target sections first. We do not want priority handling
668   // for synthetic sections because them are special.
669   for (InputSectionBase *IS : InputSections) {
670     if (auto *Sec = dyn_cast<InputSection>(IS))
671       if (InputSectionBase *Rel = Sec->getRelocatedSection())
672         if (auto *RelIS = dyn_cast_or_null<InputSectionBase>(Rel->Parent))
673           Add(RelIS);
674     Add(IS);
675   }
676 
677   // If no SECTIONS command was given, we should insert sections commands
678   // before others, so that we can handle scripts which refers them,
679   // for example: "foo = ABSOLUTE(ADDR(.text)));".
680   // When SECTIONS command is present we just add all orphans to the end.
681   if (HasSectionsCommand)
682     SectionCommands.insert(SectionCommands.end(), V.begin(), V.end());
683   else
684     SectionCommands.insert(SectionCommands.begin(), V.begin(), V.end());
685 }
686 
687 uint64_t LinkerScript::advance(uint64_t Size, unsigned Alignment) {
688   bool IsTbss =
689       (Ctx->OutSec->Flags & SHF_TLS) && Ctx->OutSec->Type == SHT_NOBITS;
690   uint64_t Start = IsTbss ? Dot + Ctx->ThreadBssOffset : Dot;
691   Start = alignTo(Start, Alignment);
692   uint64_t End = Start + Size;
693 
694   if (IsTbss)
695     Ctx->ThreadBssOffset = End - Dot;
696   else
697     Dot = End;
698   return End;
699 }
700 
701 void LinkerScript::output(InputSection *S) {
702   assert(Ctx->OutSec == S->getParent());
703   uint64_t Before = advance(0, 1);
704   uint64_t Pos = advance(S->getSize(), S->Alignment);
705   S->OutSecOff = Pos - S->getSize() - Ctx->OutSec->Addr;
706 
707   // Update output section size after adding each section. This is so that
708   // SIZEOF works correctly in the case below:
709   // .foo { *(.aaa) a = SIZEOF(.foo); *(.bbb) }
710   expandOutputSection(Pos - Before);
711 }
712 
713 void LinkerScript::switchTo(OutputSection *Sec) {
714   Ctx->OutSec = Sec;
715 
716   uint64_t Before = advance(0, 1);
717   Ctx->OutSec->Addr = advance(0, Ctx->OutSec->Alignment);
718   expandMemoryRegions(Ctx->OutSec->Addr - Before);
719 }
720 
721 // This function searches for a memory region to place the given output
722 // section in. If found, a pointer to the appropriate memory region is
723 // returned. Otherwise, a nullptr is returned.
724 MemoryRegion *LinkerScript::findMemoryRegion(OutputSection *Sec) {
725   // If a memory region name was specified in the output section command,
726   // then try to find that region first.
727   if (!Sec->MemoryRegionName.empty()) {
728     if (MemoryRegion *M = MemoryRegions.lookup(Sec->MemoryRegionName))
729       return M;
730     error("memory region '" + Sec->MemoryRegionName + "' not declared");
731     return nullptr;
732   }
733 
734   // If at least one memory region is defined, all sections must
735   // belong to some memory region. Otherwise, we don't need to do
736   // anything for memory regions.
737   if (MemoryRegions.empty())
738     return nullptr;
739 
740   // See if a region can be found by matching section flags.
741   for (auto &Pair : MemoryRegions) {
742     MemoryRegion *M = Pair.second;
743     if ((M->Flags & Sec->Flags) && (M->NegFlags & Sec->Flags) == 0)
744       return M;
745   }
746 
747   // Otherwise, no suitable region was found.
748   if (Sec->Flags & SHF_ALLOC)
749     error("no memory region specified for section '" + Sec->Name + "'");
750   return nullptr;
751 }
752 
753 static OutputSection *findFirstSection(PhdrEntry *Load) {
754   for (OutputSection *Sec : OutputSections)
755     if (Sec->PtLoad == Load)
756       return Sec;
757   return nullptr;
758 }
759 
760 // This function assigns offsets to input sections and an output section
761 // for a single sections command (e.g. ".text { *(.text); }").
762 void LinkerScript::assignOffsets(OutputSection *Sec) {
763   if (!(Sec->Flags & SHF_ALLOC))
764     Dot = 0;
765 
766   Ctx->MemRegion = Sec->MemRegion;
767   Ctx->LMARegion = Sec->LMARegion;
768   if (Ctx->MemRegion)
769     Dot = Ctx->MemRegion->CurPos;
770 
771   if ((Sec->Flags & SHF_ALLOC) && Sec->AddrExpr)
772     setDot(Sec->AddrExpr, Sec->Location, false);
773 
774   switchTo(Sec);
775 
776   if (Sec->LMAExpr)
777     Ctx->LMAOffset = Sec->LMAExpr().getValue() - Dot;
778 
779   if (MemoryRegion *MR = Sec->LMARegion)
780     Ctx->LMAOffset = MR->CurPos - Dot;
781 
782   // If neither AT nor AT> is specified for an allocatable section, the linker
783   // will set the LMA such that the difference between VMA and LMA for the
784   // section is the same as the preceding output section in the same region
785   // https://sourceware.org/binutils/docs-2.20/ld/Output-Section-LMA.html
786   // This, however, should only be done by the first "non-header" section
787   // in the segment.
788   if (PhdrEntry *L = Ctx->OutSec->PtLoad)
789     if (Sec == findFirstSection(L))
790       L->LMAOffset = Ctx->LMAOffset;
791 
792   // We can call this method multiple times during the creation of
793   // thunks and want to start over calculation each time.
794   Sec->Size = 0;
795 
796   // We visited SectionsCommands from processSectionCommands to
797   // layout sections. Now, we visit SectionsCommands again to fix
798   // section offsets.
799   for (BaseCommand *Base : Sec->SectionCommands) {
800     // This handles the assignments to symbol or to the dot.
801     if (auto *Cmd = dyn_cast<SymbolAssignment>(Base)) {
802       Cmd->Addr = Dot;
803       assignSymbol(Cmd, true);
804       Cmd->Size = Dot - Cmd->Addr;
805       continue;
806     }
807 
808     // Handle BYTE(), SHORT(), LONG(), or QUAD().
809     if (auto *Cmd = dyn_cast<ByteCommand>(Base)) {
810       Cmd->Offset = Dot - Ctx->OutSec->Addr;
811       Dot += Cmd->Size;
812       expandOutputSection(Cmd->Size);
813       continue;
814     }
815 
816     // Handle a single input section description command.
817     // It calculates and assigns the offsets for each section and also
818     // updates the output section size.
819     for (InputSection *Sec : cast<InputSectionDescription>(Base)->Sections)
820       output(Sec);
821   }
822 }
823 
824 static bool isDiscardable(OutputSection &Sec) {
825   // We do not remove empty sections that are explicitly
826   // assigned to any segment.
827   if (!Sec.Phdrs.empty())
828     return false;
829 
830   // We do not want to remove OutputSections with expressions that reference
831   // symbols even if the OutputSection is empty. We want to ensure that the
832   // expressions can be evaluated and report an error if they cannot.
833   if (Sec.ExpressionsUseSymbols)
834     return false;
835 
836   // OutputSections may be referenced by name in ADDR and LOADADDR expressions,
837   // as an empty Section can has a valid VMA and LMA we keep the OutputSection
838   // to maintain the integrity of the other Expression.
839   if (Sec.UsedInExpression)
840     return false;
841 
842   for (BaseCommand *Base : Sec.SectionCommands) {
843     if (auto Cmd = dyn_cast<SymbolAssignment>(Base))
844       // Don't create empty output sections just for unreferenced PROVIDE
845       // symbols.
846       if (Cmd->Name != "." && !Cmd->Sym)
847         continue;
848 
849     if (!isa<InputSectionDescription>(*Base))
850       return false;
851   }
852   return true;
853 }
854 
855 void LinkerScript::adjustSectionsBeforeSorting() {
856   // If the output section contains only symbol assignments, create a
857   // corresponding output section. The issue is what to do with linker script
858   // like ".foo : { symbol = 42; }". One option would be to convert it to
859   // "symbol = 42;". That is, move the symbol out of the empty section
860   // description. That seems to be what bfd does for this simple case. The
861   // problem is that this is not completely general. bfd will give up and
862   // create a dummy section too if there is a ". = . + 1" inside the section
863   // for example.
864   // Given that we want to create the section, we have to worry what impact
865   // it will have on the link. For example, if we just create a section with
866   // 0 for flags, it would change which PT_LOADs are created.
867   // We could remember that particular section is dummy and ignore it in
868   // other parts of the linker, but unfortunately there are quite a few places
869   // that would need to change:
870   //   * The program header creation.
871   //   * The orphan section placement.
872   //   * The address assignment.
873   // The other option is to pick flags that minimize the impact the section
874   // will have on the rest of the linker. That is why we copy the flags from
875   // the previous sections. Only a few flags are needed to keep the impact low.
876   uint64_t Flags = SHF_ALLOC;
877 
878   for (BaseCommand *&Cmd : SectionCommands) {
879     auto *Sec = dyn_cast<OutputSection>(Cmd);
880     if (!Sec)
881       continue;
882 
883     // Handle align (e.g. ".foo : ALIGN(16) { ... }").
884     if (Sec->AlignExpr)
885       Sec->Alignment =
886           std::max<uint32_t>(Sec->Alignment, Sec->AlignExpr().getValue());
887 
888     // A live output section means that some input section was added to it. It
889     // might have been removed (if it was empty synthetic section), but we at
890     // least know the flags.
891     if (Sec->Live)
892       Flags = Sec->Flags;
893 
894     // We do not want to keep any special flags for output section
895     // in case it is empty.
896     bool IsEmpty = getInputSections(Sec).empty();
897     if (IsEmpty)
898       Sec->Flags = Flags & ((Sec->NonAlloc ? 0 : (uint64_t)SHF_ALLOC) |
899                             SHF_WRITE | SHF_EXECINSTR);
900 
901     if (IsEmpty && isDiscardable(*Sec)) {
902       Sec->Live = false;
903       Cmd = nullptr;
904     }
905   }
906 
907   // It is common practice to use very generic linker scripts. So for any
908   // given run some of the output sections in the script will be empty.
909   // We could create corresponding empty output sections, but that would
910   // clutter the output.
911   // We instead remove trivially empty sections. The bfd linker seems even
912   // more aggressive at removing them.
913   llvm::erase_if(SectionCommands, [&](BaseCommand *Base) { return !Base; });
914 }
915 
916 void LinkerScript::adjustSectionsAfterSorting() {
917   // Try and find an appropriate memory region to assign offsets in.
918   for (BaseCommand *Base : SectionCommands) {
919     if (auto *Sec = dyn_cast<OutputSection>(Base)) {
920       if (!Sec->LMARegionName.empty()) {
921         if (MemoryRegion *M = MemoryRegions.lookup(Sec->LMARegionName))
922           Sec->LMARegion = M;
923         else
924           error("memory region '" + Sec->LMARegionName + "' not declared");
925       }
926       Sec->MemRegion = findMemoryRegion(Sec);
927     }
928   }
929 
930   // If output section command doesn't specify any segments,
931   // and we haven't previously assigned any section to segment,
932   // then we simply assign section to the very first load segment.
933   // Below is an example of such linker script:
934   // PHDRS { seg PT_LOAD; }
935   // SECTIONS { .aaa : { *(.aaa) } }
936   std::vector<StringRef> DefPhdrs;
937   auto FirstPtLoad = llvm::find_if(PhdrsCommands, [](const PhdrsCommand &Cmd) {
938     return Cmd.Type == PT_LOAD;
939   });
940   if (FirstPtLoad != PhdrsCommands.end())
941     DefPhdrs.push_back(FirstPtLoad->Name);
942 
943   // Walk the commands and propagate the program headers to commands that don't
944   // explicitly specify them.
945   for (BaseCommand *Base : SectionCommands) {
946     auto *Sec = dyn_cast<OutputSection>(Base);
947     if (!Sec)
948       continue;
949 
950     if (Sec->Phdrs.empty()) {
951       // To match the bfd linker script behaviour, only propagate program
952       // headers to sections that are allocated.
953       if (Sec->Flags & SHF_ALLOC)
954         Sec->Phdrs = DefPhdrs;
955     } else {
956       DefPhdrs = Sec->Phdrs;
957     }
958   }
959 }
960 
961 static uint64_t computeBase(uint64_t Min, bool AllocateHeaders) {
962   // If there is no SECTIONS or if the linkerscript is explicit about program
963   // headers, do our best to allocate them.
964   if (!Script->HasSectionsCommand || AllocateHeaders)
965     return 0;
966   // Otherwise only allocate program headers if that would not add a page.
967   return alignDown(Min, Config->MaxPageSize);
968 }
969 
970 // Try to find an address for the file and program headers output sections,
971 // which were unconditionally added to the first PT_LOAD segment earlier.
972 //
973 // When using the default layout, we check if the headers fit below the first
974 // allocated section. When using a linker script, we also check if the headers
975 // are covered by the output section. This allows omitting the headers by not
976 // leaving enough space for them in the linker script; this pattern is common
977 // in embedded systems.
978 //
979 // If there isn't enough space for these sections, we'll remove them from the
980 // PT_LOAD segment, and we'll also remove the PT_PHDR segment.
981 void LinkerScript::allocateHeaders(std::vector<PhdrEntry *> &Phdrs) {
982   uint64_t Min = std::numeric_limits<uint64_t>::max();
983   for (OutputSection *Sec : OutputSections)
984     if (Sec->Flags & SHF_ALLOC)
985       Min = std::min<uint64_t>(Min, Sec->Addr);
986 
987   auto It = llvm::find_if(
988       Phdrs, [](const PhdrEntry *E) { return E->p_type == PT_LOAD; });
989   if (It == Phdrs.end())
990     return;
991   PhdrEntry *FirstPTLoad = *It;
992 
993   bool HasExplicitHeaders =
994       llvm::any_of(PhdrsCommands, [](const PhdrsCommand &Cmd) {
995         return Cmd.HasPhdrs || Cmd.HasFilehdr;
996       });
997   bool Paged = !Config->Omagic && !Config->Nmagic;
998   uint64_t HeaderSize = getHeaderSize();
999   if ((Paged || HasExplicitHeaders) &&
1000       HeaderSize <= Min - computeBase(Min, HasExplicitHeaders)) {
1001     Min = alignDown(Min - HeaderSize, Config->MaxPageSize);
1002     Out::ElfHeader->Addr = Min;
1003     Out::ProgramHeaders->Addr = Min + Out::ElfHeader->Size;
1004     return;
1005   }
1006 
1007   // Error if we were explicitly asked to allocate headers.
1008   if (HasExplicitHeaders)
1009     error("could not allocate headers");
1010 
1011   Out::ElfHeader->PtLoad = nullptr;
1012   Out::ProgramHeaders->PtLoad = nullptr;
1013   FirstPTLoad->FirstSec = findFirstSection(FirstPTLoad);
1014 
1015   llvm::erase_if(Phdrs,
1016                  [](const PhdrEntry *E) { return E->p_type == PT_PHDR; });
1017 }
1018 
1019 LinkerScript::AddressState::AddressState() {
1020   for (auto &MRI : Script->MemoryRegions) {
1021     MemoryRegion *MR = MRI.second;
1022     MR->CurPos = MR->Origin;
1023   }
1024 }
1025 
1026 static uint64_t getInitialDot() {
1027   // By default linker scripts use an initial value of 0 for '.',
1028   // but prefer -image-base if set.
1029   if (Script->HasSectionsCommand)
1030     return Config->ImageBase ? *Config->ImageBase : 0;
1031 
1032   uint64_t StartAddr = UINT64_MAX;
1033   // The Sections with -T<section> have been sorted in order of ascending
1034   // address. We must lower StartAddr if the lowest -T<section address> as
1035   // calls to setDot() must be monotonically increasing.
1036   for (auto &KV : Config->SectionStartMap)
1037     StartAddr = std::min(StartAddr, KV.second);
1038   return std::min(StartAddr, Target->getImageBase() + elf::getHeaderSize());
1039 }
1040 
1041 // Here we assign addresses as instructed by linker script SECTIONS
1042 // sub-commands. Doing that allows us to use final VA values, so here
1043 // we also handle rest commands like symbol assignments and ASSERTs.
1044 void LinkerScript::assignAddresses() {
1045   Dot = getInitialDot();
1046 
1047   auto Deleter = make_unique<AddressState>();
1048   Ctx = Deleter.get();
1049   ErrorOnMissingSection = true;
1050   switchTo(Aether);
1051 
1052   for (BaseCommand *Base : SectionCommands) {
1053     if (auto *Cmd = dyn_cast<SymbolAssignment>(Base)) {
1054       Cmd->Addr = Dot;
1055       assignSymbol(Cmd, false);
1056       Cmd->Size = Dot - Cmd->Addr;
1057       continue;
1058     }
1059     assignOffsets(cast<OutputSection>(Base));
1060   }
1061   Ctx = nullptr;
1062 }
1063 
1064 // Creates program headers as instructed by PHDRS linker script command.
1065 std::vector<PhdrEntry *> LinkerScript::createPhdrs() {
1066   std::vector<PhdrEntry *> Ret;
1067 
1068   // Process PHDRS and FILEHDR keywords because they are not
1069   // real output sections and cannot be added in the following loop.
1070   for (const PhdrsCommand &Cmd : PhdrsCommands) {
1071     PhdrEntry *Phdr = make<PhdrEntry>(Cmd.Type, Cmd.Flags ? *Cmd.Flags : PF_R);
1072 
1073     if (Cmd.HasFilehdr)
1074       Phdr->add(Out::ElfHeader);
1075     if (Cmd.HasPhdrs)
1076       Phdr->add(Out::ProgramHeaders);
1077 
1078     if (Cmd.LMAExpr) {
1079       Phdr->p_paddr = Cmd.LMAExpr().getValue();
1080       Phdr->HasLMA = true;
1081     }
1082     Ret.push_back(Phdr);
1083   }
1084 
1085   // Add output sections to program headers.
1086   for (OutputSection *Sec : OutputSections) {
1087     // Assign headers specified by linker script
1088     for (size_t Id : getPhdrIndices(Sec)) {
1089       Ret[Id]->add(Sec);
1090       if (!PhdrsCommands[Id].Flags.hasValue())
1091         Ret[Id]->p_flags |= Sec->getPhdrFlags();
1092     }
1093   }
1094   return Ret;
1095 }
1096 
1097 // Returns true if we should emit an .interp section.
1098 //
1099 // We usually do. But if PHDRS commands are given, and
1100 // no PT_INTERP is there, there's no place to emit an
1101 // .interp, so we don't do that in that case.
1102 bool LinkerScript::needsInterpSection() {
1103   if (PhdrsCommands.empty())
1104     return true;
1105   for (PhdrsCommand &Cmd : PhdrsCommands)
1106     if (Cmd.Type == PT_INTERP)
1107       return true;
1108   return false;
1109 }
1110 
1111 ExprValue LinkerScript::getSymbolValue(StringRef Name, const Twine &Loc) {
1112   if (Name == ".") {
1113     if (Ctx)
1114       return {Ctx->OutSec, false, Dot - Ctx->OutSec->Addr, Loc};
1115     error(Loc + ": unable to get location counter value");
1116     return 0;
1117   }
1118 
1119   if (Symbol *Sym = Symtab->find(Name)) {
1120     if (auto *DS = dyn_cast<Defined>(Sym))
1121       return {DS->Section, false, DS->Value, Loc};
1122     if (isa<SharedSymbol>(Sym))
1123       if (!ErrorOnMissingSection)
1124         return {nullptr, false, 0, Loc};
1125   }
1126 
1127   error(Loc + ": symbol not found: " + Name);
1128   return 0;
1129 }
1130 
1131 // Returns the index of the segment named Name.
1132 static Optional<size_t> getPhdrIndex(ArrayRef<PhdrsCommand> Vec,
1133                                      StringRef Name) {
1134   for (size_t I = 0; I < Vec.size(); ++I)
1135     if (Vec[I].Name == Name)
1136       return I;
1137   return None;
1138 }
1139 
1140 // Returns indices of ELF headers containing specific section. Each index is a
1141 // zero based number of ELF header listed within PHDRS {} script block.
1142 std::vector<size_t> LinkerScript::getPhdrIndices(OutputSection *Cmd) {
1143   std::vector<size_t> Ret;
1144 
1145   for (StringRef S : Cmd->Phdrs) {
1146     if (Optional<size_t> Idx = getPhdrIndex(PhdrsCommands, S))
1147       Ret.push_back(*Idx);
1148     else if (S != "NONE")
1149       error(Cmd->Location + ": section header '" + S +
1150             "' is not listed in PHDRS");
1151   }
1152   return Ret;
1153 }
1154