1 //===- LinkerScript.cpp ---------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the parser/evaluator of the linker script. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "LinkerScript.h" 14 #include "Config.h" 15 #include "InputSection.h" 16 #include "OutputSections.h" 17 #include "SymbolTable.h" 18 #include "Symbols.h" 19 #include "SyntheticSections.h" 20 #include "Target.h" 21 #include "Writer.h" 22 #include "lld/Common/Memory.h" 23 #include "lld/Common/Strings.h" 24 #include "lld/Common/Threads.h" 25 #include "llvm/ADT/STLExtras.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/BinaryFormat/ELF.h" 28 #include "llvm/Support/Casting.h" 29 #include "llvm/Support/Endian.h" 30 #include "llvm/Support/ErrorHandling.h" 31 #include "llvm/Support/FileSystem.h" 32 #include "llvm/Support/Path.h" 33 #include <algorithm> 34 #include <cassert> 35 #include <cstddef> 36 #include <cstdint> 37 #include <iterator> 38 #include <limits> 39 #include <string> 40 #include <vector> 41 42 using namespace llvm; 43 using namespace llvm::ELF; 44 using namespace llvm::object; 45 using namespace llvm::support::endian; 46 using namespace lld; 47 using namespace lld::elf; 48 49 LinkerScript *elf::Script; 50 51 static uint64_t getOutputSectionVA(SectionBase *InputSec, StringRef Loc) { 52 if (OutputSection *OS = InputSec->getOutputSection()) 53 return OS->Addr; 54 error(Loc + ": unable to evaluate expression: input section " + 55 InputSec->Name + " has no output section assigned"); 56 return 0; 57 } 58 59 uint64_t ExprValue::getValue() const { 60 if (Sec) 61 return alignTo(Sec->getOffset(Val) + getOutputSectionVA(Sec, Loc), 62 Alignment); 63 return alignTo(Val, Alignment); 64 } 65 66 uint64_t ExprValue::getSecAddr() const { 67 if (Sec) 68 return Sec->getOffset(0) + getOutputSectionVA(Sec, Loc); 69 return 0; 70 } 71 72 uint64_t ExprValue::getSectionOffset() const { 73 // If the alignment is trivial, we don't have to compute the full 74 // value to know the offset. This allows this function to succeed in 75 // cases where the output section is not yet known. 76 if (Alignment == 1 && (!Sec || !Sec->getOutputSection())) 77 return Val; 78 return getValue() - getSecAddr(); 79 } 80 81 OutputSection *LinkerScript::createOutputSection(StringRef Name, 82 StringRef Location) { 83 OutputSection *&SecRef = NameToOutputSection[Name]; 84 OutputSection *Sec; 85 if (SecRef && SecRef->Location.empty()) { 86 // There was a forward reference. 87 Sec = SecRef; 88 } else { 89 Sec = make<OutputSection>(Name, SHT_PROGBITS, 0); 90 if (!SecRef) 91 SecRef = Sec; 92 } 93 Sec->Location = Location; 94 return Sec; 95 } 96 97 OutputSection *LinkerScript::getOrCreateOutputSection(StringRef Name) { 98 OutputSection *&CmdRef = NameToOutputSection[Name]; 99 if (!CmdRef) 100 CmdRef = make<OutputSection>(Name, SHT_PROGBITS, 0); 101 return CmdRef; 102 } 103 104 // Expands the memory region by the specified size. 105 static void expandMemoryRegion(MemoryRegion *MemRegion, uint64_t Size, 106 StringRef RegionName, StringRef SecName) { 107 MemRegion->CurPos += Size; 108 uint64_t NewSize = MemRegion->CurPos - MemRegion->Origin; 109 if (NewSize > MemRegion->Length) 110 error("section '" + SecName + "' will not fit in region '" + RegionName + 111 "': overflowed by " + Twine(NewSize - MemRegion->Length) + " bytes"); 112 } 113 114 void LinkerScript::expandMemoryRegions(uint64_t Size) { 115 if (Ctx->MemRegion) 116 expandMemoryRegion(Ctx->MemRegion, Size, Ctx->MemRegion->Name, 117 Ctx->OutSec->Name); 118 // Only expand the LMARegion if it is different from MemRegion. 119 if (Ctx->LMARegion && Ctx->MemRegion != Ctx->LMARegion) 120 expandMemoryRegion(Ctx->LMARegion, Size, Ctx->LMARegion->Name, 121 Ctx->OutSec->Name); 122 } 123 124 void LinkerScript::expandOutputSection(uint64_t Size) { 125 Ctx->OutSec->Size += Size; 126 expandMemoryRegions(Size); 127 } 128 129 void LinkerScript::setDot(Expr E, const Twine &Loc, bool InSec) { 130 uint64_t Val = E().getValue(); 131 if (Val < Dot && InSec) 132 error(Loc + ": unable to move location counter backward for: " + 133 Ctx->OutSec->Name); 134 135 // Update to location counter means update to section size. 136 if (InSec) 137 expandOutputSection(Val - Dot); 138 else if (Val > Dot) 139 expandMemoryRegions(Val - Dot); 140 141 Dot = Val; 142 } 143 144 // Used for handling linker symbol assignments, for both finalizing 145 // their values and doing early declarations. Returns true if symbol 146 // should be defined from linker script. 147 static bool shouldDefineSym(SymbolAssignment *Cmd) { 148 if (Cmd->Name == ".") 149 return false; 150 151 if (!Cmd->Provide) 152 return true; 153 154 // If a symbol was in PROVIDE(), we need to define it only 155 // when it is a referenced undefined symbol. 156 Symbol *B = Symtab->find(Cmd->Name); 157 if (B && !B->isDefined()) 158 return true; 159 return false; 160 } 161 162 // This function is called from processSectionCommands, 163 // while we are fixing the output section layout. 164 void LinkerScript::addSymbol(SymbolAssignment *Cmd) { 165 if (!shouldDefineSym(Cmd)) 166 return; 167 168 // Define a symbol. 169 ExprValue Value = Cmd->Expression(); 170 SectionBase *Sec = Value.isAbsolute() ? nullptr : Value.Sec; 171 uint8_t Visibility = Cmd->Hidden ? STV_HIDDEN : STV_DEFAULT; 172 173 // When this function is called, section addresses have not been 174 // fixed yet. So, we may or may not know the value of the RHS 175 // expression. 176 // 177 // For example, if an expression is `x = 42`, we know x is always 42. 178 // However, if an expression is `x = .`, there's no way to know its 179 // value at the moment. 180 // 181 // We want to set symbol values early if we can. This allows us to 182 // use symbols as variables in linker scripts. Doing so allows us to 183 // write expressions like this: `alignment = 16; . = ALIGN(., alignment)`. 184 uint64_t SymValue = Value.Sec ? 0 : Value.getValue(); 185 186 Defined New(nullptr, Cmd->Name, STB_GLOBAL, Visibility, STT_NOTYPE, SymValue, 187 0, Sec); 188 189 Symbol *Sym = Symtab->insert(New); 190 Symtab->mergeProperties(Sym, New); 191 replaceSymbol(Sym, &New); 192 Cmd->Sym = cast<Defined>(Sym); 193 } 194 195 // This function is called from LinkerScript::declareSymbols. 196 // It creates a placeholder symbol if needed. 197 static void declareSymbol(SymbolAssignment *Cmd) { 198 if (!shouldDefineSym(Cmd)) 199 return; 200 201 uint8_t Visibility = Cmd->Hidden ? STV_HIDDEN : STV_DEFAULT; 202 Defined New(nullptr, Cmd->Name, STB_GLOBAL, Visibility, STT_NOTYPE, 0, 0, 203 nullptr); 204 205 // We can't calculate final value right now. 206 Symbol *Sym = Symtab->insert(New); 207 Symtab->mergeProperties(Sym, New); 208 replaceSymbol(Sym, &New); 209 210 Cmd->Sym = cast<Defined>(Sym); 211 Cmd->Provide = false; 212 Sym->ScriptDefined = true; 213 } 214 215 // This method is used to handle INSERT AFTER statement. Here we rebuild 216 // the list of script commands to mix sections inserted into. 217 void LinkerScript::processInsertCommands() { 218 std::vector<BaseCommand *> V; 219 auto Insert = [&](std::vector<BaseCommand *> &From) { 220 V.insert(V.end(), From.begin(), From.end()); 221 From.clear(); 222 }; 223 224 for (BaseCommand *Base : SectionCommands) { 225 if (auto *OS = dyn_cast<OutputSection>(Base)) { 226 Insert(InsertBeforeCommands[OS->Name]); 227 V.push_back(Base); 228 Insert(InsertAfterCommands[OS->Name]); 229 continue; 230 } 231 V.push_back(Base); 232 } 233 234 for (auto &Cmds : {InsertBeforeCommands, InsertAfterCommands}) 235 for (const std::pair<StringRef, std::vector<BaseCommand *>> &P : Cmds) 236 if (!P.second.empty()) 237 error("unable to INSERT AFTER/BEFORE " + P.first + 238 ": section not defined"); 239 240 SectionCommands = std::move(V); 241 } 242 243 // Symbols defined in script should not be inlined by LTO. At the same time 244 // we don't know their final values until late stages of link. Here we scan 245 // over symbol assignment commands and create placeholder symbols if needed. 246 void LinkerScript::declareSymbols() { 247 assert(!Ctx); 248 for (BaseCommand *Base : SectionCommands) { 249 if (auto *Cmd = dyn_cast<SymbolAssignment>(Base)) { 250 declareSymbol(Cmd); 251 continue; 252 } 253 254 // If the output section directive has constraints, 255 // we can't say for sure if it is going to be included or not. 256 // Skip such sections for now. Improve the checks if we ever 257 // need symbols from that sections to be declared early. 258 auto *Sec = cast<OutputSection>(Base); 259 if (Sec->Constraint != ConstraintKind::NoConstraint) 260 continue; 261 for (BaseCommand *Base2 : Sec->SectionCommands) 262 if (auto *Cmd = dyn_cast<SymbolAssignment>(Base2)) 263 declareSymbol(Cmd); 264 } 265 } 266 267 // This function is called from assignAddresses, while we are 268 // fixing the output section addresses. This function is supposed 269 // to set the final value for a given symbol assignment. 270 void LinkerScript::assignSymbol(SymbolAssignment *Cmd, bool InSec) { 271 if (Cmd->Name == ".") { 272 setDot(Cmd->Expression, Cmd->Location, InSec); 273 return; 274 } 275 276 if (!Cmd->Sym) 277 return; 278 279 ExprValue V = Cmd->Expression(); 280 if (V.isAbsolute()) { 281 Cmd->Sym->Section = nullptr; 282 Cmd->Sym->Value = V.getValue(); 283 } else { 284 Cmd->Sym->Section = V.Sec; 285 Cmd->Sym->Value = V.getSectionOffset(); 286 } 287 } 288 289 static std::string getFilename(InputFile *File) { 290 if (!File) 291 return ""; 292 if (File->ArchiveName.empty()) 293 return File->getName(); 294 return (File->ArchiveName + "(" + File->getName() + ")").str(); 295 } 296 297 bool LinkerScript::shouldKeep(InputSectionBase *S) { 298 if (KeptSections.empty()) 299 return false; 300 std::string Filename = getFilename(S->File); 301 for (InputSectionDescription *ID : KeptSections) 302 if (ID->FilePat.match(Filename)) 303 for (SectionPattern &P : ID->SectionPatterns) 304 if (P.SectionPat.match(S->Name)) 305 return true; 306 return false; 307 } 308 309 // A helper function for the SORT() command. 310 static std::function<bool(InputSectionBase *, InputSectionBase *)> 311 getComparator(SortSectionPolicy K) { 312 switch (K) { 313 case SortSectionPolicy::Alignment: 314 return [](InputSectionBase *A, InputSectionBase *B) { 315 // ">" is not a mistake. Sections with larger alignments are placed 316 // before sections with smaller alignments in order to reduce the 317 // amount of padding necessary. This is compatible with GNU. 318 return A->Alignment > B->Alignment; 319 }; 320 case SortSectionPolicy::Name: 321 return [](InputSectionBase *A, InputSectionBase *B) { 322 return A->Name < B->Name; 323 }; 324 case SortSectionPolicy::Priority: 325 return [](InputSectionBase *A, InputSectionBase *B) { 326 return getPriority(A->Name) < getPriority(B->Name); 327 }; 328 default: 329 llvm_unreachable("unknown sort policy"); 330 } 331 } 332 333 // A helper function for the SORT() command. 334 static bool matchConstraints(ArrayRef<InputSection *> Sections, 335 ConstraintKind Kind) { 336 if (Kind == ConstraintKind::NoConstraint) 337 return true; 338 339 bool IsRW = llvm::any_of( 340 Sections, [](InputSection *Sec) { return Sec->Flags & SHF_WRITE; }); 341 342 return (IsRW && Kind == ConstraintKind::ReadWrite) || 343 (!IsRW && Kind == ConstraintKind::ReadOnly); 344 } 345 346 static void sortSections(MutableArrayRef<InputSection *> Vec, 347 SortSectionPolicy K) { 348 if (K != SortSectionPolicy::Default && K != SortSectionPolicy::None) 349 llvm::stable_sort(Vec, getComparator(K)); 350 } 351 352 // Sort sections as instructed by SORT-family commands and --sort-section 353 // option. Because SORT-family commands can be nested at most two depth 354 // (e.g. SORT_BY_NAME(SORT_BY_ALIGNMENT(.text.*))) and because the command 355 // line option is respected even if a SORT command is given, the exact 356 // behavior we have here is a bit complicated. Here are the rules. 357 // 358 // 1. If two SORT commands are given, --sort-section is ignored. 359 // 2. If one SORT command is given, and if it is not SORT_NONE, 360 // --sort-section is handled as an inner SORT command. 361 // 3. If one SORT command is given, and if it is SORT_NONE, don't sort. 362 // 4. If no SORT command is given, sort according to --sort-section. 363 static void sortInputSections(MutableArrayRef<InputSection *> Vec, 364 const SectionPattern &Pat) { 365 if (Pat.SortOuter == SortSectionPolicy::None) 366 return; 367 368 if (Pat.SortInner == SortSectionPolicy::Default) 369 sortSections(Vec, Config->SortSection); 370 else 371 sortSections(Vec, Pat.SortInner); 372 sortSections(Vec, Pat.SortOuter); 373 } 374 375 // Compute and remember which sections the InputSectionDescription matches. 376 std::vector<InputSection *> 377 LinkerScript::computeInputSections(const InputSectionDescription *Cmd) { 378 std::vector<InputSection *> Ret; 379 380 // Collects all sections that satisfy constraints of Cmd. 381 for (const SectionPattern &Pat : Cmd->SectionPatterns) { 382 size_t SizeBefore = Ret.size(); 383 384 for (InputSectionBase *Sec : InputSections) { 385 if (!Sec->Live || Sec->Assigned) 386 continue; 387 388 // For -emit-relocs we have to ignore entries like 389 // .rela.dyn : { *(.rela.data) } 390 // which are common because they are in the default bfd script. 391 // We do not ignore SHT_REL[A] linker-synthesized sections here because 392 // want to support scripts that do custom layout for them. 393 if (auto *IS = dyn_cast<InputSection>(Sec)) 394 if (IS->getRelocatedSection()) 395 continue; 396 397 std::string Filename = getFilename(Sec->File); 398 if (!Cmd->FilePat.match(Filename) || 399 Pat.ExcludedFilePat.match(Filename) || 400 !Pat.SectionPat.match(Sec->Name)) 401 continue; 402 403 // It is safe to assume that Sec is an InputSection 404 // because mergeable or EH input sections have already been 405 // handled and eliminated. 406 Ret.push_back(cast<InputSection>(Sec)); 407 Sec->Assigned = true; 408 } 409 410 sortInputSections(MutableArrayRef<InputSection *>(Ret).slice(SizeBefore), 411 Pat); 412 } 413 return Ret; 414 } 415 416 void LinkerScript::discard(ArrayRef<InputSection *> V) { 417 for (InputSection *S : V) { 418 if (S == In.ShStrTab || S == In.RelaDyn || S == In.RelrDyn) 419 error("discarding " + S->Name + " section is not allowed"); 420 421 // You can discard .hash and .gnu.hash sections by linker scripts. Since 422 // they are synthesized sections, we need to handle them differently than 423 // other regular sections. 424 if (S == In.GnuHashTab) 425 In.GnuHashTab = nullptr; 426 if (S == In.HashTab) 427 In.HashTab = nullptr; 428 429 S->Assigned = false; 430 S->Live = false; 431 discard(S->DependentSections); 432 } 433 } 434 435 std::vector<InputSection *> 436 LinkerScript::createInputSectionList(OutputSection &OutCmd) { 437 std::vector<InputSection *> Ret; 438 439 for (BaseCommand *Base : OutCmd.SectionCommands) { 440 if (auto *Cmd = dyn_cast<InputSectionDescription>(Base)) { 441 Cmd->Sections = computeInputSections(Cmd); 442 Ret.insert(Ret.end(), Cmd->Sections.begin(), Cmd->Sections.end()); 443 } 444 } 445 return Ret; 446 } 447 448 void LinkerScript::processSectionCommands() { 449 // A symbol can be assigned before any section is mentioned in the linker 450 // script. In an DSO, the symbol values are addresses, so the only important 451 // section values are: 452 // * SHN_UNDEF 453 // * SHN_ABS 454 // * Any value meaning a regular section. 455 // To handle that, create a dummy aether section that fills the void before 456 // the linker scripts switches to another section. It has an index of one 457 // which will map to whatever the first actual section is. 458 Aether = make<OutputSection>("", 0, SHF_ALLOC); 459 Aether->SectionIndex = 1; 460 461 // Ctx captures the local AddressState and makes it accessible deliberately. 462 // This is needed as there are some cases where we cannot just 463 // thread the current state through to a lambda function created by the 464 // script parser. 465 auto Deleter = make_unique<AddressState>(); 466 Ctx = Deleter.get(); 467 Ctx->OutSec = Aether; 468 469 size_t I = 0; 470 // Add input sections to output sections. 471 for (BaseCommand *Base : SectionCommands) { 472 // Handle symbol assignments outside of any output section. 473 if (auto *Cmd = dyn_cast<SymbolAssignment>(Base)) { 474 addSymbol(Cmd); 475 continue; 476 } 477 478 if (auto *Sec = dyn_cast<OutputSection>(Base)) { 479 std::vector<InputSection *> V = createInputSectionList(*Sec); 480 481 // The output section name `/DISCARD/' is special. 482 // Any input section assigned to it is discarded. 483 if (Sec->Name == "/DISCARD/") { 484 discard(V); 485 Sec->SectionCommands.clear(); 486 Sec->SectionIndex = 0; // Not an orphan. 487 continue; 488 } 489 490 // This is for ONLY_IF_RO and ONLY_IF_RW. An output section directive 491 // ".foo : ONLY_IF_R[OW] { ... }" is handled only if all member input 492 // sections satisfy a given constraint. If not, a directive is handled 493 // as if it wasn't present from the beginning. 494 // 495 // Because we'll iterate over SectionCommands many more times, the easy 496 // way to "make it as if it wasn't present" is to make it empty. 497 if (!matchConstraints(V, Sec->Constraint)) { 498 for (InputSectionBase *S : V) 499 S->Assigned = false; 500 Sec->SectionCommands.clear(); 501 continue; 502 } 503 504 // A directive may contain symbol definitions like this: 505 // ".foo : { ...; bar = .; }". Handle them. 506 for (BaseCommand *Base : Sec->SectionCommands) 507 if (auto *OutCmd = dyn_cast<SymbolAssignment>(Base)) 508 addSymbol(OutCmd); 509 510 // Handle subalign (e.g. ".foo : SUBALIGN(32) { ... }"). If subalign 511 // is given, input sections are aligned to that value, whether the 512 // given value is larger or smaller than the original section alignment. 513 if (Sec->SubalignExpr) { 514 uint32_t Subalign = Sec->SubalignExpr().getValue(); 515 for (InputSectionBase *S : V) 516 S->Alignment = Subalign; 517 } 518 519 // Add input sections to an output section. 520 for (InputSection *S : V) 521 Sec->addSection(S); 522 523 Sec->SectionIndex = I++; 524 if (Sec->Noload) 525 Sec->Type = SHT_NOBITS; 526 if (Sec->NonAlloc) 527 Sec->Flags &= ~(uint64_t)SHF_ALLOC; 528 } 529 } 530 Ctx = nullptr; 531 } 532 533 static OutputSection *findByName(ArrayRef<BaseCommand *> Vec, 534 StringRef Name) { 535 for (BaseCommand *Base : Vec) 536 if (auto *Sec = dyn_cast<OutputSection>(Base)) 537 if (Sec->Name == Name) 538 return Sec; 539 return nullptr; 540 } 541 542 static OutputSection *createSection(InputSectionBase *IS, 543 StringRef OutsecName) { 544 OutputSection *Sec = Script->createOutputSection(OutsecName, "<internal>"); 545 Sec->addSection(cast<InputSection>(IS)); 546 return Sec; 547 } 548 549 static OutputSection *addInputSec(StringMap<OutputSection *> &Map, 550 InputSectionBase *IS, StringRef OutsecName) { 551 // Sections with SHT_GROUP or SHF_GROUP attributes reach here only when the -r 552 // option is given. A section with SHT_GROUP defines a "section group", and 553 // its members have SHF_GROUP attribute. Usually these flags have already been 554 // stripped by InputFiles.cpp as section groups are processed and uniquified. 555 // However, for the -r option, we want to pass through all section groups 556 // as-is because adding/removing members or merging them with other groups 557 // change their semantics. 558 if (IS->Type == SHT_GROUP || (IS->Flags & SHF_GROUP)) 559 return createSection(IS, OutsecName); 560 561 // Imagine .zed : { *(.foo) *(.bar) } script. Both foo and bar may have 562 // relocation sections .rela.foo and .rela.bar for example. Most tools do 563 // not allow multiple REL[A] sections for output section. Hence we 564 // should combine these relocation sections into single output. 565 // We skip synthetic sections because it can be .rela.dyn/.rela.plt or any 566 // other REL[A] sections created by linker itself. 567 if (!isa<SyntheticSection>(IS) && 568 (IS->Type == SHT_REL || IS->Type == SHT_RELA)) { 569 auto *Sec = cast<InputSection>(IS); 570 OutputSection *Out = Sec->getRelocatedSection()->getOutputSection(); 571 572 if (Out->RelocationSection) { 573 Out->RelocationSection->addSection(Sec); 574 return nullptr; 575 } 576 577 Out->RelocationSection = createSection(IS, OutsecName); 578 return Out->RelocationSection; 579 } 580 581 // When control reaches here, mergeable sections have already been merged into 582 // synthetic sections. For relocatable case we want to create one output 583 // section per syntetic section so that they have a valid sh_entsize. 584 if (Config->Relocatable && (IS->Flags & SHF_MERGE)) 585 return createSection(IS, OutsecName); 586 587 // The ELF spec just says 588 // ---------------------------------------------------------------- 589 // In the first phase, input sections that match in name, type and 590 // attribute flags should be concatenated into single sections. 591 // ---------------------------------------------------------------- 592 // 593 // However, it is clear that at least some flags have to be ignored for 594 // section merging. At the very least SHF_GROUP and SHF_COMPRESSED have to be 595 // ignored. We should not have two output .text sections just because one was 596 // in a group and another was not for example. 597 // 598 // It also seems that wording was a late addition and didn't get the 599 // necessary scrutiny. 600 // 601 // Merging sections with different flags is expected by some users. One 602 // reason is that if one file has 603 // 604 // int *const bar __attribute__((section(".foo"))) = (int *)0; 605 // 606 // gcc with -fPIC will produce a read only .foo section. But if another 607 // file has 608 // 609 // int zed; 610 // int *const bar __attribute__((section(".foo"))) = (int *)&zed; 611 // 612 // gcc with -fPIC will produce a read write section. 613 // 614 // Last but not least, when using linker script the merge rules are forced by 615 // the script. Unfortunately, linker scripts are name based. This means that 616 // expressions like *(.foo*) can refer to multiple input sections with 617 // different flags. We cannot put them in different output sections or we 618 // would produce wrong results for 619 // 620 // start = .; *(.foo.*) end = .; *(.bar) 621 // 622 // and a mapping of .foo1 and .bar1 to one section and .foo2 and .bar2 to 623 // another. The problem is that there is no way to layout those output 624 // sections such that the .foo sections are the only thing between the start 625 // and end symbols. 626 // 627 // Given the above issues, we instead merge sections by name and error on 628 // incompatible types and flags. 629 OutputSection *&Sec = Map[OutsecName]; 630 if (Sec) { 631 Sec->addSection(cast<InputSection>(IS)); 632 return nullptr; 633 } 634 635 Sec = createSection(IS, OutsecName); 636 return Sec; 637 } 638 639 // Add sections that didn't match any sections command. 640 void LinkerScript::addOrphanSections() { 641 StringMap<OutputSection *> Map; 642 std::vector<OutputSection *> V; 643 644 auto Add = [&](InputSectionBase *S) { 645 if (!S->Live || S->Parent) 646 return; 647 648 StringRef Name = getOutputSectionName(S); 649 650 if (Config->OrphanHandling == OrphanHandlingPolicy::Error) 651 error(toString(S) + " is being placed in '" + Name + "'"); 652 else if (Config->OrphanHandling == OrphanHandlingPolicy::Warn) 653 warn(toString(S) + " is being placed in '" + Name + "'"); 654 655 if (OutputSection *Sec = findByName(SectionCommands, Name)) { 656 Sec->addSection(cast<InputSection>(S)); 657 return; 658 } 659 660 if (OutputSection *OS = addInputSec(Map, S, Name)) 661 V.push_back(OS); 662 assert(S->getOutputSection()->SectionIndex == UINT32_MAX); 663 }; 664 665 // For futher --emit-reloc handling code we need target output section 666 // to be created before we create relocation output section, so we want 667 // to create target sections first. We do not want priority handling 668 // for synthetic sections because them are special. 669 for (InputSectionBase *IS : InputSections) { 670 if (auto *Sec = dyn_cast<InputSection>(IS)) 671 if (InputSectionBase *Rel = Sec->getRelocatedSection()) 672 if (auto *RelIS = dyn_cast_or_null<InputSectionBase>(Rel->Parent)) 673 Add(RelIS); 674 Add(IS); 675 } 676 677 // If no SECTIONS command was given, we should insert sections commands 678 // before others, so that we can handle scripts which refers them, 679 // for example: "foo = ABSOLUTE(ADDR(.text)));". 680 // When SECTIONS command is present we just add all orphans to the end. 681 if (HasSectionsCommand) 682 SectionCommands.insert(SectionCommands.end(), V.begin(), V.end()); 683 else 684 SectionCommands.insert(SectionCommands.begin(), V.begin(), V.end()); 685 } 686 687 uint64_t LinkerScript::advance(uint64_t Size, unsigned Alignment) { 688 bool IsTbss = 689 (Ctx->OutSec->Flags & SHF_TLS) && Ctx->OutSec->Type == SHT_NOBITS; 690 uint64_t Start = IsTbss ? Dot + Ctx->ThreadBssOffset : Dot; 691 Start = alignTo(Start, Alignment); 692 uint64_t End = Start + Size; 693 694 if (IsTbss) 695 Ctx->ThreadBssOffset = End - Dot; 696 else 697 Dot = End; 698 return End; 699 } 700 701 void LinkerScript::output(InputSection *S) { 702 assert(Ctx->OutSec == S->getParent()); 703 uint64_t Before = advance(0, 1); 704 uint64_t Pos = advance(S->getSize(), S->Alignment); 705 S->OutSecOff = Pos - S->getSize() - Ctx->OutSec->Addr; 706 707 // Update output section size after adding each section. This is so that 708 // SIZEOF works correctly in the case below: 709 // .foo { *(.aaa) a = SIZEOF(.foo); *(.bbb) } 710 expandOutputSection(Pos - Before); 711 } 712 713 void LinkerScript::switchTo(OutputSection *Sec) { 714 Ctx->OutSec = Sec; 715 716 uint64_t Before = advance(0, 1); 717 Ctx->OutSec->Addr = advance(0, Ctx->OutSec->Alignment); 718 expandMemoryRegions(Ctx->OutSec->Addr - Before); 719 } 720 721 // This function searches for a memory region to place the given output 722 // section in. If found, a pointer to the appropriate memory region is 723 // returned. Otherwise, a nullptr is returned. 724 MemoryRegion *LinkerScript::findMemoryRegion(OutputSection *Sec) { 725 // If a memory region name was specified in the output section command, 726 // then try to find that region first. 727 if (!Sec->MemoryRegionName.empty()) { 728 if (MemoryRegion *M = MemoryRegions.lookup(Sec->MemoryRegionName)) 729 return M; 730 error("memory region '" + Sec->MemoryRegionName + "' not declared"); 731 return nullptr; 732 } 733 734 // If at least one memory region is defined, all sections must 735 // belong to some memory region. Otherwise, we don't need to do 736 // anything for memory regions. 737 if (MemoryRegions.empty()) 738 return nullptr; 739 740 // See if a region can be found by matching section flags. 741 for (auto &Pair : MemoryRegions) { 742 MemoryRegion *M = Pair.second; 743 if ((M->Flags & Sec->Flags) && (M->NegFlags & Sec->Flags) == 0) 744 return M; 745 } 746 747 // Otherwise, no suitable region was found. 748 if (Sec->Flags & SHF_ALLOC) 749 error("no memory region specified for section '" + Sec->Name + "'"); 750 return nullptr; 751 } 752 753 static OutputSection *findFirstSection(PhdrEntry *Load) { 754 for (OutputSection *Sec : OutputSections) 755 if (Sec->PtLoad == Load) 756 return Sec; 757 return nullptr; 758 } 759 760 // This function assigns offsets to input sections and an output section 761 // for a single sections command (e.g. ".text { *(.text); }"). 762 void LinkerScript::assignOffsets(OutputSection *Sec) { 763 if (!(Sec->Flags & SHF_ALLOC)) 764 Dot = 0; 765 766 Ctx->MemRegion = Sec->MemRegion; 767 Ctx->LMARegion = Sec->LMARegion; 768 if (Ctx->MemRegion) 769 Dot = Ctx->MemRegion->CurPos; 770 771 if ((Sec->Flags & SHF_ALLOC) && Sec->AddrExpr) 772 setDot(Sec->AddrExpr, Sec->Location, false); 773 774 switchTo(Sec); 775 776 if (Sec->LMAExpr) 777 Ctx->LMAOffset = Sec->LMAExpr().getValue() - Dot; 778 779 if (MemoryRegion *MR = Sec->LMARegion) 780 Ctx->LMAOffset = MR->CurPos - Dot; 781 782 // If neither AT nor AT> is specified for an allocatable section, the linker 783 // will set the LMA such that the difference between VMA and LMA for the 784 // section is the same as the preceding output section in the same region 785 // https://sourceware.org/binutils/docs-2.20/ld/Output-Section-LMA.html 786 // This, however, should only be done by the first "non-header" section 787 // in the segment. 788 if (PhdrEntry *L = Ctx->OutSec->PtLoad) 789 if (Sec == findFirstSection(L)) 790 L->LMAOffset = Ctx->LMAOffset; 791 792 // We can call this method multiple times during the creation of 793 // thunks and want to start over calculation each time. 794 Sec->Size = 0; 795 796 // We visited SectionsCommands from processSectionCommands to 797 // layout sections. Now, we visit SectionsCommands again to fix 798 // section offsets. 799 for (BaseCommand *Base : Sec->SectionCommands) { 800 // This handles the assignments to symbol or to the dot. 801 if (auto *Cmd = dyn_cast<SymbolAssignment>(Base)) { 802 Cmd->Addr = Dot; 803 assignSymbol(Cmd, true); 804 Cmd->Size = Dot - Cmd->Addr; 805 continue; 806 } 807 808 // Handle BYTE(), SHORT(), LONG(), or QUAD(). 809 if (auto *Cmd = dyn_cast<ByteCommand>(Base)) { 810 Cmd->Offset = Dot - Ctx->OutSec->Addr; 811 Dot += Cmd->Size; 812 expandOutputSection(Cmd->Size); 813 continue; 814 } 815 816 // Handle a single input section description command. 817 // It calculates and assigns the offsets for each section and also 818 // updates the output section size. 819 for (InputSection *Sec : cast<InputSectionDescription>(Base)->Sections) 820 output(Sec); 821 } 822 } 823 824 static bool isDiscardable(OutputSection &Sec) { 825 // We do not remove empty sections that are explicitly 826 // assigned to any segment. 827 if (!Sec.Phdrs.empty()) 828 return false; 829 830 // We do not want to remove OutputSections with expressions that reference 831 // symbols even if the OutputSection is empty. We want to ensure that the 832 // expressions can be evaluated and report an error if they cannot. 833 if (Sec.ExpressionsUseSymbols) 834 return false; 835 836 // OutputSections may be referenced by name in ADDR and LOADADDR expressions, 837 // as an empty Section can has a valid VMA and LMA we keep the OutputSection 838 // to maintain the integrity of the other Expression. 839 if (Sec.UsedInExpression) 840 return false; 841 842 for (BaseCommand *Base : Sec.SectionCommands) { 843 if (auto Cmd = dyn_cast<SymbolAssignment>(Base)) 844 // Don't create empty output sections just for unreferenced PROVIDE 845 // symbols. 846 if (Cmd->Name != "." && !Cmd->Sym) 847 continue; 848 849 if (!isa<InputSectionDescription>(*Base)) 850 return false; 851 } 852 return true; 853 } 854 855 void LinkerScript::adjustSectionsBeforeSorting() { 856 // If the output section contains only symbol assignments, create a 857 // corresponding output section. The issue is what to do with linker script 858 // like ".foo : { symbol = 42; }". One option would be to convert it to 859 // "symbol = 42;". That is, move the symbol out of the empty section 860 // description. That seems to be what bfd does for this simple case. The 861 // problem is that this is not completely general. bfd will give up and 862 // create a dummy section too if there is a ". = . + 1" inside the section 863 // for example. 864 // Given that we want to create the section, we have to worry what impact 865 // it will have on the link. For example, if we just create a section with 866 // 0 for flags, it would change which PT_LOADs are created. 867 // We could remember that particular section is dummy and ignore it in 868 // other parts of the linker, but unfortunately there are quite a few places 869 // that would need to change: 870 // * The program header creation. 871 // * The orphan section placement. 872 // * The address assignment. 873 // The other option is to pick flags that minimize the impact the section 874 // will have on the rest of the linker. That is why we copy the flags from 875 // the previous sections. Only a few flags are needed to keep the impact low. 876 uint64_t Flags = SHF_ALLOC; 877 878 for (BaseCommand *&Cmd : SectionCommands) { 879 auto *Sec = dyn_cast<OutputSection>(Cmd); 880 if (!Sec) 881 continue; 882 883 // Handle align (e.g. ".foo : ALIGN(16) { ... }"). 884 if (Sec->AlignExpr) 885 Sec->Alignment = 886 std::max<uint32_t>(Sec->Alignment, Sec->AlignExpr().getValue()); 887 888 // A live output section means that some input section was added to it. It 889 // might have been removed (if it was empty synthetic section), but we at 890 // least know the flags. 891 if (Sec->Live) 892 Flags = Sec->Flags; 893 894 // We do not want to keep any special flags for output section 895 // in case it is empty. 896 bool IsEmpty = getInputSections(Sec).empty(); 897 if (IsEmpty) 898 Sec->Flags = Flags & ((Sec->NonAlloc ? 0 : (uint64_t)SHF_ALLOC) | 899 SHF_WRITE | SHF_EXECINSTR); 900 901 if (IsEmpty && isDiscardable(*Sec)) { 902 Sec->Live = false; 903 Cmd = nullptr; 904 } 905 } 906 907 // It is common practice to use very generic linker scripts. So for any 908 // given run some of the output sections in the script will be empty. 909 // We could create corresponding empty output sections, but that would 910 // clutter the output. 911 // We instead remove trivially empty sections. The bfd linker seems even 912 // more aggressive at removing them. 913 llvm::erase_if(SectionCommands, [&](BaseCommand *Base) { return !Base; }); 914 } 915 916 void LinkerScript::adjustSectionsAfterSorting() { 917 // Try and find an appropriate memory region to assign offsets in. 918 for (BaseCommand *Base : SectionCommands) { 919 if (auto *Sec = dyn_cast<OutputSection>(Base)) { 920 if (!Sec->LMARegionName.empty()) { 921 if (MemoryRegion *M = MemoryRegions.lookup(Sec->LMARegionName)) 922 Sec->LMARegion = M; 923 else 924 error("memory region '" + Sec->LMARegionName + "' not declared"); 925 } 926 Sec->MemRegion = findMemoryRegion(Sec); 927 } 928 } 929 930 // If output section command doesn't specify any segments, 931 // and we haven't previously assigned any section to segment, 932 // then we simply assign section to the very first load segment. 933 // Below is an example of such linker script: 934 // PHDRS { seg PT_LOAD; } 935 // SECTIONS { .aaa : { *(.aaa) } } 936 std::vector<StringRef> DefPhdrs; 937 auto FirstPtLoad = llvm::find_if(PhdrsCommands, [](const PhdrsCommand &Cmd) { 938 return Cmd.Type == PT_LOAD; 939 }); 940 if (FirstPtLoad != PhdrsCommands.end()) 941 DefPhdrs.push_back(FirstPtLoad->Name); 942 943 // Walk the commands and propagate the program headers to commands that don't 944 // explicitly specify them. 945 for (BaseCommand *Base : SectionCommands) { 946 auto *Sec = dyn_cast<OutputSection>(Base); 947 if (!Sec) 948 continue; 949 950 if (Sec->Phdrs.empty()) { 951 // To match the bfd linker script behaviour, only propagate program 952 // headers to sections that are allocated. 953 if (Sec->Flags & SHF_ALLOC) 954 Sec->Phdrs = DefPhdrs; 955 } else { 956 DefPhdrs = Sec->Phdrs; 957 } 958 } 959 } 960 961 static uint64_t computeBase(uint64_t Min, bool AllocateHeaders) { 962 // If there is no SECTIONS or if the linkerscript is explicit about program 963 // headers, do our best to allocate them. 964 if (!Script->HasSectionsCommand || AllocateHeaders) 965 return 0; 966 // Otherwise only allocate program headers if that would not add a page. 967 return alignDown(Min, Config->MaxPageSize); 968 } 969 970 // Try to find an address for the file and program headers output sections, 971 // which were unconditionally added to the first PT_LOAD segment earlier. 972 // 973 // When using the default layout, we check if the headers fit below the first 974 // allocated section. When using a linker script, we also check if the headers 975 // are covered by the output section. This allows omitting the headers by not 976 // leaving enough space for them in the linker script; this pattern is common 977 // in embedded systems. 978 // 979 // If there isn't enough space for these sections, we'll remove them from the 980 // PT_LOAD segment, and we'll also remove the PT_PHDR segment. 981 void LinkerScript::allocateHeaders(std::vector<PhdrEntry *> &Phdrs) { 982 uint64_t Min = std::numeric_limits<uint64_t>::max(); 983 for (OutputSection *Sec : OutputSections) 984 if (Sec->Flags & SHF_ALLOC) 985 Min = std::min<uint64_t>(Min, Sec->Addr); 986 987 auto It = llvm::find_if( 988 Phdrs, [](const PhdrEntry *E) { return E->p_type == PT_LOAD; }); 989 if (It == Phdrs.end()) 990 return; 991 PhdrEntry *FirstPTLoad = *It; 992 993 bool HasExplicitHeaders = 994 llvm::any_of(PhdrsCommands, [](const PhdrsCommand &Cmd) { 995 return Cmd.HasPhdrs || Cmd.HasFilehdr; 996 }); 997 bool Paged = !Config->Omagic && !Config->Nmagic; 998 uint64_t HeaderSize = getHeaderSize(); 999 if ((Paged || HasExplicitHeaders) && 1000 HeaderSize <= Min - computeBase(Min, HasExplicitHeaders)) { 1001 Min = alignDown(Min - HeaderSize, Config->MaxPageSize); 1002 Out::ElfHeader->Addr = Min; 1003 Out::ProgramHeaders->Addr = Min + Out::ElfHeader->Size; 1004 return; 1005 } 1006 1007 // Error if we were explicitly asked to allocate headers. 1008 if (HasExplicitHeaders) 1009 error("could not allocate headers"); 1010 1011 Out::ElfHeader->PtLoad = nullptr; 1012 Out::ProgramHeaders->PtLoad = nullptr; 1013 FirstPTLoad->FirstSec = findFirstSection(FirstPTLoad); 1014 1015 llvm::erase_if(Phdrs, 1016 [](const PhdrEntry *E) { return E->p_type == PT_PHDR; }); 1017 } 1018 1019 LinkerScript::AddressState::AddressState() { 1020 for (auto &MRI : Script->MemoryRegions) { 1021 MemoryRegion *MR = MRI.second; 1022 MR->CurPos = MR->Origin; 1023 } 1024 } 1025 1026 static uint64_t getInitialDot() { 1027 // By default linker scripts use an initial value of 0 for '.', 1028 // but prefer -image-base if set. 1029 if (Script->HasSectionsCommand) 1030 return Config->ImageBase ? *Config->ImageBase : 0; 1031 1032 uint64_t StartAddr = UINT64_MAX; 1033 // The Sections with -T<section> have been sorted in order of ascending 1034 // address. We must lower StartAddr if the lowest -T<section address> as 1035 // calls to setDot() must be monotonically increasing. 1036 for (auto &KV : Config->SectionStartMap) 1037 StartAddr = std::min(StartAddr, KV.second); 1038 return std::min(StartAddr, Target->getImageBase() + elf::getHeaderSize()); 1039 } 1040 1041 // Here we assign addresses as instructed by linker script SECTIONS 1042 // sub-commands. Doing that allows us to use final VA values, so here 1043 // we also handle rest commands like symbol assignments and ASSERTs. 1044 void LinkerScript::assignAddresses() { 1045 Dot = getInitialDot(); 1046 1047 auto Deleter = make_unique<AddressState>(); 1048 Ctx = Deleter.get(); 1049 ErrorOnMissingSection = true; 1050 switchTo(Aether); 1051 1052 for (BaseCommand *Base : SectionCommands) { 1053 if (auto *Cmd = dyn_cast<SymbolAssignment>(Base)) { 1054 Cmd->Addr = Dot; 1055 assignSymbol(Cmd, false); 1056 Cmd->Size = Dot - Cmd->Addr; 1057 continue; 1058 } 1059 assignOffsets(cast<OutputSection>(Base)); 1060 } 1061 Ctx = nullptr; 1062 } 1063 1064 // Creates program headers as instructed by PHDRS linker script command. 1065 std::vector<PhdrEntry *> LinkerScript::createPhdrs() { 1066 std::vector<PhdrEntry *> Ret; 1067 1068 // Process PHDRS and FILEHDR keywords because they are not 1069 // real output sections and cannot be added in the following loop. 1070 for (const PhdrsCommand &Cmd : PhdrsCommands) { 1071 PhdrEntry *Phdr = make<PhdrEntry>(Cmd.Type, Cmd.Flags ? *Cmd.Flags : PF_R); 1072 1073 if (Cmd.HasFilehdr) 1074 Phdr->add(Out::ElfHeader); 1075 if (Cmd.HasPhdrs) 1076 Phdr->add(Out::ProgramHeaders); 1077 1078 if (Cmd.LMAExpr) { 1079 Phdr->p_paddr = Cmd.LMAExpr().getValue(); 1080 Phdr->HasLMA = true; 1081 } 1082 Ret.push_back(Phdr); 1083 } 1084 1085 // Add output sections to program headers. 1086 for (OutputSection *Sec : OutputSections) { 1087 // Assign headers specified by linker script 1088 for (size_t Id : getPhdrIndices(Sec)) { 1089 Ret[Id]->add(Sec); 1090 if (!PhdrsCommands[Id].Flags.hasValue()) 1091 Ret[Id]->p_flags |= Sec->getPhdrFlags(); 1092 } 1093 } 1094 return Ret; 1095 } 1096 1097 // Returns true if we should emit an .interp section. 1098 // 1099 // We usually do. But if PHDRS commands are given, and 1100 // no PT_INTERP is there, there's no place to emit an 1101 // .interp, so we don't do that in that case. 1102 bool LinkerScript::needsInterpSection() { 1103 if (PhdrsCommands.empty()) 1104 return true; 1105 for (PhdrsCommand &Cmd : PhdrsCommands) 1106 if (Cmd.Type == PT_INTERP) 1107 return true; 1108 return false; 1109 } 1110 1111 ExprValue LinkerScript::getSymbolValue(StringRef Name, const Twine &Loc) { 1112 if (Name == ".") { 1113 if (Ctx) 1114 return {Ctx->OutSec, false, Dot - Ctx->OutSec->Addr, Loc}; 1115 error(Loc + ": unable to get location counter value"); 1116 return 0; 1117 } 1118 1119 if (Symbol *Sym = Symtab->find(Name)) { 1120 if (auto *DS = dyn_cast<Defined>(Sym)) 1121 return {DS->Section, false, DS->Value, Loc}; 1122 if (isa<SharedSymbol>(Sym)) 1123 if (!ErrorOnMissingSection) 1124 return {nullptr, false, 0, Loc}; 1125 } 1126 1127 error(Loc + ": symbol not found: " + Name); 1128 return 0; 1129 } 1130 1131 // Returns the index of the segment named Name. 1132 static Optional<size_t> getPhdrIndex(ArrayRef<PhdrsCommand> Vec, 1133 StringRef Name) { 1134 for (size_t I = 0; I < Vec.size(); ++I) 1135 if (Vec[I].Name == Name) 1136 return I; 1137 return None; 1138 } 1139 1140 // Returns indices of ELF headers containing specific section. Each index is a 1141 // zero based number of ELF header listed within PHDRS {} script block. 1142 std::vector<size_t> LinkerScript::getPhdrIndices(OutputSection *Cmd) { 1143 std::vector<size_t> Ret; 1144 1145 for (StringRef S : Cmd->Phdrs) { 1146 if (Optional<size_t> Idx = getPhdrIndex(PhdrsCommands, S)) 1147 Ret.push_back(*Idx); 1148 else if (S != "NONE") 1149 error(Cmd->Location + ": section header '" + S + 1150 "' is not listed in PHDRS"); 1151 } 1152 return Ret; 1153 } 1154