1 //===- LinkerScript.cpp ---------------------------------------------------===//
2 //
3 //                             The LLVM Linker
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the parser/evaluator of the linker script.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "LinkerScript.h"
15 #include "Config.h"
16 #include "InputSection.h"
17 #include "Memory.h"
18 #include "OutputSections.h"
19 #include "Strings.h"
20 #include "SymbolTable.h"
21 #include "Symbols.h"
22 #include "SyntheticSections.h"
23 #include "Target.h"
24 #include "Writer.h"
25 #include "lld/Common/Threads.h"
26 #include "llvm/ADT/STLExtras.h"
27 #include "llvm/ADT/StringRef.h"
28 #include "llvm/BinaryFormat/ELF.h"
29 #include "llvm/Support/Casting.h"
30 #include "llvm/Support/Endian.h"
31 #include "llvm/Support/ErrorHandling.h"
32 #include "llvm/Support/FileSystem.h"
33 #include "llvm/Support/Path.h"
34 #include <algorithm>
35 #include <cassert>
36 #include <cstddef>
37 #include <cstdint>
38 #include <iterator>
39 #include <limits>
40 #include <string>
41 #include <vector>
42 
43 using namespace llvm;
44 using namespace llvm::ELF;
45 using namespace llvm::object;
46 using namespace llvm::support::endian;
47 using namespace lld;
48 using namespace lld::elf;
49 
50 LinkerScript *elf::Script;
51 
52 static uint64_t getOutputSectionVA(SectionBase *InputSec, StringRef Loc) {
53   if (OutputSection *OS = InputSec->getOutputSection())
54     return OS->Addr;
55   error(Loc + ": unable to evaluate expression: input section " +
56         InputSec->Name + " has no output section assigned");
57   return 0;
58 }
59 
60 uint64_t ExprValue::getValue() const {
61   if (Sec)
62     return alignTo(Sec->getOffset(Val) + getOutputSectionVA(Sec, Loc),
63                    Alignment);
64   return alignTo(Val, Alignment);
65 }
66 
67 uint64_t ExprValue::getSecAddr() const {
68   if (Sec)
69     return Sec->getOffset(0) + getOutputSectionVA(Sec, Loc);
70   return 0;
71 }
72 
73 uint64_t ExprValue::getSectionOffset() const {
74   // If the alignment is trivial, we don't have to compute the full
75   // value to know the offset. This allows this function to succeed in
76   // cases where the output section is not yet known.
77   if (Alignment == 1)
78     return Val;
79   return getValue() - getSecAddr();
80 }
81 
82 OutputSection *LinkerScript::createOutputSection(StringRef Name,
83                                                  StringRef Location) {
84   OutputSection *&SecRef = NameToOutputSection[Name];
85   OutputSection *Sec;
86   if (SecRef && SecRef->Location.empty()) {
87     // There was a forward reference.
88     Sec = SecRef;
89   } else {
90     Sec = make<OutputSection>(Name, SHT_PROGBITS, 0);
91     if (!SecRef)
92       SecRef = Sec;
93   }
94   Sec->Location = Location;
95   return Sec;
96 }
97 
98 OutputSection *LinkerScript::getOrCreateOutputSection(StringRef Name) {
99   OutputSection *&CmdRef = NameToOutputSection[Name];
100   if (!CmdRef)
101     CmdRef = make<OutputSection>(Name, SHT_PROGBITS, 0);
102   return CmdRef;
103 }
104 
105 void LinkerScript::setDot(Expr E, const Twine &Loc, bool InSec) {
106   uint64_t Val = E().getValue();
107   if (Val < Dot && InSec)
108     error(Loc + ": unable to move location counter backward for: " +
109           Ctx->OutSec->Name);
110   Dot = Val;
111 
112   // Update to location counter means update to section size.
113   if (InSec)
114     Ctx->OutSec->Size = Dot - Ctx->OutSec->Addr;
115 }
116 
117 // This function is called from processSectionCommands,
118 // while we are fixing the output section layout.
119 void LinkerScript::addSymbol(SymbolAssignment *Cmd) {
120   if (Cmd->Name == ".")
121     return;
122 
123   // If a symbol was in PROVIDE(), we need to define it only when
124   // it is a referenced undefined symbol.
125   Symbol *B = Symtab->find(Cmd->Name);
126   if (Cmd->Provide && (!B || B->isDefined()))
127     return;
128 
129   // Define a symbol.
130   Symbol *Sym;
131   uint8_t Visibility = Cmd->Hidden ? STV_HIDDEN : STV_DEFAULT;
132   std::tie(Sym, std::ignore) = Symtab->insert(Cmd->Name, /*Type*/ 0, Visibility,
133                                               /*CanOmitFromDynSym*/ false,
134                                               /*File*/ nullptr);
135   Sym->Binding = STB_GLOBAL;
136   ExprValue Value = Cmd->Expression();
137   SectionBase *Sec = Value.isAbsolute() ? nullptr : Value.Sec;
138 
139   // When this function is called, section addresses have not been
140   // fixed yet. So, we may or may not know the value of the RHS
141   // expression.
142   //
143   // For example, if an expression is `x = 42`, we know x is always 42.
144   // However, if an expression is `x = .`, there's no way to know its
145   // value at the moment.
146   //
147   // We want to set symbol values early if we can. This allows us to
148   // use symbols as variables in linker scripts. Doing so allows us to
149   // write expressions like this: `alignment = 16; . = ALIGN(., alignment)`.
150   uint64_t SymValue = Value.Sec ? 0 : Value.getValue();
151 
152   replaceSymbol<Defined>(Sym, nullptr, Cmd->Name, /*IsLocal=*/false, Visibility,
153                          STT_NOTYPE, SymValue, 0, Sec);
154   Cmd->Sym = cast<Defined>(Sym);
155 }
156 
157 // This function is called from assignAddresses, while we are
158 // fixing the output section addresses. This function is supposed
159 // to set the final value for a given symbol assignment.
160 void LinkerScript::assignSymbol(SymbolAssignment *Cmd, bool InSec) {
161   if (Cmd->Name == ".") {
162     setDot(Cmd->Expression, Cmd->Location, InSec);
163     return;
164   }
165 
166   if (!Cmd->Sym)
167     return;
168 
169   ExprValue V = Cmd->Expression();
170   if (V.isAbsolute()) {
171     Cmd->Sym->Section = nullptr;
172     Cmd->Sym->Value = V.getValue();
173   } else {
174     Cmd->Sym->Section = V.Sec;
175     Cmd->Sym->Value = V.getSectionOffset();
176   }
177 }
178 
179 static std::string getFilename(InputFile *File) {
180   if (!File)
181     return "";
182   if (File->ArchiveName.empty())
183     return File->getName();
184   return (File->ArchiveName + "(" + File->getName() + ")").str();
185 }
186 
187 bool LinkerScript::shouldKeep(InputSectionBase *S) {
188   std::string Filename = getFilename(S->File);
189   for (InputSectionDescription *ID : KeptSections)
190     if (ID->FilePat.match(Filename))
191       for (SectionPattern &P : ID->SectionPatterns)
192         if (P.SectionPat.match(S->Name))
193           return true;
194   return false;
195 }
196 
197 // A helper function for the SORT() command.
198 static std::function<bool(InputSectionBase *, InputSectionBase *)>
199 getComparator(SortSectionPolicy K) {
200   switch (K) {
201   case SortSectionPolicy::Alignment:
202     return [](InputSectionBase *A, InputSectionBase *B) {
203       // ">" is not a mistake. Sections with larger alignments are placed
204       // before sections with smaller alignments in order to reduce the
205       // amount of padding necessary. This is compatible with GNU.
206       return A->Alignment > B->Alignment;
207     };
208   case SortSectionPolicy::Name:
209     return [](InputSectionBase *A, InputSectionBase *B) {
210       return A->Name < B->Name;
211     };
212   case SortSectionPolicy::Priority:
213     return [](InputSectionBase *A, InputSectionBase *B) {
214       return getPriority(A->Name) < getPriority(B->Name);
215     };
216   default:
217     llvm_unreachable("unknown sort policy");
218   }
219 }
220 
221 // A helper function for the SORT() command.
222 static bool matchConstraints(ArrayRef<InputSection *> Sections,
223                              ConstraintKind Kind) {
224   if (Kind == ConstraintKind::NoConstraint)
225     return true;
226 
227   bool IsRW = llvm::any_of(
228       Sections, [](InputSection *Sec) { return Sec->Flags & SHF_WRITE; });
229 
230   return (IsRW && Kind == ConstraintKind::ReadWrite) ||
231          (!IsRW && Kind == ConstraintKind::ReadOnly);
232 }
233 
234 static void sortSections(MutableArrayRef<InputSection *> Vec,
235                          SortSectionPolicy K) {
236   if (K != SortSectionPolicy::Default && K != SortSectionPolicy::None)
237     std::stable_sort(Vec.begin(), Vec.end(), getComparator(K));
238 }
239 
240 // Sort sections as instructed by SORT-family commands and --sort-section
241 // option. Because SORT-family commands can be nested at most two depth
242 // (e.g. SORT_BY_NAME(SORT_BY_ALIGNMENT(.text.*))) and because the command
243 // line option is respected even if a SORT command is given, the exact
244 // behavior we have here is a bit complicated. Here are the rules.
245 //
246 // 1. If two SORT commands are given, --sort-section is ignored.
247 // 2. If one SORT command is given, and if it is not SORT_NONE,
248 //    --sort-section is handled as an inner SORT command.
249 // 3. If one SORT command is given, and if it is SORT_NONE, don't sort.
250 // 4. If no SORT command is given, sort according to --sort-section.
251 // 5. If no SORT commands are given and --sort-section is not specified,
252 //    apply sorting provided by --symbol-ordering-file if any exist.
253 static void sortInputSections(
254     MutableArrayRef<InputSection *> Vec, const SectionPattern &Pat,
255     const DenseMap<SectionBase *, int> &Order) {
256   if (Pat.SortOuter == SortSectionPolicy::None)
257     return;
258 
259   if (Pat.SortOuter == SortSectionPolicy::Default &&
260       Config->SortSection == SortSectionPolicy::Default) {
261     // If -symbol-ordering-file was given, sort accordingly.
262     // Usually, Order is empty.
263     if (!Order.empty())
264       sortByOrder(Vec, [&](InputSectionBase *S) { return Order.lookup(S); });
265     return;
266   }
267 
268   if (Pat.SortInner == SortSectionPolicy::Default)
269     sortSections(Vec, Config->SortSection);
270   else
271     sortSections(Vec, Pat.SortInner);
272   sortSections(Vec, Pat.SortOuter);
273 }
274 
275 // Compute and remember which sections the InputSectionDescription matches.
276 std::vector<InputSection *>
277 LinkerScript::computeInputSections(const InputSectionDescription *Cmd,
278                                    const DenseMap<SectionBase *, int> &Order) {
279   std::vector<InputSection *> Ret;
280 
281   // Collects all sections that satisfy constraints of Cmd.
282   for (const SectionPattern &Pat : Cmd->SectionPatterns) {
283     size_t SizeBefore = Ret.size();
284 
285     for (InputSectionBase *Sec : InputSections) {
286       if (!Sec->Live || Sec->Assigned)
287         continue;
288 
289       // For -emit-relocs we have to ignore entries like
290       //   .rela.dyn : { *(.rela.data) }
291       // which are common because they are in the default bfd script.
292       if (Sec->Type == SHT_REL || Sec->Type == SHT_RELA)
293         continue;
294 
295       std::string Filename = getFilename(Sec->File);
296       if (!Cmd->FilePat.match(Filename) ||
297           Pat.ExcludedFilePat.match(Filename) ||
298           !Pat.SectionPat.match(Sec->Name))
299         continue;
300 
301       // It is safe to assume that Sec is an InputSection
302       // because mergeable or EH input sections have already been
303       // handled and eliminated.
304       Ret.push_back(cast<InputSection>(Sec));
305       Sec->Assigned = true;
306     }
307 
308     sortInputSections(MutableArrayRef<InputSection *>(Ret).slice(SizeBefore),
309                       Pat, Order);
310   }
311   return Ret;
312 }
313 
314 void LinkerScript::discard(ArrayRef<InputSection *> V) {
315   for (InputSection *S : V) {
316     if (S == InX::ShStrTab || S == InX::Dynamic || S == InX::DynSymTab ||
317         S == InX::DynStrTab)
318       error("discarding " + S->Name + " section is not allowed");
319 
320     S->Assigned = false;
321     S->Live = false;
322     discard(S->DependentSections);
323   }
324 }
325 
326 std::vector<InputSection *> LinkerScript::createInputSectionList(
327     OutputSection &OutCmd, const DenseMap<SectionBase *, int> &Order) {
328   std::vector<InputSection *> Ret;
329 
330   for (BaseCommand *Base : OutCmd.SectionCommands) {
331     if (auto *Cmd = dyn_cast<InputSectionDescription>(Base)) {
332       Cmd->Sections = computeInputSections(Cmd, Order);
333       Ret.insert(Ret.end(), Cmd->Sections.begin(), Cmd->Sections.end());
334     }
335   }
336   return Ret;
337 }
338 
339 void LinkerScript::processSectionCommands() {
340   // A symbol can be assigned before any section is mentioned in the linker
341   // script. In an DSO, the symbol values are addresses, so the only important
342   // section values are:
343   // * SHN_UNDEF
344   // * SHN_ABS
345   // * Any value meaning a regular section.
346   // To handle that, create a dummy aether section that fills the void before
347   // the linker scripts switches to another section. It has an index of one
348   // which will map to whatever the first actual section is.
349   Aether = make<OutputSection>("", 0, SHF_ALLOC);
350   Aether->SectionIndex = 1;
351 
352   // Ctx captures the local AddressState and makes it accessible deliberately.
353   // This is needed as there are some cases where we cannot just
354   // thread the current state through to a lambda function created by the
355   // script parser.
356   auto Deleter = make_unique<AddressState>();
357   Ctx = Deleter.get();
358   Ctx->OutSec = Aether;
359 
360   size_t I = 0;
361   DenseMap<SectionBase *, int> Order = buildSectionOrder();
362   // Add input sections to output sections.
363   for (BaseCommand *Base : SectionCommands) {
364     // Handle symbol assignments outside of any output section.
365     if (auto *Cmd = dyn_cast<SymbolAssignment>(Base)) {
366       addSymbol(Cmd);
367       continue;
368     }
369 
370     if (auto *Sec = dyn_cast<OutputSection>(Base)) {
371       std::vector<InputSection *> V = createInputSectionList(*Sec, Order);
372 
373       // The output section name `/DISCARD/' is special.
374       // Any input section assigned to it is discarded.
375       if (Sec->Name == "/DISCARD/") {
376         discard(V);
377         continue;
378       }
379 
380       // This is for ONLY_IF_RO and ONLY_IF_RW. An output section directive
381       // ".foo : ONLY_IF_R[OW] { ... }" is handled only if all member input
382       // sections satisfy a given constraint. If not, a directive is handled
383       // as if it wasn't present from the beginning.
384       //
385       // Because we'll iterate over SectionCommands many more times, the easy
386       // way to "make it as if it wasn't present" is to make it empty.
387       if (!matchConstraints(V, Sec->Constraint)) {
388         for (InputSectionBase *S : V)
389           S->Assigned = false;
390         Sec->SectionCommands.clear();
391         continue;
392       }
393 
394       // A directive may contain symbol definitions like this:
395       // ".foo : { ...; bar = .; }". Handle them.
396       for (BaseCommand *Base : Sec->SectionCommands)
397         if (auto *OutCmd = dyn_cast<SymbolAssignment>(Base))
398           addSymbol(OutCmd);
399 
400       // Handle subalign (e.g. ".foo : SUBALIGN(32) { ... }"). If subalign
401       // is given, input sections are aligned to that value, whether the
402       // given value is larger or smaller than the original section alignment.
403       if (Sec->SubalignExpr) {
404         uint32_t Subalign = Sec->SubalignExpr().getValue();
405         for (InputSectionBase *S : V)
406           S->Alignment = Subalign;
407       }
408 
409       // Add input sections to an output section.
410       for (InputSection *S : V)
411         Sec->addSection(S);
412 
413       Sec->SectionIndex = I++;
414       if (Sec->Noload)
415         Sec->Type = SHT_NOBITS;
416     }
417   }
418   Ctx = nullptr;
419 }
420 
421 static OutputSection *findByName(ArrayRef<BaseCommand *> Vec,
422                                  StringRef Name) {
423   for (BaseCommand *Base : Vec)
424     if (auto *Sec = dyn_cast<OutputSection>(Base))
425       if (Sec->Name == Name)
426         return Sec;
427   return nullptr;
428 }
429 
430 static OutputSection *createSection(InputSectionBase *IS,
431                                     StringRef OutsecName) {
432   OutputSection *Sec = Script->createOutputSection(OutsecName, "<internal>");
433   Sec->addSection(cast<InputSection>(IS));
434   return Sec;
435 }
436 
437 static OutputSection *addInputSec(StringMap<OutputSection *> &Map,
438                                   InputSectionBase *IS, StringRef OutsecName) {
439   // Sections with SHT_GROUP or SHF_GROUP attributes reach here only when the -r
440   // option is given. A section with SHT_GROUP defines a "section group", and
441   // its members have SHF_GROUP attribute. Usually these flags have already been
442   // stripped by InputFiles.cpp as section groups are processed and uniquified.
443   // However, for the -r option, we want to pass through all section groups
444   // as-is because adding/removing members or merging them with other groups
445   // change their semantics.
446   if (IS->Type == SHT_GROUP || (IS->Flags & SHF_GROUP))
447     return createSection(IS, OutsecName);
448 
449   // Imagine .zed : { *(.foo) *(.bar) } script. Both foo and bar may have
450   // relocation sections .rela.foo and .rela.bar for example. Most tools do
451   // not allow multiple REL[A] sections for output section. Hence we
452   // should combine these relocation sections into single output.
453   // We skip synthetic sections because it can be .rela.dyn/.rela.plt or any
454   // other REL[A] sections created by linker itself.
455   if (!isa<SyntheticSection>(IS) &&
456       (IS->Type == SHT_REL || IS->Type == SHT_RELA)) {
457     auto *Sec = cast<InputSection>(IS);
458     OutputSection *Out = Sec->getRelocatedSection()->getOutputSection();
459 
460     if (Out->RelocationSection) {
461       Out->RelocationSection->addSection(Sec);
462       return nullptr;
463     }
464 
465     Out->RelocationSection = createSection(IS, OutsecName);
466     return Out->RelocationSection;
467   }
468 
469   // When control reaches here, mergeable sections have already been
470   // merged except the -r case. If that's the case, we do not combine them
471   // and let final link to handle this optimization.
472   if (Config->Relocatable && (IS->Flags & SHF_MERGE))
473     return createSection(IS, OutsecName);
474 
475   //  The ELF spec just says
476   // ----------------------------------------------------------------
477   // In the first phase, input sections that match in name, type and
478   // attribute flags should be concatenated into single sections.
479   // ----------------------------------------------------------------
480   //
481   // However, it is clear that at least some flags have to be ignored for
482   // section merging. At the very least SHF_GROUP and SHF_COMPRESSED have to be
483   // ignored. We should not have two output .text sections just because one was
484   // in a group and another was not for example.
485   //
486   // It also seems that that wording was a late addition and didn't get the
487   // necessary scrutiny.
488   //
489   // Merging sections with different flags is expected by some users. One
490   // reason is that if one file has
491   //
492   // int *const bar __attribute__((section(".foo"))) = (int *)0;
493   //
494   // gcc with -fPIC will produce a read only .foo section. But if another
495   // file has
496   //
497   // int zed;
498   // int *const bar __attribute__((section(".foo"))) = (int *)&zed;
499   //
500   // gcc with -fPIC will produce a read write section.
501   //
502   // Last but not least, when using linker script the merge rules are forced by
503   // the script. Unfortunately, linker scripts are name based. This means that
504   // expressions like *(.foo*) can refer to multiple input sections with
505   // different flags. We cannot put them in different output sections or we
506   // would produce wrong results for
507   //
508   // start = .; *(.foo.*) end = .; *(.bar)
509   //
510   // and a mapping of .foo1 and .bar1 to one section and .foo2 and .bar2 to
511   // another. The problem is that there is no way to layout those output
512   // sections such that the .foo sections are the only thing between the start
513   // and end symbols.
514   //
515   // Given the above issues, we instead merge sections by name and error on
516   // incompatible types and flags.
517   OutputSection *&Sec = Map[OutsecName];
518   if (Sec) {
519     Sec->addSection(cast<InputSection>(IS));
520     return nullptr;
521   }
522 
523   Sec = createSection(IS, OutsecName);
524   return Sec;
525 }
526 
527 // Add sections that didn't match any sections command.
528 void LinkerScript::addOrphanSections() {
529   unsigned End = SectionCommands.size();
530   StringMap<OutputSection *> Map;
531 
532   std::vector<OutputSection *> V;
533   for (InputSectionBase *S : InputSections) {
534     if (!S->Live || S->Parent)
535       continue;
536 
537     StringRef Name = getOutputSectionName(S->Name);
538 
539     if (Config->OrphanHandling == OrphanHandlingPolicy::Error)
540       error(toString(S) + " is being placed in '" + Name + "'");
541     else if (Config->OrphanHandling == OrphanHandlingPolicy::Warn)
542       warn(toString(S) + " is being placed in '" + Name + "'");
543 
544     if (OutputSection *Sec =
545             findByName(makeArrayRef(SectionCommands).slice(0, End), Name)) {
546       Sec->addSection(cast<InputSection>(S));
547       continue;
548     }
549 
550     if (OutputSection *OS = addInputSec(Map, S, Name))
551       V.push_back(OS);
552     assert(S->getOutputSection()->SectionIndex == INT_MAX);
553   }
554 
555   // If no SECTIONS command was given, we should insert sections commands
556   // before others, so that we can handle scripts which refers them,
557   // for example: "foo = ABSOLUTE(ADDR(.text)));".
558   // When SECTIONS command is present we just add all orphans to the end.
559   if (HasSectionsCommand)
560     SectionCommands.insert(SectionCommands.end(), V.begin(), V.end());
561   else
562     SectionCommands.insert(SectionCommands.begin(), V.begin(), V.end());
563 }
564 
565 uint64_t LinkerScript::advance(uint64_t Size, unsigned Alignment) {
566   bool IsTbss =
567       (Ctx->OutSec->Flags & SHF_TLS) && Ctx->OutSec->Type == SHT_NOBITS;
568   uint64_t Start = IsTbss ? Dot + Ctx->ThreadBssOffset : Dot;
569   Start = alignTo(Start, Alignment);
570   uint64_t End = Start + Size;
571 
572   if (IsTbss)
573     Ctx->ThreadBssOffset = End - Dot;
574   else
575     Dot = End;
576   return End;
577 }
578 
579 void LinkerScript::output(InputSection *S) {
580   uint64_t Before = advance(0, 1);
581   uint64_t Pos = advance(S->getSize(), S->Alignment);
582   S->OutSecOff = Pos - S->getSize() - Ctx->OutSec->Addr;
583 
584   // Update output section size after adding each section. This is so that
585   // SIZEOF works correctly in the case below:
586   // .foo { *(.aaa) a = SIZEOF(.foo); *(.bbb) }
587   Ctx->OutSec->Size = Pos - Ctx->OutSec->Addr;
588 
589   // If there is a memory region associated with this input section, then
590   // place the section in that region and update the region index.
591   if (Ctx->MemRegion) {
592     uint64_t &CurOffset = Ctx->MemRegionOffset[Ctx->MemRegion];
593     CurOffset += Pos - Before;
594     uint64_t CurSize = CurOffset - Ctx->MemRegion->Origin;
595     if (CurSize > Ctx->MemRegion->Length) {
596       uint64_t OverflowAmt = CurSize - Ctx->MemRegion->Length;
597       error("section '" + Ctx->OutSec->Name + "' will not fit in region '" +
598             Ctx->MemRegion->Name + "': overflowed by " + Twine(OverflowAmt) +
599             " bytes");
600     }
601   }
602 }
603 
604 void LinkerScript::switchTo(OutputSection *Sec) {
605   if (Ctx->OutSec == Sec)
606     return;
607 
608   Ctx->OutSec = Sec;
609   Ctx->OutSec->Addr = advance(0, Ctx->OutSec->Alignment);
610 
611   // If neither AT nor AT> is specified for an allocatable section, the linker
612   // will set the LMA such that the difference between VMA and LMA for the
613   // section is the same as the preceding output section in the same region
614   // https://sourceware.org/binutils/docs-2.20/ld/Output-Section-LMA.html
615   if (Ctx->LMAOffset)
616     Ctx->OutSec->LMAOffset = Ctx->LMAOffset();
617 }
618 
619 // This function searches for a memory region to place the given output
620 // section in. If found, a pointer to the appropriate memory region is
621 // returned. Otherwise, a nullptr is returned.
622 MemoryRegion *LinkerScript::findMemoryRegion(OutputSection *Sec) {
623   // If a memory region name was specified in the output section command,
624   // then try to find that region first.
625   if (!Sec->MemoryRegionName.empty()) {
626     auto It = MemoryRegions.find(Sec->MemoryRegionName);
627     if (It != MemoryRegions.end())
628       return It->second;
629     error("memory region '" + Sec->MemoryRegionName + "' not declared");
630     return nullptr;
631   }
632 
633   // If at least one memory region is defined, all sections must
634   // belong to some memory region. Otherwise, we don't need to do
635   // anything for memory regions.
636   if (MemoryRegions.empty())
637     return nullptr;
638 
639   // See if a region can be found by matching section flags.
640   for (auto &Pair : MemoryRegions) {
641     MemoryRegion *M = Pair.second;
642     if ((M->Flags & Sec->Flags) && (M->NegFlags & Sec->Flags) == 0)
643       return M;
644   }
645 
646   // Otherwise, no suitable region was found.
647   if (Sec->Flags & SHF_ALLOC)
648     error("no memory region specified for section '" + Sec->Name + "'");
649   return nullptr;
650 }
651 
652 // This function assigns offsets to input sections and an output section
653 // for a single sections command (e.g. ".text { *(.text); }").
654 void LinkerScript::assignOffsets(OutputSection *Sec) {
655   if (!(Sec->Flags & SHF_ALLOC))
656     Dot = 0;
657   else if (Sec->AddrExpr)
658     setDot(Sec->AddrExpr, Sec->Location, false);
659 
660   Ctx->MemRegion = Sec->MemRegion;
661   if (Ctx->MemRegion)
662     Dot = Ctx->MemRegionOffset[Ctx->MemRegion];
663 
664   if (Sec->LMAExpr) {
665     uint64_t D = Dot;
666     Ctx->LMAOffset = [=] { return Sec->LMAExpr().getValue() - D; };
667   }
668 
669   switchTo(Sec);
670 
671   // We do not support custom layout for compressed debug sectons.
672   // At this point we already know their size and have compressed content.
673   if (Ctx->OutSec->Flags & SHF_COMPRESSED)
674     return;
675 
676   // We visited SectionsCommands from processSectionCommands to
677   // layout sections. Now, we visit SectionsCommands again to fix
678   // section offsets.
679   for (BaseCommand *Base : Sec->SectionCommands) {
680     // This handles the assignments to symbol or to the dot.
681     if (auto *Cmd = dyn_cast<SymbolAssignment>(Base)) {
682       assignSymbol(Cmd, true);
683       continue;
684     }
685 
686     // Handle BYTE(), SHORT(), LONG(), or QUAD().
687     if (auto *Cmd = dyn_cast<ByteCommand>(Base)) {
688       Cmd->Offset = Dot - Ctx->OutSec->Addr;
689       Dot += Cmd->Size;
690       Ctx->OutSec->Size = Dot - Ctx->OutSec->Addr;
691       continue;
692     }
693 
694     // Handle ASSERT().
695     if (auto *Cmd = dyn_cast<AssertCommand>(Base)) {
696       Cmd->Expression();
697       continue;
698     }
699 
700     // Handle a single input section description command.
701     // It calculates and assigns the offsets for each section and also
702     // updates the output section size.
703     auto *Cmd = cast<InputSectionDescription>(Base);
704     for (InputSection *Sec : Cmd->Sections) {
705       // We tentatively added all synthetic sections at the beginning and
706       // removed empty ones afterwards (because there is no way to know
707       // whether they were going be empty or not other than actually running
708       // linker scripts.) We need to ignore remains of empty sections.
709       if (auto *S = dyn_cast<SyntheticSection>(Sec))
710         if (S->empty())
711           continue;
712 
713       if (!Sec->Live)
714         continue;
715       assert(Ctx->OutSec == Sec->getParent());
716       output(Sec);
717     }
718   }
719 }
720 
721 void LinkerScript::removeEmptyCommands() {
722   // It is common practice to use very generic linker scripts. So for any
723   // given run some of the output sections in the script will be empty.
724   // We could create corresponding empty output sections, but that would
725   // clutter the output.
726   // We instead remove trivially empty sections. The bfd linker seems even
727   // more aggressive at removing them.
728   llvm::erase_if(SectionCommands, [&](BaseCommand *Base) {
729     if (auto *Sec = dyn_cast<OutputSection>(Base))
730       return !Sec->Live;
731     return false;
732   });
733 }
734 
735 static bool isAllSectionDescription(const OutputSection &Cmd) {
736   for (BaseCommand *Base : Cmd.SectionCommands)
737     if (!isa<InputSectionDescription>(*Base))
738       return false;
739   return true;
740 }
741 
742 void LinkerScript::adjustSectionsBeforeSorting() {
743   // If the output section contains only symbol assignments, create a
744   // corresponding output section. The issue is what to do with linker script
745   // like ".foo : { symbol = 42; }". One option would be to convert it to
746   // "symbol = 42;". That is, move the symbol out of the empty section
747   // description. That seems to be what bfd does for this simple case. The
748   // problem is that this is not completely general. bfd will give up and
749   // create a dummy section too if there is a ". = . + 1" inside the section
750   // for example.
751   // Given that we want to create the section, we have to worry what impact
752   // it will have on the link. For example, if we just create a section with
753   // 0 for flags, it would change which PT_LOADs are created.
754   // We could remember that that particular section is dummy and ignore it in
755   // other parts of the linker, but unfortunately there are quite a few places
756   // that would need to change:
757   //   * The program header creation.
758   //   * The orphan section placement.
759   //   * The address assignment.
760   // The other option is to pick flags that minimize the impact the section
761   // will have on the rest of the linker. That is why we copy the flags from
762   // the previous sections. Only a few flags are needed to keep the impact low.
763   uint64_t Flags = SHF_ALLOC;
764 
765   for (BaseCommand *Cmd : SectionCommands) {
766     auto *Sec = dyn_cast<OutputSection>(Cmd);
767     if (!Sec)
768       continue;
769     if (Sec->Live) {
770       Flags = Sec->Flags & (SHF_ALLOC | SHF_WRITE | SHF_EXECINSTR);
771       continue;
772     }
773 
774     if (isAllSectionDescription(*Sec))
775       continue;
776 
777     Sec->Live = true;
778     Sec->Flags = Flags;
779   }
780 }
781 
782 void LinkerScript::adjustSectionsAfterSorting() {
783   // Try and find an appropriate memory region to assign offsets in.
784   for (BaseCommand *Base : SectionCommands) {
785     if (auto *Sec = dyn_cast<OutputSection>(Base)) {
786       if (!Sec->Live)
787         continue;
788       Sec->MemRegion = findMemoryRegion(Sec);
789       // Handle align (e.g. ".foo : ALIGN(16) { ... }").
790       if (Sec->AlignExpr)
791         Sec->Alignment =
792             std::max<uint32_t>(Sec->Alignment, Sec->AlignExpr().getValue());
793     }
794   }
795 
796   // If output section command doesn't specify any segments,
797   // and we haven't previously assigned any section to segment,
798   // then we simply assign section to the very first load segment.
799   // Below is an example of such linker script:
800   // PHDRS { seg PT_LOAD; }
801   // SECTIONS { .aaa : { *(.aaa) } }
802   std::vector<StringRef> DefPhdrs;
803   auto FirstPtLoad =
804       std::find_if(PhdrsCommands.begin(), PhdrsCommands.end(),
805                    [](const PhdrsCommand &Cmd) { return Cmd.Type == PT_LOAD; });
806   if (FirstPtLoad != PhdrsCommands.end())
807     DefPhdrs.push_back(FirstPtLoad->Name);
808 
809   // Walk the commands and propagate the program headers to commands that don't
810   // explicitly specify them.
811   for (BaseCommand *Base : SectionCommands) {
812     auto *Sec = dyn_cast<OutputSection>(Base);
813     if (!Sec)
814       continue;
815 
816     if (Sec->Phdrs.empty()) {
817       // To match the bfd linker script behaviour, only propagate program
818       // headers to sections that are allocated.
819       if (Sec->Flags & SHF_ALLOC)
820         Sec->Phdrs = DefPhdrs;
821     } else {
822       DefPhdrs = Sec->Phdrs;
823     }
824   }
825 }
826 
827 static OutputSection *findFirstSection(PhdrEntry *Load) {
828   for (OutputSection *Sec : OutputSections)
829     if (Sec->PtLoad == Load)
830       return Sec;
831   return nullptr;
832 }
833 
834 // Try to find an address for the file and program headers output sections,
835 // which were unconditionally added to the first PT_LOAD segment earlier.
836 //
837 // When using the default layout, we check if the headers fit below the first
838 // allocated section. When using a linker script, we also check if the headers
839 // are covered by the output section. This allows omitting the headers by not
840 // leaving enough space for them in the linker script; this pattern is common
841 // in embedded systems.
842 //
843 // If there isn't enough space for these sections, we'll remove them from the
844 // PT_LOAD segment, and we'll also remove the PT_PHDR segment.
845 void LinkerScript::allocateHeaders(std::vector<PhdrEntry *> &Phdrs) {
846   uint64_t Min = std::numeric_limits<uint64_t>::max();
847   for (OutputSection *Sec : OutputSections)
848     if (Sec->Flags & SHF_ALLOC)
849       Min = std::min<uint64_t>(Min, Sec->Addr);
850 
851   auto It = llvm::find_if(
852       Phdrs, [](const PhdrEntry *E) { return E->p_type == PT_LOAD; });
853   if (It == Phdrs.end())
854     return;
855   PhdrEntry *FirstPTLoad = *It;
856 
857   uint64_t HeaderSize = getHeaderSize();
858   // When linker script with SECTIONS is being used, don't output headers
859   // unless there's a space for them.
860   uint64_t Base = HasSectionsCommand ? alignDown(Min, Config->MaxPageSize) : 0;
861   if (HeaderSize <= Min - Base || Script->hasPhdrsCommands()) {
862     Min = alignDown(Min - HeaderSize, Config->MaxPageSize);
863     Out::ElfHeader->Addr = Min;
864     Out::ProgramHeaders->Addr = Min + Out::ElfHeader->Size;
865     return;
866   }
867 
868   Out::ElfHeader->PtLoad = nullptr;
869   Out::ProgramHeaders->PtLoad = nullptr;
870   FirstPTLoad->FirstSec = findFirstSection(FirstPTLoad);
871 
872   llvm::erase_if(Phdrs,
873                  [](const PhdrEntry *E) { return E->p_type == PT_PHDR; });
874 }
875 
876 LinkerScript::AddressState::AddressState() {
877   for (auto &MRI : Script->MemoryRegions) {
878     const MemoryRegion *MR = MRI.second;
879     MemRegionOffset[MR] = MR->Origin;
880   }
881 }
882 
883 static uint64_t getInitialDot() {
884   // By default linker scripts use an initial value of 0 for '.',
885   // but prefer -image-base if set.
886   if (Script->HasSectionsCommand)
887     return Config->ImageBase ? *Config->ImageBase : 0;
888 
889   uint64_t StartAddr = UINT64_MAX;
890   // The Sections with -T<section> have been sorted in order of ascending
891   // address. We must lower StartAddr if the lowest -T<section address> as
892   // calls to setDot() must be monotonically increasing.
893   for (auto &KV : Config->SectionStartMap)
894     StartAddr = std::min(StartAddr, KV.second);
895   return std::min(StartAddr, Target->getImageBase() + elf::getHeaderSize());
896 }
897 
898 // Here we assign addresses as instructed by linker script SECTIONS
899 // sub-commands. Doing that allows us to use final VA values, so here
900 // we also handle rest commands like symbol assignments and ASSERTs.
901 void LinkerScript::assignAddresses() {
902   Dot = getInitialDot();
903 
904   auto Deleter = make_unique<AddressState>();
905   Ctx = Deleter.get();
906   ErrorOnMissingSection = true;
907   switchTo(Aether);
908 
909   for (BaseCommand *Base : SectionCommands) {
910     if (auto *Cmd = dyn_cast<SymbolAssignment>(Base)) {
911       assignSymbol(Cmd, false);
912       continue;
913     }
914 
915     if (auto *Cmd = dyn_cast<AssertCommand>(Base)) {
916       Cmd->Expression();
917       continue;
918     }
919 
920     assignOffsets(cast<OutputSection>(Base));
921   }
922   Ctx = nullptr;
923 }
924 
925 // Creates program headers as instructed by PHDRS linker script command.
926 std::vector<PhdrEntry *> LinkerScript::createPhdrs() {
927   std::vector<PhdrEntry *> Ret;
928 
929   // Process PHDRS and FILEHDR keywords because they are not
930   // real output sections and cannot be added in the following loop.
931   for (const PhdrsCommand &Cmd : PhdrsCommands) {
932     PhdrEntry *Phdr = make<PhdrEntry>(Cmd.Type, Cmd.Flags ? *Cmd.Flags : PF_R);
933 
934     if (Cmd.HasFilehdr)
935       Phdr->add(Out::ElfHeader);
936     if (Cmd.HasPhdrs)
937       Phdr->add(Out::ProgramHeaders);
938 
939     if (Cmd.LMAExpr) {
940       Phdr->p_paddr = Cmd.LMAExpr().getValue();
941       Phdr->HasLMA = true;
942     }
943     Ret.push_back(Phdr);
944   }
945 
946   // Add output sections to program headers.
947   for (OutputSection *Sec : OutputSections) {
948     // Assign headers specified by linker script
949     for (size_t Id : getPhdrIndices(Sec)) {
950       Ret[Id]->add(Sec);
951       if (!PhdrsCommands[Id].Flags.hasValue())
952         Ret[Id]->p_flags |= Sec->getPhdrFlags();
953     }
954   }
955   return Ret;
956 }
957 
958 // Returns true if we should emit an .interp section.
959 //
960 // We usually do. But if PHDRS commands are given, and
961 // no PT_INTERP is there, there's no place to emit an
962 // .interp, so we don't do that in that case.
963 bool LinkerScript::needsInterpSection() {
964   if (PhdrsCommands.empty())
965     return true;
966   for (PhdrsCommand &Cmd : PhdrsCommands)
967     if (Cmd.Type == PT_INTERP)
968       return true;
969   return false;
970 }
971 
972 ExprValue LinkerScript::getSymbolValue(StringRef Name, const Twine &Loc) {
973   if (Name == ".") {
974     if (Ctx)
975       return {Ctx->OutSec, false, Dot - Ctx->OutSec->Addr, Loc};
976     error(Loc + ": unable to get location counter value");
977     return 0;
978   }
979 
980   if (auto *Sym = dyn_cast_or_null<Defined>(Symtab->find(Name)))
981     return {Sym->Section, false, Sym->Value, Loc};
982 
983   error(Loc + ": symbol not found: " + Name);
984   return 0;
985 }
986 
987 // Returns the index of the segment named Name.
988 static Optional<size_t> getPhdrIndex(ArrayRef<PhdrsCommand> Vec,
989                                      StringRef Name) {
990   for (size_t I = 0; I < Vec.size(); ++I)
991     if (Vec[I].Name == Name)
992       return I;
993   return None;
994 }
995 
996 // Returns indices of ELF headers containing specific section. Each index is a
997 // zero based number of ELF header listed within PHDRS {} script block.
998 std::vector<size_t> LinkerScript::getPhdrIndices(OutputSection *Cmd) {
999   std::vector<size_t> Ret;
1000 
1001   for (StringRef S : Cmd->Phdrs) {
1002     if (Optional<size_t> Idx = getPhdrIndex(PhdrsCommands, S))
1003       Ret.push_back(*Idx);
1004     else if (S != "NONE")
1005       error(Cmd->Location + ": section header '" + S +
1006             "' is not listed in PHDRS");
1007   }
1008   return Ret;
1009 }
1010