1 //===- LinkerScript.cpp ---------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the parser/evaluator of the linker script. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "LinkerScript.h" 14 #include "Config.h" 15 #include "InputSection.h" 16 #include "OutputSections.h" 17 #include "SymbolTable.h" 18 #include "Symbols.h" 19 #include "SyntheticSections.h" 20 #include "Target.h" 21 #include "Writer.h" 22 #include "lld/Common/Memory.h" 23 #include "lld/Common/Strings.h" 24 #include "lld/Common/Threads.h" 25 #include "llvm/ADT/STLExtras.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/BinaryFormat/ELF.h" 28 #include "llvm/Support/Casting.h" 29 #include "llvm/Support/Endian.h" 30 #include "llvm/Support/ErrorHandling.h" 31 #include "llvm/Support/FileSystem.h" 32 #include "llvm/Support/Path.h" 33 #include <algorithm> 34 #include <cassert> 35 #include <cstddef> 36 #include <cstdint> 37 #include <iterator> 38 #include <limits> 39 #include <string> 40 #include <vector> 41 42 using namespace llvm; 43 using namespace llvm::ELF; 44 using namespace llvm::object; 45 using namespace llvm::support::endian; 46 using namespace lld; 47 using namespace lld::elf; 48 49 LinkerScript *elf::Script; 50 51 static uint64_t getOutputSectionVA(SectionBase *InputSec, StringRef Loc) { 52 if (OutputSection *OS = InputSec->getOutputSection()) 53 return OS->Addr; 54 error(Loc + ": unable to evaluate expression: input section " + 55 InputSec->Name + " has no output section assigned"); 56 return 0; 57 } 58 59 uint64_t ExprValue::getValue() const { 60 if (Sec) 61 return alignTo(Sec->getOffset(Val) + getOutputSectionVA(Sec, Loc), 62 Alignment); 63 return alignTo(Val, Alignment); 64 } 65 66 uint64_t ExprValue::getSecAddr() const { 67 if (Sec) 68 return Sec->getOffset(0) + getOutputSectionVA(Sec, Loc); 69 return 0; 70 } 71 72 uint64_t ExprValue::getSectionOffset() const { 73 // If the alignment is trivial, we don't have to compute the full 74 // value to know the offset. This allows this function to succeed in 75 // cases where the output section is not yet known. 76 if (Alignment == 1 && (!Sec || !Sec->getOutputSection())) 77 return Val; 78 return getValue() - getSecAddr(); 79 } 80 81 OutputSection *LinkerScript::createOutputSection(StringRef Name, 82 StringRef Location) { 83 OutputSection *&SecRef = NameToOutputSection[Name]; 84 OutputSection *Sec; 85 if (SecRef && SecRef->Location.empty()) { 86 // There was a forward reference. 87 Sec = SecRef; 88 } else { 89 Sec = make<OutputSection>(Name, SHT_PROGBITS, 0); 90 if (!SecRef) 91 SecRef = Sec; 92 } 93 Sec->Location = Location; 94 return Sec; 95 } 96 97 OutputSection *LinkerScript::getOrCreateOutputSection(StringRef Name) { 98 OutputSection *&CmdRef = NameToOutputSection[Name]; 99 if (!CmdRef) 100 CmdRef = make<OutputSection>(Name, SHT_PROGBITS, 0); 101 return CmdRef; 102 } 103 104 // Expands the memory region by the specified size. 105 static void expandMemoryRegion(MemoryRegion *MemRegion, uint64_t Size, 106 StringRef RegionName, StringRef SecName) { 107 MemRegion->CurPos += Size; 108 uint64_t NewSize = MemRegion->CurPos - MemRegion->Origin; 109 if (NewSize > MemRegion->Length) 110 error("section '" + SecName + "' will not fit in region '" + RegionName + 111 "': overflowed by " + Twine(NewSize - MemRegion->Length) + " bytes"); 112 } 113 114 void LinkerScript::expandMemoryRegions(uint64_t Size) { 115 if (Ctx->MemRegion) 116 expandMemoryRegion(Ctx->MemRegion, Size, Ctx->MemRegion->Name, 117 Ctx->OutSec->Name); 118 // Only expand the LMARegion if it is different from MemRegion. 119 if (Ctx->LMARegion && Ctx->MemRegion != Ctx->LMARegion) 120 expandMemoryRegion(Ctx->LMARegion, Size, Ctx->LMARegion->Name, 121 Ctx->OutSec->Name); 122 } 123 124 void LinkerScript::expandOutputSection(uint64_t Size) { 125 Ctx->OutSec->Size += Size; 126 expandMemoryRegions(Size); 127 } 128 129 void LinkerScript::setDot(Expr E, const Twine &Loc, bool InSec) { 130 uint64_t Val = E().getValue(); 131 if (Val < Dot && InSec) 132 error(Loc + ": unable to move location counter backward for: " + 133 Ctx->OutSec->Name); 134 135 // Update to location counter means update to section size. 136 if (InSec) 137 expandOutputSection(Val - Dot); 138 139 Dot = Val; 140 } 141 142 // Used for handling linker symbol assignments, for both finalizing 143 // their values and doing early declarations. Returns true if symbol 144 // should be defined from linker script. 145 static bool shouldDefineSym(SymbolAssignment *Cmd) { 146 if (Cmd->Name == ".") 147 return false; 148 149 if (!Cmd->Provide) 150 return true; 151 152 // If a symbol was in PROVIDE(), we need to define it only 153 // when it is a referenced undefined symbol. 154 Symbol *B = Symtab->find(Cmd->Name); 155 if (B && !B->isDefined()) 156 return true; 157 return false; 158 } 159 160 // This function is called from processSectionCommands, 161 // while we are fixing the output section layout. 162 void LinkerScript::addSymbol(SymbolAssignment *Cmd) { 163 if (!shouldDefineSym(Cmd)) 164 return; 165 166 // Define a symbol. 167 ExprValue Value = Cmd->Expression(); 168 SectionBase *Sec = Value.isAbsolute() ? nullptr : Value.Sec; 169 uint8_t Visibility = Cmd->Hidden ? STV_HIDDEN : STV_DEFAULT; 170 171 // When this function is called, section addresses have not been 172 // fixed yet. So, we may or may not know the value of the RHS 173 // expression. 174 // 175 // For example, if an expression is `x = 42`, we know x is always 42. 176 // However, if an expression is `x = .`, there's no way to know its 177 // value at the moment. 178 // 179 // We want to set symbol values early if we can. This allows us to 180 // use symbols as variables in linker scripts. Doing so allows us to 181 // write expressions like this: `alignment = 16; . = ALIGN(., alignment)`. 182 uint64_t SymValue = Value.Sec ? 0 : Value.getValue(); 183 184 Defined New(nullptr, Cmd->Name, STB_GLOBAL, Visibility, STT_NOTYPE, SymValue, 185 0, Sec); 186 187 Symbol *Sym = Symtab->insert(Cmd->Name); 188 Sym->mergeProperties(New); 189 Sym->replace(New); 190 Cmd->Sym = cast<Defined>(Sym); 191 } 192 193 // This function is called from LinkerScript::declareSymbols. 194 // It creates a placeholder symbol if needed. 195 static void declareSymbol(SymbolAssignment *Cmd) { 196 if (!shouldDefineSym(Cmd)) 197 return; 198 199 uint8_t Visibility = Cmd->Hidden ? STV_HIDDEN : STV_DEFAULT; 200 Defined New(nullptr, Cmd->Name, STB_GLOBAL, Visibility, STT_NOTYPE, 0, 0, 201 nullptr); 202 203 // We can't calculate final value right now. 204 Symbol *Sym = Symtab->insert(Cmd->Name); 205 Sym->mergeProperties(New); 206 Sym->replace(New); 207 208 Cmd->Sym = cast<Defined>(Sym); 209 Cmd->Provide = false; 210 Sym->ScriptDefined = true; 211 } 212 213 // This method is used to handle INSERT AFTER statement. Here we rebuild 214 // the list of script commands to mix sections inserted into. 215 void LinkerScript::processInsertCommands() { 216 std::vector<BaseCommand *> V; 217 auto Insert = [&](std::vector<BaseCommand *> &From) { 218 V.insert(V.end(), From.begin(), From.end()); 219 From.clear(); 220 }; 221 222 for (BaseCommand *Base : SectionCommands) { 223 if (auto *OS = dyn_cast<OutputSection>(Base)) { 224 Insert(InsertBeforeCommands[OS->Name]); 225 V.push_back(Base); 226 Insert(InsertAfterCommands[OS->Name]); 227 continue; 228 } 229 V.push_back(Base); 230 } 231 232 for (auto &Cmds : {InsertBeforeCommands, InsertAfterCommands}) 233 for (const std::pair<StringRef, std::vector<BaseCommand *>> &P : Cmds) 234 if (!P.second.empty()) 235 error("unable to INSERT AFTER/BEFORE " + P.first + 236 ": section not defined"); 237 238 SectionCommands = std::move(V); 239 } 240 241 // Symbols defined in script should not be inlined by LTO. At the same time 242 // we don't know their final values until late stages of link. Here we scan 243 // over symbol assignment commands and create placeholder symbols if needed. 244 void LinkerScript::declareSymbols() { 245 assert(!Ctx); 246 for (BaseCommand *Base : SectionCommands) { 247 if (auto *Cmd = dyn_cast<SymbolAssignment>(Base)) { 248 declareSymbol(Cmd); 249 continue; 250 } 251 252 // If the output section directive has constraints, 253 // we can't say for sure if it is going to be included or not. 254 // Skip such sections for now. Improve the checks if we ever 255 // need symbols from that sections to be declared early. 256 auto *Sec = cast<OutputSection>(Base); 257 if (Sec->Constraint != ConstraintKind::NoConstraint) 258 continue; 259 for (BaseCommand *Base2 : Sec->SectionCommands) 260 if (auto *Cmd = dyn_cast<SymbolAssignment>(Base2)) 261 declareSymbol(Cmd); 262 } 263 } 264 265 // This function is called from assignAddresses, while we are 266 // fixing the output section addresses. This function is supposed 267 // to set the final value for a given symbol assignment. 268 void LinkerScript::assignSymbol(SymbolAssignment *Cmd, bool InSec) { 269 if (Cmd->Name == ".") { 270 setDot(Cmd->Expression, Cmd->Location, InSec); 271 return; 272 } 273 274 if (!Cmd->Sym) 275 return; 276 277 ExprValue V = Cmd->Expression(); 278 if (V.isAbsolute()) { 279 Cmd->Sym->Section = nullptr; 280 Cmd->Sym->Value = V.getValue(); 281 } else { 282 Cmd->Sym->Section = V.Sec; 283 Cmd->Sym->Value = V.getSectionOffset(); 284 } 285 } 286 287 static std::string getFilename(InputFile *File) { 288 if (!File) 289 return ""; 290 if (File->ArchiveName.empty()) 291 return File->getName(); 292 return (File->ArchiveName + "(" + File->getName() + ")").str(); 293 } 294 295 bool LinkerScript::shouldKeep(InputSectionBase *S) { 296 if (KeptSections.empty()) 297 return false; 298 std::string Filename = getFilename(S->File); 299 for (InputSectionDescription *ID : KeptSections) 300 if (ID->FilePat.match(Filename)) 301 for (SectionPattern &P : ID->SectionPatterns) 302 if (P.SectionPat.match(S->Name)) 303 return true; 304 return false; 305 } 306 307 // A helper function for the SORT() command. 308 static std::function<bool(InputSectionBase *, InputSectionBase *)> 309 getComparator(SortSectionPolicy K) { 310 switch (K) { 311 case SortSectionPolicy::Alignment: 312 return [](InputSectionBase *A, InputSectionBase *B) { 313 // ">" is not a mistake. Sections with larger alignments are placed 314 // before sections with smaller alignments in order to reduce the 315 // amount of padding necessary. This is compatible with GNU. 316 return A->Alignment > B->Alignment; 317 }; 318 case SortSectionPolicy::Name: 319 return [](InputSectionBase *A, InputSectionBase *B) { 320 return A->Name < B->Name; 321 }; 322 case SortSectionPolicy::Priority: 323 return [](InputSectionBase *A, InputSectionBase *B) { 324 return getPriority(A->Name) < getPriority(B->Name); 325 }; 326 default: 327 llvm_unreachable("unknown sort policy"); 328 } 329 } 330 331 // A helper function for the SORT() command. 332 static bool matchConstraints(ArrayRef<InputSection *> Sections, 333 ConstraintKind Kind) { 334 if (Kind == ConstraintKind::NoConstraint) 335 return true; 336 337 bool IsRW = llvm::any_of( 338 Sections, [](InputSection *Sec) { return Sec->Flags & SHF_WRITE; }); 339 340 return (IsRW && Kind == ConstraintKind::ReadWrite) || 341 (!IsRW && Kind == ConstraintKind::ReadOnly); 342 } 343 344 static void sortSections(MutableArrayRef<InputSection *> Vec, 345 SortSectionPolicy K) { 346 if (K != SortSectionPolicy::Default && K != SortSectionPolicy::None) 347 llvm::stable_sort(Vec, getComparator(K)); 348 } 349 350 // Sort sections as instructed by SORT-family commands and --sort-section 351 // option. Because SORT-family commands can be nested at most two depth 352 // (e.g. SORT_BY_NAME(SORT_BY_ALIGNMENT(.text.*))) and because the command 353 // line option is respected even if a SORT command is given, the exact 354 // behavior we have here is a bit complicated. Here are the rules. 355 // 356 // 1. If two SORT commands are given, --sort-section is ignored. 357 // 2. If one SORT command is given, and if it is not SORT_NONE, 358 // --sort-section is handled as an inner SORT command. 359 // 3. If one SORT command is given, and if it is SORT_NONE, don't sort. 360 // 4. If no SORT command is given, sort according to --sort-section. 361 static void sortInputSections(MutableArrayRef<InputSection *> Vec, 362 const SectionPattern &Pat) { 363 if (Pat.SortOuter == SortSectionPolicy::None) 364 return; 365 366 if (Pat.SortInner == SortSectionPolicy::Default) 367 sortSections(Vec, Config->SortSection); 368 else 369 sortSections(Vec, Pat.SortInner); 370 sortSections(Vec, Pat.SortOuter); 371 } 372 373 // Compute and remember which sections the InputSectionDescription matches. 374 std::vector<InputSection *> 375 LinkerScript::computeInputSections(const InputSectionDescription *Cmd) { 376 std::vector<InputSection *> Ret; 377 378 // Collects all sections that satisfy constraints of Cmd. 379 for (const SectionPattern &Pat : Cmd->SectionPatterns) { 380 size_t SizeBefore = Ret.size(); 381 382 for (InputSectionBase *Sec : InputSections) { 383 if (!Sec->isLive() || Sec->Assigned) 384 continue; 385 386 // For -emit-relocs we have to ignore entries like 387 // .rela.dyn : { *(.rela.data) } 388 // which are common because they are in the default bfd script. 389 // We do not ignore SHT_REL[A] linker-synthesized sections here because 390 // want to support scripts that do custom layout for them. 391 if (auto *IS = dyn_cast<InputSection>(Sec)) 392 if (IS->getRelocatedSection()) 393 continue; 394 395 std::string Filename = getFilename(Sec->File); 396 if (!Cmd->FilePat.match(Filename) || 397 Pat.ExcludedFilePat.match(Filename) || 398 !Pat.SectionPat.match(Sec->Name)) 399 continue; 400 401 // It is safe to assume that Sec is an InputSection 402 // because mergeable or EH input sections have already been 403 // handled and eliminated. 404 Ret.push_back(cast<InputSection>(Sec)); 405 Sec->Assigned = true; 406 } 407 408 sortInputSections(MutableArrayRef<InputSection *>(Ret).slice(SizeBefore), 409 Pat); 410 } 411 return Ret; 412 } 413 414 void LinkerScript::discard(ArrayRef<InputSection *> V) { 415 for (InputSection *S : V) { 416 if (S == In.ShStrTab || S == Main->RelaDyn || S == Main->RelrDyn) 417 error("discarding " + S->Name + " section is not allowed"); 418 419 // You can discard .hash and .gnu.hash sections by linker scripts. Since 420 // they are synthesized sections, we need to handle them differently than 421 // other regular sections. 422 if (S == Main->GnuHashTab) 423 Main->GnuHashTab = nullptr; 424 if (S == Main->HashTab) 425 Main->HashTab = nullptr; 426 427 S->Assigned = false; 428 S->markDead(); 429 discard(S->DependentSections); 430 } 431 } 432 433 std::vector<InputSection *> 434 LinkerScript::createInputSectionList(OutputSection &OutCmd) { 435 std::vector<InputSection *> Ret; 436 437 for (BaseCommand *Base : OutCmd.SectionCommands) { 438 if (auto *Cmd = dyn_cast<InputSectionDescription>(Base)) { 439 Cmd->Sections = computeInputSections(Cmd); 440 Ret.insert(Ret.end(), Cmd->Sections.begin(), Cmd->Sections.end()); 441 } 442 } 443 return Ret; 444 } 445 446 void LinkerScript::processSectionCommands() { 447 // A symbol can be assigned before any section is mentioned in the linker 448 // script. In an DSO, the symbol values are addresses, so the only important 449 // section values are: 450 // * SHN_UNDEF 451 // * SHN_ABS 452 // * Any value meaning a regular section. 453 // To handle that, create a dummy aether section that fills the void before 454 // the linker scripts switches to another section. It has an index of one 455 // which will map to whatever the first actual section is. 456 Aether = make<OutputSection>("", 0, SHF_ALLOC); 457 Aether->SectionIndex = 1; 458 459 // Ctx captures the local AddressState and makes it accessible deliberately. 460 // This is needed as there are some cases where we cannot just 461 // thread the current state through to a lambda function created by the 462 // script parser. 463 auto Deleter = make_unique<AddressState>(); 464 Ctx = Deleter.get(); 465 Ctx->OutSec = Aether; 466 467 size_t I = 0; 468 // Add input sections to output sections. 469 for (BaseCommand *Base : SectionCommands) { 470 // Handle symbol assignments outside of any output section. 471 if (auto *Cmd = dyn_cast<SymbolAssignment>(Base)) { 472 addSymbol(Cmd); 473 continue; 474 } 475 476 if (auto *Sec = dyn_cast<OutputSection>(Base)) { 477 std::vector<InputSection *> V = createInputSectionList(*Sec); 478 479 // The output section name `/DISCARD/' is special. 480 // Any input section assigned to it is discarded. 481 if (Sec->Name == "/DISCARD/") { 482 discard(V); 483 Sec->SectionCommands.clear(); 484 continue; 485 } 486 487 // This is for ONLY_IF_RO and ONLY_IF_RW. An output section directive 488 // ".foo : ONLY_IF_R[OW] { ... }" is handled only if all member input 489 // sections satisfy a given constraint. If not, a directive is handled 490 // as if it wasn't present from the beginning. 491 // 492 // Because we'll iterate over SectionCommands many more times, the easy 493 // way to "make it as if it wasn't present" is to make it empty. 494 if (!matchConstraints(V, Sec->Constraint)) { 495 for (InputSectionBase *S : V) 496 S->Assigned = false; 497 Sec->SectionCommands.clear(); 498 continue; 499 } 500 501 // A directive may contain symbol definitions like this: 502 // ".foo : { ...; bar = .; }". Handle them. 503 for (BaseCommand *Base : Sec->SectionCommands) 504 if (auto *OutCmd = dyn_cast<SymbolAssignment>(Base)) 505 addSymbol(OutCmd); 506 507 // Handle subalign (e.g. ".foo : SUBALIGN(32) { ... }"). If subalign 508 // is given, input sections are aligned to that value, whether the 509 // given value is larger or smaller than the original section alignment. 510 if (Sec->SubalignExpr) { 511 uint32_t Subalign = Sec->SubalignExpr().getValue(); 512 for (InputSectionBase *S : V) 513 S->Alignment = Subalign; 514 } 515 516 // Add input sections to an output section. 517 for (InputSection *S : V) 518 Sec->addSection(S); 519 520 Sec->SectionIndex = I++; 521 if (Sec->Noload) 522 Sec->Type = SHT_NOBITS; 523 if (Sec->NonAlloc) 524 Sec->Flags &= ~(uint64_t)SHF_ALLOC; 525 } 526 } 527 Ctx = nullptr; 528 } 529 530 static OutputSection *findByName(ArrayRef<BaseCommand *> Vec, 531 StringRef Name) { 532 for (BaseCommand *Base : Vec) 533 if (auto *Sec = dyn_cast<OutputSection>(Base)) 534 if (Sec->Name == Name) 535 return Sec; 536 return nullptr; 537 } 538 539 static OutputSection *createSection(InputSectionBase *IS, 540 StringRef OutsecName) { 541 OutputSection *Sec = Script->createOutputSection(OutsecName, "<internal>"); 542 Sec->addSection(cast<InputSection>(IS)); 543 return Sec; 544 } 545 546 static OutputSection * 547 addInputSec(StringMap<TinyPtrVector<OutputSection *>> &Map, 548 InputSectionBase *IS, StringRef OutsecName) { 549 // Sections with SHT_GROUP or SHF_GROUP attributes reach here only when the -r 550 // option is given. A section with SHT_GROUP defines a "section group", and 551 // its members have SHF_GROUP attribute. Usually these flags have already been 552 // stripped by InputFiles.cpp as section groups are processed and uniquified. 553 // However, for the -r option, we want to pass through all section groups 554 // as-is because adding/removing members or merging them with other groups 555 // change their semantics. 556 if (IS->Type == SHT_GROUP || (IS->Flags & SHF_GROUP)) 557 return createSection(IS, OutsecName); 558 559 // Imagine .zed : { *(.foo) *(.bar) } script. Both foo and bar may have 560 // relocation sections .rela.foo and .rela.bar for example. Most tools do 561 // not allow multiple REL[A] sections for output section. Hence we 562 // should combine these relocation sections into single output. 563 // We skip synthetic sections because it can be .rela.dyn/.rela.plt or any 564 // other REL[A] sections created by linker itself. 565 if (!isa<SyntheticSection>(IS) && 566 (IS->Type == SHT_REL || IS->Type == SHT_RELA)) { 567 auto *Sec = cast<InputSection>(IS); 568 OutputSection *Out = Sec->getRelocatedSection()->getOutputSection(); 569 570 if (Out->RelocationSection) { 571 Out->RelocationSection->addSection(Sec); 572 return nullptr; 573 } 574 575 Out->RelocationSection = createSection(IS, OutsecName); 576 return Out->RelocationSection; 577 } 578 579 // When control reaches here, mergeable sections have already been merged into 580 // synthetic sections. For relocatable case we want to create one output 581 // section per syntetic section so that they have a valid sh_entsize. 582 if (Config->Relocatable && (IS->Flags & SHF_MERGE)) 583 return createSection(IS, OutsecName); 584 585 // The ELF spec just says 586 // ---------------------------------------------------------------- 587 // In the first phase, input sections that match in name, type and 588 // attribute flags should be concatenated into single sections. 589 // ---------------------------------------------------------------- 590 // 591 // However, it is clear that at least some flags have to be ignored for 592 // section merging. At the very least SHF_GROUP and SHF_COMPRESSED have to be 593 // ignored. We should not have two output .text sections just because one was 594 // in a group and another was not for example. 595 // 596 // It also seems that wording was a late addition and didn't get the 597 // necessary scrutiny. 598 // 599 // Merging sections with different flags is expected by some users. One 600 // reason is that if one file has 601 // 602 // int *const bar __attribute__((section(".foo"))) = (int *)0; 603 // 604 // gcc with -fPIC will produce a read only .foo section. But if another 605 // file has 606 // 607 // int zed; 608 // int *const bar __attribute__((section(".foo"))) = (int *)&zed; 609 // 610 // gcc with -fPIC will produce a read write section. 611 // 612 // Last but not least, when using linker script the merge rules are forced by 613 // the script. Unfortunately, linker scripts are name based. This means that 614 // expressions like *(.foo*) can refer to multiple input sections with 615 // different flags. We cannot put them in different output sections or we 616 // would produce wrong results for 617 // 618 // start = .; *(.foo.*) end = .; *(.bar) 619 // 620 // and a mapping of .foo1 and .bar1 to one section and .foo2 and .bar2 to 621 // another. The problem is that there is no way to layout those output 622 // sections such that the .foo sections are the only thing between the start 623 // and end symbols. 624 // 625 // Given the above issues, we instead merge sections by name and error on 626 // incompatible types and flags. 627 TinyPtrVector<OutputSection *> &V = Map[OutsecName]; 628 for (OutputSection *Sec : V) { 629 if (Sec->Partition != IS->Partition) 630 continue; 631 Sec->addSection(cast<InputSection>(IS)); 632 return nullptr; 633 } 634 635 OutputSection *Sec = createSection(IS, OutsecName); 636 V.push_back(Sec); 637 return Sec; 638 } 639 640 // Add sections that didn't match any sections command. 641 void LinkerScript::addOrphanSections() { 642 StringMap<TinyPtrVector<OutputSection *>> Map; 643 std::vector<OutputSection *> V; 644 645 auto Add = [&](InputSectionBase *S) { 646 if (!S->isLive() || S->Parent) 647 return; 648 649 StringRef Name = getOutputSectionName(S); 650 651 if (Config->OrphanHandling == OrphanHandlingPolicy::Error) 652 error(toString(S) + " is being placed in '" + Name + "'"); 653 else if (Config->OrphanHandling == OrphanHandlingPolicy::Warn) 654 warn(toString(S) + " is being placed in '" + Name + "'"); 655 656 if (OutputSection *Sec = findByName(SectionCommands, Name)) { 657 Sec->addSection(cast<InputSection>(S)); 658 return; 659 } 660 661 if (OutputSection *OS = addInputSec(Map, S, Name)) 662 V.push_back(OS); 663 assert(S->getOutputSection()->SectionIndex == UINT32_MAX); 664 }; 665 666 // For futher --emit-reloc handling code we need target output section 667 // to be created before we create relocation output section, so we want 668 // to create target sections first. We do not want priority handling 669 // for synthetic sections because them are special. 670 for (InputSectionBase *IS : InputSections) { 671 if (auto *Sec = dyn_cast<InputSection>(IS)) 672 if (InputSectionBase *Rel = Sec->getRelocatedSection()) 673 if (auto *RelIS = dyn_cast_or_null<InputSectionBase>(Rel->Parent)) 674 Add(RelIS); 675 Add(IS); 676 } 677 678 // If no SECTIONS command was given, we should insert sections commands 679 // before others, so that we can handle scripts which refers them, 680 // for example: "foo = ABSOLUTE(ADDR(.text)));". 681 // When SECTIONS command is present we just add all orphans to the end. 682 if (HasSectionsCommand) 683 SectionCommands.insert(SectionCommands.end(), V.begin(), V.end()); 684 else 685 SectionCommands.insert(SectionCommands.begin(), V.begin(), V.end()); 686 } 687 688 uint64_t LinkerScript::advance(uint64_t Size, unsigned Alignment) { 689 bool IsTbss = 690 (Ctx->OutSec->Flags & SHF_TLS) && Ctx->OutSec->Type == SHT_NOBITS; 691 uint64_t Start = IsTbss ? Dot + Ctx->ThreadBssOffset : Dot; 692 Start = alignTo(Start, Alignment); 693 uint64_t End = Start + Size; 694 695 if (IsTbss) 696 Ctx->ThreadBssOffset = End - Dot; 697 else 698 Dot = End; 699 return End; 700 } 701 702 void LinkerScript::output(InputSection *S) { 703 assert(Ctx->OutSec == S->getParent()); 704 uint64_t Before = advance(0, 1); 705 uint64_t Pos = advance(S->getSize(), S->Alignment); 706 S->OutSecOff = Pos - S->getSize() - Ctx->OutSec->Addr; 707 708 // Update output section size after adding each section. This is so that 709 // SIZEOF works correctly in the case below: 710 // .foo { *(.aaa) a = SIZEOF(.foo); *(.bbb) } 711 expandOutputSection(Pos - Before); 712 } 713 714 void LinkerScript::switchTo(OutputSection *Sec) { 715 Ctx->OutSec = Sec; 716 717 uint64_t Before = advance(0, 1); 718 Ctx->OutSec->Addr = advance(0, Ctx->OutSec->Alignment); 719 expandMemoryRegions(Ctx->OutSec->Addr - Before); 720 } 721 722 // This function searches for a memory region to place the given output 723 // section in. If found, a pointer to the appropriate memory region is 724 // returned. Otherwise, a nullptr is returned. 725 MemoryRegion *LinkerScript::findMemoryRegion(OutputSection *Sec) { 726 // If a memory region name was specified in the output section command, 727 // then try to find that region first. 728 if (!Sec->MemoryRegionName.empty()) { 729 if (MemoryRegion *M = MemoryRegions.lookup(Sec->MemoryRegionName)) 730 return M; 731 error("memory region '" + Sec->MemoryRegionName + "' not declared"); 732 return nullptr; 733 } 734 735 // If at least one memory region is defined, all sections must 736 // belong to some memory region. Otherwise, we don't need to do 737 // anything for memory regions. 738 if (MemoryRegions.empty()) 739 return nullptr; 740 741 // See if a region can be found by matching section flags. 742 for (auto &Pair : MemoryRegions) { 743 MemoryRegion *M = Pair.second; 744 if ((M->Flags & Sec->Flags) && (M->NegFlags & Sec->Flags) == 0) 745 return M; 746 } 747 748 // Otherwise, no suitable region was found. 749 if (Sec->Flags & SHF_ALLOC) 750 error("no memory region specified for section '" + Sec->Name + "'"); 751 return nullptr; 752 } 753 754 static OutputSection *findFirstSection(PhdrEntry *Load) { 755 for (OutputSection *Sec : OutputSections) 756 if (Sec->PtLoad == Load) 757 return Sec; 758 return nullptr; 759 } 760 761 // This function assigns offsets to input sections and an output section 762 // for a single sections command (e.g. ".text { *(.text); }"). 763 void LinkerScript::assignOffsets(OutputSection *Sec) { 764 if (!(Sec->Flags & SHF_ALLOC)) 765 Dot = 0; 766 767 Ctx->MemRegion = Sec->MemRegion; 768 Ctx->LMARegion = Sec->LMARegion; 769 if (Ctx->MemRegion) 770 Dot = Ctx->MemRegion->CurPos; 771 772 if ((Sec->Flags & SHF_ALLOC) && Sec->AddrExpr) 773 setDot(Sec->AddrExpr, Sec->Location, false); 774 775 switchTo(Sec); 776 777 if (Sec->LMAExpr) 778 Ctx->LMAOffset = Sec->LMAExpr().getValue() - Dot; 779 780 if (MemoryRegion *MR = Sec->LMARegion) 781 Ctx->LMAOffset = MR->CurPos - Dot; 782 783 // If neither AT nor AT> is specified for an allocatable section, the linker 784 // will set the LMA such that the difference between VMA and LMA for the 785 // section is the same as the preceding output section in the same region 786 // https://sourceware.org/binutils/docs-2.20/ld/Output-Section-LMA.html 787 // This, however, should only be done by the first "non-header" section 788 // in the segment. 789 if (PhdrEntry *L = Ctx->OutSec->PtLoad) 790 if (Sec == findFirstSection(L)) 791 L->LMAOffset = Ctx->LMAOffset; 792 793 // We can call this method multiple times during the creation of 794 // thunks and want to start over calculation each time. 795 Sec->Size = 0; 796 797 // We visited SectionsCommands from processSectionCommands to 798 // layout sections. Now, we visit SectionsCommands again to fix 799 // section offsets. 800 for (BaseCommand *Base : Sec->SectionCommands) { 801 // This handles the assignments to symbol or to the dot. 802 if (auto *Cmd = dyn_cast<SymbolAssignment>(Base)) { 803 Cmd->Addr = Dot; 804 assignSymbol(Cmd, true); 805 Cmd->Size = Dot - Cmd->Addr; 806 continue; 807 } 808 809 // Handle BYTE(), SHORT(), LONG(), or QUAD(). 810 if (auto *Cmd = dyn_cast<ByteCommand>(Base)) { 811 Cmd->Offset = Dot - Ctx->OutSec->Addr; 812 Dot += Cmd->Size; 813 expandOutputSection(Cmd->Size); 814 continue; 815 } 816 817 // Handle a single input section description command. 818 // It calculates and assigns the offsets for each section and also 819 // updates the output section size. 820 for (InputSection *Sec : cast<InputSectionDescription>(Base)->Sections) 821 output(Sec); 822 } 823 } 824 825 static bool isDiscardable(OutputSection &Sec) { 826 if (Sec.Name == "/DISCARD/") 827 return true; 828 829 // We do not remove empty sections that are explicitly 830 // assigned to any segment. 831 if (!Sec.Phdrs.empty()) 832 return false; 833 834 // We do not want to remove OutputSections with expressions that reference 835 // symbols even if the OutputSection is empty. We want to ensure that the 836 // expressions can be evaluated and report an error if they cannot. 837 if (Sec.ExpressionsUseSymbols) 838 return false; 839 840 // OutputSections may be referenced by name in ADDR and LOADADDR expressions, 841 // as an empty Section can has a valid VMA and LMA we keep the OutputSection 842 // to maintain the integrity of the other Expression. 843 if (Sec.UsedInExpression) 844 return false; 845 846 for (BaseCommand *Base : Sec.SectionCommands) { 847 if (auto Cmd = dyn_cast<SymbolAssignment>(Base)) 848 // Don't create empty output sections just for unreferenced PROVIDE 849 // symbols. 850 if (Cmd->Name != "." && !Cmd->Sym) 851 continue; 852 853 if (!isa<InputSectionDescription>(*Base)) 854 return false; 855 } 856 return true; 857 } 858 859 void LinkerScript::adjustSectionsBeforeSorting() { 860 // If the output section contains only symbol assignments, create a 861 // corresponding output section. The issue is what to do with linker script 862 // like ".foo : { symbol = 42; }". One option would be to convert it to 863 // "symbol = 42;". That is, move the symbol out of the empty section 864 // description. That seems to be what bfd does for this simple case. The 865 // problem is that this is not completely general. bfd will give up and 866 // create a dummy section too if there is a ". = . + 1" inside the section 867 // for example. 868 // Given that we want to create the section, we have to worry what impact 869 // it will have on the link. For example, if we just create a section with 870 // 0 for flags, it would change which PT_LOADs are created. 871 // We could remember that particular section is dummy and ignore it in 872 // other parts of the linker, but unfortunately there are quite a few places 873 // that would need to change: 874 // * The program header creation. 875 // * The orphan section placement. 876 // * The address assignment. 877 // The other option is to pick flags that minimize the impact the section 878 // will have on the rest of the linker. That is why we copy the flags from 879 // the previous sections. Only a few flags are needed to keep the impact low. 880 uint64_t Flags = SHF_ALLOC; 881 882 for (BaseCommand *&Cmd : SectionCommands) { 883 auto *Sec = dyn_cast<OutputSection>(Cmd); 884 if (!Sec) 885 continue; 886 887 // Handle align (e.g. ".foo : ALIGN(16) { ... }"). 888 if (Sec->AlignExpr) 889 Sec->Alignment = 890 std::max<uint32_t>(Sec->Alignment, Sec->AlignExpr().getValue()); 891 892 // The input section might have been removed (if it was an empty synthetic 893 // section), but we at least know the flags. 894 if (Sec->HasInputSections) 895 Flags = Sec->Flags; 896 897 // We do not want to keep any special flags for output section 898 // in case it is empty. 899 bool IsEmpty = getInputSections(Sec).empty(); 900 if (IsEmpty) 901 Sec->Flags = Flags & ((Sec->NonAlloc ? 0 : (uint64_t)SHF_ALLOC) | 902 SHF_WRITE | SHF_EXECINSTR); 903 904 if (IsEmpty && isDiscardable(*Sec)) { 905 Sec->markDead(); 906 Cmd = nullptr; 907 } else if (!Sec->isLive()) { 908 Sec->markLive(); 909 } 910 } 911 912 // It is common practice to use very generic linker scripts. So for any 913 // given run some of the output sections in the script will be empty. 914 // We could create corresponding empty output sections, but that would 915 // clutter the output. 916 // We instead remove trivially empty sections. The bfd linker seems even 917 // more aggressive at removing them. 918 llvm::erase_if(SectionCommands, [&](BaseCommand *Base) { return !Base; }); 919 } 920 921 void LinkerScript::adjustSectionsAfterSorting() { 922 // Try and find an appropriate memory region to assign offsets in. 923 for (BaseCommand *Base : SectionCommands) { 924 if (auto *Sec = dyn_cast<OutputSection>(Base)) { 925 if (!Sec->LMARegionName.empty()) { 926 if (MemoryRegion *M = MemoryRegions.lookup(Sec->LMARegionName)) 927 Sec->LMARegion = M; 928 else 929 error("memory region '" + Sec->LMARegionName + "' not declared"); 930 } 931 Sec->MemRegion = findMemoryRegion(Sec); 932 } 933 } 934 935 // If output section command doesn't specify any segments, 936 // and we haven't previously assigned any section to segment, 937 // then we simply assign section to the very first load segment. 938 // Below is an example of such linker script: 939 // PHDRS { seg PT_LOAD; } 940 // SECTIONS { .aaa : { *(.aaa) } } 941 std::vector<StringRef> DefPhdrs; 942 auto FirstPtLoad = llvm::find_if(PhdrsCommands, [](const PhdrsCommand &Cmd) { 943 return Cmd.Type == PT_LOAD; 944 }); 945 if (FirstPtLoad != PhdrsCommands.end()) 946 DefPhdrs.push_back(FirstPtLoad->Name); 947 948 // Walk the commands and propagate the program headers to commands that don't 949 // explicitly specify them. 950 for (BaseCommand *Base : SectionCommands) { 951 auto *Sec = dyn_cast<OutputSection>(Base); 952 if (!Sec) 953 continue; 954 955 if (Sec->Phdrs.empty()) { 956 // To match the bfd linker script behaviour, only propagate program 957 // headers to sections that are allocated. 958 if (Sec->Flags & SHF_ALLOC) 959 Sec->Phdrs = DefPhdrs; 960 } else { 961 DefPhdrs = Sec->Phdrs; 962 } 963 } 964 } 965 966 static uint64_t computeBase(uint64_t Min, bool AllocateHeaders) { 967 // If there is no SECTIONS or if the linkerscript is explicit about program 968 // headers, do our best to allocate them. 969 if (!Script->HasSectionsCommand || AllocateHeaders) 970 return 0; 971 // Otherwise only allocate program headers if that would not add a page. 972 return alignDown(Min, Config->MaxPageSize); 973 } 974 975 // Try to find an address for the file and program headers output sections, 976 // which were unconditionally added to the first PT_LOAD segment earlier. 977 // 978 // When using the default layout, we check if the headers fit below the first 979 // allocated section. When using a linker script, we also check if the headers 980 // are covered by the output section. This allows omitting the headers by not 981 // leaving enough space for them in the linker script; this pattern is common 982 // in embedded systems. 983 // 984 // If there isn't enough space for these sections, we'll remove them from the 985 // PT_LOAD segment, and we'll also remove the PT_PHDR segment. 986 void LinkerScript::allocateHeaders(std::vector<PhdrEntry *> &Phdrs) { 987 uint64_t Min = std::numeric_limits<uint64_t>::max(); 988 for (OutputSection *Sec : OutputSections) 989 if (Sec->Flags & SHF_ALLOC) 990 Min = std::min<uint64_t>(Min, Sec->Addr); 991 992 auto It = llvm::find_if( 993 Phdrs, [](const PhdrEntry *E) { return E->p_type == PT_LOAD; }); 994 if (It == Phdrs.end()) 995 return; 996 PhdrEntry *FirstPTLoad = *It; 997 998 bool HasExplicitHeaders = 999 llvm::any_of(PhdrsCommands, [](const PhdrsCommand &Cmd) { 1000 return Cmd.HasPhdrs || Cmd.HasFilehdr; 1001 }); 1002 bool Paged = !Config->Omagic && !Config->Nmagic; 1003 uint64_t HeaderSize = getHeaderSize(); 1004 if ((Paged || HasExplicitHeaders) && 1005 HeaderSize <= Min - computeBase(Min, HasExplicitHeaders)) { 1006 Min = alignDown(Min - HeaderSize, Config->MaxPageSize); 1007 Out::ElfHeader->Addr = Min; 1008 Out::ProgramHeaders->Addr = Min + Out::ElfHeader->Size; 1009 return; 1010 } 1011 1012 // Error if we were explicitly asked to allocate headers. 1013 if (HasExplicitHeaders) 1014 error("could not allocate headers"); 1015 1016 Out::ElfHeader->PtLoad = nullptr; 1017 Out::ProgramHeaders->PtLoad = nullptr; 1018 FirstPTLoad->FirstSec = findFirstSection(FirstPTLoad); 1019 1020 llvm::erase_if(Phdrs, 1021 [](const PhdrEntry *E) { return E->p_type == PT_PHDR; }); 1022 } 1023 1024 LinkerScript::AddressState::AddressState() { 1025 for (auto &MRI : Script->MemoryRegions) { 1026 MemoryRegion *MR = MRI.second; 1027 MR->CurPos = MR->Origin; 1028 } 1029 } 1030 1031 static uint64_t getInitialDot() { 1032 // By default linker scripts use an initial value of 0 for '.', 1033 // but prefer -image-base if set. 1034 if (Script->HasSectionsCommand) 1035 return Config->ImageBase ? *Config->ImageBase : 0; 1036 1037 uint64_t StartAddr = UINT64_MAX; 1038 // The Sections with -T<section> have been sorted in order of ascending 1039 // address. We must lower StartAddr if the lowest -T<section address> as 1040 // calls to setDot() must be monotonically increasing. 1041 for (auto &KV : Config->SectionStartMap) 1042 StartAddr = std::min(StartAddr, KV.second); 1043 return std::min(StartAddr, Target->getImageBase() + elf::getHeaderSize()); 1044 } 1045 1046 // Here we assign addresses as instructed by linker script SECTIONS 1047 // sub-commands. Doing that allows us to use final VA values, so here 1048 // we also handle rest commands like symbol assignments and ASSERTs. 1049 void LinkerScript::assignAddresses() { 1050 Dot = getInitialDot(); 1051 1052 auto Deleter = make_unique<AddressState>(); 1053 Ctx = Deleter.get(); 1054 ErrorOnMissingSection = true; 1055 switchTo(Aether); 1056 1057 for (BaseCommand *Base : SectionCommands) { 1058 if (auto *Cmd = dyn_cast<SymbolAssignment>(Base)) { 1059 Cmd->Addr = Dot; 1060 assignSymbol(Cmd, false); 1061 Cmd->Size = Dot - Cmd->Addr; 1062 continue; 1063 } 1064 assignOffsets(cast<OutputSection>(Base)); 1065 } 1066 Ctx = nullptr; 1067 } 1068 1069 // Creates program headers as instructed by PHDRS linker script command. 1070 std::vector<PhdrEntry *> LinkerScript::createPhdrs() { 1071 std::vector<PhdrEntry *> Ret; 1072 1073 // Process PHDRS and FILEHDR keywords because they are not 1074 // real output sections and cannot be added in the following loop. 1075 for (const PhdrsCommand &Cmd : PhdrsCommands) { 1076 PhdrEntry *Phdr = make<PhdrEntry>(Cmd.Type, Cmd.Flags ? *Cmd.Flags : PF_R); 1077 1078 if (Cmd.HasFilehdr) 1079 Phdr->add(Out::ElfHeader); 1080 if (Cmd.HasPhdrs) 1081 Phdr->add(Out::ProgramHeaders); 1082 1083 if (Cmd.LMAExpr) { 1084 Phdr->p_paddr = Cmd.LMAExpr().getValue(); 1085 Phdr->HasLMA = true; 1086 } 1087 Ret.push_back(Phdr); 1088 } 1089 1090 // Add output sections to program headers. 1091 for (OutputSection *Sec : OutputSections) { 1092 // Assign headers specified by linker script 1093 for (size_t Id : getPhdrIndices(Sec)) { 1094 Ret[Id]->add(Sec); 1095 if (!PhdrsCommands[Id].Flags.hasValue()) 1096 Ret[Id]->p_flags |= Sec->getPhdrFlags(); 1097 } 1098 } 1099 return Ret; 1100 } 1101 1102 // Returns true if we should emit an .interp section. 1103 // 1104 // We usually do. But if PHDRS commands are given, and 1105 // no PT_INTERP is there, there's no place to emit an 1106 // .interp, so we don't do that in that case. 1107 bool LinkerScript::needsInterpSection() { 1108 if (PhdrsCommands.empty()) 1109 return true; 1110 for (PhdrsCommand &Cmd : PhdrsCommands) 1111 if (Cmd.Type == PT_INTERP) 1112 return true; 1113 return false; 1114 } 1115 1116 ExprValue LinkerScript::getSymbolValue(StringRef Name, const Twine &Loc) { 1117 if (Name == ".") { 1118 if (Ctx) 1119 return {Ctx->OutSec, false, Dot - Ctx->OutSec->Addr, Loc}; 1120 error(Loc + ": unable to get location counter value"); 1121 return 0; 1122 } 1123 1124 if (Symbol *Sym = Symtab->find(Name)) { 1125 if (auto *DS = dyn_cast<Defined>(Sym)) 1126 return {DS->Section, false, DS->Value, Loc}; 1127 if (isa<SharedSymbol>(Sym)) 1128 if (!ErrorOnMissingSection) 1129 return {nullptr, false, 0, Loc}; 1130 } 1131 1132 error(Loc + ": symbol not found: " + Name); 1133 return 0; 1134 } 1135 1136 // Returns the index of the segment named Name. 1137 static Optional<size_t> getPhdrIndex(ArrayRef<PhdrsCommand> Vec, 1138 StringRef Name) { 1139 for (size_t I = 0; I < Vec.size(); ++I) 1140 if (Vec[I].Name == Name) 1141 return I; 1142 return None; 1143 } 1144 1145 // Returns indices of ELF headers containing specific section. Each index is a 1146 // zero based number of ELF header listed within PHDRS {} script block. 1147 std::vector<size_t> LinkerScript::getPhdrIndices(OutputSection *Cmd) { 1148 std::vector<size_t> Ret; 1149 1150 for (StringRef S : Cmd->Phdrs) { 1151 if (Optional<size_t> Idx = getPhdrIndex(PhdrsCommands, S)) 1152 Ret.push_back(*Idx); 1153 else if (S != "NONE") 1154 error(Cmd->Location + ": section header '" + S + 1155 "' is not listed in PHDRS"); 1156 } 1157 return Ret; 1158 } 1159