1 //===- LinkerScript.cpp ---------------------------------------------------===// 2 // 3 // The LLVM Linker 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the parser/evaluator of the linker script. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "LinkerScript.h" 15 #include "Config.h" 16 #include "InputSection.h" 17 #include "OutputSections.h" 18 #include "SymbolTable.h" 19 #include "Symbols.h" 20 #include "SyntheticSections.h" 21 #include "Target.h" 22 #include "Writer.h" 23 #include "lld/Common/Memory.h" 24 #include "lld/Common/Strings.h" 25 #include "lld/Common/Threads.h" 26 #include "llvm/ADT/STLExtras.h" 27 #include "llvm/ADT/StringRef.h" 28 #include "llvm/BinaryFormat/ELF.h" 29 #include "llvm/Support/Casting.h" 30 #include "llvm/Support/Endian.h" 31 #include "llvm/Support/ErrorHandling.h" 32 #include "llvm/Support/FileSystem.h" 33 #include "llvm/Support/Path.h" 34 #include <algorithm> 35 #include <cassert> 36 #include <cstddef> 37 #include <cstdint> 38 #include <iterator> 39 #include <limits> 40 #include <string> 41 #include <vector> 42 43 using namespace llvm; 44 using namespace llvm::ELF; 45 using namespace llvm::object; 46 using namespace llvm::support::endian; 47 using namespace lld; 48 using namespace lld::elf; 49 50 LinkerScript *elf::Script; 51 52 static uint64_t getOutputSectionVA(SectionBase *InputSec, StringRef Loc) { 53 if (OutputSection *OS = InputSec->getOutputSection()) 54 return OS->Addr; 55 error(Loc + ": unable to evaluate expression: input section " + 56 InputSec->Name + " has no output section assigned"); 57 return 0; 58 } 59 60 uint64_t ExprValue::getValue() const { 61 if (Sec) 62 return alignTo(Sec->getOffset(Val) + getOutputSectionVA(Sec, Loc), 63 Alignment); 64 return alignTo(Val, Alignment); 65 } 66 67 uint64_t ExprValue::getSecAddr() const { 68 if (Sec) 69 return Sec->getOffset(0) + getOutputSectionVA(Sec, Loc); 70 return 0; 71 } 72 73 uint64_t ExprValue::getSectionOffset() const { 74 // If the alignment is trivial, we don't have to compute the full 75 // value to know the offset. This allows this function to succeed in 76 // cases where the output section is not yet known. 77 if (Alignment == 1 && (!Sec || !Sec->getOutputSection())) 78 return Val; 79 return getValue() - getSecAddr(); 80 } 81 82 OutputSection *LinkerScript::createOutputSection(StringRef Name, 83 StringRef Location) { 84 OutputSection *&SecRef = NameToOutputSection[Name]; 85 OutputSection *Sec; 86 if (SecRef && SecRef->Location.empty()) { 87 // There was a forward reference. 88 Sec = SecRef; 89 } else { 90 Sec = make<OutputSection>(Name, SHT_NOBITS, 0); 91 if (!SecRef) 92 SecRef = Sec; 93 } 94 Sec->Location = Location; 95 return Sec; 96 } 97 98 OutputSection *LinkerScript::getOrCreateOutputSection(StringRef Name) { 99 OutputSection *&CmdRef = NameToOutputSection[Name]; 100 if (!CmdRef) 101 CmdRef = make<OutputSection>(Name, SHT_PROGBITS, 0); 102 return CmdRef; 103 } 104 105 // Expands the memory region by the specified size. 106 static void expandMemoryRegion(MemoryRegion *MemRegion, uint64_t Size, 107 StringRef RegionName, StringRef SecName) { 108 MemRegion->CurPos += Size; 109 uint64_t NewSize = MemRegion->CurPos - MemRegion->Origin; 110 if (NewSize > MemRegion->Length) 111 error("section '" + SecName + "' will not fit in region '" + RegionName + 112 "': overflowed by " + Twine(NewSize - MemRegion->Length) + " bytes"); 113 } 114 115 void LinkerScript::expandMemoryRegions(uint64_t Size) { 116 if (Ctx->MemRegion) 117 expandMemoryRegion(Ctx->MemRegion, Size, Ctx->MemRegion->Name, 118 Ctx->OutSec->Name); 119 // Only expand the LMARegion if it is different from MemRegion. 120 if (Ctx->LMARegion && Ctx->MemRegion != Ctx->LMARegion) 121 expandMemoryRegion(Ctx->LMARegion, Size, Ctx->LMARegion->Name, 122 Ctx->OutSec->Name); 123 } 124 125 void LinkerScript::expandOutputSection(uint64_t Size) { 126 Ctx->OutSec->Size += Size; 127 expandMemoryRegions(Size); 128 } 129 130 void LinkerScript::setDot(Expr E, const Twine &Loc, bool InSec) { 131 uint64_t Val = E().getValue(); 132 if (Val < Dot && InSec) 133 error(Loc + ": unable to move location counter backward for: " + 134 Ctx->OutSec->Name); 135 136 // Update to location counter means update to section size. 137 if (InSec) 138 expandOutputSection(Val - Dot); 139 else 140 expandMemoryRegions(Val - Dot); 141 142 Dot = Val; 143 } 144 145 // Used for handling linker symbol assignments, for both finalizing 146 // their values and doing early declarations. Returns true if symbol 147 // should be defined from linker script. 148 static bool shouldDefineSym(SymbolAssignment *Cmd) { 149 if (Cmd->Name == ".") 150 return false; 151 152 if (!Cmd->Provide) 153 return true; 154 155 // If a symbol was in PROVIDE(), we need to define it only 156 // when it is a referenced undefined symbol. 157 Symbol *B = Symtab->find(Cmd->Name); 158 if (B && !B->isDefined()) 159 return true; 160 return false; 161 } 162 163 // This function is called from processSectionCommands, 164 // while we are fixing the output section layout. 165 void LinkerScript::addSymbol(SymbolAssignment *Cmd) { 166 if (!shouldDefineSym(Cmd)) 167 return; 168 169 // Define a symbol. 170 Symbol *Sym; 171 uint8_t Visibility = Cmd->Hidden ? STV_HIDDEN : STV_DEFAULT; 172 std::tie(Sym, std::ignore) = Symtab->insert(Cmd->Name, /*Type*/ 0, Visibility, 173 /*CanOmitFromDynSym*/ false, 174 /*File*/ nullptr); 175 ExprValue Value = Cmd->Expression(); 176 SectionBase *Sec = Value.isAbsolute() ? nullptr : Value.Sec; 177 178 // When this function is called, section addresses have not been 179 // fixed yet. So, we may or may not know the value of the RHS 180 // expression. 181 // 182 // For example, if an expression is `x = 42`, we know x is always 42. 183 // However, if an expression is `x = .`, there's no way to know its 184 // value at the moment. 185 // 186 // We want to set symbol values early if we can. This allows us to 187 // use symbols as variables in linker scripts. Doing so allows us to 188 // write expressions like this: `alignment = 16; . = ALIGN(., alignment)`. 189 uint64_t SymValue = Value.Sec ? 0 : Value.getValue(); 190 191 replaceSymbol<Defined>(Sym, nullptr, Cmd->Name, STB_GLOBAL, Visibility, 192 STT_NOTYPE, SymValue, 0, Sec); 193 Cmd->Sym = cast<Defined>(Sym); 194 } 195 196 // This function is called from LinkerScript::declareSymbols. 197 // It creates a placeholder symbol if needed. 198 static void declareSymbol(SymbolAssignment *Cmd) { 199 if (!shouldDefineSym(Cmd)) 200 return; 201 202 // We can't calculate final value right now. 203 Symbol *Sym; 204 uint8_t Visibility = Cmd->Hidden ? STV_HIDDEN : STV_DEFAULT; 205 std::tie(Sym, std::ignore) = Symtab->insert(Cmd->Name, /*Type*/ 0, Visibility, 206 /*CanOmitFromDynSym*/ false, 207 /*File*/ nullptr); 208 replaceSymbol<Defined>(Sym, nullptr, Cmd->Name, STB_GLOBAL, Visibility, 209 STT_NOTYPE, 0, 0, nullptr); 210 Cmd->Sym = cast<Defined>(Sym); 211 Cmd->Provide = false; 212 } 213 214 // This method is used to handle INSERT AFTER statement. Here we rebuild 215 // the list of script commands to mix sections inserted into. 216 void LinkerScript::processInsertCommands() { 217 std::vector<BaseCommand *> V; 218 auto Insert = [&](std::vector<BaseCommand *> &From) { 219 V.insert(V.end(), From.begin(), From.end()); 220 From.clear(); 221 }; 222 223 for (BaseCommand *Base : SectionCommands) { 224 if (auto *OS = dyn_cast<OutputSection>(Base)) { 225 Insert(InsertBeforeCommands[OS->Name]); 226 V.push_back(Base); 227 Insert(InsertAfterCommands[OS->Name]); 228 continue; 229 } 230 V.push_back(Base); 231 } 232 233 for (auto &Cmds : {InsertBeforeCommands, InsertAfterCommands}) 234 for (const std::pair<StringRef, std::vector<BaseCommand *>> &P : Cmds) 235 if (!P.second.empty()) 236 error("unable to INSERT AFTER/BEFORE " + P.first + 237 ": section not defined"); 238 239 SectionCommands = std::move(V); 240 } 241 242 // Symbols defined in script should not be inlined by LTO. At the same time 243 // we don't know their final values until late stages of link. Here we scan 244 // over symbol assignment commands and create placeholder symbols if needed. 245 void LinkerScript::declareSymbols() { 246 assert(!Ctx); 247 for (BaseCommand *Base : SectionCommands) { 248 if (auto *Cmd = dyn_cast<SymbolAssignment>(Base)) { 249 declareSymbol(Cmd); 250 continue; 251 } 252 253 // If the output section directive has constraints, 254 // we can't say for sure if it is going to be included or not. 255 // Skip such sections for now. Improve the checks if we ever 256 // need symbols from that sections to be declared early. 257 auto *Sec = cast<OutputSection>(Base); 258 if (Sec->Constraint != ConstraintKind::NoConstraint) 259 continue; 260 for (BaseCommand *Base2 : Sec->SectionCommands) 261 if (auto *Cmd = dyn_cast<SymbolAssignment>(Base2)) 262 declareSymbol(Cmd); 263 } 264 } 265 266 // This function is called from assignAddresses, while we are 267 // fixing the output section addresses. This function is supposed 268 // to set the final value for a given symbol assignment. 269 void LinkerScript::assignSymbol(SymbolAssignment *Cmd, bool InSec) { 270 if (Cmd->Name == ".") { 271 setDot(Cmd->Expression, Cmd->Location, InSec); 272 return; 273 } 274 275 if (!Cmd->Sym) 276 return; 277 278 ExprValue V = Cmd->Expression(); 279 if (V.isAbsolute()) { 280 Cmd->Sym->Section = nullptr; 281 Cmd->Sym->Value = V.getValue(); 282 } else { 283 Cmd->Sym->Section = V.Sec; 284 Cmd->Sym->Value = V.getSectionOffset(); 285 } 286 } 287 288 static std::string getFilename(InputFile *File) { 289 if (!File) 290 return ""; 291 if (File->ArchiveName.empty()) 292 return File->getName(); 293 return (File->ArchiveName + "(" + File->getName() + ")").str(); 294 } 295 296 bool LinkerScript::shouldKeep(InputSectionBase *S) { 297 if (KeptSections.empty()) 298 return false; 299 std::string Filename = getFilename(S->File); 300 for (InputSectionDescription *ID : KeptSections) 301 if (ID->FilePat.match(Filename)) 302 for (SectionPattern &P : ID->SectionPatterns) 303 if (P.SectionPat.match(S->Name)) 304 return true; 305 return false; 306 } 307 308 // A helper function for the SORT() command. 309 static std::function<bool(InputSectionBase *, InputSectionBase *)> 310 getComparator(SortSectionPolicy K) { 311 switch (K) { 312 case SortSectionPolicy::Alignment: 313 return [](InputSectionBase *A, InputSectionBase *B) { 314 // ">" is not a mistake. Sections with larger alignments are placed 315 // before sections with smaller alignments in order to reduce the 316 // amount of padding necessary. This is compatible with GNU. 317 return A->Alignment > B->Alignment; 318 }; 319 case SortSectionPolicy::Name: 320 return [](InputSectionBase *A, InputSectionBase *B) { 321 return A->Name < B->Name; 322 }; 323 case SortSectionPolicy::Priority: 324 return [](InputSectionBase *A, InputSectionBase *B) { 325 return getPriority(A->Name) < getPriority(B->Name); 326 }; 327 default: 328 llvm_unreachable("unknown sort policy"); 329 } 330 } 331 332 // A helper function for the SORT() command. 333 static bool matchConstraints(ArrayRef<InputSection *> Sections, 334 ConstraintKind Kind) { 335 if (Kind == ConstraintKind::NoConstraint) 336 return true; 337 338 bool IsRW = llvm::any_of( 339 Sections, [](InputSection *Sec) { return Sec->Flags & SHF_WRITE; }); 340 341 return (IsRW && Kind == ConstraintKind::ReadWrite) || 342 (!IsRW && Kind == ConstraintKind::ReadOnly); 343 } 344 345 static void sortSections(MutableArrayRef<InputSection *> Vec, 346 SortSectionPolicy K) { 347 if (K != SortSectionPolicy::Default && K != SortSectionPolicy::None) 348 std::stable_sort(Vec.begin(), Vec.end(), getComparator(K)); 349 } 350 351 // Sort sections as instructed by SORT-family commands and --sort-section 352 // option. Because SORT-family commands can be nested at most two depth 353 // (e.g. SORT_BY_NAME(SORT_BY_ALIGNMENT(.text.*))) and because the command 354 // line option is respected even if a SORT command is given, the exact 355 // behavior we have here is a bit complicated. Here are the rules. 356 // 357 // 1. If two SORT commands are given, --sort-section is ignored. 358 // 2. If one SORT command is given, and if it is not SORT_NONE, 359 // --sort-section is handled as an inner SORT command. 360 // 3. If one SORT command is given, and if it is SORT_NONE, don't sort. 361 // 4. If no SORT command is given, sort according to --sort-section. 362 static void sortInputSections(MutableArrayRef<InputSection *> Vec, 363 const SectionPattern &Pat) { 364 if (Pat.SortOuter == SortSectionPolicy::None) 365 return; 366 367 if (Pat.SortInner == SortSectionPolicy::Default) 368 sortSections(Vec, Config->SortSection); 369 else 370 sortSections(Vec, Pat.SortInner); 371 sortSections(Vec, Pat.SortOuter); 372 } 373 374 // Compute and remember which sections the InputSectionDescription matches. 375 std::vector<InputSection *> 376 LinkerScript::computeInputSections(const InputSectionDescription *Cmd) { 377 std::vector<InputSection *> Ret; 378 379 // Collects all sections that satisfy constraints of Cmd. 380 for (const SectionPattern &Pat : Cmd->SectionPatterns) { 381 size_t SizeBefore = Ret.size(); 382 383 for (InputSectionBase *Sec : InputSections) { 384 if (!Sec->Live || Sec->Assigned) 385 continue; 386 387 // For -emit-relocs we have to ignore entries like 388 // .rela.dyn : { *(.rela.data) } 389 // which are common because they are in the default bfd script. 390 // We do not ignore SHT_REL[A] linker-synthesized sections here because 391 // want to support scripts that do custom layout for them. 392 if (auto *IS = dyn_cast<InputSection>(Sec)) 393 if (IS->getRelocatedSection()) 394 continue; 395 396 std::string Filename = getFilename(Sec->File); 397 if (!Cmd->FilePat.match(Filename) || 398 Pat.ExcludedFilePat.match(Filename) || 399 !Pat.SectionPat.match(Sec->Name)) 400 continue; 401 402 // It is safe to assume that Sec is an InputSection 403 // because mergeable or EH input sections have already been 404 // handled and eliminated. 405 Ret.push_back(cast<InputSection>(Sec)); 406 Sec->Assigned = true; 407 } 408 409 sortInputSections(MutableArrayRef<InputSection *>(Ret).slice(SizeBefore), 410 Pat); 411 } 412 return Ret; 413 } 414 415 void LinkerScript::discard(ArrayRef<InputSection *> V) { 416 for (InputSection *S : V) { 417 if (S == InX::ShStrTab || S == InX::Dynamic || S == InX::DynSymTab || 418 S == InX::DynStrTab || S == InX::RelaPlt || S == InX::RelaDyn || 419 S == InX::RelrDyn) 420 error("discarding " + S->Name + " section is not allowed"); 421 422 // You can discard .hash and .gnu.hash sections by linker scripts. Since 423 // they are synthesized sections, we need to handle them differently than 424 // other regular sections. 425 if (S == InX::GnuHashTab) 426 InX::GnuHashTab = nullptr; 427 if (S == InX::HashTab) 428 InX::HashTab = nullptr; 429 430 S->Assigned = false; 431 S->Live = false; 432 discard(S->DependentSections); 433 } 434 } 435 436 std::vector<InputSection *> 437 LinkerScript::createInputSectionList(OutputSection &OutCmd) { 438 std::vector<InputSection *> Ret; 439 440 for (BaseCommand *Base : OutCmd.SectionCommands) { 441 if (auto *Cmd = dyn_cast<InputSectionDescription>(Base)) { 442 Cmd->Sections = computeInputSections(Cmd); 443 Ret.insert(Ret.end(), Cmd->Sections.begin(), Cmd->Sections.end()); 444 } 445 } 446 return Ret; 447 } 448 449 void LinkerScript::processSectionCommands() { 450 // A symbol can be assigned before any section is mentioned in the linker 451 // script. In an DSO, the symbol values are addresses, so the only important 452 // section values are: 453 // * SHN_UNDEF 454 // * SHN_ABS 455 // * Any value meaning a regular section. 456 // To handle that, create a dummy aether section that fills the void before 457 // the linker scripts switches to another section. It has an index of one 458 // which will map to whatever the first actual section is. 459 Aether = make<OutputSection>("", 0, SHF_ALLOC); 460 Aether->SectionIndex = 1; 461 462 // Ctx captures the local AddressState and makes it accessible deliberately. 463 // This is needed as there are some cases where we cannot just 464 // thread the current state through to a lambda function created by the 465 // script parser. 466 auto Deleter = make_unique<AddressState>(); 467 Ctx = Deleter.get(); 468 Ctx->OutSec = Aether; 469 470 size_t I = 0; 471 // Add input sections to output sections. 472 for (BaseCommand *Base : SectionCommands) { 473 // Handle symbol assignments outside of any output section. 474 if (auto *Cmd = dyn_cast<SymbolAssignment>(Base)) { 475 addSymbol(Cmd); 476 continue; 477 } 478 479 if (auto *Sec = dyn_cast<OutputSection>(Base)) { 480 std::vector<InputSection *> V = createInputSectionList(*Sec); 481 482 // The output section name `/DISCARD/' is special. 483 // Any input section assigned to it is discarded. 484 if (Sec->Name == "/DISCARD/") { 485 discard(V); 486 Sec->SectionCommands.clear(); 487 continue; 488 } 489 490 // This is for ONLY_IF_RO and ONLY_IF_RW. An output section directive 491 // ".foo : ONLY_IF_R[OW] { ... }" is handled only if all member input 492 // sections satisfy a given constraint. If not, a directive is handled 493 // as if it wasn't present from the beginning. 494 // 495 // Because we'll iterate over SectionCommands many more times, the easy 496 // way to "make it as if it wasn't present" is to make it empty. 497 if (!matchConstraints(V, Sec->Constraint)) { 498 for (InputSectionBase *S : V) 499 S->Assigned = false; 500 Sec->SectionCommands.clear(); 501 continue; 502 } 503 504 // A directive may contain symbol definitions like this: 505 // ".foo : { ...; bar = .; }". Handle them. 506 for (BaseCommand *Base : Sec->SectionCommands) 507 if (auto *OutCmd = dyn_cast<SymbolAssignment>(Base)) 508 addSymbol(OutCmd); 509 510 // Handle subalign (e.g. ".foo : SUBALIGN(32) { ... }"). If subalign 511 // is given, input sections are aligned to that value, whether the 512 // given value is larger or smaller than the original section alignment. 513 if (Sec->SubalignExpr) { 514 uint32_t Subalign = Sec->SubalignExpr().getValue(); 515 for (InputSectionBase *S : V) 516 S->Alignment = Subalign; 517 } 518 519 // Add input sections to an output section. 520 for (InputSection *S : V) 521 Sec->addSection(S); 522 523 Sec->SectionIndex = I++; 524 if (Sec->Noload) 525 Sec->Type = SHT_NOBITS; 526 if (Sec->NonAlloc) 527 Sec->Flags &= ~(uint64_t)SHF_ALLOC; 528 } 529 } 530 Ctx = nullptr; 531 } 532 533 static OutputSection *findByName(ArrayRef<BaseCommand *> Vec, 534 StringRef Name) { 535 for (BaseCommand *Base : Vec) 536 if (auto *Sec = dyn_cast<OutputSection>(Base)) 537 if (Sec->Name == Name) 538 return Sec; 539 return nullptr; 540 } 541 542 static OutputSection *createSection(InputSectionBase *IS, 543 StringRef OutsecName) { 544 OutputSection *Sec = Script->createOutputSection(OutsecName, "<internal>"); 545 Sec->addSection(cast<InputSection>(IS)); 546 return Sec; 547 } 548 549 static OutputSection *addInputSec(StringMap<OutputSection *> &Map, 550 InputSectionBase *IS, StringRef OutsecName) { 551 // Sections with SHT_GROUP or SHF_GROUP attributes reach here only when the -r 552 // option is given. A section with SHT_GROUP defines a "section group", and 553 // its members have SHF_GROUP attribute. Usually these flags have already been 554 // stripped by InputFiles.cpp as section groups are processed and uniquified. 555 // However, for the -r option, we want to pass through all section groups 556 // as-is because adding/removing members or merging them with other groups 557 // change their semantics. 558 if (IS->Type == SHT_GROUP || (IS->Flags & SHF_GROUP)) 559 return createSection(IS, OutsecName); 560 561 // Imagine .zed : { *(.foo) *(.bar) } script. Both foo and bar may have 562 // relocation sections .rela.foo and .rela.bar for example. Most tools do 563 // not allow multiple REL[A] sections for output section. Hence we 564 // should combine these relocation sections into single output. 565 // We skip synthetic sections because it can be .rela.dyn/.rela.plt or any 566 // other REL[A] sections created by linker itself. 567 if (!isa<SyntheticSection>(IS) && 568 (IS->Type == SHT_REL || IS->Type == SHT_RELA)) { 569 auto *Sec = cast<InputSection>(IS); 570 OutputSection *Out = Sec->getRelocatedSection()->getOutputSection(); 571 572 if (Out->RelocationSection) { 573 Out->RelocationSection->addSection(Sec); 574 return nullptr; 575 } 576 577 Out->RelocationSection = createSection(IS, OutsecName); 578 return Out->RelocationSection; 579 } 580 581 // When control reaches here, mergeable sections have already been merged into 582 // synthetic sections. For relocatable case we want to create one output 583 // section per syntetic section so that they have a valid sh_entsize. 584 if (Config->Relocatable && (IS->Flags & SHF_MERGE)) 585 return createSection(IS, OutsecName); 586 587 // The ELF spec just says 588 // ---------------------------------------------------------------- 589 // In the first phase, input sections that match in name, type and 590 // attribute flags should be concatenated into single sections. 591 // ---------------------------------------------------------------- 592 // 593 // However, it is clear that at least some flags have to be ignored for 594 // section merging. At the very least SHF_GROUP and SHF_COMPRESSED have to be 595 // ignored. We should not have two output .text sections just because one was 596 // in a group and another was not for example. 597 // 598 // It also seems that wording was a late addition and didn't get the 599 // necessary scrutiny. 600 // 601 // Merging sections with different flags is expected by some users. One 602 // reason is that if one file has 603 // 604 // int *const bar __attribute__((section(".foo"))) = (int *)0; 605 // 606 // gcc with -fPIC will produce a read only .foo section. But if another 607 // file has 608 // 609 // int zed; 610 // int *const bar __attribute__((section(".foo"))) = (int *)&zed; 611 // 612 // gcc with -fPIC will produce a read write section. 613 // 614 // Last but not least, when using linker script the merge rules are forced by 615 // the script. Unfortunately, linker scripts are name based. This means that 616 // expressions like *(.foo*) can refer to multiple input sections with 617 // different flags. We cannot put them in different output sections or we 618 // would produce wrong results for 619 // 620 // start = .; *(.foo.*) end = .; *(.bar) 621 // 622 // and a mapping of .foo1 and .bar1 to one section and .foo2 and .bar2 to 623 // another. The problem is that there is no way to layout those output 624 // sections such that the .foo sections are the only thing between the start 625 // and end symbols. 626 // 627 // Given the above issues, we instead merge sections by name and error on 628 // incompatible types and flags. 629 OutputSection *&Sec = Map[OutsecName]; 630 if (Sec) { 631 Sec->addSection(cast<InputSection>(IS)); 632 return nullptr; 633 } 634 635 Sec = createSection(IS, OutsecName); 636 return Sec; 637 } 638 639 // Add sections that didn't match any sections command. 640 void LinkerScript::addOrphanSections() { 641 unsigned End = SectionCommands.size(); 642 StringMap<OutputSection *> Map; 643 std::vector<OutputSection *> V; 644 645 auto Add = [&](InputSectionBase *S) { 646 if (!S->Live || S->Parent) 647 return; 648 649 StringRef Name = getOutputSectionName(S); 650 651 if (Config->OrphanHandling == OrphanHandlingPolicy::Error) 652 error(toString(S) + " is being placed in '" + Name + "'"); 653 else if (Config->OrphanHandling == OrphanHandlingPolicy::Warn) 654 warn(toString(S) + " is being placed in '" + Name + "'"); 655 656 if (OutputSection *Sec = 657 findByName(makeArrayRef(SectionCommands).slice(0, End), Name)) { 658 Sec->addSection(cast<InputSection>(S)); 659 return; 660 } 661 662 if (OutputSection *OS = addInputSec(Map, S, Name)) 663 V.push_back(OS); 664 assert(S->getOutputSection()->SectionIndex == UINT32_MAX); 665 }; 666 667 // For futher --emit-reloc handling code we need target output section 668 // to be created before we create relocation output section, so we want 669 // to create target sections first. We do not want priority handling 670 // for synthetic sections because them are special. 671 for (InputSectionBase *IS : InputSections) { 672 if (auto *Sec = dyn_cast<InputSection>(IS)) 673 if (InputSectionBase *Rel = Sec->getRelocatedSection()) 674 if (auto *RelIS = dyn_cast_or_null<InputSectionBase>(Rel->Parent)) 675 Add(RelIS); 676 Add(IS); 677 } 678 679 // If no SECTIONS command was given, we should insert sections commands 680 // before others, so that we can handle scripts which refers them, 681 // for example: "foo = ABSOLUTE(ADDR(.text)));". 682 // When SECTIONS command is present we just add all orphans to the end. 683 if (HasSectionsCommand) 684 SectionCommands.insert(SectionCommands.end(), V.begin(), V.end()); 685 else 686 SectionCommands.insert(SectionCommands.begin(), V.begin(), V.end()); 687 } 688 689 uint64_t LinkerScript::advance(uint64_t Size, unsigned Alignment) { 690 bool IsTbss = 691 (Ctx->OutSec->Flags & SHF_TLS) && Ctx->OutSec->Type == SHT_NOBITS; 692 uint64_t Start = IsTbss ? Dot + Ctx->ThreadBssOffset : Dot; 693 Start = alignTo(Start, Alignment); 694 uint64_t End = Start + Size; 695 696 if (IsTbss) 697 Ctx->ThreadBssOffset = End - Dot; 698 else 699 Dot = End; 700 return End; 701 } 702 703 void LinkerScript::output(InputSection *S) { 704 uint64_t Before = advance(0, 1); 705 uint64_t Pos = advance(S->getSize(), S->Alignment); 706 S->OutSecOff = Pos - S->getSize() - Ctx->OutSec->Addr; 707 708 // Update output section size after adding each section. This is so that 709 // SIZEOF works correctly in the case below: 710 // .foo { *(.aaa) a = SIZEOF(.foo); *(.bbb) } 711 expandOutputSection(Pos - Before); 712 } 713 714 void LinkerScript::switchTo(OutputSection *Sec) { 715 Ctx->OutSec = Sec; 716 717 uint64_t Before = advance(0, 1); 718 Ctx->OutSec->Addr = advance(0, Ctx->OutSec->Alignment); 719 expandMemoryRegions(Ctx->OutSec->Addr - Before); 720 } 721 722 // This function searches for a memory region to place the given output 723 // section in. If found, a pointer to the appropriate memory region is 724 // returned. Otherwise, a nullptr is returned. 725 MemoryRegion *LinkerScript::findMemoryRegion(OutputSection *Sec) { 726 // If a memory region name was specified in the output section command, 727 // then try to find that region first. 728 if (!Sec->MemoryRegionName.empty()) { 729 if (MemoryRegion *M = MemoryRegions.lookup(Sec->MemoryRegionName)) 730 return M; 731 error("memory region '" + Sec->MemoryRegionName + "' not declared"); 732 return nullptr; 733 } 734 735 // If at least one memory region is defined, all sections must 736 // belong to some memory region. Otherwise, we don't need to do 737 // anything for memory regions. 738 if (MemoryRegions.empty()) 739 return nullptr; 740 741 // See if a region can be found by matching section flags. 742 for (auto &Pair : MemoryRegions) { 743 MemoryRegion *M = Pair.second; 744 if ((M->Flags & Sec->Flags) && (M->NegFlags & Sec->Flags) == 0) 745 return M; 746 } 747 748 // Otherwise, no suitable region was found. 749 if (Sec->Flags & SHF_ALLOC) 750 error("no memory region specified for section '" + Sec->Name + "'"); 751 return nullptr; 752 } 753 754 static OutputSection *findFirstSection(PhdrEntry *Load) { 755 for (OutputSection *Sec : OutputSections) 756 if (Sec->PtLoad == Load) 757 return Sec; 758 return nullptr; 759 } 760 761 // This function assigns offsets to input sections and an output section 762 // for a single sections command (e.g. ".text { *(.text); }"). 763 void LinkerScript::assignOffsets(OutputSection *Sec) { 764 if (!(Sec->Flags & SHF_ALLOC)) 765 Dot = 0; 766 else if (Sec->AddrExpr) 767 setDot(Sec->AddrExpr, Sec->Location, false); 768 769 Ctx->MemRegion = Sec->MemRegion; 770 Ctx->LMARegion = Sec->LMARegion; 771 if (Ctx->MemRegion) 772 Dot = Ctx->MemRegion->CurPos; 773 774 switchTo(Sec); 775 776 if (Sec->LMAExpr) 777 Ctx->LMAOffset = Sec->LMAExpr().getValue() - Dot; 778 779 if (MemoryRegion *MR = Sec->LMARegion) 780 Ctx->LMAOffset = MR->CurPos - Dot; 781 782 // If neither AT nor AT> is specified for an allocatable section, the linker 783 // will set the LMA such that the difference between VMA and LMA for the 784 // section is the same as the preceding output section in the same region 785 // https://sourceware.org/binutils/docs-2.20/ld/Output-Section-LMA.html 786 // This, however, should only be done by the first "non-header" section 787 // in the segment. 788 if (PhdrEntry *L = Ctx->OutSec->PtLoad) 789 if (Sec == findFirstSection(L)) 790 L->LMAOffset = Ctx->LMAOffset; 791 792 // We can call this method multiple times during the creation of 793 // thunks and want to start over calculation each time. 794 Sec->Size = 0; 795 796 // We visited SectionsCommands from processSectionCommands to 797 // layout sections. Now, we visit SectionsCommands again to fix 798 // section offsets. 799 for (BaseCommand *Base : Sec->SectionCommands) { 800 // This handles the assignments to symbol or to the dot. 801 if (auto *Cmd = dyn_cast<SymbolAssignment>(Base)) { 802 Cmd->Addr = Dot; 803 assignSymbol(Cmd, true); 804 Cmd->Size = Dot - Cmd->Addr; 805 continue; 806 } 807 808 // Handle BYTE(), SHORT(), LONG(), or QUAD(). 809 if (auto *Cmd = dyn_cast<ByteCommand>(Base)) { 810 Cmd->Offset = Dot - Ctx->OutSec->Addr; 811 Dot += Cmd->Size; 812 expandOutputSection(Cmd->Size); 813 continue; 814 } 815 816 // Handle a single input section description command. 817 // It calculates and assigns the offsets for each section and also 818 // updates the output section size. 819 auto *Cmd = cast<InputSectionDescription>(Base); 820 for (InputSection *Sec : Cmd->Sections) { 821 // We tentatively added all synthetic sections at the beginning and 822 // removed empty ones afterwards (because there is no way to know 823 // whether they were going be empty or not other than actually running 824 // linker scripts.) We need to ignore remains of empty sections. 825 if (auto *S = dyn_cast<SyntheticSection>(Sec)) 826 if (S->empty()) 827 continue; 828 829 if (!Sec->Live) 830 continue; 831 assert(Ctx->OutSec == Sec->getParent()); 832 output(Sec); 833 } 834 } 835 } 836 837 static bool isDiscardable(OutputSection &Sec) { 838 // We do not remove empty sections that are explicitly 839 // assigned to any segment. 840 if (!Sec.Phdrs.empty()) 841 return false; 842 843 // We do not want to remove sections that reference symbols in address and 844 // other expressions. We add script symbols as undefined, and want to ensure 845 // all of them are defined in the output, hence have to keep them. 846 if (Sec.ExpressionsUseSymbols) 847 return false; 848 849 for (BaseCommand *Base : Sec.SectionCommands) { 850 if (auto Cmd = dyn_cast<SymbolAssignment>(Base)) 851 // Don't create empty output sections just for unreferenced PROVIDE 852 // symbols. 853 if (Cmd->Name != "." && !Cmd->Sym) 854 continue; 855 856 if (!isa<InputSectionDescription>(*Base)) 857 return false; 858 } 859 return true; 860 } 861 862 void LinkerScript::adjustSectionsBeforeSorting() { 863 // If the output section contains only symbol assignments, create a 864 // corresponding output section. The issue is what to do with linker script 865 // like ".foo : { symbol = 42; }". One option would be to convert it to 866 // "symbol = 42;". That is, move the symbol out of the empty section 867 // description. That seems to be what bfd does for this simple case. The 868 // problem is that this is not completely general. bfd will give up and 869 // create a dummy section too if there is a ". = . + 1" inside the section 870 // for example. 871 // Given that we want to create the section, we have to worry what impact 872 // it will have on the link. For example, if we just create a section with 873 // 0 for flags, it would change which PT_LOADs are created. 874 // We could remember that particular section is dummy and ignore it in 875 // other parts of the linker, but unfortunately there are quite a few places 876 // that would need to change: 877 // * The program header creation. 878 // * The orphan section placement. 879 // * The address assignment. 880 // The other option is to pick flags that minimize the impact the section 881 // will have on the rest of the linker. That is why we copy the flags from 882 // the previous sections. Only a few flags are needed to keep the impact low. 883 uint64_t Flags = SHF_ALLOC; 884 885 for (BaseCommand *&Cmd : SectionCommands) { 886 auto *Sec = dyn_cast<OutputSection>(Cmd); 887 if (!Sec) 888 continue; 889 890 // Handle align (e.g. ".foo : ALIGN(16) { ... }"). 891 if (Sec->AlignExpr) 892 Sec->Alignment = 893 std::max<uint32_t>(Sec->Alignment, Sec->AlignExpr().getValue()); 894 895 // A live output section means that some input section was added to it. It 896 // might have been removed (if it was empty synthetic section), but we at 897 // least know the flags. 898 if (Sec->Live) 899 Flags = Sec->Flags; 900 901 // We do not want to keep any special flags for output section 902 // in case it is empty. 903 bool IsEmpty = getInputSections(Sec).empty(); 904 if (IsEmpty) 905 Sec->Flags = Flags & (SHF_ALLOC | SHF_WRITE | SHF_EXECINSTR); 906 907 if (IsEmpty && isDiscardable(*Sec)) { 908 Sec->Live = false; 909 Cmd = nullptr; 910 } 911 } 912 913 // It is common practice to use very generic linker scripts. So for any 914 // given run some of the output sections in the script will be empty. 915 // We could create corresponding empty output sections, but that would 916 // clutter the output. 917 // We instead remove trivially empty sections. The bfd linker seems even 918 // more aggressive at removing them. 919 llvm::erase_if(SectionCommands, [&](BaseCommand *Base) { return !Base; }); 920 } 921 922 void LinkerScript::adjustSectionsAfterSorting() { 923 // Try and find an appropriate memory region to assign offsets in. 924 for (BaseCommand *Base : SectionCommands) { 925 if (auto *Sec = dyn_cast<OutputSection>(Base)) { 926 if (!Sec->LMARegionName.empty()) { 927 if (MemoryRegion *M = MemoryRegions.lookup(Sec->LMARegionName)) 928 Sec->LMARegion = M; 929 else 930 error("memory region '" + Sec->LMARegionName + "' not declared"); 931 } 932 Sec->MemRegion = findMemoryRegion(Sec); 933 } 934 } 935 936 // If output section command doesn't specify any segments, 937 // and we haven't previously assigned any section to segment, 938 // then we simply assign section to the very first load segment. 939 // Below is an example of such linker script: 940 // PHDRS { seg PT_LOAD; } 941 // SECTIONS { .aaa : { *(.aaa) } } 942 std::vector<StringRef> DefPhdrs; 943 auto FirstPtLoad = llvm::find_if(PhdrsCommands, [](const PhdrsCommand &Cmd) { 944 return Cmd.Type == PT_LOAD; 945 }); 946 if (FirstPtLoad != PhdrsCommands.end()) 947 DefPhdrs.push_back(FirstPtLoad->Name); 948 949 // Walk the commands and propagate the program headers to commands that don't 950 // explicitly specify them. 951 for (BaseCommand *Base : SectionCommands) { 952 auto *Sec = dyn_cast<OutputSection>(Base); 953 if (!Sec) 954 continue; 955 956 if (Sec->Phdrs.empty()) { 957 // To match the bfd linker script behaviour, only propagate program 958 // headers to sections that are allocated. 959 if (Sec->Flags & SHF_ALLOC) 960 Sec->Phdrs = DefPhdrs; 961 } else { 962 DefPhdrs = Sec->Phdrs; 963 } 964 } 965 } 966 967 static uint64_t computeBase(uint64_t Min, bool AllocateHeaders) { 968 // If there is no SECTIONS or if the linkerscript is explicit about program 969 // headers, do our best to allocate them. 970 if (!Script->HasSectionsCommand || AllocateHeaders) 971 return 0; 972 // Otherwise only allocate program headers if that would not add a page. 973 return alignDown(Min, Config->MaxPageSize); 974 } 975 976 // Try to find an address for the file and program headers output sections, 977 // which were unconditionally added to the first PT_LOAD segment earlier. 978 // 979 // When using the default layout, we check if the headers fit below the first 980 // allocated section. When using a linker script, we also check if the headers 981 // are covered by the output section. This allows omitting the headers by not 982 // leaving enough space for them in the linker script; this pattern is common 983 // in embedded systems. 984 // 985 // If there isn't enough space for these sections, we'll remove them from the 986 // PT_LOAD segment, and we'll also remove the PT_PHDR segment. 987 void LinkerScript::allocateHeaders(std::vector<PhdrEntry *> &Phdrs) { 988 uint64_t Min = std::numeric_limits<uint64_t>::max(); 989 for (OutputSection *Sec : OutputSections) 990 if (Sec->Flags & SHF_ALLOC) 991 Min = std::min<uint64_t>(Min, Sec->Addr); 992 993 auto It = llvm::find_if( 994 Phdrs, [](const PhdrEntry *E) { return E->p_type == PT_LOAD; }); 995 if (It == Phdrs.end()) 996 return; 997 PhdrEntry *FirstPTLoad = *It; 998 999 bool HasExplicitHeaders = 1000 llvm::any_of(PhdrsCommands, [](const PhdrsCommand &Cmd) { 1001 return Cmd.HasPhdrs || Cmd.HasFilehdr; 1002 }); 1003 uint64_t HeaderSize = getHeaderSize(); 1004 if (HeaderSize <= Min - computeBase(Min, HasExplicitHeaders)) { 1005 Min = alignDown(Min - HeaderSize, Config->MaxPageSize); 1006 Out::ElfHeader->Addr = Min; 1007 Out::ProgramHeaders->Addr = Min + Out::ElfHeader->Size; 1008 return; 1009 } 1010 1011 // Error if we were explicitly asked to allocate headers. 1012 if (HasExplicitHeaders) 1013 error("could not allocate headers"); 1014 1015 Out::ElfHeader->PtLoad = nullptr; 1016 Out::ProgramHeaders->PtLoad = nullptr; 1017 FirstPTLoad->FirstSec = findFirstSection(FirstPTLoad); 1018 1019 llvm::erase_if(Phdrs, 1020 [](const PhdrEntry *E) { return E->p_type == PT_PHDR; }); 1021 } 1022 1023 LinkerScript::AddressState::AddressState() { 1024 for (auto &MRI : Script->MemoryRegions) { 1025 MemoryRegion *MR = MRI.second; 1026 MR->CurPos = MR->Origin; 1027 } 1028 } 1029 1030 static uint64_t getInitialDot() { 1031 // By default linker scripts use an initial value of 0 for '.', 1032 // but prefer -image-base if set. 1033 if (Script->HasSectionsCommand) 1034 return Config->ImageBase ? *Config->ImageBase : 0; 1035 1036 uint64_t StartAddr = UINT64_MAX; 1037 // The Sections with -T<section> have been sorted in order of ascending 1038 // address. We must lower StartAddr if the lowest -T<section address> as 1039 // calls to setDot() must be monotonically increasing. 1040 for (auto &KV : Config->SectionStartMap) 1041 StartAddr = std::min(StartAddr, KV.second); 1042 return std::min(StartAddr, Target->getImageBase() + elf::getHeaderSize()); 1043 } 1044 1045 // Here we assign addresses as instructed by linker script SECTIONS 1046 // sub-commands. Doing that allows us to use final VA values, so here 1047 // we also handle rest commands like symbol assignments and ASSERTs. 1048 void LinkerScript::assignAddresses() { 1049 Dot = getInitialDot(); 1050 1051 auto Deleter = make_unique<AddressState>(); 1052 Ctx = Deleter.get(); 1053 ErrorOnMissingSection = true; 1054 switchTo(Aether); 1055 1056 for (BaseCommand *Base : SectionCommands) { 1057 if (auto *Cmd = dyn_cast<SymbolAssignment>(Base)) { 1058 Cmd->Addr = Dot; 1059 assignSymbol(Cmd, false); 1060 Cmd->Size = Dot - Cmd->Addr; 1061 continue; 1062 } 1063 assignOffsets(cast<OutputSection>(Base)); 1064 } 1065 Ctx = nullptr; 1066 } 1067 1068 // Creates program headers as instructed by PHDRS linker script command. 1069 std::vector<PhdrEntry *> LinkerScript::createPhdrs() { 1070 std::vector<PhdrEntry *> Ret; 1071 1072 // Process PHDRS and FILEHDR keywords because they are not 1073 // real output sections and cannot be added in the following loop. 1074 for (const PhdrsCommand &Cmd : PhdrsCommands) { 1075 PhdrEntry *Phdr = make<PhdrEntry>(Cmd.Type, Cmd.Flags ? *Cmd.Flags : PF_R); 1076 1077 if (Cmd.HasFilehdr) 1078 Phdr->add(Out::ElfHeader); 1079 if (Cmd.HasPhdrs) 1080 Phdr->add(Out::ProgramHeaders); 1081 1082 if (Cmd.LMAExpr) { 1083 Phdr->p_paddr = Cmd.LMAExpr().getValue(); 1084 Phdr->HasLMA = true; 1085 } 1086 Ret.push_back(Phdr); 1087 } 1088 1089 // Add output sections to program headers. 1090 for (OutputSection *Sec : OutputSections) { 1091 // Assign headers specified by linker script 1092 for (size_t Id : getPhdrIndices(Sec)) { 1093 Ret[Id]->add(Sec); 1094 if (!PhdrsCommands[Id].Flags.hasValue()) 1095 Ret[Id]->p_flags |= Sec->getPhdrFlags(); 1096 } 1097 } 1098 return Ret; 1099 } 1100 1101 // Returns true if we should emit an .interp section. 1102 // 1103 // We usually do. But if PHDRS commands are given, and 1104 // no PT_INTERP is there, there's no place to emit an 1105 // .interp, so we don't do that in that case. 1106 bool LinkerScript::needsInterpSection() { 1107 if (PhdrsCommands.empty()) 1108 return true; 1109 for (PhdrsCommand &Cmd : PhdrsCommands) 1110 if (Cmd.Type == PT_INTERP) 1111 return true; 1112 return false; 1113 } 1114 1115 ExprValue LinkerScript::getSymbolValue(StringRef Name, const Twine &Loc) { 1116 if (Name == ".") { 1117 if (Ctx) 1118 return {Ctx->OutSec, false, Dot - Ctx->OutSec->Addr, Loc}; 1119 error(Loc + ": unable to get location counter value"); 1120 return 0; 1121 } 1122 1123 if (Symbol *Sym = Symtab->find(Name)) { 1124 if (auto *DS = dyn_cast<Defined>(Sym)) 1125 return {DS->Section, false, DS->Value, Loc}; 1126 if (isa<SharedSymbol>(Sym)) 1127 if (!ErrorOnMissingSection) 1128 return {nullptr, false, 0, Loc}; 1129 } 1130 1131 error(Loc + ": symbol not found: " + Name); 1132 return 0; 1133 } 1134 1135 // Returns the index of the segment named Name. 1136 static Optional<size_t> getPhdrIndex(ArrayRef<PhdrsCommand> Vec, 1137 StringRef Name) { 1138 for (size_t I = 0; I < Vec.size(); ++I) 1139 if (Vec[I].Name == Name) 1140 return I; 1141 return None; 1142 } 1143 1144 // Returns indices of ELF headers containing specific section. Each index is a 1145 // zero based number of ELF header listed within PHDRS {} script block. 1146 std::vector<size_t> LinkerScript::getPhdrIndices(OutputSection *Cmd) { 1147 std::vector<size_t> Ret; 1148 1149 for (StringRef S : Cmd->Phdrs) { 1150 if (Optional<size_t> Idx = getPhdrIndex(PhdrsCommands, S)) 1151 Ret.push_back(*Idx); 1152 else if (S != "NONE") 1153 error(Cmd->Location + ": section header '" + S + 1154 "' is not listed in PHDRS"); 1155 } 1156 return Ret; 1157 } 1158