1 //===- LinkerScript.cpp ---------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the parser/evaluator of the linker script.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "LinkerScript.h"
14 #include "Config.h"
15 #include "InputSection.h"
16 #include "OutputSections.h"
17 #include "SymbolTable.h"
18 #include "Symbols.h"
19 #include "SyntheticSections.h"
20 #include "Target.h"
21 #include "Writer.h"
22 #include "lld/Common/Memory.h"
23 #include "lld/Common/Strings.h"
24 #include "lld/Common/Threads.h"
25 #include "llvm/ADT/STLExtras.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/BinaryFormat/ELF.h"
28 #include "llvm/Support/Casting.h"
29 #include "llvm/Support/Endian.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/Support/FileSystem.h"
32 #include "llvm/Support/Path.h"
33 #include <algorithm>
34 #include <cassert>
35 #include <cstddef>
36 #include <cstdint>
37 #include <iterator>
38 #include <limits>
39 #include <string>
40 #include <vector>
41 
42 using namespace llvm;
43 using namespace llvm::ELF;
44 using namespace llvm::object;
45 using namespace llvm::support::endian;
46 
47 namespace lld {
48 namespace elf {
49 LinkerScript *script;
50 
51 static uint64_t getOutputSectionVA(SectionBase *sec) {
52   OutputSection *os = sec->getOutputSection();
53   assert(os && "input section has no output section assigned");
54   return os ? os->addr : 0;
55 }
56 
57 uint64_t ExprValue::getValue() const {
58   if (sec)
59     return alignTo(sec->getOffset(val) + getOutputSectionVA(sec),
60                    alignment);
61   return alignTo(val, alignment);
62 }
63 
64 uint64_t ExprValue::getSecAddr() const {
65   if (sec)
66     return sec->getOffset(0) + getOutputSectionVA(sec);
67   return 0;
68 }
69 
70 uint64_t ExprValue::getSectionOffset() const {
71   // If the alignment is trivial, we don't have to compute the full
72   // value to know the offset. This allows this function to succeed in
73   // cases where the output section is not yet known.
74   if (alignment == 1 && !sec)
75     return val;
76   return getValue() - getSecAddr();
77 }
78 
79 OutputSection *LinkerScript::createOutputSection(StringRef name,
80                                                  StringRef location) {
81   OutputSection *&secRef = nameToOutputSection[name];
82   OutputSection *sec;
83   if (secRef && secRef->location.empty()) {
84     // There was a forward reference.
85     sec = secRef;
86   } else {
87     sec = make<OutputSection>(name, SHT_PROGBITS, 0);
88     if (!secRef)
89       secRef = sec;
90   }
91   sec->location = std::string(location);
92   return sec;
93 }
94 
95 OutputSection *LinkerScript::getOrCreateOutputSection(StringRef name) {
96   OutputSection *&cmdRef = nameToOutputSection[name];
97   if (!cmdRef)
98     cmdRef = make<OutputSection>(name, SHT_PROGBITS, 0);
99   return cmdRef;
100 }
101 
102 // Expands the memory region by the specified size.
103 static void expandMemoryRegion(MemoryRegion *memRegion, uint64_t size,
104                                StringRef regionName, StringRef secName) {
105   memRegion->curPos += size;
106   uint64_t newSize = memRegion->curPos - memRegion->origin;
107   if (newSize > memRegion->length)
108     error("section '" + secName + "' will not fit in region '" + regionName +
109           "': overflowed by " + Twine(newSize - memRegion->length) + " bytes");
110 }
111 
112 void LinkerScript::expandMemoryRegions(uint64_t size) {
113   if (ctx->memRegion)
114     expandMemoryRegion(ctx->memRegion, size, ctx->memRegion->name,
115                        ctx->outSec->name);
116   // Only expand the LMARegion if it is different from memRegion.
117   if (ctx->lmaRegion && ctx->memRegion != ctx->lmaRegion)
118     expandMemoryRegion(ctx->lmaRegion, size, ctx->lmaRegion->name,
119                        ctx->outSec->name);
120 }
121 
122 void LinkerScript::expandOutputSection(uint64_t size) {
123   ctx->outSec->size += size;
124   expandMemoryRegions(size);
125 }
126 
127 void LinkerScript::setDot(Expr e, const Twine &loc, bool inSec) {
128   uint64_t val = e().getValue();
129   if (val < dot && inSec)
130     error(loc + ": unable to move location counter backward for: " +
131           ctx->outSec->name);
132 
133   // Update to location counter means update to section size.
134   if (inSec)
135     expandOutputSection(val - dot);
136 
137   dot = val;
138 }
139 
140 // Used for handling linker symbol assignments, for both finalizing
141 // their values and doing early declarations. Returns true if symbol
142 // should be defined from linker script.
143 static bool shouldDefineSym(SymbolAssignment *cmd) {
144   if (cmd->name == ".")
145     return false;
146 
147   if (!cmd->provide)
148     return true;
149 
150   // If a symbol was in PROVIDE(), we need to define it only
151   // when it is a referenced undefined symbol.
152   Symbol *b = symtab->find(cmd->name);
153   if (b && !b->isDefined())
154     return true;
155   return false;
156 }
157 
158 // Called by processSymbolAssignments() to assign definitions to
159 // linker-script-defined symbols.
160 void LinkerScript::addSymbol(SymbolAssignment *cmd) {
161   if (!shouldDefineSym(cmd))
162     return;
163 
164   // Define a symbol.
165   ExprValue value = cmd->expression();
166   SectionBase *sec = value.isAbsolute() ? nullptr : value.sec;
167   uint8_t visibility = cmd->hidden ? STV_HIDDEN : STV_DEFAULT;
168 
169   // When this function is called, section addresses have not been
170   // fixed yet. So, we may or may not know the value of the RHS
171   // expression.
172   //
173   // For example, if an expression is `x = 42`, we know x is always 42.
174   // However, if an expression is `x = .`, there's no way to know its
175   // value at the moment.
176   //
177   // We want to set symbol values early if we can. This allows us to
178   // use symbols as variables in linker scripts. Doing so allows us to
179   // write expressions like this: `alignment = 16; . = ALIGN(., alignment)`.
180   uint64_t symValue = value.sec ? 0 : value.getValue();
181 
182   Defined newSym(nullptr, cmd->name, STB_GLOBAL, visibility, STT_NOTYPE,
183                  symValue, 0, sec);
184 
185   Symbol *sym = symtab->insert(cmd->name);
186   sym->mergeProperties(newSym);
187   sym->replace(newSym);
188   cmd->sym = cast<Defined>(sym);
189 }
190 
191 // This function is called from LinkerScript::declareSymbols.
192 // It creates a placeholder symbol if needed.
193 static void declareSymbol(SymbolAssignment *cmd) {
194   if (!shouldDefineSym(cmd))
195     return;
196 
197   uint8_t visibility = cmd->hidden ? STV_HIDDEN : STV_DEFAULT;
198   Defined newSym(nullptr, cmd->name, STB_GLOBAL, visibility, STT_NOTYPE, 0, 0,
199                  nullptr);
200 
201   // We can't calculate final value right now.
202   Symbol *sym = symtab->insert(cmd->name);
203   sym->mergeProperties(newSym);
204   sym->replace(newSym);
205 
206   cmd->sym = cast<Defined>(sym);
207   cmd->provide = false;
208   sym->scriptDefined = true;
209 }
210 
211 using SymbolAssignmentMap =
212     DenseMap<const Defined *, std::pair<SectionBase *, uint64_t>>;
213 
214 // Collect section/value pairs of linker-script-defined symbols. This is used to
215 // check whether symbol values converge.
216 static SymbolAssignmentMap
217 getSymbolAssignmentValues(const std::vector<BaseCommand *> &sectionCommands) {
218   SymbolAssignmentMap ret;
219   for (BaseCommand *base : sectionCommands) {
220     if (auto *cmd = dyn_cast<SymbolAssignment>(base)) {
221       if (cmd->sym) // sym is nullptr for dot.
222         ret.try_emplace(cmd->sym,
223                         std::make_pair(cmd->sym->section, cmd->sym->value));
224       continue;
225     }
226     for (BaseCommand *sub_base : cast<OutputSection>(base)->sectionCommands)
227       if (auto *cmd = dyn_cast<SymbolAssignment>(sub_base))
228         if (cmd->sym)
229           ret.try_emplace(cmd->sym,
230                           std::make_pair(cmd->sym->section, cmd->sym->value));
231   }
232   return ret;
233 }
234 
235 // Returns the lexicographical smallest (for determinism) Defined whose
236 // section/value has changed.
237 static const Defined *
238 getChangedSymbolAssignment(const SymbolAssignmentMap &oldValues) {
239   const Defined *changed = nullptr;
240   for (auto &it : oldValues) {
241     const Defined *sym = it.first;
242     if (std::make_pair(sym->section, sym->value) != it.second &&
243         (!changed || sym->getName() < changed->getName()))
244       changed = sym;
245   }
246   return changed;
247 }
248 
249 // This method is used to handle INSERT AFTER statement. Here we rebuild
250 // the list of script commands to mix sections inserted into.
251 void LinkerScript::processInsertCommands() {
252   std::vector<BaseCommand *> v;
253   auto insert = [&](std::vector<BaseCommand *> &from) {
254     v.insert(v.end(), from.begin(), from.end());
255     from.clear();
256   };
257 
258   for (BaseCommand *base : sectionCommands) {
259     if (auto *os = dyn_cast<OutputSection>(base)) {
260       insert(insertBeforeCommands[os->name]);
261       v.push_back(base);
262       insert(insertAfterCommands[os->name]);
263       continue;
264     }
265     v.push_back(base);
266   }
267 
268   for (auto &cmds : {insertBeforeCommands, insertAfterCommands})
269     for (const std::pair<StringRef, std::vector<BaseCommand *>> &p : cmds)
270       if (!p.second.empty())
271         error("unable to INSERT AFTER/BEFORE " + p.first +
272               ": section not defined");
273 
274   sectionCommands = std::move(v);
275 }
276 
277 // Symbols defined in script should not be inlined by LTO. At the same time
278 // we don't know their final values until late stages of link. Here we scan
279 // over symbol assignment commands and create placeholder symbols if needed.
280 void LinkerScript::declareSymbols() {
281   assert(!ctx);
282   for (BaseCommand *base : sectionCommands) {
283     if (auto *cmd = dyn_cast<SymbolAssignment>(base)) {
284       declareSymbol(cmd);
285       continue;
286     }
287 
288     // If the output section directive has constraints,
289     // we can't say for sure if it is going to be included or not.
290     // Skip such sections for now. Improve the checks if we ever
291     // need symbols from that sections to be declared early.
292     auto *sec = cast<OutputSection>(base);
293     if (sec->constraint != ConstraintKind::NoConstraint)
294       continue;
295     for (BaseCommand *base2 : sec->sectionCommands)
296       if (auto *cmd = dyn_cast<SymbolAssignment>(base2))
297         declareSymbol(cmd);
298   }
299 }
300 
301 // This function is called from assignAddresses, while we are
302 // fixing the output section addresses. This function is supposed
303 // to set the final value for a given symbol assignment.
304 void LinkerScript::assignSymbol(SymbolAssignment *cmd, bool inSec) {
305   if (cmd->name == ".") {
306     setDot(cmd->expression, cmd->location, inSec);
307     return;
308   }
309 
310   if (!cmd->sym)
311     return;
312 
313   ExprValue v = cmd->expression();
314   if (v.isAbsolute()) {
315     cmd->sym->section = nullptr;
316     cmd->sym->value = v.getValue();
317   } else {
318     cmd->sym->section = v.sec;
319     cmd->sym->value = v.getSectionOffset();
320   }
321 }
322 
323 static std::string getFilename(InputFile *file) {
324   if (!file)
325     return "";
326   if (file->archiveName.empty())
327     return std::string(file->getName());
328   return (file->archiveName + "(" + file->getName() + ")").str();
329 }
330 
331 bool LinkerScript::shouldKeep(InputSectionBase *s) {
332   if (keptSections.empty())
333     return false;
334   std::string filename = getFilename(s->file);
335   for (InputSectionDescription *id : keptSections)
336     if (id->filePat.match(filename))
337       for (SectionPattern &p : id->sectionPatterns)
338         if (p.sectionPat.match(s->name) &&
339             (s->flags & id->withFlags) == id->withFlags &&
340             (s->flags & id->withoutFlags) == 0)
341           return true;
342   return false;
343 }
344 
345 // A helper function for the SORT() command.
346 static bool matchConstraints(ArrayRef<InputSectionBase *> sections,
347                              ConstraintKind kind) {
348   if (kind == ConstraintKind::NoConstraint)
349     return true;
350 
351   bool isRW = llvm::any_of(
352       sections, [](InputSectionBase *sec) { return sec->flags & SHF_WRITE; });
353 
354   return (isRW && kind == ConstraintKind::ReadWrite) ||
355          (!isRW && kind == ConstraintKind::ReadOnly);
356 }
357 
358 static void sortSections(MutableArrayRef<InputSectionBase *> vec,
359                          SortSectionPolicy k) {
360   auto alignmentComparator = [](InputSectionBase *a, InputSectionBase *b) {
361     // ">" is not a mistake. Sections with larger alignments are placed
362     // before sections with smaller alignments in order to reduce the
363     // amount of padding necessary. This is compatible with GNU.
364     return a->alignment > b->alignment;
365   };
366   auto nameComparator = [](InputSectionBase *a, InputSectionBase *b) {
367     return a->name < b->name;
368   };
369   auto priorityComparator = [](InputSectionBase *a, InputSectionBase *b) {
370     return getPriority(a->name) < getPriority(b->name);
371   };
372 
373   switch (k) {
374   case SortSectionPolicy::Default:
375   case SortSectionPolicy::None:
376     return;
377   case SortSectionPolicy::Alignment:
378     return llvm::stable_sort(vec, alignmentComparator);
379   case SortSectionPolicy::Name:
380     return llvm::stable_sort(vec, nameComparator);
381   case SortSectionPolicy::Priority:
382     return llvm::stable_sort(vec, priorityComparator);
383   }
384 }
385 
386 // Sort sections as instructed by SORT-family commands and --sort-section
387 // option. Because SORT-family commands can be nested at most two depth
388 // (e.g. SORT_BY_NAME(SORT_BY_ALIGNMENT(.text.*))) and because the command
389 // line option is respected even if a SORT command is given, the exact
390 // behavior we have here is a bit complicated. Here are the rules.
391 //
392 // 1. If two SORT commands are given, --sort-section is ignored.
393 // 2. If one SORT command is given, and if it is not SORT_NONE,
394 //    --sort-section is handled as an inner SORT command.
395 // 3. If one SORT command is given, and if it is SORT_NONE, don't sort.
396 // 4. If no SORT command is given, sort according to --sort-section.
397 static void sortInputSections(MutableArrayRef<InputSectionBase *> vec,
398                               const SectionPattern &pat) {
399   if (pat.sortOuter == SortSectionPolicy::None)
400     return;
401 
402   if (pat.sortInner == SortSectionPolicy::Default)
403     sortSections(vec, config->sortSection);
404   else
405     sortSections(vec, pat.sortInner);
406   sortSections(vec, pat.sortOuter);
407 }
408 
409 // Compute and remember which sections the InputSectionDescription matches.
410 std::vector<InputSectionBase *>
411 LinkerScript::computeInputSections(const InputSectionDescription *cmd) {
412   std::vector<InputSectionBase *> ret;
413 
414   // Collects all sections that satisfy constraints of Cmd.
415   for (const SectionPattern &pat : cmd->sectionPatterns) {
416     size_t sizeBefore = ret.size();
417 
418     for (InputSectionBase *sec : inputSections) {
419       if (!sec->isLive() || sec->parent)
420         continue;
421 
422       // For -emit-relocs we have to ignore entries like
423       //   .rela.dyn : { *(.rela.data) }
424       // which are common because they are in the default bfd script.
425       // We do not ignore SHT_REL[A] linker-synthesized sections here because
426       // want to support scripts that do custom layout for them.
427       if (isa<InputSection>(sec) &&
428           cast<InputSection>(sec)->getRelocatedSection())
429         continue;
430 
431       // Check the name early to improve performance in the common case.
432       if (!pat.sectionPat.match(sec->name))
433         continue;
434 
435       std::string filename = getFilename(sec->file);
436       if (!cmd->filePat.match(filename) ||
437           pat.excludedFilePat.match(filename) ||
438           (sec->flags & cmd->withFlags) != cmd->withFlags ||
439           (sec->flags & cmd->withoutFlags) != 0)
440         continue;
441 
442       ret.push_back(sec);
443     }
444 
445     sortInputSections(
446         MutableArrayRef<InputSectionBase *>(ret).slice(sizeBefore), pat);
447   }
448   return ret;
449 }
450 
451 void LinkerScript::discard(InputSectionBase *s) {
452   if (s == in.shStrTab || s == mainPart->relrDyn)
453     error("discarding " + s->name + " section is not allowed");
454 
455   // You can discard .hash and .gnu.hash sections by linker scripts. Since
456   // they are synthesized sections, we need to handle them differently than
457   // other regular sections.
458   if (s == mainPart->gnuHashTab)
459     mainPart->gnuHashTab = nullptr;
460   if (s == mainPart->hashTab)
461     mainPart->hashTab = nullptr;
462 
463   s->markDead();
464   s->parent = nullptr;
465   for (InputSection *ds : s->dependentSections)
466     discard(ds);
467 }
468 
469 std::vector<InputSectionBase *>
470 LinkerScript::createInputSectionList(OutputSection &outCmd) {
471   std::vector<InputSectionBase *> ret;
472 
473   for (BaseCommand *base : outCmd.sectionCommands) {
474     if (auto *cmd = dyn_cast<InputSectionDescription>(base)) {
475       cmd->sectionBases = computeInputSections(cmd);
476       for (InputSectionBase *s : cmd->sectionBases)
477         s->parent = &outCmd;
478       ret.insert(ret.end(), cmd->sectionBases.begin(), cmd->sectionBases.end());
479     }
480   }
481   return ret;
482 }
483 
484 // Create output sections described by SECTIONS commands.
485 void LinkerScript::processSectionCommands() {
486   size_t i = 0;
487   for (BaseCommand *base : sectionCommands) {
488     if (auto *sec = dyn_cast<OutputSection>(base)) {
489       std::vector<InputSectionBase *> v = createInputSectionList(*sec);
490 
491       // The output section name `/DISCARD/' is special.
492       // Any input section assigned to it is discarded.
493       if (sec->name == "/DISCARD/") {
494         for (InputSectionBase *s : v)
495           discard(s);
496         sec->sectionCommands.clear();
497         continue;
498       }
499 
500       // This is for ONLY_IF_RO and ONLY_IF_RW. An output section directive
501       // ".foo : ONLY_IF_R[OW] { ... }" is handled only if all member input
502       // sections satisfy a given constraint. If not, a directive is handled
503       // as if it wasn't present from the beginning.
504       //
505       // Because we'll iterate over SectionCommands many more times, the easy
506       // way to "make it as if it wasn't present" is to make it empty.
507       if (!matchConstraints(v, sec->constraint)) {
508         for (InputSectionBase *s : v)
509           s->parent = nullptr;
510         sec->sectionCommands.clear();
511         continue;
512       }
513 
514       // Handle subalign (e.g. ".foo : SUBALIGN(32) { ... }"). If subalign
515       // is given, input sections are aligned to that value, whether the
516       // given value is larger or smaller than the original section alignment.
517       if (sec->subalignExpr) {
518         uint32_t subalign = sec->subalignExpr().getValue();
519         for (InputSectionBase *s : v)
520           s->alignment = subalign;
521       }
522 
523       // Set the partition field the same way OutputSection::recordSection()
524       // does. Partitions cannot be used with the SECTIONS command, so this is
525       // always 1.
526       sec->partition = 1;
527 
528       sec->sectionIndex = i++;
529     }
530   }
531 }
532 
533 void LinkerScript::processSymbolAssignments() {
534   // Dot outside an output section still represents a relative address, whose
535   // sh_shndx should not be SHN_UNDEF or SHN_ABS. Create a dummy aether section
536   // that fills the void outside a section. It has an index of one, which is
537   // indistinguishable from any other regular section index.
538   aether = make<OutputSection>("", 0, SHF_ALLOC);
539   aether->sectionIndex = 1;
540 
541   // ctx captures the local AddressState and makes it accessible deliberately.
542   // This is needed as there are some cases where we cannot just thread the
543   // current state through to a lambda function created by the script parser.
544   AddressState state;
545   ctx = &state;
546   ctx->outSec = aether;
547 
548   for (BaseCommand *base : sectionCommands) {
549     if (auto *cmd = dyn_cast<SymbolAssignment>(base))
550       addSymbol(cmd);
551     else
552       for (BaseCommand *sub_base : cast<OutputSection>(base)->sectionCommands)
553         if (auto *cmd = dyn_cast<SymbolAssignment>(sub_base))
554           addSymbol(cmd);
555   }
556 
557   ctx = nullptr;
558 }
559 
560 static OutputSection *findByName(ArrayRef<BaseCommand *> vec,
561                                  StringRef name) {
562   for (BaseCommand *base : vec)
563     if (auto *sec = dyn_cast<OutputSection>(base))
564       if (sec->name == name)
565         return sec;
566   return nullptr;
567 }
568 
569 static OutputSection *createSection(InputSectionBase *isec,
570                                     StringRef outsecName) {
571   OutputSection *sec = script->createOutputSection(outsecName, "<internal>");
572   sec->recordSection(isec);
573   return sec;
574 }
575 
576 static OutputSection *
577 addInputSec(StringMap<TinyPtrVector<OutputSection *>> &map,
578             InputSectionBase *isec, StringRef outsecName) {
579   // Sections with SHT_GROUP or SHF_GROUP attributes reach here only when the -r
580   // option is given. A section with SHT_GROUP defines a "section group", and
581   // its members have SHF_GROUP attribute. Usually these flags have already been
582   // stripped by InputFiles.cpp as section groups are processed and uniquified.
583   // However, for the -r option, we want to pass through all section groups
584   // as-is because adding/removing members or merging them with other groups
585   // change their semantics.
586   if (isec->type == SHT_GROUP || (isec->flags & SHF_GROUP))
587     return createSection(isec, outsecName);
588 
589   // Imagine .zed : { *(.foo) *(.bar) } script. Both foo and bar may have
590   // relocation sections .rela.foo and .rela.bar for example. Most tools do
591   // not allow multiple REL[A] sections for output section. Hence we
592   // should combine these relocation sections into single output.
593   // We skip synthetic sections because it can be .rela.dyn/.rela.plt or any
594   // other REL[A] sections created by linker itself.
595   if (!isa<SyntheticSection>(isec) &&
596       (isec->type == SHT_REL || isec->type == SHT_RELA)) {
597     auto *sec = cast<InputSection>(isec);
598     OutputSection *out = sec->getRelocatedSection()->getOutputSection();
599 
600     if (out->relocationSection) {
601       out->relocationSection->recordSection(sec);
602       return nullptr;
603     }
604 
605     out->relocationSection = createSection(isec, outsecName);
606     return out->relocationSection;
607   }
608 
609   //  The ELF spec just says
610   // ----------------------------------------------------------------
611   // In the first phase, input sections that match in name, type and
612   // attribute flags should be concatenated into single sections.
613   // ----------------------------------------------------------------
614   //
615   // However, it is clear that at least some flags have to be ignored for
616   // section merging. At the very least SHF_GROUP and SHF_COMPRESSED have to be
617   // ignored. We should not have two output .text sections just because one was
618   // in a group and another was not for example.
619   //
620   // It also seems that wording was a late addition and didn't get the
621   // necessary scrutiny.
622   //
623   // Merging sections with different flags is expected by some users. One
624   // reason is that if one file has
625   //
626   // int *const bar __attribute__((section(".foo"))) = (int *)0;
627   //
628   // gcc with -fPIC will produce a read only .foo section. But if another
629   // file has
630   //
631   // int zed;
632   // int *const bar __attribute__((section(".foo"))) = (int *)&zed;
633   //
634   // gcc with -fPIC will produce a read write section.
635   //
636   // Last but not least, when using linker script the merge rules are forced by
637   // the script. Unfortunately, linker scripts are name based. This means that
638   // expressions like *(.foo*) can refer to multiple input sections with
639   // different flags. We cannot put them in different output sections or we
640   // would produce wrong results for
641   //
642   // start = .; *(.foo.*) end = .; *(.bar)
643   //
644   // and a mapping of .foo1 and .bar1 to one section and .foo2 and .bar2 to
645   // another. The problem is that there is no way to layout those output
646   // sections such that the .foo sections are the only thing between the start
647   // and end symbols.
648   //
649   // Given the above issues, we instead merge sections by name and error on
650   // incompatible types and flags.
651   TinyPtrVector<OutputSection *> &v = map[outsecName];
652   for (OutputSection *sec : v) {
653     if (sec->partition != isec->partition)
654       continue;
655 
656     if (config->relocatable && (isec->flags & SHF_LINK_ORDER)) {
657       // Merging two SHF_LINK_ORDER sections with different sh_link fields will
658       // change their semantics, so we only merge them in -r links if they will
659       // end up being linked to the same output section. The casts are fine
660       // because everything in the map was created by the orphan placement code.
661       auto *firstIsec = cast<InputSectionBase>(
662           cast<InputSectionDescription>(sec->sectionCommands[0])
663               ->sectionBases[0]);
664       if (firstIsec->getLinkOrderDep()->getOutputSection() !=
665           isec->getLinkOrderDep()->getOutputSection())
666         continue;
667     }
668 
669     sec->recordSection(isec);
670     return nullptr;
671   }
672 
673   OutputSection *sec = createSection(isec, outsecName);
674   v.push_back(sec);
675   return sec;
676 }
677 
678 // Add sections that didn't match any sections command.
679 void LinkerScript::addOrphanSections() {
680   StringMap<TinyPtrVector<OutputSection *>> map;
681   std::vector<OutputSection *> v;
682 
683   std::function<void(InputSectionBase *)> add;
684   add = [&](InputSectionBase *s) {
685     if (s->isLive() && !s->parent) {
686       StringRef name = getOutputSectionName(s);
687 
688       if (config->orphanHandling == OrphanHandlingPolicy::Error)
689         error(toString(s) + " is being placed in '" + name + "'");
690       else if (config->orphanHandling == OrphanHandlingPolicy::Warn)
691         warn(toString(s) + " is being placed in '" + name + "'");
692 
693       if (OutputSection *sec = findByName(sectionCommands, name)) {
694         sec->recordSection(s);
695       } else {
696         if (OutputSection *os = addInputSec(map, s, name))
697           v.push_back(os);
698         assert(isa<MergeInputSection>(s) ||
699                s->getOutputSection()->sectionIndex == UINT32_MAX);
700       }
701     }
702 
703     if (config->relocatable)
704       for (InputSectionBase *depSec : s->dependentSections)
705         if (depSec->flags & SHF_LINK_ORDER)
706           add(depSec);
707   };
708 
709   // For futher --emit-reloc handling code we need target output section
710   // to be created before we create relocation output section, so we want
711   // to create target sections first. We do not want priority handling
712   // for synthetic sections because them are special.
713   for (InputSectionBase *isec : inputSections) {
714     // In -r links, SHF_LINK_ORDER sections are added while adding their parent
715     // sections because we need to know the parent's output section before we
716     // can select an output section for the SHF_LINK_ORDER section.
717     if (config->relocatable && (isec->flags & SHF_LINK_ORDER))
718       continue;
719 
720     if (auto *sec = dyn_cast<InputSection>(isec))
721       if (InputSectionBase *rel = sec->getRelocatedSection())
722         if (auto *relIS = dyn_cast_or_null<InputSectionBase>(rel->parent))
723           add(relIS);
724     add(isec);
725   }
726 
727   // If no SECTIONS command was given, we should insert sections commands
728   // before others, so that we can handle scripts which refers them,
729   // for example: "foo = ABSOLUTE(ADDR(.text)));".
730   // When SECTIONS command is present we just add all orphans to the end.
731   if (hasSectionsCommand)
732     sectionCommands.insert(sectionCommands.end(), v.begin(), v.end());
733   else
734     sectionCommands.insert(sectionCommands.begin(), v.begin(), v.end());
735 }
736 
737 uint64_t LinkerScript::advance(uint64_t size, unsigned alignment) {
738   bool isTbss =
739       (ctx->outSec->flags & SHF_TLS) && ctx->outSec->type == SHT_NOBITS;
740   uint64_t start = isTbss ? dot + ctx->threadBssOffset : dot;
741   start = alignTo(start, alignment);
742   uint64_t end = start + size;
743 
744   if (isTbss)
745     ctx->threadBssOffset = end - dot;
746   else
747     dot = end;
748   return end;
749 }
750 
751 void LinkerScript::output(InputSection *s) {
752   assert(ctx->outSec == s->getParent());
753   uint64_t before = advance(0, 1);
754   uint64_t pos = advance(s->getSize(), s->alignment);
755   s->outSecOff = pos - s->getSize() - ctx->outSec->addr;
756 
757   // Update output section size after adding each section. This is so that
758   // SIZEOF works correctly in the case below:
759   // .foo { *(.aaa) a = SIZEOF(.foo); *(.bbb) }
760   expandOutputSection(pos - before);
761 }
762 
763 void LinkerScript::switchTo(OutputSection *sec) {
764   ctx->outSec = sec;
765 
766   uint64_t before = advance(0, 1);
767   ctx->outSec->addr = advance(0, ctx->outSec->alignment);
768   expandMemoryRegions(ctx->outSec->addr - before);
769 }
770 
771 // This function searches for a memory region to place the given output
772 // section in. If found, a pointer to the appropriate memory region is
773 // returned. Otherwise, a nullptr is returned.
774 MemoryRegion *LinkerScript::findMemoryRegion(OutputSection *sec) {
775   // If a memory region name was specified in the output section command,
776   // then try to find that region first.
777   if (!sec->memoryRegionName.empty()) {
778     if (MemoryRegion *m = memoryRegions.lookup(sec->memoryRegionName))
779       return m;
780     error("memory region '" + sec->memoryRegionName + "' not declared");
781     return nullptr;
782   }
783 
784   // If at least one memory region is defined, all sections must
785   // belong to some memory region. Otherwise, we don't need to do
786   // anything for memory regions.
787   if (memoryRegions.empty())
788     return nullptr;
789 
790   // See if a region can be found by matching section flags.
791   for (auto &pair : memoryRegions) {
792     MemoryRegion *m = pair.second;
793     if ((m->flags & sec->flags) && (m->negFlags & sec->flags) == 0)
794       return m;
795   }
796 
797   // Otherwise, no suitable region was found.
798   if (sec->flags & SHF_ALLOC)
799     error("no memory region specified for section '" + sec->name + "'");
800   return nullptr;
801 }
802 
803 static OutputSection *findFirstSection(PhdrEntry *load) {
804   for (OutputSection *sec : outputSections)
805     if (sec->ptLoad == load)
806       return sec;
807   return nullptr;
808 }
809 
810 // This function assigns offsets to input sections and an output section
811 // for a single sections command (e.g. ".text { *(.text); }").
812 void LinkerScript::assignOffsets(OutputSection *sec) {
813   if (!(sec->flags & SHF_ALLOC))
814     dot = 0;
815 
816   ctx->memRegion = sec->memRegion;
817   ctx->lmaRegion = sec->lmaRegion;
818   if (ctx->memRegion)
819     dot = ctx->memRegion->curPos;
820 
821   if ((sec->flags & SHF_ALLOC) && sec->addrExpr)
822     setDot(sec->addrExpr, sec->location, false);
823 
824   // If the address of the section has been moved forward by an explicit
825   // expression so that it now starts past the current curPos of the enclosing
826   // region, we need to expand the current region to account for the space
827   // between the previous section, if any, and the start of this section.
828   if (ctx->memRegion && ctx->memRegion->curPos < dot)
829     expandMemoryRegion(ctx->memRegion, dot - ctx->memRegion->curPos,
830                        ctx->memRegion->name, sec->name);
831 
832   switchTo(sec);
833 
834   if (sec->lmaExpr)
835     ctx->lmaOffset = sec->lmaExpr().getValue() - dot;
836 
837   if (MemoryRegion *mr = sec->lmaRegion)
838     ctx->lmaOffset = mr->curPos - dot;
839 
840   // If neither AT nor AT> is specified for an allocatable section, the linker
841   // will set the LMA such that the difference between VMA and LMA for the
842   // section is the same as the preceding output section in the same region
843   // https://sourceware.org/binutils/docs-2.20/ld/Output-Section-LMA.html
844   // This, however, should only be done by the first "non-header" section
845   // in the segment.
846   if (PhdrEntry *l = ctx->outSec->ptLoad)
847     if (sec == findFirstSection(l))
848       l->lmaOffset = ctx->lmaOffset;
849 
850   // We can call this method multiple times during the creation of
851   // thunks and want to start over calculation each time.
852   sec->size = 0;
853 
854   // We visited SectionsCommands from processSectionCommands to
855   // layout sections. Now, we visit SectionsCommands again to fix
856   // section offsets.
857   for (BaseCommand *base : sec->sectionCommands) {
858     // This handles the assignments to symbol or to the dot.
859     if (auto *cmd = dyn_cast<SymbolAssignment>(base)) {
860       cmd->addr = dot;
861       assignSymbol(cmd, true);
862       cmd->size = dot - cmd->addr;
863       continue;
864     }
865 
866     // Handle BYTE(), SHORT(), LONG(), or QUAD().
867     if (auto *cmd = dyn_cast<ByteCommand>(base)) {
868       cmd->offset = dot - ctx->outSec->addr;
869       dot += cmd->size;
870       expandOutputSection(cmd->size);
871       continue;
872     }
873 
874     // Handle a single input section description command.
875     // It calculates and assigns the offsets for each section and also
876     // updates the output section size.
877     for (InputSection *sec : cast<InputSectionDescription>(base)->sections)
878       output(sec);
879   }
880 }
881 
882 static bool isDiscardable(OutputSection &sec) {
883   if (sec.name == "/DISCARD/")
884     return true;
885 
886   // We do not remove empty sections that are explicitly
887   // assigned to any segment.
888   if (!sec.phdrs.empty())
889     return false;
890 
891   // We do not want to remove OutputSections with expressions that reference
892   // symbols even if the OutputSection is empty. We want to ensure that the
893   // expressions can be evaluated and report an error if they cannot.
894   if (sec.expressionsUseSymbols)
895     return false;
896 
897   // OutputSections may be referenced by name in ADDR and LOADADDR expressions,
898   // as an empty Section can has a valid VMA and LMA we keep the OutputSection
899   // to maintain the integrity of the other Expression.
900   if (sec.usedInExpression)
901     return false;
902 
903   for (BaseCommand *base : sec.sectionCommands) {
904     if (auto cmd = dyn_cast<SymbolAssignment>(base))
905       // Don't create empty output sections just for unreferenced PROVIDE
906       // symbols.
907       if (cmd->name != "." && !cmd->sym)
908         continue;
909 
910     if (!isa<InputSectionDescription>(*base))
911       return false;
912   }
913   return true;
914 }
915 
916 void LinkerScript::adjustSectionsBeforeSorting() {
917   // If the output section contains only symbol assignments, create a
918   // corresponding output section. The issue is what to do with linker script
919   // like ".foo : { symbol = 42; }". One option would be to convert it to
920   // "symbol = 42;". That is, move the symbol out of the empty section
921   // description. That seems to be what bfd does for this simple case. The
922   // problem is that this is not completely general. bfd will give up and
923   // create a dummy section too if there is a ". = . + 1" inside the section
924   // for example.
925   // Given that we want to create the section, we have to worry what impact
926   // it will have on the link. For example, if we just create a section with
927   // 0 for flags, it would change which PT_LOADs are created.
928   // We could remember that particular section is dummy and ignore it in
929   // other parts of the linker, but unfortunately there are quite a few places
930   // that would need to change:
931   //   * The program header creation.
932   //   * The orphan section placement.
933   //   * The address assignment.
934   // The other option is to pick flags that minimize the impact the section
935   // will have on the rest of the linker. That is why we copy the flags from
936   // the previous sections. Only a few flags are needed to keep the impact low.
937   uint64_t flags = SHF_ALLOC;
938 
939   for (BaseCommand *&cmd : sectionCommands) {
940     auto *sec = dyn_cast<OutputSection>(cmd);
941     if (!sec)
942       continue;
943 
944     // Handle align (e.g. ".foo : ALIGN(16) { ... }").
945     if (sec->alignExpr)
946       sec->alignment =
947           std::max<uint32_t>(sec->alignment, sec->alignExpr().getValue());
948 
949     // The input section might have been removed (if it was an empty synthetic
950     // section), but we at least know the flags.
951     if (sec->hasInputSections)
952       flags = sec->flags;
953 
954     // We do not want to keep any special flags for output section
955     // in case it is empty.
956     bool isEmpty = (getFirstInputSection(sec) == nullptr);
957     if (isEmpty)
958       sec->flags = flags & ((sec->nonAlloc ? 0 : (uint64_t)SHF_ALLOC) |
959                             SHF_WRITE | SHF_EXECINSTR);
960 
961     if (isEmpty && isDiscardable(*sec)) {
962       sec->markDead();
963       cmd = nullptr;
964     }
965   }
966 
967   // It is common practice to use very generic linker scripts. So for any
968   // given run some of the output sections in the script will be empty.
969   // We could create corresponding empty output sections, but that would
970   // clutter the output.
971   // We instead remove trivially empty sections. The bfd linker seems even
972   // more aggressive at removing them.
973   llvm::erase_if(sectionCommands, [&](BaseCommand *base) { return !base; });
974 }
975 
976 void LinkerScript::adjustSectionsAfterSorting() {
977   // Try and find an appropriate memory region to assign offsets in.
978   for (BaseCommand *base : sectionCommands) {
979     if (auto *sec = dyn_cast<OutputSection>(base)) {
980       if (!sec->lmaRegionName.empty()) {
981         if (MemoryRegion *m = memoryRegions.lookup(sec->lmaRegionName))
982           sec->lmaRegion = m;
983         else
984           error("memory region '" + sec->lmaRegionName + "' not declared");
985       }
986       sec->memRegion = findMemoryRegion(sec);
987     }
988   }
989 
990   // If output section command doesn't specify any segments,
991   // and we haven't previously assigned any section to segment,
992   // then we simply assign section to the very first load segment.
993   // Below is an example of such linker script:
994   // PHDRS { seg PT_LOAD; }
995   // SECTIONS { .aaa : { *(.aaa) } }
996   std::vector<StringRef> defPhdrs;
997   auto firstPtLoad = llvm::find_if(phdrsCommands, [](const PhdrsCommand &cmd) {
998     return cmd.type == PT_LOAD;
999   });
1000   if (firstPtLoad != phdrsCommands.end())
1001     defPhdrs.push_back(firstPtLoad->name);
1002 
1003   // Walk the commands and propagate the program headers to commands that don't
1004   // explicitly specify them.
1005   for (BaseCommand *base : sectionCommands) {
1006     auto *sec = dyn_cast<OutputSection>(base);
1007     if (!sec)
1008       continue;
1009 
1010     if (sec->phdrs.empty()) {
1011       // To match the bfd linker script behaviour, only propagate program
1012       // headers to sections that are allocated.
1013       if (sec->flags & SHF_ALLOC)
1014         sec->phdrs = defPhdrs;
1015     } else {
1016       defPhdrs = sec->phdrs;
1017     }
1018   }
1019 }
1020 
1021 static uint64_t computeBase(uint64_t min, bool allocateHeaders) {
1022   // If there is no SECTIONS or if the linkerscript is explicit about program
1023   // headers, do our best to allocate them.
1024   if (!script->hasSectionsCommand || allocateHeaders)
1025     return 0;
1026   // Otherwise only allocate program headers if that would not add a page.
1027   return alignDown(min, config->maxPageSize);
1028 }
1029 
1030 // When the SECTIONS command is used, try to find an address for the file and
1031 // program headers output sections, which can be added to the first PT_LOAD
1032 // segment when program headers are created.
1033 //
1034 // We check if the headers fit below the first allocated section. If there isn't
1035 // enough space for these sections, we'll remove them from the PT_LOAD segment,
1036 // and we'll also remove the PT_PHDR segment.
1037 void LinkerScript::allocateHeaders(std::vector<PhdrEntry *> &phdrs) {
1038   uint64_t min = std::numeric_limits<uint64_t>::max();
1039   for (OutputSection *sec : outputSections)
1040     if (sec->flags & SHF_ALLOC)
1041       min = std::min<uint64_t>(min, sec->addr);
1042 
1043   auto it = llvm::find_if(
1044       phdrs, [](const PhdrEntry *e) { return e->p_type == PT_LOAD; });
1045   if (it == phdrs.end())
1046     return;
1047   PhdrEntry *firstPTLoad = *it;
1048 
1049   bool hasExplicitHeaders =
1050       llvm::any_of(phdrsCommands, [](const PhdrsCommand &cmd) {
1051         return cmd.hasPhdrs || cmd.hasFilehdr;
1052       });
1053   bool paged = !config->omagic && !config->nmagic;
1054   uint64_t headerSize = getHeaderSize();
1055   if ((paged || hasExplicitHeaders) &&
1056       headerSize <= min - computeBase(min, hasExplicitHeaders)) {
1057     min = alignDown(min - headerSize, config->maxPageSize);
1058     Out::elfHeader->addr = min;
1059     Out::programHeaders->addr = min + Out::elfHeader->size;
1060     return;
1061   }
1062 
1063   // Error if we were explicitly asked to allocate headers.
1064   if (hasExplicitHeaders)
1065     error("could not allocate headers");
1066 
1067   Out::elfHeader->ptLoad = nullptr;
1068   Out::programHeaders->ptLoad = nullptr;
1069   firstPTLoad->firstSec = findFirstSection(firstPTLoad);
1070 
1071   llvm::erase_if(phdrs,
1072                  [](const PhdrEntry *e) { return e->p_type == PT_PHDR; });
1073 }
1074 
1075 LinkerScript::AddressState::AddressState() {
1076   for (auto &mri : script->memoryRegions) {
1077     MemoryRegion *mr = mri.second;
1078     mr->curPos = mr->origin;
1079   }
1080 }
1081 
1082 // Here we assign addresses as instructed by linker script SECTIONS
1083 // sub-commands. Doing that allows us to use final VA values, so here
1084 // we also handle rest commands like symbol assignments and ASSERTs.
1085 // Returns a symbol that has changed its section or value, or nullptr if no
1086 // symbol has changed.
1087 const Defined *LinkerScript::assignAddresses() {
1088   if (script->hasSectionsCommand) {
1089     // With a linker script, assignment of addresses to headers is covered by
1090     // allocateHeaders().
1091     dot = config->imageBase.getValueOr(0);
1092   } else {
1093     // Assign addresses to headers right now.
1094     dot = target->getImageBase();
1095     Out::elfHeader->addr = dot;
1096     Out::programHeaders->addr = dot + Out::elfHeader->size;
1097     dot += getHeaderSize();
1098   }
1099 
1100   auto deleter = std::make_unique<AddressState>();
1101   ctx = deleter.get();
1102   errorOnMissingSection = true;
1103   switchTo(aether);
1104 
1105   SymbolAssignmentMap oldValues = getSymbolAssignmentValues(sectionCommands);
1106   for (BaseCommand *base : sectionCommands) {
1107     if (auto *cmd = dyn_cast<SymbolAssignment>(base)) {
1108       cmd->addr = dot;
1109       assignSymbol(cmd, false);
1110       cmd->size = dot - cmd->addr;
1111       continue;
1112     }
1113     assignOffsets(cast<OutputSection>(base));
1114   }
1115 
1116   ctx = nullptr;
1117   return getChangedSymbolAssignment(oldValues);
1118 }
1119 
1120 // Creates program headers as instructed by PHDRS linker script command.
1121 std::vector<PhdrEntry *> LinkerScript::createPhdrs() {
1122   std::vector<PhdrEntry *> ret;
1123 
1124   // Process PHDRS and FILEHDR keywords because they are not
1125   // real output sections and cannot be added in the following loop.
1126   for (const PhdrsCommand &cmd : phdrsCommands) {
1127     PhdrEntry *phdr = make<PhdrEntry>(cmd.type, cmd.flags ? *cmd.flags : PF_R);
1128 
1129     if (cmd.hasFilehdr)
1130       phdr->add(Out::elfHeader);
1131     if (cmd.hasPhdrs)
1132       phdr->add(Out::programHeaders);
1133 
1134     if (cmd.lmaExpr) {
1135       phdr->p_paddr = cmd.lmaExpr().getValue();
1136       phdr->hasLMA = true;
1137     }
1138     ret.push_back(phdr);
1139   }
1140 
1141   // Add output sections to program headers.
1142   for (OutputSection *sec : outputSections) {
1143     // Assign headers specified by linker script
1144     for (size_t id : getPhdrIndices(sec)) {
1145       ret[id]->add(sec);
1146       if (!phdrsCommands[id].flags.hasValue())
1147         ret[id]->p_flags |= sec->getPhdrFlags();
1148     }
1149   }
1150   return ret;
1151 }
1152 
1153 // Returns true if we should emit an .interp section.
1154 //
1155 // We usually do. But if PHDRS commands are given, and
1156 // no PT_INTERP is there, there's no place to emit an
1157 // .interp, so we don't do that in that case.
1158 bool LinkerScript::needsInterpSection() {
1159   if (phdrsCommands.empty())
1160     return true;
1161   for (PhdrsCommand &cmd : phdrsCommands)
1162     if (cmd.type == PT_INTERP)
1163       return true;
1164   return false;
1165 }
1166 
1167 ExprValue LinkerScript::getSymbolValue(StringRef name, const Twine &loc) {
1168   if (name == ".") {
1169     if (ctx)
1170       return {ctx->outSec, false, dot - ctx->outSec->addr, loc};
1171     error(loc + ": unable to get location counter value");
1172     return 0;
1173   }
1174 
1175   if (Symbol *sym = symtab->find(name)) {
1176     if (auto *ds = dyn_cast<Defined>(sym))
1177       return {ds->section, false, ds->value, loc};
1178     if (isa<SharedSymbol>(sym))
1179       if (!errorOnMissingSection)
1180         return {nullptr, false, 0, loc};
1181   }
1182 
1183   error(loc + ": symbol not found: " + name);
1184   return 0;
1185 }
1186 
1187 // Returns the index of the segment named Name.
1188 static Optional<size_t> getPhdrIndex(ArrayRef<PhdrsCommand> vec,
1189                                      StringRef name) {
1190   for (size_t i = 0; i < vec.size(); ++i)
1191     if (vec[i].name == name)
1192       return i;
1193   return None;
1194 }
1195 
1196 // Returns indices of ELF headers containing specific section. Each index is a
1197 // zero based number of ELF header listed within PHDRS {} script block.
1198 std::vector<size_t> LinkerScript::getPhdrIndices(OutputSection *cmd) {
1199   std::vector<size_t> ret;
1200 
1201   for (StringRef s : cmd->phdrs) {
1202     if (Optional<size_t> idx = getPhdrIndex(phdrsCommands, s))
1203       ret.push_back(*idx);
1204     else if (s != "NONE")
1205       error(cmd->location + ": section header '" + s +
1206             "' is not listed in PHDRS");
1207   }
1208   return ret;
1209 }
1210 
1211 } // namespace elf
1212 } // namespace lld
1213