1 //===- LinkerScript.cpp ---------------------------------------------------===// 2 // 3 // The LLVM Linker 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the parser/evaluator of the linker script. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "LinkerScript.h" 15 #include "Config.h" 16 #include "InputSection.h" 17 #include "OutputSections.h" 18 #include "SymbolTable.h" 19 #include "Symbols.h" 20 #include "SyntheticSections.h" 21 #include "Target.h" 22 #include "Writer.h" 23 #include "lld/Common/Memory.h" 24 #include "lld/Common/Strings.h" 25 #include "lld/Common/Threads.h" 26 #include "llvm/ADT/STLExtras.h" 27 #include "llvm/ADT/StringRef.h" 28 #include "llvm/BinaryFormat/ELF.h" 29 #include "llvm/Support/Casting.h" 30 #include "llvm/Support/Endian.h" 31 #include "llvm/Support/ErrorHandling.h" 32 #include "llvm/Support/FileSystem.h" 33 #include "llvm/Support/Path.h" 34 #include <algorithm> 35 #include <cassert> 36 #include <cstddef> 37 #include <cstdint> 38 #include <iterator> 39 #include <limits> 40 #include <string> 41 #include <vector> 42 43 using namespace llvm; 44 using namespace llvm::ELF; 45 using namespace llvm::object; 46 using namespace llvm::support::endian; 47 using namespace lld; 48 using namespace lld::elf; 49 50 LinkerScript *elf::Script; 51 52 static uint64_t getOutputSectionVA(SectionBase *InputSec, StringRef Loc) { 53 if (OutputSection *OS = InputSec->getOutputSection()) 54 return OS->Addr; 55 error(Loc + ": unable to evaluate expression: input section " + 56 InputSec->Name + " has no output section assigned"); 57 return 0; 58 } 59 60 uint64_t ExprValue::getValue() const { 61 if (Sec) 62 return alignTo(Sec->getOffset(Val) + getOutputSectionVA(Sec, Loc), 63 Alignment); 64 return alignTo(Val, Alignment); 65 } 66 67 uint64_t ExprValue::getSecAddr() const { 68 if (Sec) 69 return Sec->getOffset(0) + getOutputSectionVA(Sec, Loc); 70 return 0; 71 } 72 73 uint64_t ExprValue::getSectionOffset() const { 74 // If the alignment is trivial, we don't have to compute the full 75 // value to know the offset. This allows this function to succeed in 76 // cases where the output section is not yet known. 77 if (Alignment == 1 && (!Sec || !Sec->getOutputSection())) 78 return Val; 79 return getValue() - getSecAddr(); 80 } 81 82 OutputSection *LinkerScript::createOutputSection(StringRef Name, 83 StringRef Location) { 84 OutputSection *&SecRef = NameToOutputSection[Name]; 85 OutputSection *Sec; 86 if (SecRef && SecRef->Location.empty()) { 87 // There was a forward reference. 88 Sec = SecRef; 89 } else { 90 Sec = make<OutputSection>(Name, SHT_NOBITS, 0); 91 if (!SecRef) 92 SecRef = Sec; 93 } 94 Sec->Location = Location; 95 return Sec; 96 } 97 98 OutputSection *LinkerScript::getOrCreateOutputSection(StringRef Name) { 99 OutputSection *&CmdRef = NameToOutputSection[Name]; 100 if (!CmdRef) 101 CmdRef = make<OutputSection>(Name, SHT_PROGBITS, 0); 102 return CmdRef; 103 } 104 105 // Expands the memory region by the specified size. 106 static void expandMemoryRegion(MemoryRegion *MemRegion, uint64_t Size, 107 StringRef RegionName, StringRef SecName) { 108 MemRegion->CurPos += Size; 109 uint64_t NewSize = MemRegion->CurPos - MemRegion->Origin; 110 if (NewSize > MemRegion->Length) 111 error("section '" + SecName + "' will not fit in region '" + RegionName + 112 "': overflowed by " + Twine(NewSize - MemRegion->Length) + " bytes"); 113 } 114 115 void LinkerScript::expandOutputSection(uint64_t Size) { 116 Ctx->OutSec->Size += Size; 117 if (Ctx->MemRegion) 118 expandMemoryRegion(Ctx->MemRegion, Size, Ctx->MemRegion->Name, 119 Ctx->OutSec->Name); 120 if (Ctx->LMARegion) 121 expandMemoryRegion(Ctx->LMARegion, Size, Ctx->LMARegion->Name, 122 Ctx->OutSec->Name); 123 } 124 125 void LinkerScript::setDot(Expr E, const Twine &Loc, bool InSec) { 126 uint64_t Val = E().getValue(); 127 if (Val < Dot && InSec) 128 error(Loc + ": unable to move location counter backward for: " + 129 Ctx->OutSec->Name); 130 131 // Update to location counter means update to section size. 132 if (InSec) 133 expandOutputSection(Val - Dot); 134 Dot = Val; 135 } 136 137 // Used for handling linker symbol assignments, for both finalizing 138 // their values and doing early declarations. Returns true if symbol 139 // should be defined from linker script. 140 static bool shouldDefineSym(SymbolAssignment *Cmd) { 141 if (Cmd->Name == ".") 142 return false; 143 144 if (!Cmd->Provide) 145 return true; 146 147 // If a symbol was in PROVIDE(), we need to define it only 148 // when it is a referenced undefined symbol. 149 Symbol *B = Symtab->find(Cmd->Name); 150 if (B && !B->isDefined()) 151 return true; 152 return false; 153 } 154 155 // This function is called from processSectionCommands, 156 // while we are fixing the output section layout. 157 void LinkerScript::addSymbol(SymbolAssignment *Cmd) { 158 if (!shouldDefineSym(Cmd)) 159 return; 160 161 // Define a symbol. 162 Symbol *Sym; 163 uint8_t Visibility = Cmd->Hidden ? STV_HIDDEN : STV_DEFAULT; 164 std::tie(Sym, std::ignore) = Symtab->insert(Cmd->Name, /*Type*/ 0, Visibility, 165 /*CanOmitFromDynSym*/ false, 166 /*File*/ nullptr); 167 ExprValue Value = Cmd->Expression(); 168 SectionBase *Sec = Value.isAbsolute() ? nullptr : Value.Sec; 169 170 // When this function is called, section addresses have not been 171 // fixed yet. So, we may or may not know the value of the RHS 172 // expression. 173 // 174 // For example, if an expression is `x = 42`, we know x is always 42. 175 // However, if an expression is `x = .`, there's no way to know its 176 // value at the moment. 177 // 178 // We want to set symbol values early if we can. This allows us to 179 // use symbols as variables in linker scripts. Doing so allows us to 180 // write expressions like this: `alignment = 16; . = ALIGN(., alignment)`. 181 uint64_t SymValue = Value.Sec ? 0 : Value.getValue(); 182 183 replaceSymbol<Defined>(Sym, nullptr, Cmd->Name, STB_GLOBAL, Visibility, 184 STT_NOTYPE, SymValue, 0, Sec); 185 Cmd->Sym = cast<Defined>(Sym); 186 } 187 188 // This function is called from LinkerScript::declareSymbols. 189 // It creates a placeholder symbol if needed. 190 static void declareSymbol(SymbolAssignment *Cmd) { 191 if (!shouldDefineSym(Cmd)) 192 return; 193 194 // We can't calculate final value right now. 195 Symbol *Sym; 196 uint8_t Visibility = Cmd->Hidden ? STV_HIDDEN : STV_DEFAULT; 197 std::tie(Sym, std::ignore) = Symtab->insert(Cmd->Name, /*Type*/ 0, Visibility, 198 /*CanOmitFromDynSym*/ false, 199 /*File*/ nullptr); 200 replaceSymbol<Defined>(Sym, nullptr, Cmd->Name, STB_GLOBAL, Visibility, 201 STT_NOTYPE, 0, 0, nullptr); 202 Cmd->Sym = cast<Defined>(Sym); 203 Cmd->Provide = false; 204 } 205 206 // This method is used to handle INSERT AFTER statement. Here we rebuild 207 // the list of script commands to mix sections inserted into. 208 void LinkerScript::processInsertCommands() { 209 std::vector<BaseCommand *> V; 210 auto Insert = [&](std::vector<BaseCommand *> &From) { 211 V.insert(V.end(), From.begin(), From.end()); 212 From.clear(); 213 }; 214 215 for (BaseCommand *Base : SectionCommands) { 216 if (auto *OS = dyn_cast<OutputSection>(Base)) { 217 Insert(InsertBeforeCommands[OS->Name]); 218 V.push_back(Base); 219 Insert(InsertAfterCommands[OS->Name]); 220 continue; 221 } 222 V.push_back(Base); 223 } 224 225 for (auto &Cmds : {InsertBeforeCommands, InsertAfterCommands}) 226 for (const std::pair<StringRef, std::vector<BaseCommand *>> &P : Cmds) 227 if (!P.second.empty()) 228 error("unable to INSERT AFTER/BEFORE " + P.first + 229 ": section not defined"); 230 231 SectionCommands = std::move(V); 232 } 233 234 // Symbols defined in script should not be inlined by LTO. At the same time 235 // we don't know their final values until late stages of link. Here we scan 236 // over symbol assignment commands and create placeholder symbols if needed. 237 void LinkerScript::declareSymbols() { 238 assert(!Ctx); 239 for (BaseCommand *Base : SectionCommands) { 240 if (auto *Cmd = dyn_cast<SymbolAssignment>(Base)) { 241 declareSymbol(Cmd); 242 continue; 243 } 244 auto *Sec = dyn_cast<OutputSection>(Base); 245 if (!Sec) 246 continue; 247 // If the output section directive has constraints, 248 // we can't say for sure if it is going to be included or not. 249 // Skip such sections for now. Improve the checks if we ever 250 // need symbols from that sections to be declared early. 251 if (Sec->Constraint != ConstraintKind::NoConstraint) 252 continue; 253 for (BaseCommand *Base2 : Sec->SectionCommands) 254 if (auto *Cmd = dyn_cast<SymbolAssignment>(Base2)) 255 declareSymbol(Cmd); 256 } 257 } 258 259 // This function is called from assignAddresses, while we are 260 // fixing the output section addresses. This function is supposed 261 // to set the final value for a given symbol assignment. 262 void LinkerScript::assignSymbol(SymbolAssignment *Cmd, bool InSec) { 263 if (Cmd->Name == ".") { 264 setDot(Cmd->Expression, Cmd->Location, InSec); 265 return; 266 } 267 268 if (!Cmd->Sym) 269 return; 270 271 ExprValue V = Cmd->Expression(); 272 if (V.isAbsolute()) { 273 Cmd->Sym->Section = nullptr; 274 Cmd->Sym->Value = V.getValue(); 275 } else { 276 Cmd->Sym->Section = V.Sec; 277 Cmd->Sym->Value = V.getSectionOffset(); 278 } 279 } 280 281 static std::string getFilename(InputFile *File) { 282 if (!File) 283 return ""; 284 if (File->ArchiveName.empty()) 285 return File->getName(); 286 return (File->ArchiveName + "(" + File->getName() + ")").str(); 287 } 288 289 bool LinkerScript::shouldKeep(InputSectionBase *S) { 290 if (KeptSections.empty()) 291 return false; 292 std::string Filename = getFilename(S->File); 293 for (InputSectionDescription *ID : KeptSections) 294 if (ID->FilePat.match(Filename)) 295 for (SectionPattern &P : ID->SectionPatterns) 296 if (P.SectionPat.match(S->Name)) 297 return true; 298 return false; 299 } 300 301 // A helper function for the SORT() command. 302 static std::function<bool(InputSectionBase *, InputSectionBase *)> 303 getComparator(SortSectionPolicy K) { 304 switch (K) { 305 case SortSectionPolicy::Alignment: 306 return [](InputSectionBase *A, InputSectionBase *B) { 307 // ">" is not a mistake. Sections with larger alignments are placed 308 // before sections with smaller alignments in order to reduce the 309 // amount of padding necessary. This is compatible with GNU. 310 return A->Alignment > B->Alignment; 311 }; 312 case SortSectionPolicy::Name: 313 return [](InputSectionBase *A, InputSectionBase *B) { 314 return A->Name < B->Name; 315 }; 316 case SortSectionPolicy::Priority: 317 return [](InputSectionBase *A, InputSectionBase *B) { 318 return getPriority(A->Name) < getPriority(B->Name); 319 }; 320 default: 321 llvm_unreachable("unknown sort policy"); 322 } 323 } 324 325 // A helper function for the SORT() command. 326 static bool matchConstraints(ArrayRef<InputSection *> Sections, 327 ConstraintKind Kind) { 328 if (Kind == ConstraintKind::NoConstraint) 329 return true; 330 331 bool IsRW = llvm::any_of( 332 Sections, [](InputSection *Sec) { return Sec->Flags & SHF_WRITE; }); 333 334 return (IsRW && Kind == ConstraintKind::ReadWrite) || 335 (!IsRW && Kind == ConstraintKind::ReadOnly); 336 } 337 338 static void sortSections(MutableArrayRef<InputSection *> Vec, 339 SortSectionPolicy K) { 340 if (K != SortSectionPolicy::Default && K != SortSectionPolicy::None) 341 std::stable_sort(Vec.begin(), Vec.end(), getComparator(K)); 342 } 343 344 // Sort sections as instructed by SORT-family commands and --sort-section 345 // option. Because SORT-family commands can be nested at most two depth 346 // (e.g. SORT_BY_NAME(SORT_BY_ALIGNMENT(.text.*))) and because the command 347 // line option is respected even if a SORT command is given, the exact 348 // behavior we have here is a bit complicated. Here are the rules. 349 // 350 // 1. If two SORT commands are given, --sort-section is ignored. 351 // 2. If one SORT command is given, and if it is not SORT_NONE, 352 // --sort-section is handled as an inner SORT command. 353 // 3. If one SORT command is given, and if it is SORT_NONE, don't sort. 354 // 4. If no SORT command is given, sort according to --sort-section. 355 static void sortInputSections(MutableArrayRef<InputSection *> Vec, 356 const SectionPattern &Pat) { 357 if (Pat.SortOuter == SortSectionPolicy::None) 358 return; 359 360 if (Pat.SortInner == SortSectionPolicy::Default) 361 sortSections(Vec, Config->SortSection); 362 else 363 sortSections(Vec, Pat.SortInner); 364 sortSections(Vec, Pat.SortOuter); 365 } 366 367 // Compute and remember which sections the InputSectionDescription matches. 368 std::vector<InputSection *> 369 LinkerScript::computeInputSections(const InputSectionDescription *Cmd) { 370 std::vector<InputSection *> Ret; 371 372 // Collects all sections that satisfy constraints of Cmd. 373 for (const SectionPattern &Pat : Cmd->SectionPatterns) { 374 size_t SizeBefore = Ret.size(); 375 376 for (InputSectionBase *Sec : InputSections) { 377 if (!Sec->Live || Sec->Assigned) 378 continue; 379 380 // For -emit-relocs we have to ignore entries like 381 // .rela.dyn : { *(.rela.data) } 382 // which are common because they are in the default bfd script. 383 if (Sec->Type == SHT_REL || Sec->Type == SHT_RELA) 384 continue; 385 386 std::string Filename = getFilename(Sec->File); 387 if (!Cmd->FilePat.match(Filename) || 388 Pat.ExcludedFilePat.match(Filename) || 389 !Pat.SectionPat.match(Sec->Name)) 390 continue; 391 392 // It is safe to assume that Sec is an InputSection 393 // because mergeable or EH input sections have already been 394 // handled and eliminated. 395 Ret.push_back(cast<InputSection>(Sec)); 396 Sec->Assigned = true; 397 } 398 399 sortInputSections(MutableArrayRef<InputSection *>(Ret).slice(SizeBefore), 400 Pat); 401 } 402 return Ret; 403 } 404 405 void LinkerScript::discard(ArrayRef<InputSection *> V) { 406 for (InputSection *S : V) { 407 if (S == InX::ShStrTab || S == InX::Dynamic || S == InX::DynSymTab || 408 S == InX::DynStrTab) 409 error("discarding " + S->Name + " section is not allowed"); 410 411 // You can discard .hash and .gnu.hash sections by linker scripts. Since 412 // they are synthesized sections, we need to handle them differently than 413 // other regular sections. 414 if (S == InX::GnuHashTab) 415 InX::GnuHashTab = nullptr; 416 if (S == InX::HashTab) 417 InX::HashTab = nullptr; 418 419 S->Assigned = false; 420 S->Live = false; 421 discard(S->DependentSections); 422 } 423 } 424 425 std::vector<InputSection *> 426 LinkerScript::createInputSectionList(OutputSection &OutCmd) { 427 std::vector<InputSection *> Ret; 428 429 for (BaseCommand *Base : OutCmd.SectionCommands) { 430 if (auto *Cmd = dyn_cast<InputSectionDescription>(Base)) { 431 Cmd->Sections = computeInputSections(Cmd); 432 Ret.insert(Ret.end(), Cmd->Sections.begin(), Cmd->Sections.end()); 433 } 434 } 435 return Ret; 436 } 437 438 void LinkerScript::processSectionCommands() { 439 // A symbol can be assigned before any section is mentioned in the linker 440 // script. In an DSO, the symbol values are addresses, so the only important 441 // section values are: 442 // * SHN_UNDEF 443 // * SHN_ABS 444 // * Any value meaning a regular section. 445 // To handle that, create a dummy aether section that fills the void before 446 // the linker scripts switches to another section. It has an index of one 447 // which will map to whatever the first actual section is. 448 Aether = make<OutputSection>("", 0, SHF_ALLOC); 449 Aether->SectionIndex = 1; 450 451 // Ctx captures the local AddressState and makes it accessible deliberately. 452 // This is needed as there are some cases where we cannot just 453 // thread the current state through to a lambda function created by the 454 // script parser. 455 auto Deleter = make_unique<AddressState>(); 456 Ctx = Deleter.get(); 457 Ctx->OutSec = Aether; 458 459 size_t I = 0; 460 // Add input sections to output sections. 461 for (BaseCommand *Base : SectionCommands) { 462 // Handle symbol assignments outside of any output section. 463 if (auto *Cmd = dyn_cast<SymbolAssignment>(Base)) { 464 addSymbol(Cmd); 465 continue; 466 } 467 468 if (auto *Sec = dyn_cast<OutputSection>(Base)) { 469 std::vector<InputSection *> V = createInputSectionList(*Sec); 470 471 // The output section name `/DISCARD/' is special. 472 // Any input section assigned to it is discarded. 473 if (Sec->Name == "/DISCARD/") { 474 discard(V); 475 Sec->SectionCommands.clear(); 476 continue; 477 } 478 479 // This is for ONLY_IF_RO and ONLY_IF_RW. An output section directive 480 // ".foo : ONLY_IF_R[OW] { ... }" is handled only if all member input 481 // sections satisfy a given constraint. If not, a directive is handled 482 // as if it wasn't present from the beginning. 483 // 484 // Because we'll iterate over SectionCommands many more times, the easy 485 // way to "make it as if it wasn't present" is to make it empty. 486 if (!matchConstraints(V, Sec->Constraint)) { 487 for (InputSectionBase *S : V) 488 S->Assigned = false; 489 Sec->SectionCommands.clear(); 490 continue; 491 } 492 493 // A directive may contain symbol definitions like this: 494 // ".foo : { ...; bar = .; }". Handle them. 495 for (BaseCommand *Base : Sec->SectionCommands) 496 if (auto *OutCmd = dyn_cast<SymbolAssignment>(Base)) 497 addSymbol(OutCmd); 498 499 // Handle subalign (e.g. ".foo : SUBALIGN(32) { ... }"). If subalign 500 // is given, input sections are aligned to that value, whether the 501 // given value is larger or smaller than the original section alignment. 502 if (Sec->SubalignExpr) { 503 uint32_t Subalign = Sec->SubalignExpr().getValue(); 504 for (InputSectionBase *S : V) 505 S->Alignment = Subalign; 506 } 507 508 // Add input sections to an output section. 509 for (InputSection *S : V) 510 Sec->addSection(S); 511 512 Sec->SectionIndex = I++; 513 if (Sec->Noload) 514 Sec->Type = SHT_NOBITS; 515 if (Sec->NonAlloc) 516 Sec->Flags &= ~(uint64_t)SHF_ALLOC; 517 } 518 } 519 Ctx = nullptr; 520 } 521 522 static OutputSection *findByName(ArrayRef<BaseCommand *> Vec, 523 StringRef Name) { 524 for (BaseCommand *Base : Vec) 525 if (auto *Sec = dyn_cast<OutputSection>(Base)) 526 if (Sec->Name == Name) 527 return Sec; 528 return nullptr; 529 } 530 531 static OutputSection *createSection(InputSectionBase *IS, 532 StringRef OutsecName) { 533 OutputSection *Sec = Script->createOutputSection(OutsecName, "<internal>"); 534 Sec->addSection(cast<InputSection>(IS)); 535 return Sec; 536 } 537 538 static OutputSection *addInputSec(StringMap<OutputSection *> &Map, 539 InputSectionBase *IS, StringRef OutsecName) { 540 // Sections with SHT_GROUP or SHF_GROUP attributes reach here only when the -r 541 // option is given. A section with SHT_GROUP defines a "section group", and 542 // its members have SHF_GROUP attribute. Usually these flags have already been 543 // stripped by InputFiles.cpp as section groups are processed and uniquified. 544 // However, for the -r option, we want to pass through all section groups 545 // as-is because adding/removing members or merging them with other groups 546 // change their semantics. 547 if (IS->Type == SHT_GROUP || (IS->Flags & SHF_GROUP)) 548 return createSection(IS, OutsecName); 549 550 // Imagine .zed : { *(.foo) *(.bar) } script. Both foo and bar may have 551 // relocation sections .rela.foo and .rela.bar for example. Most tools do 552 // not allow multiple REL[A] sections for output section. Hence we 553 // should combine these relocation sections into single output. 554 // We skip synthetic sections because it can be .rela.dyn/.rela.plt or any 555 // other REL[A] sections created by linker itself. 556 if (!isa<SyntheticSection>(IS) && 557 (IS->Type == SHT_REL || IS->Type == SHT_RELA)) { 558 auto *Sec = cast<InputSection>(IS); 559 OutputSection *Out = Sec->getRelocatedSection()->getOutputSection(); 560 561 if (Out->RelocationSection) { 562 Out->RelocationSection->addSection(Sec); 563 return nullptr; 564 } 565 566 Out->RelocationSection = createSection(IS, OutsecName); 567 return Out->RelocationSection; 568 } 569 570 // When control reaches here, mergeable sections have already been merged into 571 // synthetic sections. For relocatable case we want to create one output 572 // section per syntetic section so that they have a valid sh_entsize. 573 if (Config->Relocatable && (IS->Flags & SHF_MERGE)) 574 return createSection(IS, OutsecName); 575 576 // The ELF spec just says 577 // ---------------------------------------------------------------- 578 // In the first phase, input sections that match in name, type and 579 // attribute flags should be concatenated into single sections. 580 // ---------------------------------------------------------------- 581 // 582 // However, it is clear that at least some flags have to be ignored for 583 // section merging. At the very least SHF_GROUP and SHF_COMPRESSED have to be 584 // ignored. We should not have two output .text sections just because one was 585 // in a group and another was not for example. 586 // 587 // It also seems that wording was a late addition and didn't get the 588 // necessary scrutiny. 589 // 590 // Merging sections with different flags is expected by some users. One 591 // reason is that if one file has 592 // 593 // int *const bar __attribute__((section(".foo"))) = (int *)0; 594 // 595 // gcc with -fPIC will produce a read only .foo section. But if another 596 // file has 597 // 598 // int zed; 599 // int *const bar __attribute__((section(".foo"))) = (int *)&zed; 600 // 601 // gcc with -fPIC will produce a read write section. 602 // 603 // Last but not least, when using linker script the merge rules are forced by 604 // the script. Unfortunately, linker scripts are name based. This means that 605 // expressions like *(.foo*) can refer to multiple input sections with 606 // different flags. We cannot put them in different output sections or we 607 // would produce wrong results for 608 // 609 // start = .; *(.foo.*) end = .; *(.bar) 610 // 611 // and a mapping of .foo1 and .bar1 to one section and .foo2 and .bar2 to 612 // another. The problem is that there is no way to layout those output 613 // sections such that the .foo sections are the only thing between the start 614 // and end symbols. 615 // 616 // Given the above issues, we instead merge sections by name and error on 617 // incompatible types and flags. 618 OutputSection *&Sec = Map[OutsecName]; 619 if (Sec) { 620 Sec->addSection(cast<InputSection>(IS)); 621 return nullptr; 622 } 623 624 Sec = createSection(IS, OutsecName); 625 return Sec; 626 } 627 628 // Add sections that didn't match any sections command. 629 void LinkerScript::addOrphanSections() { 630 unsigned End = SectionCommands.size(); 631 StringMap<OutputSection *> Map; 632 633 std::vector<OutputSection *> V; 634 for (InputSectionBase *S : InputSections) { 635 if (!S->Live || S->Parent) 636 continue; 637 638 StringRef Name = getOutputSectionName(S); 639 640 if (Config->OrphanHandling == OrphanHandlingPolicy::Error) 641 error(toString(S) + " is being placed in '" + Name + "'"); 642 else if (Config->OrphanHandling == OrphanHandlingPolicy::Warn) 643 warn(toString(S) + " is being placed in '" + Name + "'"); 644 645 if (OutputSection *Sec = 646 findByName(makeArrayRef(SectionCommands).slice(0, End), Name)) { 647 Sec->addSection(cast<InputSection>(S)); 648 continue; 649 } 650 651 if (OutputSection *OS = addInputSec(Map, S, Name)) 652 V.push_back(OS); 653 assert(S->getOutputSection()->SectionIndex == UINT32_MAX); 654 } 655 656 // If no SECTIONS command was given, we should insert sections commands 657 // before others, so that we can handle scripts which refers them, 658 // for example: "foo = ABSOLUTE(ADDR(.text)));". 659 // When SECTIONS command is present we just add all orphans to the end. 660 if (HasSectionsCommand) 661 SectionCommands.insert(SectionCommands.end(), V.begin(), V.end()); 662 else 663 SectionCommands.insert(SectionCommands.begin(), V.begin(), V.end()); 664 } 665 666 uint64_t LinkerScript::advance(uint64_t Size, unsigned Alignment) { 667 bool IsTbss = 668 (Ctx->OutSec->Flags & SHF_TLS) && Ctx->OutSec->Type == SHT_NOBITS; 669 uint64_t Start = IsTbss ? Dot + Ctx->ThreadBssOffset : Dot; 670 Start = alignTo(Start, Alignment); 671 uint64_t End = Start + Size; 672 673 if (IsTbss) 674 Ctx->ThreadBssOffset = End - Dot; 675 else 676 Dot = End; 677 return End; 678 } 679 680 void LinkerScript::output(InputSection *S) { 681 uint64_t Before = advance(0, 1); 682 uint64_t Pos = advance(S->getSize(), S->Alignment); 683 S->OutSecOff = Pos - S->getSize() - Ctx->OutSec->Addr; 684 685 // Update output section size after adding each section. This is so that 686 // SIZEOF works correctly in the case below: 687 // .foo { *(.aaa) a = SIZEOF(.foo); *(.bbb) } 688 expandOutputSection(Pos - Before); 689 } 690 691 void LinkerScript::switchTo(OutputSection *Sec) { 692 if (Ctx->OutSec == Sec) 693 return; 694 695 Ctx->OutSec = Sec; 696 Ctx->OutSec->Addr = advance(0, Ctx->OutSec->Alignment); 697 } 698 699 // This function searches for a memory region to place the given output 700 // section in. If found, a pointer to the appropriate memory region is 701 // returned. Otherwise, a nullptr is returned. 702 MemoryRegion *LinkerScript::findMemoryRegion(OutputSection *Sec) { 703 // If a memory region name was specified in the output section command, 704 // then try to find that region first. 705 if (!Sec->MemoryRegionName.empty()) { 706 if (MemoryRegion *M = MemoryRegions.lookup(Sec->MemoryRegionName)) 707 return M; 708 error("memory region '" + Sec->MemoryRegionName + "' not declared"); 709 return nullptr; 710 } 711 712 // If at least one memory region is defined, all sections must 713 // belong to some memory region. Otherwise, we don't need to do 714 // anything for memory regions. 715 if (MemoryRegions.empty()) 716 return nullptr; 717 718 // See if a region can be found by matching section flags. 719 for (auto &Pair : MemoryRegions) { 720 MemoryRegion *M = Pair.second; 721 if ((M->Flags & Sec->Flags) && (M->NegFlags & Sec->Flags) == 0) 722 return M; 723 } 724 725 // Otherwise, no suitable region was found. 726 if (Sec->Flags & SHF_ALLOC) 727 error("no memory region specified for section '" + Sec->Name + "'"); 728 return nullptr; 729 } 730 731 // This function assigns offsets to input sections and an output section 732 // for a single sections command (e.g. ".text { *(.text); }"). 733 void LinkerScript::assignOffsets(OutputSection *Sec) { 734 if (!(Sec->Flags & SHF_ALLOC)) 735 Dot = 0; 736 else if (Sec->AddrExpr) 737 setDot(Sec->AddrExpr, Sec->Location, false); 738 739 Ctx->MemRegion = Sec->MemRegion; 740 Ctx->LMARegion = Sec->LMARegion; 741 if (Ctx->MemRegion) 742 Dot = Ctx->MemRegion->CurPos; 743 744 switchTo(Sec); 745 746 if (Sec->LMAExpr) 747 Ctx->LMAOffset = Sec->LMAExpr().getValue() - Dot; 748 749 if (MemoryRegion *MR = Sec->LMARegion) 750 Ctx->LMAOffset = MR->CurPos - Dot; 751 752 // If neither AT nor AT> is specified for an allocatable section, the linker 753 // will set the LMA such that the difference between VMA and LMA for the 754 // section is the same as the preceding output section in the same region 755 // https://sourceware.org/binutils/docs-2.20/ld/Output-Section-LMA.html 756 if (PhdrEntry *L = Ctx->OutSec->PtLoad) 757 L->LMAOffset = Ctx->LMAOffset; 758 759 // The Size previously denoted how many InputSections had been added to this 760 // section, and was used for sorting SHF_LINK_ORDER sections. Reset it to 761 // compute the actual size value. 762 Sec->Size = 0; 763 764 // We visited SectionsCommands from processSectionCommands to 765 // layout sections. Now, we visit SectionsCommands again to fix 766 // section offsets. 767 for (BaseCommand *Base : Sec->SectionCommands) { 768 // This handles the assignments to symbol or to the dot. 769 if (auto *Cmd = dyn_cast<SymbolAssignment>(Base)) { 770 Cmd->Offset = Dot - Ctx->OutSec->Addr; 771 assignSymbol(Cmd, true); 772 Cmd->Size = Dot - Ctx->OutSec->Addr - Cmd->Offset; 773 continue; 774 } 775 776 // Handle BYTE(), SHORT(), LONG(), or QUAD(). 777 if (auto *Cmd = dyn_cast<ByteCommand>(Base)) { 778 Cmd->Offset = Dot - Ctx->OutSec->Addr; 779 Dot += Cmd->Size; 780 expandOutputSection(Cmd->Size); 781 continue; 782 } 783 784 // Handle ASSERT(). 785 if (auto *Cmd = dyn_cast<AssertCommand>(Base)) { 786 Cmd->Expression(); 787 continue; 788 } 789 790 // Handle a single input section description command. 791 // It calculates and assigns the offsets for each section and also 792 // updates the output section size. 793 auto *Cmd = cast<InputSectionDescription>(Base); 794 for (InputSection *Sec : Cmd->Sections) { 795 // We tentatively added all synthetic sections at the beginning and 796 // removed empty ones afterwards (because there is no way to know 797 // whether they were going be empty or not other than actually running 798 // linker scripts.) We need to ignore remains of empty sections. 799 if (auto *S = dyn_cast<SyntheticSection>(Sec)) 800 if (S->empty()) 801 continue; 802 803 if (!Sec->Live) 804 continue; 805 assert(Ctx->OutSec == Sec->getParent()); 806 output(Sec); 807 } 808 } 809 } 810 811 static bool isDiscardable(OutputSection &Sec) { 812 // We do not remove empty sections that are explicitly 813 // assigned to any segment. 814 if (!Sec.Phdrs.empty()) 815 return false; 816 817 // We do not want to remove sections that reference symbols in address and 818 // other expressions. We add script symbols as undefined, and want to ensure 819 // all of them are defined in the output, hence have to keep them. 820 if (Sec.ExpressionsUseSymbols) 821 return false; 822 823 for (BaseCommand *Base : Sec.SectionCommands) 824 if (!isa<InputSectionDescription>(*Base)) 825 return false; 826 return true; 827 } 828 829 void LinkerScript::adjustSectionsBeforeSorting() { 830 // If the output section contains only symbol assignments, create a 831 // corresponding output section. The issue is what to do with linker script 832 // like ".foo : { symbol = 42; }". One option would be to convert it to 833 // "symbol = 42;". That is, move the symbol out of the empty section 834 // description. That seems to be what bfd does for this simple case. The 835 // problem is that this is not completely general. bfd will give up and 836 // create a dummy section too if there is a ". = . + 1" inside the section 837 // for example. 838 // Given that we want to create the section, we have to worry what impact 839 // it will have on the link. For example, if we just create a section with 840 // 0 for flags, it would change which PT_LOADs are created. 841 // We could remember that particular section is dummy and ignore it in 842 // other parts of the linker, but unfortunately there are quite a few places 843 // that would need to change: 844 // * The program header creation. 845 // * The orphan section placement. 846 // * The address assignment. 847 // The other option is to pick flags that minimize the impact the section 848 // will have on the rest of the linker. That is why we copy the flags from 849 // the previous sections. Only a few flags are needed to keep the impact low. 850 uint64_t Flags = SHF_ALLOC; 851 852 for (BaseCommand *&Cmd : SectionCommands) { 853 auto *Sec = dyn_cast<OutputSection>(Cmd); 854 if (!Sec) 855 continue; 856 857 // A live output section means that some input section was added to it. It 858 // might have been removed (if it was empty synthetic section), but we at 859 // least know the flags. 860 if (Sec->Live) 861 Flags = Sec->Flags; 862 863 // We do not want to keep any special flags for output section 864 // in case it is empty. 865 bool IsEmpty = getInputSections(Sec).empty(); 866 if (IsEmpty) 867 Sec->Flags = Flags & (SHF_ALLOC | SHF_WRITE | SHF_EXECINSTR); 868 869 if (IsEmpty && isDiscardable(*Sec)) { 870 Sec->Live = false; 871 Cmd = nullptr; 872 } 873 } 874 875 // It is common practice to use very generic linker scripts. So for any 876 // given run some of the output sections in the script will be empty. 877 // We could create corresponding empty output sections, but that would 878 // clutter the output. 879 // We instead remove trivially empty sections. The bfd linker seems even 880 // more aggressive at removing them. 881 llvm::erase_if(SectionCommands, [&](BaseCommand *Base) { return !Base; }); 882 } 883 884 void LinkerScript::adjustSectionsAfterSorting() { 885 // Try and find an appropriate memory region to assign offsets in. 886 for (BaseCommand *Base : SectionCommands) { 887 if (auto *Sec = dyn_cast<OutputSection>(Base)) { 888 if (!Sec->LMARegionName.empty()) { 889 if (MemoryRegion *M = MemoryRegions.lookup(Sec->LMARegionName)) 890 Sec->LMARegion = M; 891 else 892 error("memory region '" + Sec->LMARegionName + "' not declared"); 893 } 894 Sec->MemRegion = findMemoryRegion(Sec); 895 // Handle align (e.g. ".foo : ALIGN(16) { ... }"). 896 if (Sec->AlignExpr) 897 Sec->Alignment = 898 std::max<uint32_t>(Sec->Alignment, Sec->AlignExpr().getValue()); 899 } 900 } 901 902 // If output section command doesn't specify any segments, 903 // and we haven't previously assigned any section to segment, 904 // then we simply assign section to the very first load segment. 905 // Below is an example of such linker script: 906 // PHDRS { seg PT_LOAD; } 907 // SECTIONS { .aaa : { *(.aaa) } } 908 std::vector<StringRef> DefPhdrs; 909 auto FirstPtLoad = llvm::find_if(PhdrsCommands, [](const PhdrsCommand &Cmd) { 910 return Cmd.Type == PT_LOAD; 911 }); 912 if (FirstPtLoad != PhdrsCommands.end()) 913 DefPhdrs.push_back(FirstPtLoad->Name); 914 915 // Walk the commands and propagate the program headers to commands that don't 916 // explicitly specify them. 917 for (BaseCommand *Base : SectionCommands) { 918 auto *Sec = dyn_cast<OutputSection>(Base); 919 if (!Sec) 920 continue; 921 922 if (Sec->Phdrs.empty()) { 923 // To match the bfd linker script behaviour, only propagate program 924 // headers to sections that are allocated. 925 if (Sec->Flags & SHF_ALLOC) 926 Sec->Phdrs = DefPhdrs; 927 } else { 928 DefPhdrs = Sec->Phdrs; 929 } 930 } 931 } 932 933 static OutputSection *findFirstSection(PhdrEntry *Load) { 934 for (OutputSection *Sec : OutputSections) 935 if (Sec->PtLoad == Load) 936 return Sec; 937 return nullptr; 938 } 939 940 static uint64_t computeBase(uint64_t Min, bool AllocateHeaders) { 941 // If there is no SECTIONS or if the linkerscript is explicit about program 942 // headers, do our best to allocate them. 943 if (!Script->HasSectionsCommand || AllocateHeaders) 944 return 0; 945 // Otherwise only allocate program headers if that would not add a page. 946 return alignDown(Min, Config->MaxPageSize); 947 } 948 949 // Try to find an address for the file and program headers output sections, 950 // which were unconditionally added to the first PT_LOAD segment earlier. 951 // 952 // When using the default layout, we check if the headers fit below the first 953 // allocated section. When using a linker script, we also check if the headers 954 // are covered by the output section. This allows omitting the headers by not 955 // leaving enough space for them in the linker script; this pattern is common 956 // in embedded systems. 957 // 958 // If there isn't enough space for these sections, we'll remove them from the 959 // PT_LOAD segment, and we'll also remove the PT_PHDR segment. 960 void LinkerScript::allocateHeaders(std::vector<PhdrEntry *> &Phdrs) { 961 uint64_t Min = std::numeric_limits<uint64_t>::max(); 962 for (OutputSection *Sec : OutputSections) 963 if (Sec->Flags & SHF_ALLOC) 964 Min = std::min<uint64_t>(Min, Sec->Addr); 965 966 auto It = llvm::find_if( 967 Phdrs, [](const PhdrEntry *E) { return E->p_type == PT_LOAD; }); 968 if (It == Phdrs.end()) 969 return; 970 PhdrEntry *FirstPTLoad = *It; 971 972 bool HasExplicitHeaders = 973 llvm::any_of(PhdrsCommands, [](const PhdrsCommand &Cmd) { 974 return Cmd.HasPhdrs || Cmd.HasFilehdr; 975 }); 976 uint64_t HeaderSize = getHeaderSize(); 977 if (HeaderSize <= Min - computeBase(Min, HasExplicitHeaders)) { 978 Min = alignDown(Min - HeaderSize, Config->MaxPageSize); 979 Out::ElfHeader->Addr = Min; 980 Out::ProgramHeaders->Addr = Min + Out::ElfHeader->Size; 981 return; 982 } 983 984 // Error if we were explicitly asked to allocate headers. 985 if (HasExplicitHeaders) 986 error("could not allocate headers"); 987 988 Out::ElfHeader->PtLoad = nullptr; 989 Out::ProgramHeaders->PtLoad = nullptr; 990 FirstPTLoad->FirstSec = findFirstSection(FirstPTLoad); 991 992 llvm::erase_if(Phdrs, 993 [](const PhdrEntry *E) { return E->p_type == PT_PHDR; }); 994 } 995 996 LinkerScript::AddressState::AddressState() { 997 for (auto &MRI : Script->MemoryRegions) { 998 MemoryRegion *MR = MRI.second; 999 MR->CurPos = MR->Origin; 1000 } 1001 } 1002 1003 static uint64_t getInitialDot() { 1004 // By default linker scripts use an initial value of 0 for '.', 1005 // but prefer -image-base if set. 1006 if (Script->HasSectionsCommand) 1007 return Config->ImageBase ? *Config->ImageBase : 0; 1008 1009 uint64_t StartAddr = UINT64_MAX; 1010 // The Sections with -T<section> have been sorted in order of ascending 1011 // address. We must lower StartAddr if the lowest -T<section address> as 1012 // calls to setDot() must be monotonically increasing. 1013 for (auto &KV : Config->SectionStartMap) 1014 StartAddr = std::min(StartAddr, KV.second); 1015 return std::min(StartAddr, Target->getImageBase() + elf::getHeaderSize()); 1016 } 1017 1018 // Here we assign addresses as instructed by linker script SECTIONS 1019 // sub-commands. Doing that allows us to use final VA values, so here 1020 // we also handle rest commands like symbol assignments and ASSERTs. 1021 void LinkerScript::assignAddresses() { 1022 Dot = getInitialDot(); 1023 1024 auto Deleter = make_unique<AddressState>(); 1025 Ctx = Deleter.get(); 1026 ErrorOnMissingSection = true; 1027 switchTo(Aether); 1028 1029 for (BaseCommand *Base : SectionCommands) { 1030 if (auto *Cmd = dyn_cast<SymbolAssignment>(Base)) { 1031 assignSymbol(Cmd, false); 1032 continue; 1033 } 1034 1035 if (auto *Cmd = dyn_cast<AssertCommand>(Base)) { 1036 Cmd->Expression(); 1037 continue; 1038 } 1039 1040 assignOffsets(cast<OutputSection>(Base)); 1041 } 1042 Ctx = nullptr; 1043 } 1044 1045 // Creates program headers as instructed by PHDRS linker script command. 1046 std::vector<PhdrEntry *> LinkerScript::createPhdrs() { 1047 std::vector<PhdrEntry *> Ret; 1048 1049 // Process PHDRS and FILEHDR keywords because they are not 1050 // real output sections and cannot be added in the following loop. 1051 for (const PhdrsCommand &Cmd : PhdrsCommands) { 1052 PhdrEntry *Phdr = make<PhdrEntry>(Cmd.Type, Cmd.Flags ? *Cmd.Flags : PF_R); 1053 1054 if (Cmd.HasFilehdr) 1055 Phdr->add(Out::ElfHeader); 1056 if (Cmd.HasPhdrs) 1057 Phdr->add(Out::ProgramHeaders); 1058 1059 if (Cmd.LMAExpr) { 1060 Phdr->p_paddr = Cmd.LMAExpr().getValue(); 1061 Phdr->HasLMA = true; 1062 } 1063 Ret.push_back(Phdr); 1064 } 1065 1066 // Add output sections to program headers. 1067 for (OutputSection *Sec : OutputSections) { 1068 // Assign headers specified by linker script 1069 for (size_t Id : getPhdrIndices(Sec)) { 1070 Ret[Id]->add(Sec); 1071 if (!PhdrsCommands[Id].Flags.hasValue()) 1072 Ret[Id]->p_flags |= Sec->getPhdrFlags(); 1073 } 1074 } 1075 return Ret; 1076 } 1077 1078 // Returns true if we should emit an .interp section. 1079 // 1080 // We usually do. But if PHDRS commands are given, and 1081 // no PT_INTERP is there, there's no place to emit an 1082 // .interp, so we don't do that in that case. 1083 bool LinkerScript::needsInterpSection() { 1084 if (PhdrsCommands.empty()) 1085 return true; 1086 for (PhdrsCommand &Cmd : PhdrsCommands) 1087 if (Cmd.Type == PT_INTERP) 1088 return true; 1089 return false; 1090 } 1091 1092 ExprValue LinkerScript::getSymbolValue(StringRef Name, const Twine &Loc) { 1093 if (Name == ".") { 1094 if (Ctx) 1095 return {Ctx->OutSec, false, Dot - Ctx->OutSec->Addr, Loc}; 1096 error(Loc + ": unable to get location counter value"); 1097 return 0; 1098 } 1099 1100 if (Symbol *Sym = Symtab->find(Name)) { 1101 if (auto *DS = dyn_cast<Defined>(Sym)) 1102 return {DS->Section, false, DS->Value, Loc}; 1103 if (auto *SS = dyn_cast<SharedSymbol>(Sym)) 1104 if (!ErrorOnMissingSection || SS->CopyRelSec) 1105 return {SS->CopyRelSec, false, 0, Loc}; 1106 } 1107 1108 error(Loc + ": symbol not found: " + Name); 1109 return 0; 1110 } 1111 1112 // Returns the index of the segment named Name. 1113 static Optional<size_t> getPhdrIndex(ArrayRef<PhdrsCommand> Vec, 1114 StringRef Name) { 1115 for (size_t I = 0; I < Vec.size(); ++I) 1116 if (Vec[I].Name == Name) 1117 return I; 1118 return None; 1119 } 1120 1121 // Returns indices of ELF headers containing specific section. Each index is a 1122 // zero based number of ELF header listed within PHDRS {} script block. 1123 std::vector<size_t> LinkerScript::getPhdrIndices(OutputSection *Cmd) { 1124 std::vector<size_t> Ret; 1125 1126 for (StringRef S : Cmd->Phdrs) { 1127 if (Optional<size_t> Idx = getPhdrIndex(PhdrsCommands, S)) 1128 Ret.push_back(*Idx); 1129 else if (S != "NONE") 1130 error(Cmd->Location + ": section header '" + S + 1131 "' is not listed in PHDRS"); 1132 } 1133 return Ret; 1134 } 1135