1 //===- LinkerScript.cpp ---------------------------------------------------===//
2 //
3 //                             The LLVM Linker
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the parser/evaluator of the linker script.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "LinkerScript.h"
15 #include "Config.h"
16 #include "InputSection.h"
17 #include "OutputSections.h"
18 #include "Strings.h"
19 #include "SymbolTable.h"
20 #include "Symbols.h"
21 #include "SyntheticSections.h"
22 #include "Target.h"
23 #include "Writer.h"
24 #include "lld/Common/Memory.h"
25 #include "lld/Common/Threads.h"
26 #include "llvm/ADT/STLExtras.h"
27 #include "llvm/ADT/StringRef.h"
28 #include "llvm/BinaryFormat/ELF.h"
29 #include "llvm/Support/Casting.h"
30 #include "llvm/Support/Endian.h"
31 #include "llvm/Support/ErrorHandling.h"
32 #include "llvm/Support/FileSystem.h"
33 #include "llvm/Support/Path.h"
34 #include <algorithm>
35 #include <cassert>
36 #include <cstddef>
37 #include <cstdint>
38 #include <iterator>
39 #include <limits>
40 #include <string>
41 #include <vector>
42 
43 using namespace llvm;
44 using namespace llvm::ELF;
45 using namespace llvm::object;
46 using namespace llvm::support::endian;
47 using namespace lld;
48 using namespace lld::elf;
49 
50 LinkerScript *elf::Script;
51 
52 static uint64_t getOutputSectionVA(SectionBase *InputSec, StringRef Loc) {
53   if (OutputSection *OS = InputSec->getOutputSection())
54     return OS->Addr;
55   error(Loc + ": unable to evaluate expression: input section " +
56         InputSec->Name + " has no output section assigned");
57   return 0;
58 }
59 
60 uint64_t ExprValue::getValue() const {
61   if (Sec)
62     return alignTo(Sec->getOffset(Val) + getOutputSectionVA(Sec, Loc),
63                    Alignment);
64   return alignTo(Val, Alignment);
65 }
66 
67 uint64_t ExprValue::getSecAddr() const {
68   if (Sec)
69     return Sec->getOffset(0) + getOutputSectionVA(Sec, Loc);
70   return 0;
71 }
72 
73 uint64_t ExprValue::getSectionOffset() const {
74   // If the alignment is trivial, we don't have to compute the full
75   // value to know the offset. This allows this function to succeed in
76   // cases where the output section is not yet known.
77   if (Alignment == 1 && (!Sec || !Sec->getOutputSection()))
78     return Val;
79   return getValue() - getSecAddr();
80 }
81 
82 OutputSection *LinkerScript::createOutputSection(StringRef Name,
83                                                  StringRef Location) {
84   OutputSection *&SecRef = NameToOutputSection[Name];
85   OutputSection *Sec;
86   if (SecRef && SecRef->Location.empty()) {
87     // There was a forward reference.
88     Sec = SecRef;
89   } else {
90     Sec = make<OutputSection>(Name, SHT_NOBITS, 0);
91     if (!SecRef)
92       SecRef = Sec;
93   }
94   Sec->Location = Location;
95   return Sec;
96 }
97 
98 OutputSection *LinkerScript::getOrCreateOutputSection(StringRef Name) {
99   OutputSection *&CmdRef = NameToOutputSection[Name];
100   if (!CmdRef)
101     CmdRef = make<OutputSection>(Name, SHT_PROGBITS, 0);
102   return CmdRef;
103 }
104 
105 void LinkerScript::setDot(Expr E, const Twine &Loc, bool InSec) {
106   uint64_t Val = E().getValue();
107   if (Val < Dot && InSec)
108     error(Loc + ": unable to move location counter backward for: " +
109           Ctx->OutSec->Name);
110   Dot = Val;
111 
112   // Update to location counter means update to section size.
113   if (InSec)
114     Ctx->OutSec->Size = Dot - Ctx->OutSec->Addr;
115 }
116 
117 // Used for handling linker symbol assignments, for both finalizing
118 // their values and doing early declarations. Returns true if symbol
119 // should be defined from linker script.
120 static bool shouldDefineSym(SymbolAssignment *Cmd) {
121   if (Cmd->Name == ".")
122     return false;
123 
124   if (!Cmd->Provide)
125     return true;
126 
127   // If a symbol was in PROVIDE(), we need to define it only
128   // when it is a referenced undefined symbol.
129   Symbol *B = Symtab->find(Cmd->Name);
130   if (!B || B->isDefined())
131     return false;
132   return true;
133 }
134 
135 // This function is called from processSectionCommands,
136 // while we are fixing the output section layout.
137 void LinkerScript::addSymbol(SymbolAssignment *Cmd) {
138   if (!shouldDefineSym(Cmd))
139     return;
140 
141   // Define a symbol.
142   Symbol *Sym;
143   uint8_t Visibility = Cmd->Hidden ? STV_HIDDEN : STV_DEFAULT;
144   std::tie(Sym, std::ignore) = Symtab->insert(Cmd->Name, /*Type*/ 0, Visibility,
145                                               /*CanOmitFromDynSym*/ false,
146                                               /*File*/ nullptr);
147   ExprValue Value = Cmd->Expression();
148   SectionBase *Sec = Value.isAbsolute() ? nullptr : Value.Sec;
149 
150   // When this function is called, section addresses have not been
151   // fixed yet. So, we may or may not know the value of the RHS
152   // expression.
153   //
154   // For example, if an expression is `x = 42`, we know x is always 42.
155   // However, if an expression is `x = .`, there's no way to know its
156   // value at the moment.
157   //
158   // We want to set symbol values early if we can. This allows us to
159   // use symbols as variables in linker scripts. Doing so allows us to
160   // write expressions like this: `alignment = 16; . = ALIGN(., alignment)`.
161   uint64_t SymValue = Value.Sec ? 0 : Value.getValue();
162 
163   replaceSymbol<Defined>(Sym, nullptr, Cmd->Name, STB_GLOBAL, Visibility,
164                          STT_NOTYPE, SymValue, 0, Sec);
165   Cmd->Sym = cast<Defined>(Sym);
166 }
167 
168 // Symbols defined in script should not be inlined by LTO. At the same time
169 // we don't know their final values until late stages of link. Here we scan
170 // over symbol assignment commands and create placeholder symbols if needed.
171 void LinkerScript::declareSymbols() {
172   assert(!Ctx);
173   for (BaseCommand *Base : SectionCommands) {
174     auto *Cmd = dyn_cast<SymbolAssignment>(Base);
175     if (!Cmd || !shouldDefineSym(Cmd))
176       continue;
177 
178     // We can't calculate final value right now.
179     Symbol *Sym;
180     uint8_t Visibility = Cmd->Hidden ? STV_HIDDEN : STV_DEFAULT;
181     std::tie(Sym, std::ignore) =
182         Symtab->insert(Cmd->Name, /*Type*/ 0, Visibility,
183                        /*CanOmitFromDynSym*/ false,
184                        /*File*/ nullptr);
185     replaceSymbol<Defined>(Sym, nullptr, Cmd->Name, STB_GLOBAL, Visibility,
186                            STT_NOTYPE, 0, 0, nullptr);
187     Cmd->Sym = cast<Defined>(Sym);
188     Cmd->Provide = false;
189   }
190 }
191 
192 // This function is called from assignAddresses, while we are
193 // fixing the output section addresses. This function is supposed
194 // to set the final value for a given symbol assignment.
195 void LinkerScript::assignSymbol(SymbolAssignment *Cmd, bool InSec) {
196   if (Cmd->Name == ".") {
197     setDot(Cmd->Expression, Cmd->Location, InSec);
198     return;
199   }
200 
201   if (!Cmd->Sym)
202     return;
203 
204   ExprValue V = Cmd->Expression();
205   if (V.isAbsolute()) {
206     Cmd->Sym->Section = nullptr;
207     Cmd->Sym->Value = V.getValue();
208   } else {
209     Cmd->Sym->Section = V.Sec;
210     Cmd->Sym->Value = V.getSectionOffset();
211   }
212 }
213 
214 static std::string getFilename(InputFile *File) {
215   if (!File)
216     return "";
217   if (File->ArchiveName.empty())
218     return File->getName();
219   return (File->ArchiveName + "(" + File->getName() + ")").str();
220 }
221 
222 bool LinkerScript::shouldKeep(InputSectionBase *S) {
223   if (KeptSections.empty())
224     return false;
225   std::string Filename = getFilename(S->File);
226   for (InputSectionDescription *ID : KeptSections)
227     if (ID->FilePat.match(Filename))
228       for (SectionPattern &P : ID->SectionPatterns)
229         if (P.SectionPat.match(S->Name))
230           return true;
231   return false;
232 }
233 
234 // A helper function for the SORT() command.
235 static std::function<bool(InputSectionBase *, InputSectionBase *)>
236 getComparator(SortSectionPolicy K) {
237   switch (K) {
238   case SortSectionPolicy::Alignment:
239     return [](InputSectionBase *A, InputSectionBase *B) {
240       // ">" is not a mistake. Sections with larger alignments are placed
241       // before sections with smaller alignments in order to reduce the
242       // amount of padding necessary. This is compatible with GNU.
243       return A->Alignment > B->Alignment;
244     };
245   case SortSectionPolicy::Name:
246     return [](InputSectionBase *A, InputSectionBase *B) {
247       return A->Name < B->Name;
248     };
249   case SortSectionPolicy::Priority:
250     return [](InputSectionBase *A, InputSectionBase *B) {
251       return getPriority(A->Name) < getPriority(B->Name);
252     };
253   default:
254     llvm_unreachable("unknown sort policy");
255   }
256 }
257 
258 // A helper function for the SORT() command.
259 static bool matchConstraints(ArrayRef<InputSection *> Sections,
260                              ConstraintKind Kind) {
261   if (Kind == ConstraintKind::NoConstraint)
262     return true;
263 
264   bool IsRW = llvm::any_of(
265       Sections, [](InputSection *Sec) { return Sec->Flags & SHF_WRITE; });
266 
267   return (IsRW && Kind == ConstraintKind::ReadWrite) ||
268          (!IsRW && Kind == ConstraintKind::ReadOnly);
269 }
270 
271 static void sortSections(MutableArrayRef<InputSection *> Vec,
272                          SortSectionPolicy K) {
273   if (K != SortSectionPolicy::Default && K != SortSectionPolicy::None)
274     std::stable_sort(Vec.begin(), Vec.end(), getComparator(K));
275 }
276 
277 // Sort sections as instructed by SORT-family commands and --sort-section
278 // option. Because SORT-family commands can be nested at most two depth
279 // (e.g. SORT_BY_NAME(SORT_BY_ALIGNMENT(.text.*))) and because the command
280 // line option is respected even if a SORT command is given, the exact
281 // behavior we have here is a bit complicated. Here are the rules.
282 //
283 // 1. If two SORT commands are given, --sort-section is ignored.
284 // 2. If one SORT command is given, and if it is not SORT_NONE,
285 //    --sort-section is handled as an inner SORT command.
286 // 3. If one SORT command is given, and if it is SORT_NONE, don't sort.
287 // 4. If no SORT command is given, sort according to --sort-section.
288 static void sortInputSections(MutableArrayRef<InputSection *> Vec,
289                               const SectionPattern &Pat) {
290   if (Pat.SortOuter == SortSectionPolicy::None)
291     return;
292 
293   if (Pat.SortInner == SortSectionPolicy::Default)
294     sortSections(Vec, Config->SortSection);
295   else
296     sortSections(Vec, Pat.SortInner);
297   sortSections(Vec, Pat.SortOuter);
298 }
299 
300 // Compute and remember which sections the InputSectionDescription matches.
301 std::vector<InputSection *>
302 LinkerScript::computeInputSections(const InputSectionDescription *Cmd) {
303   std::vector<InputSection *> Ret;
304 
305   // Collects all sections that satisfy constraints of Cmd.
306   for (const SectionPattern &Pat : Cmd->SectionPatterns) {
307     size_t SizeBefore = Ret.size();
308 
309     for (InputSectionBase *Sec : InputSections) {
310       if (!Sec->Live || Sec->Assigned)
311         continue;
312 
313       // For -emit-relocs we have to ignore entries like
314       //   .rela.dyn : { *(.rela.data) }
315       // which are common because they are in the default bfd script.
316       if (Sec->Type == SHT_REL || Sec->Type == SHT_RELA)
317         continue;
318 
319       std::string Filename = getFilename(Sec->File);
320       if (!Cmd->FilePat.match(Filename) ||
321           Pat.ExcludedFilePat.match(Filename) ||
322           !Pat.SectionPat.match(Sec->Name))
323         continue;
324 
325       // It is safe to assume that Sec is an InputSection
326       // because mergeable or EH input sections have already been
327       // handled and eliminated.
328       Ret.push_back(cast<InputSection>(Sec));
329       Sec->Assigned = true;
330     }
331 
332     sortInputSections(MutableArrayRef<InputSection *>(Ret).slice(SizeBefore),
333                       Pat);
334   }
335   return Ret;
336 }
337 
338 void LinkerScript::discard(ArrayRef<InputSection *> V) {
339   for (InputSection *S : V) {
340     if (S == InX::ShStrTab || S == InX::Dynamic || S == InX::DynSymTab ||
341         S == InX::DynStrTab)
342       error("discarding " + S->Name + " section is not allowed");
343 
344     S->Assigned = false;
345     S->Live = false;
346     discard(S->DependentSections);
347   }
348 }
349 
350 std::vector<InputSection *>
351 LinkerScript::createInputSectionList(OutputSection &OutCmd) {
352   std::vector<InputSection *> Ret;
353 
354   for (BaseCommand *Base : OutCmd.SectionCommands) {
355     if (auto *Cmd = dyn_cast<InputSectionDescription>(Base)) {
356       Cmd->Sections = computeInputSections(Cmd);
357       Ret.insert(Ret.end(), Cmd->Sections.begin(), Cmd->Sections.end());
358     }
359   }
360   return Ret;
361 }
362 
363 void LinkerScript::processSectionCommands() {
364   // A symbol can be assigned before any section is mentioned in the linker
365   // script. In an DSO, the symbol values are addresses, so the only important
366   // section values are:
367   // * SHN_UNDEF
368   // * SHN_ABS
369   // * Any value meaning a regular section.
370   // To handle that, create a dummy aether section that fills the void before
371   // the linker scripts switches to another section. It has an index of one
372   // which will map to whatever the first actual section is.
373   Aether = make<OutputSection>("", 0, SHF_ALLOC);
374   Aether->SectionIndex = 1;
375 
376   // Ctx captures the local AddressState and makes it accessible deliberately.
377   // This is needed as there are some cases where we cannot just
378   // thread the current state through to a lambda function created by the
379   // script parser.
380   auto Deleter = make_unique<AddressState>();
381   Ctx = Deleter.get();
382   Ctx->OutSec = Aether;
383 
384   size_t I = 0;
385   // Add input sections to output sections.
386   for (BaseCommand *Base : SectionCommands) {
387     // Handle symbol assignments outside of any output section.
388     if (auto *Cmd = dyn_cast<SymbolAssignment>(Base)) {
389       addSymbol(Cmd);
390       continue;
391     }
392 
393     if (auto *Sec = dyn_cast<OutputSection>(Base)) {
394       std::vector<InputSection *> V = createInputSectionList(*Sec);
395 
396       // The output section name `/DISCARD/' is special.
397       // Any input section assigned to it is discarded.
398       if (Sec->Name == "/DISCARD/") {
399         discard(V);
400         continue;
401       }
402 
403       // This is for ONLY_IF_RO and ONLY_IF_RW. An output section directive
404       // ".foo : ONLY_IF_R[OW] { ... }" is handled only if all member input
405       // sections satisfy a given constraint. If not, a directive is handled
406       // as if it wasn't present from the beginning.
407       //
408       // Because we'll iterate over SectionCommands many more times, the easy
409       // way to "make it as if it wasn't present" is to make it empty.
410       if (!matchConstraints(V, Sec->Constraint)) {
411         for (InputSectionBase *S : V)
412           S->Assigned = false;
413         Sec->SectionCommands.clear();
414         continue;
415       }
416 
417       // A directive may contain symbol definitions like this:
418       // ".foo : { ...; bar = .; }". Handle them.
419       for (BaseCommand *Base : Sec->SectionCommands)
420         if (auto *OutCmd = dyn_cast<SymbolAssignment>(Base))
421           addSymbol(OutCmd);
422 
423       // Handle subalign (e.g. ".foo : SUBALIGN(32) { ... }"). If subalign
424       // is given, input sections are aligned to that value, whether the
425       // given value is larger or smaller than the original section alignment.
426       if (Sec->SubalignExpr) {
427         uint32_t Subalign = Sec->SubalignExpr().getValue();
428         for (InputSectionBase *S : V)
429           S->Alignment = Subalign;
430       }
431 
432       // Add input sections to an output section.
433       for (InputSection *S : V)
434         Sec->addSection(S);
435 
436       Sec->SectionIndex = I++;
437       if (Sec->Noload)
438         Sec->Type = SHT_NOBITS;
439     }
440   }
441   Ctx = nullptr;
442 }
443 
444 static OutputSection *findByName(ArrayRef<BaseCommand *> Vec,
445                                  StringRef Name) {
446   for (BaseCommand *Base : Vec)
447     if (auto *Sec = dyn_cast<OutputSection>(Base))
448       if (Sec->Name == Name)
449         return Sec;
450   return nullptr;
451 }
452 
453 static OutputSection *createSection(InputSectionBase *IS,
454                                     StringRef OutsecName) {
455   OutputSection *Sec = Script->createOutputSection(OutsecName, "<internal>");
456   Sec->addSection(cast<InputSection>(IS));
457   return Sec;
458 }
459 
460 static OutputSection *addInputSec(StringMap<OutputSection *> &Map,
461                                   InputSectionBase *IS, StringRef OutsecName) {
462   // Sections with SHT_GROUP or SHF_GROUP attributes reach here only when the -r
463   // option is given. A section with SHT_GROUP defines a "section group", and
464   // its members have SHF_GROUP attribute. Usually these flags have already been
465   // stripped by InputFiles.cpp as section groups are processed and uniquified.
466   // However, for the -r option, we want to pass through all section groups
467   // as-is because adding/removing members or merging them with other groups
468   // change their semantics.
469   if (IS->Type == SHT_GROUP || (IS->Flags & SHF_GROUP))
470     return createSection(IS, OutsecName);
471 
472   // Imagine .zed : { *(.foo) *(.bar) } script. Both foo and bar may have
473   // relocation sections .rela.foo and .rela.bar for example. Most tools do
474   // not allow multiple REL[A] sections for output section. Hence we
475   // should combine these relocation sections into single output.
476   // We skip synthetic sections because it can be .rela.dyn/.rela.plt or any
477   // other REL[A] sections created by linker itself.
478   if (!isa<SyntheticSection>(IS) &&
479       (IS->Type == SHT_REL || IS->Type == SHT_RELA)) {
480     auto *Sec = cast<InputSection>(IS);
481     OutputSection *Out = Sec->getRelocatedSection()->getOutputSection();
482 
483     if (Out->RelocationSection) {
484       Out->RelocationSection->addSection(Sec);
485       return nullptr;
486     }
487 
488     Out->RelocationSection = createSection(IS, OutsecName);
489     return Out->RelocationSection;
490   }
491 
492   // When control reaches here, mergeable sections have already been merged into
493   // synthetic sections. For relocatable case we want to create one output
494   // section per syntetic section so that they have a valid sh_entsize.
495   if (Config->Relocatable && (IS->Flags & SHF_MERGE))
496     return createSection(IS, OutsecName);
497 
498   //  The ELF spec just says
499   // ----------------------------------------------------------------
500   // In the first phase, input sections that match in name, type and
501   // attribute flags should be concatenated into single sections.
502   // ----------------------------------------------------------------
503   //
504   // However, it is clear that at least some flags have to be ignored for
505   // section merging. At the very least SHF_GROUP and SHF_COMPRESSED have to be
506   // ignored. We should not have two output .text sections just because one was
507   // in a group and another was not for example.
508   //
509   // It also seems that that wording was a late addition and didn't get the
510   // necessary scrutiny.
511   //
512   // Merging sections with different flags is expected by some users. One
513   // reason is that if one file has
514   //
515   // int *const bar __attribute__((section(".foo"))) = (int *)0;
516   //
517   // gcc with -fPIC will produce a read only .foo section. But if another
518   // file has
519   //
520   // int zed;
521   // int *const bar __attribute__((section(".foo"))) = (int *)&zed;
522   //
523   // gcc with -fPIC will produce a read write section.
524   //
525   // Last but not least, when using linker script the merge rules are forced by
526   // the script. Unfortunately, linker scripts are name based. This means that
527   // expressions like *(.foo*) can refer to multiple input sections with
528   // different flags. We cannot put them in different output sections or we
529   // would produce wrong results for
530   //
531   // start = .; *(.foo.*) end = .; *(.bar)
532   //
533   // and a mapping of .foo1 and .bar1 to one section and .foo2 and .bar2 to
534   // another. The problem is that there is no way to layout those output
535   // sections such that the .foo sections are the only thing between the start
536   // and end symbols.
537   //
538   // Given the above issues, we instead merge sections by name and error on
539   // incompatible types and flags.
540   OutputSection *&Sec = Map[OutsecName];
541   if (Sec) {
542     Sec->addSection(cast<InputSection>(IS));
543     return nullptr;
544   }
545 
546   Sec = createSection(IS, OutsecName);
547   return Sec;
548 }
549 
550 // Add sections that didn't match any sections command.
551 void LinkerScript::addOrphanSections() {
552   unsigned End = SectionCommands.size();
553   StringMap<OutputSection *> Map;
554 
555   std::vector<OutputSection *> V;
556   for (InputSectionBase *S : InputSections) {
557     if (!S->Live || S->Parent)
558       continue;
559 
560     StringRef Name = getOutputSectionName(S);
561 
562     if (Config->OrphanHandling == OrphanHandlingPolicy::Error)
563       error(toString(S) + " is being placed in '" + Name + "'");
564     else if (Config->OrphanHandling == OrphanHandlingPolicy::Warn)
565       warn(toString(S) + " is being placed in '" + Name + "'");
566 
567     if (OutputSection *Sec =
568             findByName(makeArrayRef(SectionCommands).slice(0, End), Name)) {
569       Sec->addSection(cast<InputSection>(S));
570       continue;
571     }
572 
573     if (OutputSection *OS = addInputSec(Map, S, Name))
574       V.push_back(OS);
575     assert(S->getOutputSection()->SectionIndex == INT_MAX);
576   }
577 
578   // If no SECTIONS command was given, we should insert sections commands
579   // before others, so that we can handle scripts which refers them,
580   // for example: "foo = ABSOLUTE(ADDR(.text)));".
581   // When SECTIONS command is present we just add all orphans to the end.
582   if (HasSectionsCommand)
583     SectionCommands.insert(SectionCommands.end(), V.begin(), V.end());
584   else
585     SectionCommands.insert(SectionCommands.begin(), V.begin(), V.end());
586 }
587 
588 uint64_t LinkerScript::advance(uint64_t Size, unsigned Alignment) {
589   bool IsTbss =
590       (Ctx->OutSec->Flags & SHF_TLS) && Ctx->OutSec->Type == SHT_NOBITS;
591   uint64_t Start = IsTbss ? Dot + Ctx->ThreadBssOffset : Dot;
592   Start = alignTo(Start, Alignment);
593   uint64_t End = Start + Size;
594 
595   if (IsTbss)
596     Ctx->ThreadBssOffset = End - Dot;
597   else
598     Dot = End;
599   return End;
600 }
601 
602 void LinkerScript::output(InputSection *S) {
603   uint64_t Before = advance(0, 1);
604   uint64_t Pos = advance(S->getSize(), S->Alignment);
605   S->OutSecOff = Pos - S->getSize() - Ctx->OutSec->Addr;
606 
607   // Update output section size after adding each section. This is so that
608   // SIZEOF works correctly in the case below:
609   // .foo { *(.aaa) a = SIZEOF(.foo); *(.bbb) }
610   Ctx->OutSec->Size = Pos - Ctx->OutSec->Addr;
611 
612   // If there is a memory region associated with this input section, then
613   // place the section in that region and update the region index.
614   if (Ctx->LMARegion)
615     Ctx->LMARegion->CurPos += Pos - Before;
616   // FIXME: should we also produce overflow errors for LMARegion?
617 
618   if (Ctx->MemRegion) {
619     uint64_t &CurOffset = Ctx->MemRegion->CurPos;
620     CurOffset += Pos - Before;
621     uint64_t CurSize = CurOffset - Ctx->MemRegion->Origin;
622     if (CurSize > Ctx->MemRegion->Length) {
623       uint64_t OverflowAmt = CurSize - Ctx->MemRegion->Length;
624       error("section '" + Ctx->OutSec->Name + "' will not fit in region '" +
625             Ctx->MemRegion->Name + "': overflowed by " + Twine(OverflowAmt) +
626             " bytes");
627     }
628   }
629 }
630 
631 void LinkerScript::switchTo(OutputSection *Sec) {
632   if (Ctx->OutSec == Sec)
633     return;
634 
635   Ctx->OutSec = Sec;
636   Ctx->OutSec->Addr = advance(0, Ctx->OutSec->Alignment);
637 }
638 
639 // This function searches for a memory region to place the given output
640 // section in. If found, a pointer to the appropriate memory region is
641 // returned. Otherwise, a nullptr is returned.
642 MemoryRegion *LinkerScript::findMemoryRegion(OutputSection *Sec) {
643   // If a memory region name was specified in the output section command,
644   // then try to find that region first.
645   if (!Sec->MemoryRegionName.empty()) {
646     if (MemoryRegion *M = MemoryRegions.lookup(Sec->MemoryRegionName))
647       return M;
648     error("memory region '" + Sec->MemoryRegionName + "' not declared");
649     return nullptr;
650   }
651 
652   // If at least one memory region is defined, all sections must
653   // belong to some memory region. Otherwise, we don't need to do
654   // anything for memory regions.
655   if (MemoryRegions.empty())
656     return nullptr;
657 
658   // See if a region can be found by matching section flags.
659   for (auto &Pair : MemoryRegions) {
660     MemoryRegion *M = Pair.second;
661     if ((M->Flags & Sec->Flags) && (M->NegFlags & Sec->Flags) == 0)
662       return M;
663   }
664 
665   // Otherwise, no suitable region was found.
666   if (Sec->Flags & SHF_ALLOC)
667     error("no memory region specified for section '" + Sec->Name + "'");
668   return nullptr;
669 }
670 
671 // This function assigns offsets to input sections and an output section
672 // for a single sections command (e.g. ".text { *(.text); }").
673 void LinkerScript::assignOffsets(OutputSection *Sec) {
674   if (!(Sec->Flags & SHF_ALLOC))
675     Dot = 0;
676   else if (Sec->AddrExpr)
677     setDot(Sec->AddrExpr, Sec->Location, false);
678 
679   Ctx->MemRegion = Sec->MemRegion;
680   Ctx->LMARegion = Sec->LMARegion;
681   if (Ctx->MemRegion)
682     Dot = Ctx->MemRegion->CurPos;
683 
684   switchTo(Sec);
685 
686   if (Sec->LMAExpr)
687     Ctx->LMAOffset = Sec->LMAExpr().getValue() - Dot;
688 
689   if (MemoryRegion *MR = Sec->LMARegion)
690     Ctx->LMAOffset = MR->CurPos - Dot;
691 
692   // If neither AT nor AT> is specified for an allocatable section, the linker
693   // will set the LMA such that the difference between VMA and LMA for the
694   // section is the same as the preceding output section in the same region
695   // https://sourceware.org/binutils/docs-2.20/ld/Output-Section-LMA.html
696   if (PhdrEntry *L = Ctx->OutSec->PtLoad)
697     L->LMAOffset = Ctx->LMAOffset;
698 
699   // The Size previously denoted how many InputSections had been added to this
700   // section, and was used for sorting SHF_LINK_ORDER sections. Reset it to
701   // compute the actual size value.
702   Sec->Size = 0;
703 
704   // We visited SectionsCommands from processSectionCommands to
705   // layout sections. Now, we visit SectionsCommands again to fix
706   // section offsets.
707   for (BaseCommand *Base : Sec->SectionCommands) {
708     // This handles the assignments to symbol or to the dot.
709     if (auto *Cmd = dyn_cast<SymbolAssignment>(Base)) {
710       assignSymbol(Cmd, true);
711       continue;
712     }
713 
714     // Handle BYTE(), SHORT(), LONG(), or QUAD().
715     if (auto *Cmd = dyn_cast<ByteCommand>(Base)) {
716       Cmd->Offset = Dot - Ctx->OutSec->Addr;
717       Dot += Cmd->Size;
718       if (Ctx->MemRegion)
719         Ctx->MemRegion->CurPos += Cmd->Size;
720       if (Ctx->LMARegion)
721         Ctx->LMARegion->CurPos += Cmd->Size;
722       Ctx->OutSec->Size = Dot - Ctx->OutSec->Addr;
723       continue;
724     }
725 
726     // Handle ASSERT().
727     if (auto *Cmd = dyn_cast<AssertCommand>(Base)) {
728       Cmd->Expression();
729       continue;
730     }
731 
732     // Handle a single input section description command.
733     // It calculates and assigns the offsets for each section and also
734     // updates the output section size.
735     auto *Cmd = cast<InputSectionDescription>(Base);
736     for (InputSection *Sec : Cmd->Sections) {
737       // We tentatively added all synthetic sections at the beginning and
738       // removed empty ones afterwards (because there is no way to know
739       // whether they were going be empty or not other than actually running
740       // linker scripts.) We need to ignore remains of empty sections.
741       if (auto *S = dyn_cast<SyntheticSection>(Sec))
742         if (S->empty())
743           continue;
744 
745       if (!Sec->Live)
746         continue;
747       assert(Ctx->OutSec == Sec->getParent());
748       output(Sec);
749     }
750   }
751 }
752 
753 void LinkerScript::removeEmptyCommands() {
754   // It is common practice to use very generic linker scripts. So for any
755   // given run some of the output sections in the script will be empty.
756   // We could create corresponding empty output sections, but that would
757   // clutter the output.
758   // We instead remove trivially empty sections. The bfd linker seems even
759   // more aggressive at removing them.
760   llvm::erase_if(SectionCommands, [&](BaseCommand *Base) {
761     if (auto *Sec = dyn_cast<OutputSection>(Base))
762       return !Sec->Live;
763     return false;
764   });
765 }
766 
767 static bool isAllSectionDescription(const OutputSection &Cmd) {
768   for (BaseCommand *Base : Cmd.SectionCommands)
769     if (!isa<InputSectionDescription>(*Base))
770       return false;
771   return true;
772 }
773 
774 void LinkerScript::adjustSectionsBeforeSorting() {
775   // If the output section contains only symbol assignments, create a
776   // corresponding output section. The issue is what to do with linker script
777   // like ".foo : { symbol = 42; }". One option would be to convert it to
778   // "symbol = 42;". That is, move the symbol out of the empty section
779   // description. That seems to be what bfd does for this simple case. The
780   // problem is that this is not completely general. bfd will give up and
781   // create a dummy section too if there is a ". = . + 1" inside the section
782   // for example.
783   // Given that we want to create the section, we have to worry what impact
784   // it will have on the link. For example, if we just create a section with
785   // 0 for flags, it would change which PT_LOADs are created.
786   // We could remember that that particular section is dummy and ignore it in
787   // other parts of the linker, but unfortunately there are quite a few places
788   // that would need to change:
789   //   * The program header creation.
790   //   * The orphan section placement.
791   //   * The address assignment.
792   // The other option is to pick flags that minimize the impact the section
793   // will have on the rest of the linker. That is why we copy the flags from
794   // the previous sections. Only a few flags are needed to keep the impact low.
795   uint64_t Flags = SHF_ALLOC;
796 
797   for (BaseCommand *Cmd : SectionCommands) {
798     auto *Sec = dyn_cast<OutputSection>(Cmd);
799     if (!Sec)
800       continue;
801     if (Sec->Live) {
802       Flags = Sec->Flags & (SHF_ALLOC | SHF_WRITE | SHF_EXECINSTR);
803       continue;
804     }
805 
806     if (isAllSectionDescription(*Sec))
807       continue;
808 
809     Sec->Live = true;
810     Sec->Flags = Flags;
811   }
812 }
813 
814 void LinkerScript::adjustSectionsAfterSorting() {
815   // Try and find an appropriate memory region to assign offsets in.
816   for (BaseCommand *Base : SectionCommands) {
817     if (auto *Sec = dyn_cast<OutputSection>(Base)) {
818       if (!Sec->Live)
819         continue;
820       if (!Sec->LMARegionName.empty()) {
821         if (MemoryRegion *M = MemoryRegions.lookup(Sec->LMARegionName))
822           Sec->LMARegion = M;
823         else
824           error("memory region '" + Sec->LMARegionName + "' not declared");
825       }
826       Sec->MemRegion = findMemoryRegion(Sec);
827       // Handle align (e.g. ".foo : ALIGN(16) { ... }").
828       if (Sec->AlignExpr)
829         Sec->Alignment =
830             std::max<uint32_t>(Sec->Alignment, Sec->AlignExpr().getValue());
831     }
832   }
833 
834   // If output section command doesn't specify any segments,
835   // and we haven't previously assigned any section to segment,
836   // then we simply assign section to the very first load segment.
837   // Below is an example of such linker script:
838   // PHDRS { seg PT_LOAD; }
839   // SECTIONS { .aaa : { *(.aaa) } }
840   std::vector<StringRef> DefPhdrs;
841   auto FirstPtLoad =
842       std::find_if(PhdrsCommands.begin(), PhdrsCommands.end(),
843                    [](const PhdrsCommand &Cmd) { return Cmd.Type == PT_LOAD; });
844   if (FirstPtLoad != PhdrsCommands.end())
845     DefPhdrs.push_back(FirstPtLoad->Name);
846 
847   // Walk the commands and propagate the program headers to commands that don't
848   // explicitly specify them.
849   for (BaseCommand *Base : SectionCommands) {
850     auto *Sec = dyn_cast<OutputSection>(Base);
851     if (!Sec)
852       continue;
853 
854     if (Sec->Phdrs.empty()) {
855       // To match the bfd linker script behaviour, only propagate program
856       // headers to sections that are allocated.
857       if (Sec->Flags & SHF_ALLOC)
858         Sec->Phdrs = DefPhdrs;
859     } else {
860       DefPhdrs = Sec->Phdrs;
861     }
862   }
863 }
864 
865 static OutputSection *findFirstSection(PhdrEntry *Load) {
866   for (OutputSection *Sec : OutputSections)
867     if (Sec->PtLoad == Load)
868       return Sec;
869   return nullptr;
870 }
871 
872 // Try to find an address for the file and program headers output sections,
873 // which were unconditionally added to the first PT_LOAD segment earlier.
874 //
875 // When using the default layout, we check if the headers fit below the first
876 // allocated section. When using a linker script, we also check if the headers
877 // are covered by the output section. This allows omitting the headers by not
878 // leaving enough space for them in the linker script; this pattern is common
879 // in embedded systems.
880 //
881 // If there isn't enough space for these sections, we'll remove them from the
882 // PT_LOAD segment, and we'll also remove the PT_PHDR segment.
883 void LinkerScript::allocateHeaders(std::vector<PhdrEntry *> &Phdrs) {
884   uint64_t Min = std::numeric_limits<uint64_t>::max();
885   for (OutputSection *Sec : OutputSections)
886     if (Sec->Flags & SHF_ALLOC)
887       Min = std::min<uint64_t>(Min, Sec->Addr);
888 
889   auto It = llvm::find_if(
890       Phdrs, [](const PhdrEntry *E) { return E->p_type == PT_LOAD; });
891   if (It == Phdrs.end())
892     return;
893   PhdrEntry *FirstPTLoad = *It;
894 
895   uint64_t HeaderSize = getHeaderSize();
896   // When linker script with SECTIONS is being used, don't output headers
897   // unless there's a space for them.
898   uint64_t Base = HasSectionsCommand ? alignDown(Min, Config->MaxPageSize) : 0;
899   if (HeaderSize <= Min - Base || Script->hasPhdrsCommands()) {
900     Min = alignDown(Min - HeaderSize, Config->MaxPageSize);
901     Out::ElfHeader->Addr = Min;
902     Out::ProgramHeaders->Addr = Min + Out::ElfHeader->Size;
903     return;
904   }
905 
906   Out::ElfHeader->PtLoad = nullptr;
907   Out::ProgramHeaders->PtLoad = nullptr;
908   FirstPTLoad->FirstSec = findFirstSection(FirstPTLoad);
909 
910   llvm::erase_if(Phdrs,
911                  [](const PhdrEntry *E) { return E->p_type == PT_PHDR; });
912 }
913 
914 LinkerScript::AddressState::AddressState() {
915   for (auto &MRI : Script->MemoryRegions) {
916     MemoryRegion *MR = MRI.second;
917     MR->CurPos = MR->Origin;
918   }
919 }
920 
921 static uint64_t getInitialDot() {
922   // By default linker scripts use an initial value of 0 for '.',
923   // but prefer -image-base if set.
924   if (Script->HasSectionsCommand)
925     return Config->ImageBase ? *Config->ImageBase : 0;
926 
927   uint64_t StartAddr = UINT64_MAX;
928   // The Sections with -T<section> have been sorted in order of ascending
929   // address. We must lower StartAddr if the lowest -T<section address> as
930   // calls to setDot() must be monotonically increasing.
931   for (auto &KV : Config->SectionStartMap)
932     StartAddr = std::min(StartAddr, KV.second);
933   return std::min(StartAddr, Target->getImageBase() + elf::getHeaderSize());
934 }
935 
936 // Here we assign addresses as instructed by linker script SECTIONS
937 // sub-commands. Doing that allows us to use final VA values, so here
938 // we also handle rest commands like symbol assignments and ASSERTs.
939 void LinkerScript::assignAddresses() {
940   Dot = getInitialDot();
941 
942   auto Deleter = make_unique<AddressState>();
943   Ctx = Deleter.get();
944   ErrorOnMissingSection = true;
945   switchTo(Aether);
946 
947   for (BaseCommand *Base : SectionCommands) {
948     if (auto *Cmd = dyn_cast<SymbolAssignment>(Base)) {
949       assignSymbol(Cmd, false);
950       continue;
951     }
952 
953     if (auto *Cmd = dyn_cast<AssertCommand>(Base)) {
954       Cmd->Expression();
955       continue;
956     }
957 
958     assignOffsets(cast<OutputSection>(Base));
959   }
960   Ctx = nullptr;
961 }
962 
963 // Creates program headers as instructed by PHDRS linker script command.
964 std::vector<PhdrEntry *> LinkerScript::createPhdrs() {
965   std::vector<PhdrEntry *> Ret;
966 
967   // Process PHDRS and FILEHDR keywords because they are not
968   // real output sections and cannot be added in the following loop.
969   for (const PhdrsCommand &Cmd : PhdrsCommands) {
970     PhdrEntry *Phdr = make<PhdrEntry>(Cmd.Type, Cmd.Flags ? *Cmd.Flags : PF_R);
971 
972     if (Cmd.HasFilehdr)
973       Phdr->add(Out::ElfHeader);
974     if (Cmd.HasPhdrs)
975       Phdr->add(Out::ProgramHeaders);
976 
977     if (Cmd.LMAExpr) {
978       Phdr->p_paddr = Cmd.LMAExpr().getValue();
979       Phdr->HasLMA = true;
980     }
981     Ret.push_back(Phdr);
982   }
983 
984   // Add output sections to program headers.
985   for (OutputSection *Sec : OutputSections) {
986     // Assign headers specified by linker script
987     for (size_t Id : getPhdrIndices(Sec)) {
988       Ret[Id]->add(Sec);
989       if (!PhdrsCommands[Id].Flags.hasValue())
990         Ret[Id]->p_flags |= Sec->getPhdrFlags();
991     }
992   }
993   return Ret;
994 }
995 
996 // Returns true if we should emit an .interp section.
997 //
998 // We usually do. But if PHDRS commands are given, and
999 // no PT_INTERP is there, there's no place to emit an
1000 // .interp, so we don't do that in that case.
1001 bool LinkerScript::needsInterpSection() {
1002   if (PhdrsCommands.empty())
1003     return true;
1004   for (PhdrsCommand &Cmd : PhdrsCommands)
1005     if (Cmd.Type == PT_INTERP)
1006       return true;
1007   return false;
1008 }
1009 
1010 ExprValue LinkerScript::getSymbolValue(StringRef Name, const Twine &Loc) {
1011   if (Name == ".") {
1012     if (Ctx)
1013       return {Ctx->OutSec, false, Dot - Ctx->OutSec->Addr, Loc};
1014     error(Loc + ": unable to get location counter value");
1015     return 0;
1016   }
1017 
1018   if (Symbol *Sym = Symtab->find(Name)) {
1019     if (auto *DS = dyn_cast<Defined>(Sym))
1020       return {DS->Section, false, DS->Value, Loc};
1021     if (auto *SS = dyn_cast<SharedSymbol>(Sym))
1022       if (!ErrorOnMissingSection || SS->CopyRelSec)
1023         return {SS->CopyRelSec, false, 0, Loc};
1024   }
1025 
1026   error(Loc + ": symbol not found: " + Name);
1027   return 0;
1028 }
1029 
1030 // Returns the index of the segment named Name.
1031 static Optional<size_t> getPhdrIndex(ArrayRef<PhdrsCommand> Vec,
1032                                      StringRef Name) {
1033   for (size_t I = 0; I < Vec.size(); ++I)
1034     if (Vec[I].Name == Name)
1035       return I;
1036   return None;
1037 }
1038 
1039 // Returns indices of ELF headers containing specific section. Each index is a
1040 // zero based number of ELF header listed within PHDRS {} script block.
1041 std::vector<size_t> LinkerScript::getPhdrIndices(OutputSection *Cmd) {
1042   std::vector<size_t> Ret;
1043 
1044   for (StringRef S : Cmd->Phdrs) {
1045     if (Optional<size_t> Idx = getPhdrIndex(PhdrsCommands, S))
1046       Ret.push_back(*Idx);
1047     else if (S != "NONE")
1048       error(Cmd->Location + ": section header '" + S +
1049             "' is not listed in PHDRS");
1050   }
1051   return Ret;
1052 }
1053