1 //===- LinkerScript.cpp ---------------------------------------------------===//
2 //
3 //                             The LLVM Linker
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the parser/evaluator of the linker script.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "LinkerScript.h"
15 #include "Config.h"
16 #include "InputSection.h"
17 #include "OutputSections.h"
18 #include "SymbolTable.h"
19 #include "Symbols.h"
20 #include "SyntheticSections.h"
21 #include "Target.h"
22 #include "Writer.h"
23 #include "lld/Common/Memory.h"
24 #include "lld/Common/Strings.h"
25 #include "lld/Common/Threads.h"
26 #include "llvm/ADT/STLExtras.h"
27 #include "llvm/ADT/StringRef.h"
28 #include "llvm/BinaryFormat/ELF.h"
29 #include "llvm/Support/Casting.h"
30 #include "llvm/Support/Endian.h"
31 #include "llvm/Support/ErrorHandling.h"
32 #include "llvm/Support/FileSystem.h"
33 #include "llvm/Support/Path.h"
34 #include <algorithm>
35 #include <cassert>
36 #include <cstddef>
37 #include <cstdint>
38 #include <iterator>
39 #include <limits>
40 #include <string>
41 #include <vector>
42 
43 using namespace llvm;
44 using namespace llvm::ELF;
45 using namespace llvm::object;
46 using namespace llvm::support::endian;
47 using namespace lld;
48 using namespace lld::elf;
49 
50 LinkerScript *elf::Script;
51 
52 static uint64_t getOutputSectionVA(SectionBase *InputSec, StringRef Loc) {
53   if (OutputSection *OS = InputSec->getOutputSection())
54     return OS->Addr;
55   error(Loc + ": unable to evaluate expression: input section " +
56         InputSec->Name + " has no output section assigned");
57   return 0;
58 }
59 
60 uint64_t ExprValue::getValue() const {
61   if (Sec)
62     return alignTo(Sec->getOffset(Val) + getOutputSectionVA(Sec, Loc),
63                    Alignment);
64   return alignTo(Val, Alignment);
65 }
66 
67 uint64_t ExprValue::getSecAddr() const {
68   if (Sec)
69     return Sec->getOffset(0) + getOutputSectionVA(Sec, Loc);
70   return 0;
71 }
72 
73 uint64_t ExprValue::getSectionOffset() const {
74   // If the alignment is trivial, we don't have to compute the full
75   // value to know the offset. This allows this function to succeed in
76   // cases where the output section is not yet known.
77   if (Alignment == 1 && (!Sec || !Sec->getOutputSection()))
78     return Val;
79   return getValue() - getSecAddr();
80 }
81 
82 OutputSection *LinkerScript::createOutputSection(StringRef Name,
83                                                  StringRef Location) {
84   OutputSection *&SecRef = NameToOutputSection[Name];
85   OutputSection *Sec;
86   if (SecRef && SecRef->Location.empty()) {
87     // There was a forward reference.
88     Sec = SecRef;
89   } else {
90     Sec = make<OutputSection>(Name, SHT_NOBITS, 0);
91     if (!SecRef)
92       SecRef = Sec;
93   }
94   Sec->Location = Location;
95   return Sec;
96 }
97 
98 OutputSection *LinkerScript::getOrCreateOutputSection(StringRef Name) {
99   OutputSection *&CmdRef = NameToOutputSection[Name];
100   if (!CmdRef)
101     CmdRef = make<OutputSection>(Name, SHT_PROGBITS, 0);
102   return CmdRef;
103 }
104 
105 // Expands the memory region by the specified size.
106 static void expandMemoryRegion(MemoryRegion *MemRegion, uint64_t Size,
107                                StringRef RegionName, StringRef SecName) {
108   MemRegion->CurPos += Size;
109   uint64_t NewSize = MemRegion->CurPos - MemRegion->Origin;
110   if (NewSize > MemRegion->Length)
111     error("section '" + SecName + "' will not fit in region '" + RegionName +
112           "': overflowed by " + Twine(NewSize - MemRegion->Length) + " bytes");
113 }
114 
115 void LinkerScript::expandOutputSection(uint64_t Size) {
116   Ctx->OutSec->Size += Size;
117   if (Ctx->MemRegion)
118     expandMemoryRegion(Ctx->MemRegion, Size, Ctx->MemRegion->Name,
119                        Ctx->OutSec->Name);
120   if (Ctx->LMARegion)
121     expandMemoryRegion(Ctx->LMARegion, Size, Ctx->LMARegion->Name,
122                        Ctx->OutSec->Name);
123 }
124 
125 void LinkerScript::setDot(Expr E, const Twine &Loc, bool InSec) {
126   uint64_t Val = E().getValue();
127   if (Val < Dot && InSec)
128     error(Loc + ": unable to move location counter backward for: " +
129           Ctx->OutSec->Name);
130 
131   // Update to location counter means update to section size.
132   if (InSec)
133     expandOutputSection(Val - Dot);
134   Dot = Val;
135 }
136 
137 // Used for handling linker symbol assignments, for both finalizing
138 // their values and doing early declarations. Returns true if symbol
139 // should be defined from linker script.
140 static bool shouldDefineSym(SymbolAssignment *Cmd) {
141   if (Cmd->Name == ".")
142     return false;
143 
144   if (!Cmd->Provide)
145     return true;
146 
147   // If a symbol was in PROVIDE(), we need to define it only
148   // when it is a referenced undefined symbol.
149   Symbol *B = Symtab->find(Cmd->Name);
150   if (B && !B->isDefined())
151     return true;
152   return false;
153 }
154 
155 // This function is called from processSectionCommands,
156 // while we are fixing the output section layout.
157 void LinkerScript::addSymbol(SymbolAssignment *Cmd) {
158   if (!shouldDefineSym(Cmd))
159     return;
160 
161   // Define a symbol.
162   Symbol *Sym;
163   uint8_t Visibility = Cmd->Hidden ? STV_HIDDEN : STV_DEFAULT;
164   std::tie(Sym, std::ignore) = Symtab->insert(Cmd->Name, /*Type*/ 0, Visibility,
165                                               /*CanOmitFromDynSym*/ false,
166                                               /*File*/ nullptr);
167   ExprValue Value = Cmd->Expression();
168   SectionBase *Sec = Value.isAbsolute() ? nullptr : Value.Sec;
169 
170   // When this function is called, section addresses have not been
171   // fixed yet. So, we may or may not know the value of the RHS
172   // expression.
173   //
174   // For example, if an expression is `x = 42`, we know x is always 42.
175   // However, if an expression is `x = .`, there's no way to know its
176   // value at the moment.
177   //
178   // We want to set symbol values early if we can. This allows us to
179   // use symbols as variables in linker scripts. Doing so allows us to
180   // write expressions like this: `alignment = 16; . = ALIGN(., alignment)`.
181   uint64_t SymValue = Value.Sec ? 0 : Value.getValue();
182 
183   replaceSymbol<Defined>(Sym, nullptr, Cmd->Name, STB_GLOBAL, Visibility,
184                          STT_NOTYPE, SymValue, 0, Sec);
185   Cmd->Sym = cast<Defined>(Sym);
186 }
187 
188 // This function is called from LinkerScript::declareSymbols.
189 // It creates a placeholder symbol if needed.
190 static void declareSymbol(SymbolAssignment *Cmd) {
191   if (!shouldDefineSym(Cmd))
192     return;
193 
194   // We can't calculate final value right now.
195   Symbol *Sym;
196   uint8_t Visibility = Cmd->Hidden ? STV_HIDDEN : STV_DEFAULT;
197   std::tie(Sym, std::ignore) = Symtab->insert(Cmd->Name, /*Type*/ 0, Visibility,
198                                               /*CanOmitFromDynSym*/ false,
199                                               /*File*/ nullptr);
200   replaceSymbol<Defined>(Sym, nullptr, Cmd->Name, STB_GLOBAL, Visibility,
201                          STT_NOTYPE, 0, 0, nullptr);
202   Cmd->Sym = cast<Defined>(Sym);
203   Cmd->Provide = false;
204 }
205 
206 // This method is used to handle INSERT AFTER statement. Here we rebuild
207 // the list of script commands to mix sections inserted into.
208 void LinkerScript::processInsertCommands() {
209   std::vector<BaseCommand *> V;
210   for (BaseCommand *Base : SectionCommands) {
211     V.push_back(Base);
212     if (auto *Cmd = dyn_cast<OutputSection>(Base)) {
213       std::vector<BaseCommand *> &W = InsertAfterCommands[Cmd->Name];
214       V.insert(V.end(), W.begin(), W.end());
215       W.clear();
216     }
217   }
218   for (std::pair<StringRef, std::vector<BaseCommand *>> &P :
219        InsertAfterCommands)
220     if (!P.second.empty())
221       error("unable to INSERT AFTER " + P.first + ": section not defined");
222 
223   SectionCommands = std::move(V);
224 }
225 
226 // Symbols defined in script should not be inlined by LTO. At the same time
227 // we don't know their final values until late stages of link. Here we scan
228 // over symbol assignment commands and create placeholder symbols if needed.
229 void LinkerScript::declareSymbols() {
230   assert(!Ctx);
231   for (BaseCommand *Base : SectionCommands) {
232     if (auto *Cmd = dyn_cast<SymbolAssignment>(Base)) {
233       declareSymbol(Cmd);
234       continue;
235     }
236     auto *Sec = dyn_cast<OutputSection>(Base);
237     if (!Sec)
238       continue;
239     // If the output section directive has constraints,
240     // we can't say for sure if it is going to be included or not.
241     // Skip such sections for now. Improve the checks if we ever
242     // need symbols from that sections to be declared early.
243     if (Sec->Constraint != ConstraintKind::NoConstraint)
244       continue;
245     for (BaseCommand *Base2 : Sec->SectionCommands)
246       if (auto *Cmd = dyn_cast<SymbolAssignment>(Base2))
247         declareSymbol(Cmd);
248   }
249 }
250 
251 // This function is called from assignAddresses, while we are
252 // fixing the output section addresses. This function is supposed
253 // to set the final value for a given symbol assignment.
254 void LinkerScript::assignSymbol(SymbolAssignment *Cmd, bool InSec) {
255   if (Cmd->Name == ".") {
256     setDot(Cmd->Expression, Cmd->Location, InSec);
257     return;
258   }
259 
260   if (!Cmd->Sym)
261     return;
262 
263   ExprValue V = Cmd->Expression();
264   if (V.isAbsolute()) {
265     Cmd->Sym->Section = nullptr;
266     Cmd->Sym->Value = V.getValue();
267   } else {
268     Cmd->Sym->Section = V.Sec;
269     Cmd->Sym->Value = V.getSectionOffset();
270   }
271 }
272 
273 static std::string getFilename(InputFile *File) {
274   if (!File)
275     return "";
276   if (File->ArchiveName.empty())
277     return File->getName();
278   return (File->ArchiveName + "(" + File->getName() + ")").str();
279 }
280 
281 bool LinkerScript::shouldKeep(InputSectionBase *S) {
282   if (KeptSections.empty())
283     return false;
284   std::string Filename = getFilename(S->File);
285   for (InputSectionDescription *ID : KeptSections)
286     if (ID->FilePat.match(Filename))
287       for (SectionPattern &P : ID->SectionPatterns)
288         if (P.SectionPat.match(S->Name))
289           return true;
290   return false;
291 }
292 
293 // A helper function for the SORT() command.
294 static std::function<bool(InputSectionBase *, InputSectionBase *)>
295 getComparator(SortSectionPolicy K) {
296   switch (K) {
297   case SortSectionPolicy::Alignment:
298     return [](InputSectionBase *A, InputSectionBase *B) {
299       // ">" is not a mistake. Sections with larger alignments are placed
300       // before sections with smaller alignments in order to reduce the
301       // amount of padding necessary. This is compatible with GNU.
302       return A->Alignment > B->Alignment;
303     };
304   case SortSectionPolicy::Name:
305     return [](InputSectionBase *A, InputSectionBase *B) {
306       return A->Name < B->Name;
307     };
308   case SortSectionPolicy::Priority:
309     return [](InputSectionBase *A, InputSectionBase *B) {
310       return getPriority(A->Name) < getPriority(B->Name);
311     };
312   default:
313     llvm_unreachable("unknown sort policy");
314   }
315 }
316 
317 // A helper function for the SORT() command.
318 static bool matchConstraints(ArrayRef<InputSection *> Sections,
319                              ConstraintKind Kind) {
320   if (Kind == ConstraintKind::NoConstraint)
321     return true;
322 
323   bool IsRW = llvm::any_of(
324       Sections, [](InputSection *Sec) { return Sec->Flags & SHF_WRITE; });
325 
326   return (IsRW && Kind == ConstraintKind::ReadWrite) ||
327          (!IsRW && Kind == ConstraintKind::ReadOnly);
328 }
329 
330 static void sortSections(MutableArrayRef<InputSection *> Vec,
331                          SortSectionPolicy K) {
332   if (K != SortSectionPolicy::Default && K != SortSectionPolicy::None)
333     std::stable_sort(Vec.begin(), Vec.end(), getComparator(K));
334 }
335 
336 // Sort sections as instructed by SORT-family commands and --sort-section
337 // option. Because SORT-family commands can be nested at most two depth
338 // (e.g. SORT_BY_NAME(SORT_BY_ALIGNMENT(.text.*))) and because the command
339 // line option is respected even if a SORT command is given, the exact
340 // behavior we have here is a bit complicated. Here are the rules.
341 //
342 // 1. If two SORT commands are given, --sort-section is ignored.
343 // 2. If one SORT command is given, and if it is not SORT_NONE,
344 //    --sort-section is handled as an inner SORT command.
345 // 3. If one SORT command is given, and if it is SORT_NONE, don't sort.
346 // 4. If no SORT command is given, sort according to --sort-section.
347 static void sortInputSections(MutableArrayRef<InputSection *> Vec,
348                               const SectionPattern &Pat) {
349   if (Pat.SortOuter == SortSectionPolicy::None)
350     return;
351 
352   if (Pat.SortInner == SortSectionPolicy::Default)
353     sortSections(Vec, Config->SortSection);
354   else
355     sortSections(Vec, Pat.SortInner);
356   sortSections(Vec, Pat.SortOuter);
357 }
358 
359 // Compute and remember which sections the InputSectionDescription matches.
360 std::vector<InputSection *>
361 LinkerScript::computeInputSections(const InputSectionDescription *Cmd) {
362   std::vector<InputSection *> Ret;
363 
364   // Collects all sections that satisfy constraints of Cmd.
365   for (const SectionPattern &Pat : Cmd->SectionPatterns) {
366     size_t SizeBefore = Ret.size();
367 
368     for (InputSectionBase *Sec : InputSections) {
369       if (!Sec->Live || Sec->Assigned)
370         continue;
371 
372       // For -emit-relocs we have to ignore entries like
373       //   .rela.dyn : { *(.rela.data) }
374       // which are common because they are in the default bfd script.
375       if (Sec->Type == SHT_REL || Sec->Type == SHT_RELA)
376         continue;
377 
378       std::string Filename = getFilename(Sec->File);
379       if (!Cmd->FilePat.match(Filename) ||
380           Pat.ExcludedFilePat.match(Filename) ||
381           !Pat.SectionPat.match(Sec->Name))
382         continue;
383 
384       // It is safe to assume that Sec is an InputSection
385       // because mergeable or EH input sections have already been
386       // handled and eliminated.
387       Ret.push_back(cast<InputSection>(Sec));
388       Sec->Assigned = true;
389     }
390 
391     sortInputSections(MutableArrayRef<InputSection *>(Ret).slice(SizeBefore),
392                       Pat);
393   }
394   return Ret;
395 }
396 
397 void LinkerScript::discard(ArrayRef<InputSection *> V) {
398   for (InputSection *S : V) {
399     if (S == InX::ShStrTab || S == InX::Dynamic || S == InX::DynSymTab ||
400         S == InX::DynStrTab)
401       error("discarding " + S->Name + " section is not allowed");
402 
403     // You can discard .hash and .gnu.hash sections by linker scripts. Since
404     // they are synthesized sections, we need to handle them differently than
405     // other regular sections.
406     if (S == InX::GnuHashTab)
407       InX::GnuHashTab = nullptr;
408     if (S == InX::HashTab)
409       InX::HashTab = nullptr;
410 
411     S->Assigned = false;
412     S->Live = false;
413     discard(S->DependentSections);
414   }
415 }
416 
417 std::vector<InputSection *>
418 LinkerScript::createInputSectionList(OutputSection &OutCmd) {
419   std::vector<InputSection *> Ret;
420 
421   for (BaseCommand *Base : OutCmd.SectionCommands) {
422     if (auto *Cmd = dyn_cast<InputSectionDescription>(Base)) {
423       Cmd->Sections = computeInputSections(Cmd);
424       Ret.insert(Ret.end(), Cmd->Sections.begin(), Cmd->Sections.end());
425     }
426   }
427   return Ret;
428 }
429 
430 void LinkerScript::processSectionCommands() {
431   // A symbol can be assigned before any section is mentioned in the linker
432   // script. In an DSO, the symbol values are addresses, so the only important
433   // section values are:
434   // * SHN_UNDEF
435   // * SHN_ABS
436   // * Any value meaning a regular section.
437   // To handle that, create a dummy aether section that fills the void before
438   // the linker scripts switches to another section. It has an index of one
439   // which will map to whatever the first actual section is.
440   Aether = make<OutputSection>("", 0, SHF_ALLOC);
441   Aether->SectionIndex = 1;
442 
443   // Ctx captures the local AddressState and makes it accessible deliberately.
444   // This is needed as there are some cases where we cannot just
445   // thread the current state through to a lambda function created by the
446   // script parser.
447   auto Deleter = make_unique<AddressState>();
448   Ctx = Deleter.get();
449   Ctx->OutSec = Aether;
450 
451   size_t I = 0;
452   // Add input sections to output sections.
453   for (BaseCommand *Base : SectionCommands) {
454     // Handle symbol assignments outside of any output section.
455     if (auto *Cmd = dyn_cast<SymbolAssignment>(Base)) {
456       addSymbol(Cmd);
457       continue;
458     }
459 
460     if (auto *Sec = dyn_cast<OutputSection>(Base)) {
461       std::vector<InputSection *> V = createInputSectionList(*Sec);
462 
463       // The output section name `/DISCARD/' is special.
464       // Any input section assigned to it is discarded.
465       if (Sec->Name == "/DISCARD/") {
466         discard(V);
467         Sec->SectionCommands.clear();
468         continue;
469       }
470 
471       // This is for ONLY_IF_RO and ONLY_IF_RW. An output section directive
472       // ".foo : ONLY_IF_R[OW] { ... }" is handled only if all member input
473       // sections satisfy a given constraint. If not, a directive is handled
474       // as if it wasn't present from the beginning.
475       //
476       // Because we'll iterate over SectionCommands many more times, the easy
477       // way to "make it as if it wasn't present" is to make it empty.
478       if (!matchConstraints(V, Sec->Constraint)) {
479         for (InputSectionBase *S : V)
480           S->Assigned = false;
481         Sec->SectionCommands.clear();
482         continue;
483       }
484 
485       // A directive may contain symbol definitions like this:
486       // ".foo : { ...; bar = .; }". Handle them.
487       for (BaseCommand *Base : Sec->SectionCommands)
488         if (auto *OutCmd = dyn_cast<SymbolAssignment>(Base))
489           addSymbol(OutCmd);
490 
491       // Handle subalign (e.g. ".foo : SUBALIGN(32) { ... }"). If subalign
492       // is given, input sections are aligned to that value, whether the
493       // given value is larger or smaller than the original section alignment.
494       if (Sec->SubalignExpr) {
495         uint32_t Subalign = Sec->SubalignExpr().getValue();
496         for (InputSectionBase *S : V)
497           S->Alignment = Subalign;
498       }
499 
500       // Add input sections to an output section.
501       for (InputSection *S : V)
502         Sec->addSection(S);
503 
504       Sec->SectionIndex = I++;
505       if (Sec->Noload)
506         Sec->Type = SHT_NOBITS;
507       if (Sec->NonAlloc)
508         Sec->Flags &= ~(uint64_t)SHF_ALLOC;
509     }
510   }
511   Ctx = nullptr;
512 }
513 
514 static OutputSection *findByName(ArrayRef<BaseCommand *> Vec,
515                                  StringRef Name) {
516   for (BaseCommand *Base : Vec)
517     if (auto *Sec = dyn_cast<OutputSection>(Base))
518       if (Sec->Name == Name)
519         return Sec;
520   return nullptr;
521 }
522 
523 static OutputSection *createSection(InputSectionBase *IS,
524                                     StringRef OutsecName) {
525   OutputSection *Sec = Script->createOutputSection(OutsecName, "<internal>");
526   Sec->addSection(cast<InputSection>(IS));
527   return Sec;
528 }
529 
530 static OutputSection *addInputSec(StringMap<OutputSection *> &Map,
531                                   InputSectionBase *IS, StringRef OutsecName) {
532   // Sections with SHT_GROUP or SHF_GROUP attributes reach here only when the -r
533   // option is given. A section with SHT_GROUP defines a "section group", and
534   // its members have SHF_GROUP attribute. Usually these flags have already been
535   // stripped by InputFiles.cpp as section groups are processed and uniquified.
536   // However, for the -r option, we want to pass through all section groups
537   // as-is because adding/removing members or merging them with other groups
538   // change their semantics.
539   if (IS->Type == SHT_GROUP || (IS->Flags & SHF_GROUP))
540     return createSection(IS, OutsecName);
541 
542   // Imagine .zed : { *(.foo) *(.bar) } script. Both foo and bar may have
543   // relocation sections .rela.foo and .rela.bar for example. Most tools do
544   // not allow multiple REL[A] sections for output section. Hence we
545   // should combine these relocation sections into single output.
546   // We skip synthetic sections because it can be .rela.dyn/.rela.plt or any
547   // other REL[A] sections created by linker itself.
548   if (!isa<SyntheticSection>(IS) &&
549       (IS->Type == SHT_REL || IS->Type == SHT_RELA)) {
550     auto *Sec = cast<InputSection>(IS);
551     OutputSection *Out = Sec->getRelocatedSection()->getOutputSection();
552 
553     if (Out->RelocationSection) {
554       Out->RelocationSection->addSection(Sec);
555       return nullptr;
556     }
557 
558     Out->RelocationSection = createSection(IS, OutsecName);
559     return Out->RelocationSection;
560   }
561 
562   // When control reaches here, mergeable sections have already been merged into
563   // synthetic sections. For relocatable case we want to create one output
564   // section per syntetic section so that they have a valid sh_entsize.
565   if (Config->Relocatable && (IS->Flags & SHF_MERGE))
566     return createSection(IS, OutsecName);
567 
568   //  The ELF spec just says
569   // ----------------------------------------------------------------
570   // In the first phase, input sections that match in name, type and
571   // attribute flags should be concatenated into single sections.
572   // ----------------------------------------------------------------
573   //
574   // However, it is clear that at least some flags have to be ignored for
575   // section merging. At the very least SHF_GROUP and SHF_COMPRESSED have to be
576   // ignored. We should not have two output .text sections just because one was
577   // in a group and another was not for example.
578   //
579   // It also seems that wording was a late addition and didn't get the
580   // necessary scrutiny.
581   //
582   // Merging sections with different flags is expected by some users. One
583   // reason is that if one file has
584   //
585   // int *const bar __attribute__((section(".foo"))) = (int *)0;
586   //
587   // gcc with -fPIC will produce a read only .foo section. But if another
588   // file has
589   //
590   // int zed;
591   // int *const bar __attribute__((section(".foo"))) = (int *)&zed;
592   //
593   // gcc with -fPIC will produce a read write section.
594   //
595   // Last but not least, when using linker script the merge rules are forced by
596   // the script. Unfortunately, linker scripts are name based. This means that
597   // expressions like *(.foo*) can refer to multiple input sections with
598   // different flags. We cannot put them in different output sections or we
599   // would produce wrong results for
600   //
601   // start = .; *(.foo.*) end = .; *(.bar)
602   //
603   // and a mapping of .foo1 and .bar1 to one section and .foo2 and .bar2 to
604   // another. The problem is that there is no way to layout those output
605   // sections such that the .foo sections are the only thing between the start
606   // and end symbols.
607   //
608   // Given the above issues, we instead merge sections by name and error on
609   // incompatible types and flags.
610   OutputSection *&Sec = Map[OutsecName];
611   if (Sec) {
612     Sec->addSection(cast<InputSection>(IS));
613     return nullptr;
614   }
615 
616   Sec = createSection(IS, OutsecName);
617   return Sec;
618 }
619 
620 // Add sections that didn't match any sections command.
621 void LinkerScript::addOrphanSections() {
622   unsigned End = SectionCommands.size();
623   StringMap<OutputSection *> Map;
624 
625   std::vector<OutputSection *> V;
626   for (InputSectionBase *S : InputSections) {
627     if (!S->Live || S->Parent)
628       continue;
629 
630     StringRef Name = getOutputSectionName(S);
631 
632     if (Config->OrphanHandling == OrphanHandlingPolicy::Error)
633       error(toString(S) + " is being placed in '" + Name + "'");
634     else if (Config->OrphanHandling == OrphanHandlingPolicy::Warn)
635       warn(toString(S) + " is being placed in '" + Name + "'");
636 
637     if (OutputSection *Sec =
638             findByName(makeArrayRef(SectionCommands).slice(0, End), Name)) {
639       Sec->addSection(cast<InputSection>(S));
640       continue;
641     }
642 
643     if (OutputSection *OS = addInputSec(Map, S, Name))
644       V.push_back(OS);
645     assert(S->getOutputSection()->SectionIndex == UINT32_MAX);
646   }
647 
648   // If no SECTIONS command was given, we should insert sections commands
649   // before others, so that we can handle scripts which refers them,
650   // for example: "foo = ABSOLUTE(ADDR(.text)));".
651   // When SECTIONS command is present we just add all orphans to the end.
652   if (HasSectionsCommand)
653     SectionCommands.insert(SectionCommands.end(), V.begin(), V.end());
654   else
655     SectionCommands.insert(SectionCommands.begin(), V.begin(), V.end());
656 }
657 
658 uint64_t LinkerScript::advance(uint64_t Size, unsigned Alignment) {
659   bool IsTbss =
660       (Ctx->OutSec->Flags & SHF_TLS) && Ctx->OutSec->Type == SHT_NOBITS;
661   uint64_t Start = IsTbss ? Dot + Ctx->ThreadBssOffset : Dot;
662   Start = alignTo(Start, Alignment);
663   uint64_t End = Start + Size;
664 
665   if (IsTbss)
666     Ctx->ThreadBssOffset = End - Dot;
667   else
668     Dot = End;
669   return End;
670 }
671 
672 void LinkerScript::output(InputSection *S) {
673   uint64_t Before = advance(0, 1);
674   uint64_t Pos = advance(S->getSize(), S->Alignment);
675   S->OutSecOff = Pos - S->getSize() - Ctx->OutSec->Addr;
676 
677   // Update output section size after adding each section. This is so that
678   // SIZEOF works correctly in the case below:
679   // .foo { *(.aaa) a = SIZEOF(.foo); *(.bbb) }
680   expandOutputSection(Pos - Before);
681 }
682 
683 void LinkerScript::switchTo(OutputSection *Sec) {
684   if (Ctx->OutSec == Sec)
685     return;
686 
687   Ctx->OutSec = Sec;
688   Ctx->OutSec->Addr = advance(0, Ctx->OutSec->Alignment);
689 }
690 
691 // This function searches for a memory region to place the given output
692 // section in. If found, a pointer to the appropriate memory region is
693 // returned. Otherwise, a nullptr is returned.
694 MemoryRegion *LinkerScript::findMemoryRegion(OutputSection *Sec) {
695   // If a memory region name was specified in the output section command,
696   // then try to find that region first.
697   if (!Sec->MemoryRegionName.empty()) {
698     if (MemoryRegion *M = MemoryRegions.lookup(Sec->MemoryRegionName))
699       return M;
700     error("memory region '" + Sec->MemoryRegionName + "' not declared");
701     return nullptr;
702   }
703 
704   // If at least one memory region is defined, all sections must
705   // belong to some memory region. Otherwise, we don't need to do
706   // anything for memory regions.
707   if (MemoryRegions.empty())
708     return nullptr;
709 
710   // See if a region can be found by matching section flags.
711   for (auto &Pair : MemoryRegions) {
712     MemoryRegion *M = Pair.second;
713     if ((M->Flags & Sec->Flags) && (M->NegFlags & Sec->Flags) == 0)
714       return M;
715   }
716 
717   // Otherwise, no suitable region was found.
718   if (Sec->Flags & SHF_ALLOC)
719     error("no memory region specified for section '" + Sec->Name + "'");
720   return nullptr;
721 }
722 
723 // This function assigns offsets to input sections and an output section
724 // for a single sections command (e.g. ".text { *(.text); }").
725 void LinkerScript::assignOffsets(OutputSection *Sec) {
726   if (!(Sec->Flags & SHF_ALLOC))
727     Dot = 0;
728   else if (Sec->AddrExpr)
729     setDot(Sec->AddrExpr, Sec->Location, false);
730 
731   Ctx->MemRegion = Sec->MemRegion;
732   Ctx->LMARegion = Sec->LMARegion;
733   if (Ctx->MemRegion)
734     Dot = Ctx->MemRegion->CurPos;
735 
736   switchTo(Sec);
737 
738   if (Sec->LMAExpr)
739     Ctx->LMAOffset = Sec->LMAExpr().getValue() - Dot;
740 
741   if (MemoryRegion *MR = Sec->LMARegion)
742     Ctx->LMAOffset = MR->CurPos - Dot;
743 
744   // If neither AT nor AT> is specified for an allocatable section, the linker
745   // will set the LMA such that the difference between VMA and LMA for the
746   // section is the same as the preceding output section in the same region
747   // https://sourceware.org/binutils/docs-2.20/ld/Output-Section-LMA.html
748   if (PhdrEntry *L = Ctx->OutSec->PtLoad)
749     L->LMAOffset = Ctx->LMAOffset;
750 
751   // The Size previously denoted how many InputSections had been added to this
752   // section, and was used for sorting SHF_LINK_ORDER sections. Reset it to
753   // compute the actual size value.
754   Sec->Size = 0;
755 
756   // We visited SectionsCommands from processSectionCommands to
757   // layout sections. Now, we visit SectionsCommands again to fix
758   // section offsets.
759   for (BaseCommand *Base : Sec->SectionCommands) {
760     // This handles the assignments to symbol or to the dot.
761     if (auto *Cmd = dyn_cast<SymbolAssignment>(Base)) {
762       assignSymbol(Cmd, true);
763       continue;
764     }
765 
766     // Handle BYTE(), SHORT(), LONG(), or QUAD().
767     if (auto *Cmd = dyn_cast<ByteCommand>(Base)) {
768       Cmd->Offset = Dot - Ctx->OutSec->Addr;
769       Dot += Cmd->Size;
770       expandOutputSection(Cmd->Size);
771       continue;
772     }
773 
774     // Handle ASSERT().
775     if (auto *Cmd = dyn_cast<AssertCommand>(Base)) {
776       Cmd->Expression();
777       continue;
778     }
779 
780     // Handle a single input section description command.
781     // It calculates and assigns the offsets for each section and also
782     // updates the output section size.
783     auto *Cmd = cast<InputSectionDescription>(Base);
784     for (InputSection *Sec : Cmd->Sections) {
785       // We tentatively added all synthetic sections at the beginning and
786       // removed empty ones afterwards (because there is no way to know
787       // whether they were going be empty or not other than actually running
788       // linker scripts.) We need to ignore remains of empty sections.
789       if (auto *S = dyn_cast<SyntheticSection>(Sec))
790         if (S->empty())
791           continue;
792 
793       if (!Sec->Live)
794         continue;
795       assert(Ctx->OutSec == Sec->getParent());
796       output(Sec);
797     }
798   }
799 }
800 
801 static bool isDiscardable(OutputSection &Sec) {
802   // We do not remove empty sections that are explicitly
803   // assigned to any segment.
804   if (!Sec.Phdrs.empty())
805     return false;
806 
807   // We do not want to remove sections that reference symbols in address and
808   // other expressions. We add script symbols as undefined, and want to ensure
809   // all of them are defined in the output, hence have to keep them.
810   if (Sec.ExpressionsUseSymbols)
811     return false;
812 
813   for (BaseCommand *Base : Sec.SectionCommands)
814     if (!isa<InputSectionDescription>(*Base))
815       return false;
816   return getInputSections(&Sec).empty();
817 }
818 
819 void LinkerScript::adjustSectionsBeforeSorting() {
820   // If the output section contains only symbol assignments, create a
821   // corresponding output section. The issue is what to do with linker script
822   // like ".foo : { symbol = 42; }". One option would be to convert it to
823   // "symbol = 42;". That is, move the symbol out of the empty section
824   // description. That seems to be what bfd does for this simple case. The
825   // problem is that this is not completely general. bfd will give up and
826   // create a dummy section too if there is a ". = . + 1" inside the section
827   // for example.
828   // Given that we want to create the section, we have to worry what impact
829   // it will have on the link. For example, if we just create a section with
830   // 0 for flags, it would change which PT_LOADs are created.
831   // We could remember that particular section is dummy and ignore it in
832   // other parts of the linker, but unfortunately there are quite a few places
833   // that would need to change:
834   //   * The program header creation.
835   //   * The orphan section placement.
836   //   * The address assignment.
837   // The other option is to pick flags that minimize the impact the section
838   // will have on the rest of the linker. That is why we copy the flags from
839   // the previous sections. Only a few flags are needed to keep the impact low.
840   uint64_t Flags = SHF_ALLOC;
841 
842   for (BaseCommand *&Cmd : SectionCommands) {
843     auto *Sec = dyn_cast<OutputSection>(Cmd);
844     if (!Sec)
845       continue;
846 
847     // A live output section means that some input section was added to it. It
848     // might have been removed (gc, or empty synthetic section), but we at least
849     // know the flags.
850     if (Sec->Live)
851       Flags = Sec->Flags & (SHF_ALLOC | SHF_WRITE | SHF_EXECINSTR);
852     else
853       Sec->Flags = Flags;
854 
855     if (isDiscardable(*Sec)) {
856       Sec->Live = false;
857       Cmd = nullptr;
858     }
859   }
860 
861   // It is common practice to use very generic linker scripts. So for any
862   // given run some of the output sections in the script will be empty.
863   // We could create corresponding empty output sections, but that would
864   // clutter the output.
865   // We instead remove trivially empty sections. The bfd linker seems even
866   // more aggressive at removing them.
867   llvm::erase_if(SectionCommands, [&](BaseCommand *Base) { return !Base; });
868 }
869 
870 void LinkerScript::adjustSectionsAfterSorting() {
871   // Try and find an appropriate memory region to assign offsets in.
872   for (BaseCommand *Base : SectionCommands) {
873     if (auto *Sec = dyn_cast<OutputSection>(Base)) {
874       if (!Sec->LMARegionName.empty()) {
875         if (MemoryRegion *M = MemoryRegions.lookup(Sec->LMARegionName))
876           Sec->LMARegion = M;
877         else
878           error("memory region '" + Sec->LMARegionName + "' not declared");
879       }
880       Sec->MemRegion = findMemoryRegion(Sec);
881       // Handle align (e.g. ".foo : ALIGN(16) { ... }").
882       if (Sec->AlignExpr)
883         Sec->Alignment =
884             std::max<uint32_t>(Sec->Alignment, Sec->AlignExpr().getValue());
885     }
886   }
887 
888   // If output section command doesn't specify any segments,
889   // and we haven't previously assigned any section to segment,
890   // then we simply assign section to the very first load segment.
891   // Below is an example of such linker script:
892   // PHDRS { seg PT_LOAD; }
893   // SECTIONS { .aaa : { *(.aaa) } }
894   std::vector<StringRef> DefPhdrs;
895   auto FirstPtLoad = llvm::find_if(PhdrsCommands, [](const PhdrsCommand &Cmd) {
896     return Cmd.Type == PT_LOAD;
897   });
898   if (FirstPtLoad != PhdrsCommands.end())
899     DefPhdrs.push_back(FirstPtLoad->Name);
900 
901   // Walk the commands and propagate the program headers to commands that don't
902   // explicitly specify them.
903   for (BaseCommand *Base : SectionCommands) {
904     auto *Sec = dyn_cast<OutputSection>(Base);
905     if (!Sec)
906       continue;
907 
908     if (Sec->Phdrs.empty()) {
909       // To match the bfd linker script behaviour, only propagate program
910       // headers to sections that are allocated.
911       if (Sec->Flags & SHF_ALLOC)
912         Sec->Phdrs = DefPhdrs;
913     } else {
914       DefPhdrs = Sec->Phdrs;
915     }
916   }
917 }
918 
919 static OutputSection *findFirstSection(PhdrEntry *Load) {
920   for (OutputSection *Sec : OutputSections)
921     if (Sec->PtLoad == Load)
922       return Sec;
923   return nullptr;
924 }
925 
926 static uint64_t computeBase(uint64_t Min, bool AllocateHeaders) {
927   // If there is no SECTIONS or if the linkerscript is explicit about program
928   // headers, do our best to allocate them.
929   if (!Script->HasSectionsCommand || AllocateHeaders)
930     return 0;
931   // Otherwise only allocate program headers if that would not add a page.
932   return alignDown(Min, Config->MaxPageSize);
933 }
934 
935 // Try to find an address for the file and program headers output sections,
936 // which were unconditionally added to the first PT_LOAD segment earlier.
937 //
938 // When using the default layout, we check if the headers fit below the first
939 // allocated section. When using a linker script, we also check if the headers
940 // are covered by the output section. This allows omitting the headers by not
941 // leaving enough space for them in the linker script; this pattern is common
942 // in embedded systems.
943 //
944 // If there isn't enough space for these sections, we'll remove them from the
945 // PT_LOAD segment, and we'll also remove the PT_PHDR segment.
946 void LinkerScript::allocateHeaders(std::vector<PhdrEntry *> &Phdrs) {
947   uint64_t Min = std::numeric_limits<uint64_t>::max();
948   for (OutputSection *Sec : OutputSections)
949     if (Sec->Flags & SHF_ALLOC)
950       Min = std::min<uint64_t>(Min, Sec->Addr);
951 
952   auto It = llvm::find_if(
953       Phdrs, [](const PhdrEntry *E) { return E->p_type == PT_LOAD; });
954   if (It == Phdrs.end())
955     return;
956   PhdrEntry *FirstPTLoad = *It;
957 
958   bool HasExplicitHeaders =
959       llvm::any_of(PhdrsCommands, [](const PhdrsCommand &Cmd) {
960         return Cmd.HasPhdrs || Cmd.HasFilehdr;
961       });
962   uint64_t HeaderSize = getHeaderSize();
963   if (HeaderSize <= Min - computeBase(Min, HasExplicitHeaders)) {
964     Min = alignDown(Min - HeaderSize, Config->MaxPageSize);
965     Out::ElfHeader->Addr = Min;
966     Out::ProgramHeaders->Addr = Min + Out::ElfHeader->Size;
967     return;
968   }
969 
970   // Error if we were explicitly asked to allocate headers.
971   if (HasExplicitHeaders)
972     error("could not allocate headers");
973 
974   Out::ElfHeader->PtLoad = nullptr;
975   Out::ProgramHeaders->PtLoad = nullptr;
976   FirstPTLoad->FirstSec = findFirstSection(FirstPTLoad);
977 
978   llvm::erase_if(Phdrs,
979                  [](const PhdrEntry *E) { return E->p_type == PT_PHDR; });
980 }
981 
982 LinkerScript::AddressState::AddressState() {
983   for (auto &MRI : Script->MemoryRegions) {
984     MemoryRegion *MR = MRI.second;
985     MR->CurPos = MR->Origin;
986   }
987 }
988 
989 static uint64_t getInitialDot() {
990   // By default linker scripts use an initial value of 0 for '.',
991   // but prefer -image-base if set.
992   if (Script->HasSectionsCommand)
993     return Config->ImageBase ? *Config->ImageBase : 0;
994 
995   uint64_t StartAddr = UINT64_MAX;
996   // The Sections with -T<section> have been sorted in order of ascending
997   // address. We must lower StartAddr if the lowest -T<section address> as
998   // calls to setDot() must be monotonically increasing.
999   for (auto &KV : Config->SectionStartMap)
1000     StartAddr = std::min(StartAddr, KV.second);
1001   return std::min(StartAddr, Target->getImageBase() + elf::getHeaderSize());
1002 }
1003 
1004 // Here we assign addresses as instructed by linker script SECTIONS
1005 // sub-commands. Doing that allows us to use final VA values, so here
1006 // we also handle rest commands like symbol assignments and ASSERTs.
1007 void LinkerScript::assignAddresses() {
1008   Dot = getInitialDot();
1009 
1010   auto Deleter = make_unique<AddressState>();
1011   Ctx = Deleter.get();
1012   ErrorOnMissingSection = true;
1013   switchTo(Aether);
1014 
1015   for (BaseCommand *Base : SectionCommands) {
1016     if (auto *Cmd = dyn_cast<SymbolAssignment>(Base)) {
1017       assignSymbol(Cmd, false);
1018       continue;
1019     }
1020 
1021     if (auto *Cmd = dyn_cast<AssertCommand>(Base)) {
1022       Cmd->Expression();
1023       continue;
1024     }
1025 
1026     assignOffsets(cast<OutputSection>(Base));
1027   }
1028   Ctx = nullptr;
1029 }
1030 
1031 // Creates program headers as instructed by PHDRS linker script command.
1032 std::vector<PhdrEntry *> LinkerScript::createPhdrs() {
1033   std::vector<PhdrEntry *> Ret;
1034 
1035   // Process PHDRS and FILEHDR keywords because they are not
1036   // real output sections and cannot be added in the following loop.
1037   for (const PhdrsCommand &Cmd : PhdrsCommands) {
1038     PhdrEntry *Phdr = make<PhdrEntry>(Cmd.Type, Cmd.Flags ? *Cmd.Flags : PF_R);
1039 
1040     if (Cmd.HasFilehdr)
1041       Phdr->add(Out::ElfHeader);
1042     if (Cmd.HasPhdrs)
1043       Phdr->add(Out::ProgramHeaders);
1044 
1045     if (Cmd.LMAExpr) {
1046       Phdr->p_paddr = Cmd.LMAExpr().getValue();
1047       Phdr->HasLMA = true;
1048     }
1049     Ret.push_back(Phdr);
1050   }
1051 
1052   // Add output sections to program headers.
1053   for (OutputSection *Sec : OutputSections) {
1054     // Assign headers specified by linker script
1055     for (size_t Id : getPhdrIndices(Sec)) {
1056       Ret[Id]->add(Sec);
1057       if (!PhdrsCommands[Id].Flags.hasValue())
1058         Ret[Id]->p_flags |= Sec->getPhdrFlags();
1059     }
1060   }
1061   return Ret;
1062 }
1063 
1064 // Returns true if we should emit an .interp section.
1065 //
1066 // We usually do. But if PHDRS commands are given, and
1067 // no PT_INTERP is there, there's no place to emit an
1068 // .interp, so we don't do that in that case.
1069 bool LinkerScript::needsInterpSection() {
1070   if (PhdrsCommands.empty())
1071     return true;
1072   for (PhdrsCommand &Cmd : PhdrsCommands)
1073     if (Cmd.Type == PT_INTERP)
1074       return true;
1075   return false;
1076 }
1077 
1078 ExprValue LinkerScript::getSymbolValue(StringRef Name, const Twine &Loc) {
1079   if (Name == ".") {
1080     if (Ctx)
1081       return {Ctx->OutSec, false, Dot - Ctx->OutSec->Addr, Loc};
1082     error(Loc + ": unable to get location counter value");
1083     return 0;
1084   }
1085 
1086   if (Symbol *Sym = Symtab->find(Name)) {
1087     if (auto *DS = dyn_cast<Defined>(Sym))
1088       return {DS->Section, false, DS->Value, Loc};
1089     if (auto *SS = dyn_cast<SharedSymbol>(Sym))
1090       if (!ErrorOnMissingSection || SS->CopyRelSec)
1091         return {SS->CopyRelSec, false, 0, Loc};
1092   }
1093 
1094   error(Loc + ": symbol not found: " + Name);
1095   return 0;
1096 }
1097 
1098 // Returns the index of the segment named Name.
1099 static Optional<size_t> getPhdrIndex(ArrayRef<PhdrsCommand> Vec,
1100                                      StringRef Name) {
1101   for (size_t I = 0; I < Vec.size(); ++I)
1102     if (Vec[I].Name == Name)
1103       return I;
1104   return None;
1105 }
1106 
1107 // Returns indices of ELF headers containing specific section. Each index is a
1108 // zero based number of ELF header listed within PHDRS {} script block.
1109 std::vector<size_t> LinkerScript::getPhdrIndices(OutputSection *Cmd) {
1110   std::vector<size_t> Ret;
1111 
1112   for (StringRef S : Cmd->Phdrs) {
1113     if (Optional<size_t> Idx = getPhdrIndex(PhdrsCommands, S))
1114       Ret.push_back(*Idx);
1115     else if (S != "NONE")
1116       error(Cmd->Location + ": section header '" + S +
1117             "' is not listed in PHDRS");
1118   }
1119   return Ret;
1120 }
1121