1 //===- LinkerScript.cpp ---------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the parser/evaluator of the linker script. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "LinkerScript.h" 14 #include "Config.h" 15 #include "InputSection.h" 16 #include "OutputSections.h" 17 #include "SymbolTable.h" 18 #include "Symbols.h" 19 #include "SyntheticSections.h" 20 #include "Target.h" 21 #include "Writer.h" 22 #include "lld/Common/Memory.h" 23 #include "lld/Common/Strings.h" 24 #include "lld/Common/Threads.h" 25 #include "llvm/ADT/STLExtras.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/BinaryFormat/ELF.h" 28 #include "llvm/Support/Casting.h" 29 #include "llvm/Support/Endian.h" 30 #include "llvm/Support/ErrorHandling.h" 31 #include "llvm/Support/FileSystem.h" 32 #include "llvm/Support/Path.h" 33 #include <algorithm> 34 #include <cassert> 35 #include <cstddef> 36 #include <cstdint> 37 #include <iterator> 38 #include <limits> 39 #include <string> 40 #include <vector> 41 42 using namespace llvm; 43 using namespace llvm::ELF; 44 using namespace llvm::object; 45 using namespace llvm::support::endian; 46 47 namespace lld { 48 namespace elf { 49 LinkerScript *script; 50 51 static uint64_t getOutputSectionVA(SectionBase *sec) { 52 OutputSection *os = sec->getOutputSection(); 53 assert(os && "input section has no output section assigned"); 54 return os ? os->addr : 0; 55 } 56 57 uint64_t ExprValue::getValue() const { 58 if (sec) 59 return alignTo(sec->getOffset(val) + getOutputSectionVA(sec), 60 alignment); 61 return alignTo(val, alignment); 62 } 63 64 uint64_t ExprValue::getSecAddr() const { 65 if (sec) 66 return sec->getOffset(0) + getOutputSectionVA(sec); 67 return 0; 68 } 69 70 uint64_t ExprValue::getSectionOffset() const { 71 // If the alignment is trivial, we don't have to compute the full 72 // value to know the offset. This allows this function to succeed in 73 // cases where the output section is not yet known. 74 if (alignment == 1 && !sec) 75 return val; 76 return getValue() - getSecAddr(); 77 } 78 79 OutputSection *LinkerScript::createOutputSection(StringRef name, 80 StringRef location) { 81 OutputSection *&secRef = nameToOutputSection[name]; 82 OutputSection *sec; 83 if (secRef && secRef->location.empty()) { 84 // There was a forward reference. 85 sec = secRef; 86 } else { 87 sec = make<OutputSection>(name, SHT_PROGBITS, 0); 88 if (!secRef) 89 secRef = sec; 90 } 91 sec->location = std::string(location); 92 return sec; 93 } 94 95 OutputSection *LinkerScript::getOrCreateOutputSection(StringRef name) { 96 OutputSection *&cmdRef = nameToOutputSection[name]; 97 if (!cmdRef) 98 cmdRef = make<OutputSection>(name, SHT_PROGBITS, 0); 99 return cmdRef; 100 } 101 102 // Expands the memory region by the specified size. 103 static void expandMemoryRegion(MemoryRegion *memRegion, uint64_t size, 104 StringRef regionName, StringRef secName) { 105 memRegion->curPos += size; 106 uint64_t newSize = memRegion->curPos - (memRegion->origin)().getValue(); 107 uint64_t length = (memRegion->length)().getValue(); 108 if (newSize > length) 109 error("section '" + secName + "' will not fit in region '" + regionName + 110 "': overflowed by " + Twine(newSize - length) + " bytes"); 111 } 112 113 void LinkerScript::expandMemoryRegions(uint64_t size) { 114 if (ctx->memRegion) 115 expandMemoryRegion(ctx->memRegion, size, ctx->memRegion->name, 116 ctx->outSec->name); 117 // Only expand the LMARegion if it is different from memRegion. 118 if (ctx->lmaRegion && ctx->memRegion != ctx->lmaRegion) 119 expandMemoryRegion(ctx->lmaRegion, size, ctx->lmaRegion->name, 120 ctx->outSec->name); 121 } 122 123 void LinkerScript::expandOutputSection(uint64_t size) { 124 ctx->outSec->size += size; 125 expandMemoryRegions(size); 126 } 127 128 void LinkerScript::setDot(Expr e, const Twine &loc, bool inSec) { 129 uint64_t val = e().getValue(); 130 if (val < dot && inSec) 131 error(loc + ": unable to move location counter backward for: " + 132 ctx->outSec->name); 133 134 // Update to location counter means update to section size. 135 if (inSec) 136 expandOutputSection(val - dot); 137 138 dot = val; 139 } 140 141 // Used for handling linker symbol assignments, for both finalizing 142 // their values and doing early declarations. Returns true if symbol 143 // should be defined from linker script. 144 static bool shouldDefineSym(SymbolAssignment *cmd) { 145 if (cmd->name == ".") 146 return false; 147 148 if (!cmd->provide) 149 return true; 150 151 // If a symbol was in PROVIDE(), we need to define it only 152 // when it is a referenced undefined symbol. 153 Symbol *b = symtab->find(cmd->name); 154 if (b && !b->isDefined()) 155 return true; 156 return false; 157 } 158 159 // Called by processSymbolAssignments() to assign definitions to 160 // linker-script-defined symbols. 161 void LinkerScript::addSymbol(SymbolAssignment *cmd) { 162 if (!shouldDefineSym(cmd)) 163 return; 164 165 // Define a symbol. 166 ExprValue value = cmd->expression(); 167 SectionBase *sec = value.isAbsolute() ? nullptr : value.sec; 168 uint8_t visibility = cmd->hidden ? STV_HIDDEN : STV_DEFAULT; 169 170 // When this function is called, section addresses have not been 171 // fixed yet. So, we may or may not know the value of the RHS 172 // expression. 173 // 174 // For example, if an expression is `x = 42`, we know x is always 42. 175 // However, if an expression is `x = .`, there's no way to know its 176 // value at the moment. 177 // 178 // We want to set symbol values early if we can. This allows us to 179 // use symbols as variables in linker scripts. Doing so allows us to 180 // write expressions like this: `alignment = 16; . = ALIGN(., alignment)`. 181 uint64_t symValue = value.sec ? 0 : value.getValue(); 182 183 Defined newSym(nullptr, cmd->name, STB_GLOBAL, visibility, STT_NOTYPE, 184 symValue, 0, sec); 185 186 Symbol *sym = symtab->insert(cmd->name); 187 sym->mergeProperties(newSym); 188 sym->replace(newSym); 189 cmd->sym = cast<Defined>(sym); 190 } 191 192 // This function is called from LinkerScript::declareSymbols. 193 // It creates a placeholder symbol if needed. 194 static void declareSymbol(SymbolAssignment *cmd) { 195 if (!shouldDefineSym(cmd)) 196 return; 197 198 uint8_t visibility = cmd->hidden ? STV_HIDDEN : STV_DEFAULT; 199 Defined newSym(nullptr, cmd->name, STB_GLOBAL, visibility, STT_NOTYPE, 0, 0, 200 nullptr); 201 202 // We can't calculate final value right now. 203 Symbol *sym = symtab->insert(cmd->name); 204 sym->mergeProperties(newSym); 205 sym->replace(newSym); 206 207 cmd->sym = cast<Defined>(sym); 208 cmd->provide = false; 209 sym->scriptDefined = true; 210 } 211 212 using SymbolAssignmentMap = 213 DenseMap<const Defined *, std::pair<SectionBase *, uint64_t>>; 214 215 // Collect section/value pairs of linker-script-defined symbols. This is used to 216 // check whether symbol values converge. 217 static SymbolAssignmentMap 218 getSymbolAssignmentValues(const std::vector<BaseCommand *> §ionCommands) { 219 SymbolAssignmentMap ret; 220 for (BaseCommand *base : sectionCommands) { 221 if (auto *cmd = dyn_cast<SymbolAssignment>(base)) { 222 if (cmd->sym) // sym is nullptr for dot. 223 ret.try_emplace(cmd->sym, 224 std::make_pair(cmd->sym->section, cmd->sym->value)); 225 continue; 226 } 227 for (BaseCommand *sub_base : cast<OutputSection>(base)->sectionCommands) 228 if (auto *cmd = dyn_cast<SymbolAssignment>(sub_base)) 229 if (cmd->sym) 230 ret.try_emplace(cmd->sym, 231 std::make_pair(cmd->sym->section, cmd->sym->value)); 232 } 233 return ret; 234 } 235 236 // Returns the lexicographical smallest (for determinism) Defined whose 237 // section/value has changed. 238 static const Defined * 239 getChangedSymbolAssignment(const SymbolAssignmentMap &oldValues) { 240 const Defined *changed = nullptr; 241 for (auto &it : oldValues) { 242 const Defined *sym = it.first; 243 if (std::make_pair(sym->section, sym->value) != it.second && 244 (!changed || sym->getName() < changed->getName())) 245 changed = sym; 246 } 247 return changed; 248 } 249 250 // Process INSERT [AFTER|BEFORE] commands. For each command, we move the 251 // specified output section to the designated place. 252 void LinkerScript::processInsertCommands() { 253 for (const InsertCommand &cmd : insertCommands) { 254 // If cmd.os is empty, it may have been discarded by 255 // adjustSectionsBeforeSorting(). We do not handle such output sections. 256 auto from = llvm::find(sectionCommands, cmd.os); 257 if (from == sectionCommands.end()) 258 continue; 259 sectionCommands.erase(from); 260 261 auto insertPos = llvm::find_if(sectionCommands, [&cmd](BaseCommand *base) { 262 auto *to = dyn_cast<OutputSection>(base); 263 return to != nullptr && to->name == cmd.where; 264 }); 265 if (insertPos == sectionCommands.end()) { 266 error("unable to insert " + cmd.os->name + 267 (cmd.isAfter ? " after " : " before ") + cmd.where); 268 } else { 269 if (cmd.isAfter) 270 ++insertPos; 271 sectionCommands.insert(insertPos, cmd.os); 272 } 273 } 274 } 275 276 // Symbols defined in script should not be inlined by LTO. At the same time 277 // we don't know their final values until late stages of link. Here we scan 278 // over symbol assignment commands and create placeholder symbols if needed. 279 void LinkerScript::declareSymbols() { 280 assert(!ctx); 281 for (BaseCommand *base : sectionCommands) { 282 if (auto *cmd = dyn_cast<SymbolAssignment>(base)) { 283 declareSymbol(cmd); 284 continue; 285 } 286 287 // If the output section directive has constraints, 288 // we can't say for sure if it is going to be included or not. 289 // Skip such sections for now. Improve the checks if we ever 290 // need symbols from that sections to be declared early. 291 auto *sec = cast<OutputSection>(base); 292 if (sec->constraint != ConstraintKind::NoConstraint) 293 continue; 294 for (BaseCommand *base2 : sec->sectionCommands) 295 if (auto *cmd = dyn_cast<SymbolAssignment>(base2)) 296 declareSymbol(cmd); 297 } 298 } 299 300 // This function is called from assignAddresses, while we are 301 // fixing the output section addresses. This function is supposed 302 // to set the final value for a given symbol assignment. 303 void LinkerScript::assignSymbol(SymbolAssignment *cmd, bool inSec) { 304 if (cmd->name == ".") { 305 setDot(cmd->expression, cmd->location, inSec); 306 return; 307 } 308 309 if (!cmd->sym) 310 return; 311 312 ExprValue v = cmd->expression(); 313 if (v.isAbsolute()) { 314 cmd->sym->section = nullptr; 315 cmd->sym->value = v.getValue(); 316 } else { 317 cmd->sym->section = v.sec; 318 cmd->sym->value = v.getSectionOffset(); 319 } 320 } 321 322 static std::string getFilename(InputFile *file) { 323 if (!file) 324 return ""; 325 if (file->archiveName.empty()) 326 return std::string(file->getName()); 327 return (file->archiveName + ':' + file->getName()).str(); 328 } 329 330 bool LinkerScript::shouldKeep(InputSectionBase *s) { 331 if (keptSections.empty()) 332 return false; 333 std::string filename = getFilename(s->file); 334 for (InputSectionDescription *id : keptSections) 335 if (id->filePat.match(filename)) 336 for (SectionPattern &p : id->sectionPatterns) 337 if (p.sectionPat.match(s->name) && 338 (s->flags & id->withFlags) == id->withFlags && 339 (s->flags & id->withoutFlags) == 0) 340 return true; 341 return false; 342 } 343 344 // A helper function for the SORT() command. 345 static bool matchConstraints(ArrayRef<InputSectionBase *> sections, 346 ConstraintKind kind) { 347 if (kind == ConstraintKind::NoConstraint) 348 return true; 349 350 bool isRW = llvm::any_of( 351 sections, [](InputSectionBase *sec) { return sec->flags & SHF_WRITE; }); 352 353 return (isRW && kind == ConstraintKind::ReadWrite) || 354 (!isRW && kind == ConstraintKind::ReadOnly); 355 } 356 357 static void sortSections(MutableArrayRef<InputSectionBase *> vec, 358 SortSectionPolicy k) { 359 auto alignmentComparator = [](InputSectionBase *a, InputSectionBase *b) { 360 // ">" is not a mistake. Sections with larger alignments are placed 361 // before sections with smaller alignments in order to reduce the 362 // amount of padding necessary. This is compatible with GNU. 363 return a->alignment > b->alignment; 364 }; 365 auto nameComparator = [](InputSectionBase *a, InputSectionBase *b) { 366 return a->name < b->name; 367 }; 368 auto priorityComparator = [](InputSectionBase *a, InputSectionBase *b) { 369 return getPriority(a->name) < getPriority(b->name); 370 }; 371 372 switch (k) { 373 case SortSectionPolicy::Default: 374 case SortSectionPolicy::None: 375 return; 376 case SortSectionPolicy::Alignment: 377 return llvm::stable_sort(vec, alignmentComparator); 378 case SortSectionPolicy::Name: 379 return llvm::stable_sort(vec, nameComparator); 380 case SortSectionPolicy::Priority: 381 return llvm::stable_sort(vec, priorityComparator); 382 } 383 } 384 385 // Sort sections as instructed by SORT-family commands and --sort-section 386 // option. Because SORT-family commands can be nested at most two depth 387 // (e.g. SORT_BY_NAME(SORT_BY_ALIGNMENT(.text.*))) and because the command 388 // line option is respected even if a SORT command is given, the exact 389 // behavior we have here is a bit complicated. Here are the rules. 390 // 391 // 1. If two SORT commands are given, --sort-section is ignored. 392 // 2. If one SORT command is given, and if it is not SORT_NONE, 393 // --sort-section is handled as an inner SORT command. 394 // 3. If one SORT command is given, and if it is SORT_NONE, don't sort. 395 // 4. If no SORT command is given, sort according to --sort-section. 396 static void sortInputSections(MutableArrayRef<InputSectionBase *> vec, 397 const SectionPattern &pat) { 398 if (pat.sortOuter == SortSectionPolicy::None) 399 return; 400 401 if (pat.sortInner == SortSectionPolicy::Default) 402 sortSections(vec, config->sortSection); 403 else 404 sortSections(vec, pat.sortInner); 405 sortSections(vec, pat.sortOuter); 406 } 407 408 // Compute and remember which sections the InputSectionDescription matches. 409 std::vector<InputSectionBase *> 410 LinkerScript::computeInputSections(const InputSectionDescription *cmd) { 411 std::vector<InputSectionBase *> ret; 412 413 // Collects all sections that satisfy constraints of Cmd. 414 for (const SectionPattern &pat : cmd->sectionPatterns) { 415 size_t sizeBefore = ret.size(); 416 417 for (InputSectionBase *sec : inputSections) { 418 if (!sec->isLive() || sec->parent) 419 continue; 420 421 // For -emit-relocs we have to ignore entries like 422 // .rela.dyn : { *(.rela.data) } 423 // which are common because they are in the default bfd script. 424 // We do not ignore SHT_REL[A] linker-synthesized sections here because 425 // want to support scripts that do custom layout for them. 426 if (isa<InputSection>(sec) && 427 cast<InputSection>(sec)->getRelocatedSection()) 428 continue; 429 430 // Check the name early to improve performance in the common case. 431 if (!pat.sectionPat.match(sec->name)) 432 continue; 433 434 std::string filename = getFilename(sec->file); 435 if (!cmd->filePat.match(filename) || 436 pat.excludedFilePat.match(filename) || 437 (sec->flags & cmd->withFlags) != cmd->withFlags || 438 (sec->flags & cmd->withoutFlags) != 0) 439 continue; 440 441 ret.push_back(sec); 442 } 443 444 sortInputSections( 445 MutableArrayRef<InputSectionBase *>(ret).slice(sizeBefore), pat); 446 } 447 return ret; 448 } 449 450 void LinkerScript::discard(InputSectionBase *s) { 451 if (s == in.shStrTab || s == mainPart->relrDyn) 452 error("discarding " + s->name + " section is not allowed"); 453 454 // You can discard .hash and .gnu.hash sections by linker scripts. Since 455 // they are synthesized sections, we need to handle them differently than 456 // other regular sections. 457 if (s == mainPart->gnuHashTab) 458 mainPart->gnuHashTab = nullptr; 459 if (s == mainPart->hashTab) 460 mainPart->hashTab = nullptr; 461 462 s->markDead(); 463 s->parent = nullptr; 464 for (InputSection *ds : s->dependentSections) 465 discard(ds); 466 } 467 468 std::vector<InputSectionBase *> 469 LinkerScript::createInputSectionList(OutputSection &outCmd) { 470 std::vector<InputSectionBase *> ret; 471 472 for (BaseCommand *base : outCmd.sectionCommands) { 473 if (auto *cmd = dyn_cast<InputSectionDescription>(base)) { 474 cmd->sectionBases = computeInputSections(cmd); 475 for (InputSectionBase *s : cmd->sectionBases) 476 s->parent = &outCmd; 477 ret.insert(ret.end(), cmd->sectionBases.begin(), cmd->sectionBases.end()); 478 } 479 } 480 return ret; 481 } 482 483 // Create output sections described by SECTIONS commands. 484 void LinkerScript::processSectionCommands() { 485 size_t i = 0; 486 for (BaseCommand *base : sectionCommands) { 487 if (auto *sec = dyn_cast<OutputSection>(base)) { 488 std::vector<InputSectionBase *> v = createInputSectionList(*sec); 489 490 // The output section name `/DISCARD/' is special. 491 // Any input section assigned to it is discarded. 492 if (sec->name == "/DISCARD/") { 493 for (InputSectionBase *s : v) 494 discard(s); 495 sec->sectionCommands.clear(); 496 continue; 497 } 498 499 // This is for ONLY_IF_RO and ONLY_IF_RW. An output section directive 500 // ".foo : ONLY_IF_R[OW] { ... }" is handled only if all member input 501 // sections satisfy a given constraint. If not, a directive is handled 502 // as if it wasn't present from the beginning. 503 // 504 // Because we'll iterate over SectionCommands many more times, the easy 505 // way to "make it as if it wasn't present" is to make it empty. 506 if (!matchConstraints(v, sec->constraint)) { 507 for (InputSectionBase *s : v) 508 s->parent = nullptr; 509 sec->sectionCommands.clear(); 510 continue; 511 } 512 513 // Handle subalign (e.g. ".foo : SUBALIGN(32) { ... }"). If subalign 514 // is given, input sections are aligned to that value, whether the 515 // given value is larger or smaller than the original section alignment. 516 if (sec->subalignExpr) { 517 uint32_t subalign = sec->subalignExpr().getValue(); 518 for (InputSectionBase *s : v) 519 s->alignment = subalign; 520 } 521 522 // Set the partition field the same way OutputSection::recordSection() 523 // does. Partitions cannot be used with the SECTIONS command, so this is 524 // always 1. 525 sec->partition = 1; 526 527 sec->sectionIndex = i++; 528 } 529 } 530 } 531 532 void LinkerScript::processSymbolAssignments() { 533 // Dot outside an output section still represents a relative address, whose 534 // sh_shndx should not be SHN_UNDEF or SHN_ABS. Create a dummy aether section 535 // that fills the void outside a section. It has an index of one, which is 536 // indistinguishable from any other regular section index. 537 aether = make<OutputSection>("", 0, SHF_ALLOC); 538 aether->sectionIndex = 1; 539 540 // ctx captures the local AddressState and makes it accessible deliberately. 541 // This is needed as there are some cases where we cannot just thread the 542 // current state through to a lambda function created by the script parser. 543 AddressState state; 544 ctx = &state; 545 ctx->outSec = aether; 546 547 for (BaseCommand *base : sectionCommands) { 548 if (auto *cmd = dyn_cast<SymbolAssignment>(base)) 549 addSymbol(cmd); 550 else 551 for (BaseCommand *sub_base : cast<OutputSection>(base)->sectionCommands) 552 if (auto *cmd = dyn_cast<SymbolAssignment>(sub_base)) 553 addSymbol(cmd); 554 } 555 556 ctx = nullptr; 557 } 558 559 static OutputSection *findByName(ArrayRef<BaseCommand *> vec, 560 StringRef name) { 561 for (BaseCommand *base : vec) 562 if (auto *sec = dyn_cast<OutputSection>(base)) 563 if (sec->name == name) 564 return sec; 565 return nullptr; 566 } 567 568 static OutputSection *createSection(InputSectionBase *isec, 569 StringRef outsecName) { 570 OutputSection *sec = script->createOutputSection(outsecName, "<internal>"); 571 sec->recordSection(isec); 572 return sec; 573 } 574 575 static OutputSection * 576 addInputSec(StringMap<TinyPtrVector<OutputSection *>> &map, 577 InputSectionBase *isec, StringRef outsecName) { 578 // Sections with SHT_GROUP or SHF_GROUP attributes reach here only when the -r 579 // option is given. A section with SHT_GROUP defines a "section group", and 580 // its members have SHF_GROUP attribute. Usually these flags have already been 581 // stripped by InputFiles.cpp as section groups are processed and uniquified. 582 // However, for the -r option, we want to pass through all section groups 583 // as-is because adding/removing members or merging them with other groups 584 // change their semantics. 585 if (isec->type == SHT_GROUP || (isec->flags & SHF_GROUP)) 586 return createSection(isec, outsecName); 587 588 // Imagine .zed : { *(.foo) *(.bar) } script. Both foo and bar may have 589 // relocation sections .rela.foo and .rela.bar for example. Most tools do 590 // not allow multiple REL[A] sections for output section. Hence we 591 // should combine these relocation sections into single output. 592 // We skip synthetic sections because it can be .rela.dyn/.rela.plt or any 593 // other REL[A] sections created by linker itself. 594 if (!isa<SyntheticSection>(isec) && 595 (isec->type == SHT_REL || isec->type == SHT_RELA)) { 596 auto *sec = cast<InputSection>(isec); 597 OutputSection *out = sec->getRelocatedSection()->getOutputSection(); 598 599 if (out->relocationSection) { 600 out->relocationSection->recordSection(sec); 601 return nullptr; 602 } 603 604 out->relocationSection = createSection(isec, outsecName); 605 return out->relocationSection; 606 } 607 608 // The ELF spec just says 609 // ---------------------------------------------------------------- 610 // In the first phase, input sections that match in name, type and 611 // attribute flags should be concatenated into single sections. 612 // ---------------------------------------------------------------- 613 // 614 // However, it is clear that at least some flags have to be ignored for 615 // section merging. At the very least SHF_GROUP and SHF_COMPRESSED have to be 616 // ignored. We should not have two output .text sections just because one was 617 // in a group and another was not for example. 618 // 619 // It also seems that wording was a late addition and didn't get the 620 // necessary scrutiny. 621 // 622 // Merging sections with different flags is expected by some users. One 623 // reason is that if one file has 624 // 625 // int *const bar __attribute__((section(".foo"))) = (int *)0; 626 // 627 // gcc with -fPIC will produce a read only .foo section. But if another 628 // file has 629 // 630 // int zed; 631 // int *const bar __attribute__((section(".foo"))) = (int *)&zed; 632 // 633 // gcc with -fPIC will produce a read write section. 634 // 635 // Last but not least, when using linker script the merge rules are forced by 636 // the script. Unfortunately, linker scripts are name based. This means that 637 // expressions like *(.foo*) can refer to multiple input sections with 638 // different flags. We cannot put them in different output sections or we 639 // would produce wrong results for 640 // 641 // start = .; *(.foo.*) end = .; *(.bar) 642 // 643 // and a mapping of .foo1 and .bar1 to one section and .foo2 and .bar2 to 644 // another. The problem is that there is no way to layout those output 645 // sections such that the .foo sections are the only thing between the start 646 // and end symbols. 647 // 648 // Given the above issues, we instead merge sections by name and error on 649 // incompatible types and flags. 650 TinyPtrVector<OutputSection *> &v = map[outsecName]; 651 for (OutputSection *sec : v) { 652 if (sec->partition != isec->partition) 653 continue; 654 655 if (config->relocatable && (isec->flags & SHF_LINK_ORDER)) { 656 // Merging two SHF_LINK_ORDER sections with different sh_link fields will 657 // change their semantics, so we only merge them in -r links if they will 658 // end up being linked to the same output section. The casts are fine 659 // because everything in the map was created by the orphan placement code. 660 auto *firstIsec = cast<InputSectionBase>( 661 cast<InputSectionDescription>(sec->sectionCommands[0]) 662 ->sectionBases[0]); 663 if (firstIsec->getLinkOrderDep()->getOutputSection() != 664 isec->getLinkOrderDep()->getOutputSection()) 665 continue; 666 } 667 668 sec->recordSection(isec); 669 return nullptr; 670 } 671 672 OutputSection *sec = createSection(isec, outsecName); 673 v.push_back(sec); 674 return sec; 675 } 676 677 // Add sections that didn't match any sections command. 678 void LinkerScript::addOrphanSections() { 679 StringMap<TinyPtrVector<OutputSection *>> map; 680 std::vector<OutputSection *> v; 681 682 std::function<void(InputSectionBase *)> add; 683 add = [&](InputSectionBase *s) { 684 if (s->isLive() && !s->parent) { 685 orphanSections.push_back(s); 686 687 StringRef name = getOutputSectionName(s); 688 if (config->unique) { 689 v.push_back(createSection(s, name)); 690 } else if (OutputSection *sec = findByName(sectionCommands, name)) { 691 sec->recordSection(s); 692 } else { 693 if (OutputSection *os = addInputSec(map, s, name)) 694 v.push_back(os); 695 assert(isa<MergeInputSection>(s) || 696 s->getOutputSection()->sectionIndex == UINT32_MAX); 697 } 698 } 699 700 if (config->relocatable) 701 for (InputSectionBase *depSec : s->dependentSections) 702 if (depSec->flags & SHF_LINK_ORDER) 703 add(depSec); 704 }; 705 706 // For futher --emit-reloc handling code we need target output section 707 // to be created before we create relocation output section, so we want 708 // to create target sections first. We do not want priority handling 709 // for synthetic sections because them are special. 710 for (InputSectionBase *isec : inputSections) { 711 // In -r links, SHF_LINK_ORDER sections are added while adding their parent 712 // sections because we need to know the parent's output section before we 713 // can select an output section for the SHF_LINK_ORDER section. 714 if (config->relocatable && (isec->flags & SHF_LINK_ORDER)) 715 continue; 716 717 if (auto *sec = dyn_cast<InputSection>(isec)) 718 if (InputSectionBase *rel = sec->getRelocatedSection()) 719 if (auto *relIS = dyn_cast_or_null<InputSectionBase>(rel->parent)) 720 add(relIS); 721 add(isec); 722 } 723 724 // If no SECTIONS command was given, we should insert sections commands 725 // before others, so that we can handle scripts which refers them, 726 // for example: "foo = ABSOLUTE(ADDR(.text)));". 727 // When SECTIONS command is present we just add all orphans to the end. 728 if (hasSectionsCommand) 729 sectionCommands.insert(sectionCommands.end(), v.begin(), v.end()); 730 else 731 sectionCommands.insert(sectionCommands.begin(), v.begin(), v.end()); 732 } 733 734 void LinkerScript::diagnoseOrphanHandling() const { 735 for (const InputSectionBase *sec : orphanSections) { 736 // Input SHT_REL[A] retained by --emit-relocs are ignored by 737 // computeInputSections(). Don't warn/error. 738 if (isa<InputSection>(sec) && 739 cast<InputSection>(sec)->getRelocatedSection()) 740 continue; 741 742 StringRef name = getOutputSectionName(sec); 743 if (config->orphanHandling == OrphanHandlingPolicy::Error) 744 error(toString(sec) + " is being placed in '" + name + "'"); 745 else if (config->orphanHandling == OrphanHandlingPolicy::Warn) 746 warn(toString(sec) + " is being placed in '" + name + "'"); 747 } 748 } 749 750 uint64_t LinkerScript::advance(uint64_t size, unsigned alignment) { 751 bool isTbss = 752 (ctx->outSec->flags & SHF_TLS) && ctx->outSec->type == SHT_NOBITS; 753 uint64_t start = isTbss ? dot + ctx->threadBssOffset : dot; 754 start = alignTo(start, alignment); 755 uint64_t end = start + size; 756 757 if (isTbss) 758 ctx->threadBssOffset = end - dot; 759 else 760 dot = end; 761 return end; 762 } 763 764 void LinkerScript::output(InputSection *s) { 765 assert(ctx->outSec == s->getParent()); 766 uint64_t before = advance(0, 1); 767 uint64_t pos = advance(s->getSize(), s->alignment); 768 s->outSecOff = pos - s->getSize() - ctx->outSec->addr; 769 770 // Update output section size after adding each section. This is so that 771 // SIZEOF works correctly in the case below: 772 // .foo { *(.aaa) a = SIZEOF(.foo); *(.bbb) } 773 expandOutputSection(pos - before); 774 } 775 776 void LinkerScript::switchTo(OutputSection *sec) { 777 ctx->outSec = sec; 778 779 uint64_t pos = advance(0, 1); 780 if (sec->addrExpr && script->hasSectionsCommand) { 781 // The alignment is ignored. 782 ctx->outSec->addr = pos; 783 } else { 784 // ctx->outSec->alignment is the max of ALIGN and the maximum of input 785 // section alignments. 786 ctx->outSec->addr = advance(0, ctx->outSec->alignment); 787 expandMemoryRegions(ctx->outSec->addr - pos); 788 } 789 } 790 791 // This function searches for a memory region to place the given output 792 // section in. If found, a pointer to the appropriate memory region is 793 // returned. Otherwise, a nullptr is returned. 794 MemoryRegion *LinkerScript::findMemoryRegion(OutputSection *sec) { 795 // If a memory region name was specified in the output section command, 796 // then try to find that region first. 797 if (!sec->memoryRegionName.empty()) { 798 if (MemoryRegion *m = memoryRegions.lookup(sec->memoryRegionName)) 799 return m; 800 error("memory region '" + sec->memoryRegionName + "' not declared"); 801 return nullptr; 802 } 803 804 // If at least one memory region is defined, all sections must 805 // belong to some memory region. Otherwise, we don't need to do 806 // anything for memory regions. 807 if (memoryRegions.empty()) 808 return nullptr; 809 810 // See if a region can be found by matching section flags. 811 for (auto &pair : memoryRegions) { 812 MemoryRegion *m = pair.second; 813 if ((m->flags & sec->flags) && (m->negFlags & sec->flags) == 0) 814 return m; 815 } 816 817 // Otherwise, no suitable region was found. 818 if (sec->flags & SHF_ALLOC) 819 error("no memory region specified for section '" + sec->name + "'"); 820 return nullptr; 821 } 822 823 static OutputSection *findFirstSection(PhdrEntry *load) { 824 for (OutputSection *sec : outputSections) 825 if (sec->ptLoad == load) 826 return sec; 827 return nullptr; 828 } 829 830 // This function assigns offsets to input sections and an output section 831 // for a single sections command (e.g. ".text { *(.text); }"). 832 void LinkerScript::assignOffsets(OutputSection *sec) { 833 if (!(sec->flags & SHF_ALLOC)) 834 dot = 0; 835 836 ctx->memRegion = sec->memRegion; 837 ctx->lmaRegion = sec->lmaRegion; 838 if (ctx->memRegion) 839 dot = ctx->memRegion->curPos; 840 841 if ((sec->flags & SHF_ALLOC) && sec->addrExpr) 842 setDot(sec->addrExpr, sec->location, false); 843 844 // If the address of the section has been moved forward by an explicit 845 // expression so that it now starts past the current curPos of the enclosing 846 // region, we need to expand the current region to account for the space 847 // between the previous section, if any, and the start of this section. 848 if (ctx->memRegion && ctx->memRegion->curPos < dot) 849 expandMemoryRegion(ctx->memRegion, dot - ctx->memRegion->curPos, 850 ctx->memRegion->name, sec->name); 851 852 switchTo(sec); 853 854 ctx->lmaOffset = 0; 855 856 if (sec->lmaExpr) 857 ctx->lmaOffset = sec->lmaExpr().getValue() - dot; 858 if (MemoryRegion *mr = sec->lmaRegion) 859 ctx->lmaOffset = alignTo(mr->curPos, sec->alignment) - dot; 860 861 // If neither AT nor AT> is specified for an allocatable section, the linker 862 // will set the LMA such that the difference between VMA and LMA for the 863 // section is the same as the preceding output section in the same region 864 // https://sourceware.org/binutils/docs-2.20/ld/Output-Section-LMA.html 865 // This, however, should only be done by the first "non-header" section 866 // in the segment. 867 if (PhdrEntry *l = ctx->outSec->ptLoad) 868 if (sec == findFirstSection(l)) 869 l->lmaOffset = ctx->lmaOffset; 870 871 // We can call this method multiple times during the creation of 872 // thunks and want to start over calculation each time. 873 sec->size = 0; 874 875 // We visited SectionsCommands from processSectionCommands to 876 // layout sections. Now, we visit SectionsCommands again to fix 877 // section offsets. 878 for (BaseCommand *base : sec->sectionCommands) { 879 // This handles the assignments to symbol or to the dot. 880 if (auto *cmd = dyn_cast<SymbolAssignment>(base)) { 881 cmd->addr = dot; 882 assignSymbol(cmd, true); 883 cmd->size = dot - cmd->addr; 884 continue; 885 } 886 887 // Handle BYTE(), SHORT(), LONG(), or QUAD(). 888 if (auto *cmd = dyn_cast<ByteCommand>(base)) { 889 cmd->offset = dot - ctx->outSec->addr; 890 dot += cmd->size; 891 expandOutputSection(cmd->size); 892 continue; 893 } 894 895 // Handle a single input section description command. 896 // It calculates and assigns the offsets for each section and also 897 // updates the output section size. 898 for (InputSection *sec : cast<InputSectionDescription>(base)->sections) 899 output(sec); 900 } 901 } 902 903 static bool isDiscardable(OutputSection &sec) { 904 if (sec.name == "/DISCARD/") 905 return true; 906 907 // We do not remove empty sections that are explicitly 908 // assigned to any segment. 909 if (!sec.phdrs.empty()) 910 return false; 911 912 // We do not want to remove OutputSections with expressions that reference 913 // symbols even if the OutputSection is empty. We want to ensure that the 914 // expressions can be evaluated and report an error if they cannot. 915 if (sec.expressionsUseSymbols) 916 return false; 917 918 // OutputSections may be referenced by name in ADDR and LOADADDR expressions, 919 // as an empty Section can has a valid VMA and LMA we keep the OutputSection 920 // to maintain the integrity of the other Expression. 921 if (sec.usedInExpression) 922 return false; 923 924 for (BaseCommand *base : sec.sectionCommands) { 925 if (auto cmd = dyn_cast<SymbolAssignment>(base)) 926 // Don't create empty output sections just for unreferenced PROVIDE 927 // symbols. 928 if (cmd->name != "." && !cmd->sym) 929 continue; 930 931 if (!isa<InputSectionDescription>(*base)) 932 return false; 933 } 934 return true; 935 } 936 937 void LinkerScript::adjustSectionsBeforeSorting() { 938 // If the output section contains only symbol assignments, create a 939 // corresponding output section. The issue is what to do with linker script 940 // like ".foo : { symbol = 42; }". One option would be to convert it to 941 // "symbol = 42;". That is, move the symbol out of the empty section 942 // description. That seems to be what bfd does for this simple case. The 943 // problem is that this is not completely general. bfd will give up and 944 // create a dummy section too if there is a ". = . + 1" inside the section 945 // for example. 946 // Given that we want to create the section, we have to worry what impact 947 // it will have on the link. For example, if we just create a section with 948 // 0 for flags, it would change which PT_LOADs are created. 949 // We could remember that particular section is dummy and ignore it in 950 // other parts of the linker, but unfortunately there are quite a few places 951 // that would need to change: 952 // * The program header creation. 953 // * The orphan section placement. 954 // * The address assignment. 955 // The other option is to pick flags that minimize the impact the section 956 // will have on the rest of the linker. That is why we copy the flags from 957 // the previous sections. Only a few flags are needed to keep the impact low. 958 uint64_t flags = SHF_ALLOC; 959 960 for (BaseCommand *&cmd : sectionCommands) { 961 auto *sec = dyn_cast<OutputSection>(cmd); 962 if (!sec) 963 continue; 964 965 // Handle align (e.g. ".foo : ALIGN(16) { ... }"). 966 if (sec->alignExpr) 967 sec->alignment = 968 std::max<uint32_t>(sec->alignment, sec->alignExpr().getValue()); 969 970 // The input section might have been removed (if it was an empty synthetic 971 // section), but we at least know the flags. 972 if (sec->hasInputSections) 973 flags = sec->flags; 974 975 // We do not want to keep any special flags for output section 976 // in case it is empty. 977 bool isEmpty = (getFirstInputSection(sec) == nullptr); 978 if (isEmpty) 979 sec->flags = flags & ((sec->nonAlloc ? 0 : (uint64_t)SHF_ALLOC) | 980 SHF_WRITE | SHF_EXECINSTR); 981 982 if (isEmpty && isDiscardable(*sec)) { 983 sec->markDead(); 984 cmd = nullptr; 985 } 986 } 987 988 // It is common practice to use very generic linker scripts. So for any 989 // given run some of the output sections in the script will be empty. 990 // We could create corresponding empty output sections, but that would 991 // clutter the output. 992 // We instead remove trivially empty sections. The bfd linker seems even 993 // more aggressive at removing them. 994 llvm::erase_if(sectionCommands, [&](BaseCommand *base) { return !base; }); 995 } 996 997 void LinkerScript::adjustSectionsAfterSorting() { 998 // Try and find an appropriate memory region to assign offsets in. 999 for (BaseCommand *base : sectionCommands) { 1000 if (auto *sec = dyn_cast<OutputSection>(base)) { 1001 if (!sec->lmaRegionName.empty()) { 1002 if (MemoryRegion *m = memoryRegions.lookup(sec->lmaRegionName)) 1003 sec->lmaRegion = m; 1004 else 1005 error("memory region '" + sec->lmaRegionName + "' not declared"); 1006 } 1007 sec->memRegion = findMemoryRegion(sec); 1008 } 1009 } 1010 1011 // If output section command doesn't specify any segments, 1012 // and we haven't previously assigned any section to segment, 1013 // then we simply assign section to the very first load segment. 1014 // Below is an example of such linker script: 1015 // PHDRS { seg PT_LOAD; } 1016 // SECTIONS { .aaa : { *(.aaa) } } 1017 std::vector<StringRef> defPhdrs; 1018 auto firstPtLoad = llvm::find_if(phdrsCommands, [](const PhdrsCommand &cmd) { 1019 return cmd.type == PT_LOAD; 1020 }); 1021 if (firstPtLoad != phdrsCommands.end()) 1022 defPhdrs.push_back(firstPtLoad->name); 1023 1024 // Walk the commands and propagate the program headers to commands that don't 1025 // explicitly specify them. 1026 for (BaseCommand *base : sectionCommands) { 1027 auto *sec = dyn_cast<OutputSection>(base); 1028 if (!sec) 1029 continue; 1030 1031 if (sec->phdrs.empty()) { 1032 // To match the bfd linker script behaviour, only propagate program 1033 // headers to sections that are allocated. 1034 if (sec->flags & SHF_ALLOC) 1035 sec->phdrs = defPhdrs; 1036 } else { 1037 defPhdrs = sec->phdrs; 1038 } 1039 } 1040 } 1041 1042 static uint64_t computeBase(uint64_t min, bool allocateHeaders) { 1043 // If there is no SECTIONS or if the linkerscript is explicit about program 1044 // headers, do our best to allocate them. 1045 if (!script->hasSectionsCommand || allocateHeaders) 1046 return 0; 1047 // Otherwise only allocate program headers if that would not add a page. 1048 return alignDown(min, config->maxPageSize); 1049 } 1050 1051 // When the SECTIONS command is used, try to find an address for the file and 1052 // program headers output sections, which can be added to the first PT_LOAD 1053 // segment when program headers are created. 1054 // 1055 // We check if the headers fit below the first allocated section. If there isn't 1056 // enough space for these sections, we'll remove them from the PT_LOAD segment, 1057 // and we'll also remove the PT_PHDR segment. 1058 void LinkerScript::allocateHeaders(std::vector<PhdrEntry *> &phdrs) { 1059 uint64_t min = std::numeric_limits<uint64_t>::max(); 1060 for (OutputSection *sec : outputSections) 1061 if (sec->flags & SHF_ALLOC) 1062 min = std::min<uint64_t>(min, sec->addr); 1063 1064 auto it = llvm::find_if( 1065 phdrs, [](const PhdrEntry *e) { return e->p_type == PT_LOAD; }); 1066 if (it == phdrs.end()) 1067 return; 1068 PhdrEntry *firstPTLoad = *it; 1069 1070 bool hasExplicitHeaders = 1071 llvm::any_of(phdrsCommands, [](const PhdrsCommand &cmd) { 1072 return cmd.hasPhdrs || cmd.hasFilehdr; 1073 }); 1074 bool paged = !config->omagic && !config->nmagic; 1075 uint64_t headerSize = getHeaderSize(); 1076 if ((paged || hasExplicitHeaders) && 1077 headerSize <= min - computeBase(min, hasExplicitHeaders)) { 1078 min = alignDown(min - headerSize, config->maxPageSize); 1079 Out::elfHeader->addr = min; 1080 Out::programHeaders->addr = min + Out::elfHeader->size; 1081 return; 1082 } 1083 1084 // Error if we were explicitly asked to allocate headers. 1085 if (hasExplicitHeaders) 1086 error("could not allocate headers"); 1087 1088 Out::elfHeader->ptLoad = nullptr; 1089 Out::programHeaders->ptLoad = nullptr; 1090 firstPTLoad->firstSec = findFirstSection(firstPTLoad); 1091 1092 llvm::erase_if(phdrs, 1093 [](const PhdrEntry *e) { return e->p_type == PT_PHDR; }); 1094 } 1095 1096 LinkerScript::AddressState::AddressState() { 1097 for (auto &mri : script->memoryRegions) { 1098 MemoryRegion *mr = mri.second; 1099 mr->curPos = (mr->origin)().getValue(); 1100 } 1101 } 1102 1103 // Here we assign addresses as instructed by linker script SECTIONS 1104 // sub-commands. Doing that allows us to use final VA values, so here 1105 // we also handle rest commands like symbol assignments and ASSERTs. 1106 // Returns a symbol that has changed its section or value, or nullptr if no 1107 // symbol has changed. 1108 const Defined *LinkerScript::assignAddresses() { 1109 if (script->hasSectionsCommand) { 1110 // With a linker script, assignment of addresses to headers is covered by 1111 // allocateHeaders(). 1112 dot = config->imageBase.getValueOr(0); 1113 } else { 1114 // Assign addresses to headers right now. 1115 dot = target->getImageBase(); 1116 Out::elfHeader->addr = dot; 1117 Out::programHeaders->addr = dot + Out::elfHeader->size; 1118 dot += getHeaderSize(); 1119 } 1120 1121 auto deleter = std::make_unique<AddressState>(); 1122 ctx = deleter.get(); 1123 errorOnMissingSection = true; 1124 switchTo(aether); 1125 1126 SymbolAssignmentMap oldValues = getSymbolAssignmentValues(sectionCommands); 1127 for (BaseCommand *base : sectionCommands) { 1128 if (auto *cmd = dyn_cast<SymbolAssignment>(base)) { 1129 cmd->addr = dot; 1130 assignSymbol(cmd, false); 1131 cmd->size = dot - cmd->addr; 1132 continue; 1133 } 1134 assignOffsets(cast<OutputSection>(base)); 1135 } 1136 1137 ctx = nullptr; 1138 return getChangedSymbolAssignment(oldValues); 1139 } 1140 1141 // Creates program headers as instructed by PHDRS linker script command. 1142 std::vector<PhdrEntry *> LinkerScript::createPhdrs() { 1143 std::vector<PhdrEntry *> ret; 1144 1145 // Process PHDRS and FILEHDR keywords because they are not 1146 // real output sections and cannot be added in the following loop. 1147 for (const PhdrsCommand &cmd : phdrsCommands) { 1148 PhdrEntry *phdr = make<PhdrEntry>(cmd.type, cmd.flags ? *cmd.flags : PF_R); 1149 1150 if (cmd.hasFilehdr) 1151 phdr->add(Out::elfHeader); 1152 if (cmd.hasPhdrs) 1153 phdr->add(Out::programHeaders); 1154 1155 if (cmd.lmaExpr) { 1156 phdr->p_paddr = cmd.lmaExpr().getValue(); 1157 phdr->hasLMA = true; 1158 } 1159 ret.push_back(phdr); 1160 } 1161 1162 // Add output sections to program headers. 1163 for (OutputSection *sec : outputSections) { 1164 // Assign headers specified by linker script 1165 for (size_t id : getPhdrIndices(sec)) { 1166 ret[id]->add(sec); 1167 if (!phdrsCommands[id].flags.hasValue()) 1168 ret[id]->p_flags |= sec->getPhdrFlags(); 1169 } 1170 } 1171 return ret; 1172 } 1173 1174 // Returns true if we should emit an .interp section. 1175 // 1176 // We usually do. But if PHDRS commands are given, and 1177 // no PT_INTERP is there, there's no place to emit an 1178 // .interp, so we don't do that in that case. 1179 bool LinkerScript::needsInterpSection() { 1180 if (phdrsCommands.empty()) 1181 return true; 1182 for (PhdrsCommand &cmd : phdrsCommands) 1183 if (cmd.type == PT_INTERP) 1184 return true; 1185 return false; 1186 } 1187 1188 ExprValue LinkerScript::getSymbolValue(StringRef name, const Twine &loc) { 1189 if (name == ".") { 1190 if (ctx) 1191 return {ctx->outSec, false, dot - ctx->outSec->addr, loc}; 1192 error(loc + ": unable to get location counter value"); 1193 return 0; 1194 } 1195 1196 if (Symbol *sym = symtab->find(name)) { 1197 if (auto *ds = dyn_cast<Defined>(sym)) 1198 return {ds->section, false, ds->value, loc}; 1199 if (isa<SharedSymbol>(sym)) 1200 if (!errorOnMissingSection) 1201 return {nullptr, false, 0, loc}; 1202 } 1203 1204 error(loc + ": symbol not found: " + name); 1205 return 0; 1206 } 1207 1208 // Returns the index of the segment named Name. 1209 static Optional<size_t> getPhdrIndex(ArrayRef<PhdrsCommand> vec, 1210 StringRef name) { 1211 for (size_t i = 0; i < vec.size(); ++i) 1212 if (vec[i].name == name) 1213 return i; 1214 return None; 1215 } 1216 1217 // Returns indices of ELF headers containing specific section. Each index is a 1218 // zero based number of ELF header listed within PHDRS {} script block. 1219 std::vector<size_t> LinkerScript::getPhdrIndices(OutputSection *cmd) { 1220 std::vector<size_t> ret; 1221 1222 for (StringRef s : cmd->phdrs) { 1223 if (Optional<size_t> idx = getPhdrIndex(phdrsCommands, s)) 1224 ret.push_back(*idx); 1225 else if (s != "NONE") 1226 error(cmd->location + ": program header '" + s + 1227 "' is not listed in PHDRS"); 1228 } 1229 return ret; 1230 } 1231 1232 } // namespace elf 1233 } // namespace lld 1234