1 //===- LinkerScript.cpp ---------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the parser/evaluator of the linker script. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "LinkerScript.h" 14 #include "Config.h" 15 #include "InputSection.h" 16 #include "OutputSections.h" 17 #include "SymbolTable.h" 18 #include "Symbols.h" 19 #include "SyntheticSections.h" 20 #include "Target.h" 21 #include "Writer.h" 22 #include "lld/Common/Memory.h" 23 #include "lld/Common/Strings.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/BinaryFormat/ELF.h" 27 #include "llvm/Support/Casting.h" 28 #include "llvm/Support/Endian.h" 29 #include "llvm/Support/ErrorHandling.h" 30 #include "llvm/Support/FileSystem.h" 31 #include "llvm/Support/Parallel.h" 32 #include "llvm/Support/Path.h" 33 #include "llvm/Support/TimeProfiler.h" 34 #include <algorithm> 35 #include <cassert> 36 #include <cstddef> 37 #include <cstdint> 38 #include <iterator> 39 #include <limits> 40 #include <string> 41 #include <vector> 42 43 using namespace llvm; 44 using namespace llvm::ELF; 45 using namespace llvm::object; 46 using namespace llvm::support::endian; 47 using namespace lld; 48 using namespace lld::elf; 49 50 LinkerScript *elf::script; 51 52 static uint64_t getOutputSectionVA(SectionBase *sec) { 53 OutputSection *os = sec->getOutputSection(); 54 assert(os && "input section has no output section assigned"); 55 return os ? os->addr : 0; 56 } 57 58 uint64_t ExprValue::getValue() const { 59 if (sec) 60 return alignTo(sec->getOffset(val) + getOutputSectionVA(sec), 61 alignment); 62 return alignTo(val, alignment); 63 } 64 65 uint64_t ExprValue::getSecAddr() const { 66 if (sec) 67 return sec->getOffset(0) + getOutputSectionVA(sec); 68 return 0; 69 } 70 71 uint64_t ExprValue::getSectionOffset() const { 72 // If the alignment is trivial, we don't have to compute the full 73 // value to know the offset. This allows this function to succeed in 74 // cases where the output section is not yet known. 75 if (alignment == 1 && !sec) 76 return val; 77 return getValue() - getSecAddr(); 78 } 79 80 OutputSection *LinkerScript::createOutputSection(StringRef name, 81 StringRef location) { 82 OutputSection *&secRef = nameToOutputSection[name]; 83 OutputSection *sec; 84 if (secRef && secRef->location.empty()) { 85 // There was a forward reference. 86 sec = secRef; 87 } else { 88 sec = make<OutputSection>(name, SHT_PROGBITS, 0); 89 if (!secRef) 90 secRef = sec; 91 } 92 sec->location = std::string(location); 93 return sec; 94 } 95 96 OutputSection *LinkerScript::getOrCreateOutputSection(StringRef name) { 97 OutputSection *&cmdRef = nameToOutputSection[name]; 98 if (!cmdRef) 99 cmdRef = make<OutputSection>(name, SHT_PROGBITS, 0); 100 return cmdRef; 101 } 102 103 // Expands the memory region by the specified size. 104 static void expandMemoryRegion(MemoryRegion *memRegion, uint64_t size, 105 StringRef regionName, StringRef secName) { 106 memRegion->curPos += size; 107 uint64_t newSize = memRegion->curPos - (memRegion->origin)().getValue(); 108 uint64_t length = (memRegion->length)().getValue(); 109 if (newSize > length) 110 error("section '" + secName + "' will not fit in region '" + regionName + 111 "': overflowed by " + Twine(newSize - length) + " bytes"); 112 } 113 114 void LinkerScript::expandMemoryRegions(uint64_t size) { 115 if (ctx->memRegion) 116 expandMemoryRegion(ctx->memRegion, size, ctx->memRegion->name, 117 ctx->outSec->name); 118 // Only expand the LMARegion if it is different from memRegion. 119 if (ctx->lmaRegion && ctx->memRegion != ctx->lmaRegion) 120 expandMemoryRegion(ctx->lmaRegion, size, ctx->lmaRegion->name, 121 ctx->outSec->name); 122 } 123 124 void LinkerScript::expandOutputSection(uint64_t size) { 125 ctx->outSec->size += size; 126 expandMemoryRegions(size); 127 } 128 129 void LinkerScript::setDot(Expr e, const Twine &loc, bool inSec) { 130 uint64_t val = e().getValue(); 131 if (val < dot && inSec) 132 error(loc + ": unable to move location counter backward for: " + 133 ctx->outSec->name); 134 135 // Update to location counter means update to section size. 136 if (inSec) 137 expandOutputSection(val - dot); 138 139 dot = val; 140 } 141 142 // Used for handling linker symbol assignments, for both finalizing 143 // their values and doing early declarations. Returns true if symbol 144 // should be defined from linker script. 145 static bool shouldDefineSym(SymbolAssignment *cmd) { 146 if (cmd->name == ".") 147 return false; 148 149 if (!cmd->provide) 150 return true; 151 152 // If a symbol was in PROVIDE(), we need to define it only 153 // when it is a referenced undefined symbol. 154 Symbol *b = symtab->find(cmd->name); 155 if (b && !b->isDefined()) 156 return true; 157 return false; 158 } 159 160 // Called by processSymbolAssignments() to assign definitions to 161 // linker-script-defined symbols. 162 void LinkerScript::addSymbol(SymbolAssignment *cmd) { 163 if (!shouldDefineSym(cmd)) 164 return; 165 166 // Define a symbol. 167 ExprValue value = cmd->expression(); 168 SectionBase *sec = value.isAbsolute() ? nullptr : value.sec; 169 uint8_t visibility = cmd->hidden ? STV_HIDDEN : STV_DEFAULT; 170 171 // When this function is called, section addresses have not been 172 // fixed yet. So, we may or may not know the value of the RHS 173 // expression. 174 // 175 // For example, if an expression is `x = 42`, we know x is always 42. 176 // However, if an expression is `x = .`, there's no way to know its 177 // value at the moment. 178 // 179 // We want to set symbol values early if we can. This allows us to 180 // use symbols as variables in linker scripts. Doing so allows us to 181 // write expressions like this: `alignment = 16; . = ALIGN(., alignment)`. 182 uint64_t symValue = value.sec ? 0 : value.getValue(); 183 184 Defined newSym(nullptr, cmd->name, STB_GLOBAL, visibility, value.type, 185 symValue, 0, sec); 186 187 Symbol *sym = symtab->insert(cmd->name); 188 sym->mergeProperties(newSym); 189 sym->replace(newSym); 190 cmd->sym = cast<Defined>(sym); 191 } 192 193 // This function is called from LinkerScript::declareSymbols. 194 // It creates a placeholder symbol if needed. 195 static void declareSymbol(SymbolAssignment *cmd) { 196 if (!shouldDefineSym(cmd)) 197 return; 198 199 uint8_t visibility = cmd->hidden ? STV_HIDDEN : STV_DEFAULT; 200 Defined newSym(nullptr, cmd->name, STB_GLOBAL, visibility, STT_NOTYPE, 0, 0, 201 nullptr); 202 203 // We can't calculate final value right now. 204 Symbol *sym = symtab->insert(cmd->name); 205 sym->mergeProperties(newSym); 206 sym->replace(newSym); 207 208 cmd->sym = cast<Defined>(sym); 209 cmd->provide = false; 210 sym->scriptDefined = true; 211 } 212 213 using SymbolAssignmentMap = 214 DenseMap<const Defined *, std::pair<SectionBase *, uint64_t>>; 215 216 // Collect section/value pairs of linker-script-defined symbols. This is used to 217 // check whether symbol values converge. 218 static SymbolAssignmentMap 219 getSymbolAssignmentValues(const std::vector<BaseCommand *> §ionCommands) { 220 SymbolAssignmentMap ret; 221 for (BaseCommand *base : sectionCommands) { 222 if (auto *cmd = dyn_cast<SymbolAssignment>(base)) { 223 if (cmd->sym) // sym is nullptr for dot. 224 ret.try_emplace(cmd->sym, 225 std::make_pair(cmd->sym->section, cmd->sym->value)); 226 continue; 227 } 228 for (BaseCommand *sub_base : cast<OutputSection>(base)->sectionCommands) 229 if (auto *cmd = dyn_cast<SymbolAssignment>(sub_base)) 230 if (cmd->sym) 231 ret.try_emplace(cmd->sym, 232 std::make_pair(cmd->sym->section, cmd->sym->value)); 233 } 234 return ret; 235 } 236 237 // Returns the lexicographical smallest (for determinism) Defined whose 238 // section/value has changed. 239 static const Defined * 240 getChangedSymbolAssignment(const SymbolAssignmentMap &oldValues) { 241 const Defined *changed = nullptr; 242 for (auto &it : oldValues) { 243 const Defined *sym = it.first; 244 if (std::make_pair(sym->section, sym->value) != it.second && 245 (!changed || sym->getName() < changed->getName())) 246 changed = sym; 247 } 248 return changed; 249 } 250 251 // Process INSERT [AFTER|BEFORE] commands. For each command, we move the 252 // specified output section to the designated place. 253 void LinkerScript::processInsertCommands() { 254 for (const InsertCommand &cmd : insertCommands) { 255 // If cmd.os is empty, it may have been discarded by 256 // adjustSectionsBeforeSorting(). We do not handle such output sections. 257 auto from = llvm::find_if(sectionCommands, [&](BaseCommand *base) { 258 return isa<OutputSection>(base) && 259 cast<OutputSection>(base)->name == cmd.name; 260 }); 261 if (from == sectionCommands.end()) 262 continue; 263 OutputSection *osec = cast<OutputSection>(*from); 264 sectionCommands.erase(from); 265 266 auto insertPos = llvm::find_if(sectionCommands, [&cmd](BaseCommand *base) { 267 auto *to = dyn_cast<OutputSection>(base); 268 return to != nullptr && to->name == cmd.where; 269 }); 270 if (insertPos == sectionCommands.end()) { 271 error("unable to insert " + osec->name + 272 (cmd.isAfter ? " after " : " before ") + cmd.where); 273 } else { 274 if (cmd.isAfter) 275 ++insertPos; 276 sectionCommands.insert(insertPos, osec); 277 } 278 } 279 } 280 281 // Symbols defined in script should not be inlined by LTO. At the same time 282 // we don't know their final values until late stages of link. Here we scan 283 // over symbol assignment commands and create placeholder symbols if needed. 284 void LinkerScript::declareSymbols() { 285 assert(!ctx); 286 for (BaseCommand *base : sectionCommands) { 287 if (auto *cmd = dyn_cast<SymbolAssignment>(base)) { 288 declareSymbol(cmd); 289 continue; 290 } 291 292 // If the output section directive has constraints, 293 // we can't say for sure if it is going to be included or not. 294 // Skip such sections for now. Improve the checks if we ever 295 // need symbols from that sections to be declared early. 296 auto *sec = cast<OutputSection>(base); 297 if (sec->constraint != ConstraintKind::NoConstraint) 298 continue; 299 for (BaseCommand *base2 : sec->sectionCommands) 300 if (auto *cmd = dyn_cast<SymbolAssignment>(base2)) 301 declareSymbol(cmd); 302 } 303 } 304 305 // This function is called from assignAddresses, while we are 306 // fixing the output section addresses. This function is supposed 307 // to set the final value for a given symbol assignment. 308 void LinkerScript::assignSymbol(SymbolAssignment *cmd, bool inSec) { 309 if (cmd->name == ".") { 310 setDot(cmd->expression, cmd->location, inSec); 311 return; 312 } 313 314 if (!cmd->sym) 315 return; 316 317 ExprValue v = cmd->expression(); 318 if (v.isAbsolute()) { 319 cmd->sym->section = nullptr; 320 cmd->sym->value = v.getValue(); 321 } else { 322 cmd->sym->section = v.sec; 323 cmd->sym->value = v.getSectionOffset(); 324 } 325 cmd->sym->type = v.type; 326 } 327 328 static inline StringRef getFilename(const InputFile *file) { 329 return file ? file->getNameForScript() : StringRef(); 330 } 331 332 bool InputSectionDescription::matchesFile(const InputFile *file) const { 333 if (filePat.isTrivialMatchAll()) 334 return true; 335 336 if (!matchesFileCache || matchesFileCache->first != file) 337 matchesFileCache.emplace(file, filePat.match(getFilename(file))); 338 339 return matchesFileCache->second; 340 } 341 342 bool SectionPattern::excludesFile(const InputFile *file) const { 343 if (excludedFilePat.empty()) 344 return false; 345 346 if (!excludesFileCache || excludesFileCache->first != file) 347 excludesFileCache.emplace(file, excludedFilePat.match(getFilename(file))); 348 349 return excludesFileCache->second; 350 } 351 352 bool LinkerScript::shouldKeep(InputSectionBase *s) { 353 for (InputSectionDescription *id : keptSections) 354 if (id->matchesFile(s->file)) 355 for (SectionPattern &p : id->sectionPatterns) 356 if (p.sectionPat.match(s->name) && 357 (s->flags & id->withFlags) == id->withFlags && 358 (s->flags & id->withoutFlags) == 0) 359 return true; 360 return false; 361 } 362 363 // A helper function for the SORT() command. 364 static bool matchConstraints(ArrayRef<InputSectionBase *> sections, 365 ConstraintKind kind) { 366 if (kind == ConstraintKind::NoConstraint) 367 return true; 368 369 bool isRW = llvm::any_of( 370 sections, [](InputSectionBase *sec) { return sec->flags & SHF_WRITE; }); 371 372 return (isRW && kind == ConstraintKind::ReadWrite) || 373 (!isRW && kind == ConstraintKind::ReadOnly); 374 } 375 376 static void sortSections(MutableArrayRef<InputSectionBase *> vec, 377 SortSectionPolicy k) { 378 auto alignmentComparator = [](InputSectionBase *a, InputSectionBase *b) { 379 // ">" is not a mistake. Sections with larger alignments are placed 380 // before sections with smaller alignments in order to reduce the 381 // amount of padding necessary. This is compatible with GNU. 382 return a->alignment > b->alignment; 383 }; 384 auto nameComparator = [](InputSectionBase *a, InputSectionBase *b) { 385 return a->name < b->name; 386 }; 387 auto priorityComparator = [](InputSectionBase *a, InputSectionBase *b) { 388 return getPriority(a->name) < getPriority(b->name); 389 }; 390 391 switch (k) { 392 case SortSectionPolicy::Default: 393 case SortSectionPolicy::None: 394 return; 395 case SortSectionPolicy::Alignment: 396 return llvm::stable_sort(vec, alignmentComparator); 397 case SortSectionPolicy::Name: 398 return llvm::stable_sort(vec, nameComparator); 399 case SortSectionPolicy::Priority: 400 return llvm::stable_sort(vec, priorityComparator); 401 } 402 } 403 404 // Sort sections as instructed by SORT-family commands and --sort-section 405 // option. Because SORT-family commands can be nested at most two depth 406 // (e.g. SORT_BY_NAME(SORT_BY_ALIGNMENT(.text.*))) and because the command 407 // line option is respected even if a SORT command is given, the exact 408 // behavior we have here is a bit complicated. Here are the rules. 409 // 410 // 1. If two SORT commands are given, --sort-section is ignored. 411 // 2. If one SORT command is given, and if it is not SORT_NONE, 412 // --sort-section is handled as an inner SORT command. 413 // 3. If one SORT command is given, and if it is SORT_NONE, don't sort. 414 // 4. If no SORT command is given, sort according to --sort-section. 415 static void sortInputSections(MutableArrayRef<InputSectionBase *> vec, 416 SortSectionPolicy outer, 417 SortSectionPolicy inner) { 418 if (outer == SortSectionPolicy::None) 419 return; 420 421 if (inner == SortSectionPolicy::Default) 422 sortSections(vec, config->sortSection); 423 else 424 sortSections(vec, inner); 425 sortSections(vec, outer); 426 } 427 428 // Compute and remember which sections the InputSectionDescription matches. 429 std::vector<InputSectionBase *> 430 LinkerScript::computeInputSections(const InputSectionDescription *cmd, 431 ArrayRef<InputSectionBase *> sections) { 432 std::vector<InputSectionBase *> ret; 433 std::vector<size_t> indexes; 434 DenseSet<size_t> seen; 435 auto sortByPositionThenCommandLine = [&](size_t begin, size_t end) { 436 llvm::sort(MutableArrayRef<size_t>(indexes).slice(begin, end - begin)); 437 for (size_t i = begin; i != end; ++i) 438 ret[i] = sections[indexes[i]]; 439 sortInputSections( 440 MutableArrayRef<InputSectionBase *>(ret).slice(begin, end - begin), 441 config->sortSection, SortSectionPolicy::None); 442 }; 443 444 // Collects all sections that satisfy constraints of Cmd. 445 size_t sizeAfterPrevSort = 0; 446 for (const SectionPattern &pat : cmd->sectionPatterns) { 447 size_t sizeBeforeCurrPat = ret.size(); 448 449 for (size_t i = 0, e = sections.size(); i != e; ++i) { 450 // Skip if the section is dead or has been matched by a previous input 451 // section description or a previous pattern. 452 InputSectionBase *sec = sections[i]; 453 if (!sec->isLive() || sec->parent || seen.contains(i)) 454 continue; 455 456 // For -emit-relocs we have to ignore entries like 457 // .rela.dyn : { *(.rela.data) } 458 // which are common because they are in the default bfd script. 459 // We do not ignore SHT_REL[A] linker-synthesized sections here because 460 // want to support scripts that do custom layout for them. 461 if (isa<InputSection>(sec) && 462 cast<InputSection>(sec)->getRelocatedSection()) 463 continue; 464 465 // Check the name early to improve performance in the common case. 466 if (!pat.sectionPat.match(sec->name)) 467 continue; 468 469 if (!cmd->matchesFile(sec->file) || pat.excludesFile(sec->file) || 470 (sec->flags & cmd->withFlags) != cmd->withFlags || 471 (sec->flags & cmd->withoutFlags) != 0) 472 continue; 473 474 ret.push_back(sec); 475 indexes.push_back(i); 476 seen.insert(i); 477 } 478 479 if (pat.sortOuter == SortSectionPolicy::Default) 480 continue; 481 482 // Matched sections are ordered by radix sort with the keys being (SORT*, 483 // --sort-section, input order), where SORT* (if present) is most 484 // significant. 485 // 486 // Matched sections between the previous SORT* and this SORT* are sorted by 487 // (--sort-alignment, input order). 488 sortByPositionThenCommandLine(sizeAfterPrevSort, sizeBeforeCurrPat); 489 // Matched sections by this SORT* pattern are sorted using all 3 keys. 490 // ret[sizeBeforeCurrPat,ret.size()) are already in the input order, so we 491 // just sort by sortOuter and sortInner. 492 sortInputSections( 493 MutableArrayRef<InputSectionBase *>(ret).slice(sizeBeforeCurrPat), 494 pat.sortOuter, pat.sortInner); 495 sizeAfterPrevSort = ret.size(); 496 } 497 // Matched sections after the last SORT* are sorted by (--sort-alignment, 498 // input order). 499 sortByPositionThenCommandLine(sizeAfterPrevSort, ret.size()); 500 return ret; 501 } 502 503 void LinkerScript::discard(InputSectionBase *s) { 504 if (s == in.shStrTab || s == mainPart->relrDyn) 505 error("discarding " + s->name + " section is not allowed"); 506 507 // You can discard .hash and .gnu.hash sections by linker scripts. Since 508 // they are synthesized sections, we need to handle them differently than 509 // other regular sections. 510 if (s == mainPart->gnuHashTab) 511 mainPart->gnuHashTab = nullptr; 512 if (s == mainPart->hashTab) 513 mainPart->hashTab = nullptr; 514 515 s->markDead(); 516 s->parent = nullptr; 517 for (InputSection *ds : s->dependentSections) 518 discard(ds); 519 } 520 521 void LinkerScript::discardSynthetic(OutputSection &outCmd) { 522 for (Partition &part : partitions) { 523 if (!part.armExidx || !part.armExidx->isLive()) 524 continue; 525 std::vector<InputSectionBase *> secs(part.armExidx->exidxSections.begin(), 526 part.armExidx->exidxSections.end()); 527 for (BaseCommand *base : outCmd.sectionCommands) 528 if (auto *cmd = dyn_cast<InputSectionDescription>(base)) { 529 std::vector<InputSectionBase *> matches = 530 computeInputSections(cmd, secs); 531 for (InputSectionBase *s : matches) 532 discard(s); 533 } 534 } 535 } 536 537 std::vector<InputSectionBase *> 538 LinkerScript::createInputSectionList(OutputSection &outCmd) { 539 std::vector<InputSectionBase *> ret; 540 541 for (BaseCommand *base : outCmd.sectionCommands) { 542 if (auto *cmd = dyn_cast<InputSectionDescription>(base)) { 543 cmd->sectionBases = computeInputSections(cmd, inputSections); 544 for (InputSectionBase *s : cmd->sectionBases) 545 s->parent = &outCmd; 546 ret.insert(ret.end(), cmd->sectionBases.begin(), cmd->sectionBases.end()); 547 } 548 } 549 return ret; 550 } 551 552 // Create output sections described by SECTIONS commands. 553 void LinkerScript::processSectionCommands() { 554 auto process = [this](OutputSection *osec) { 555 std::vector<InputSectionBase *> v = createInputSectionList(*osec); 556 557 // The output section name `/DISCARD/' is special. 558 // Any input section assigned to it is discarded. 559 if (osec->name == "/DISCARD/") { 560 for (InputSectionBase *s : v) 561 discard(s); 562 discardSynthetic(*osec); 563 osec->sectionCommands.clear(); 564 return false; 565 } 566 567 // This is for ONLY_IF_RO and ONLY_IF_RW. An output section directive 568 // ".foo : ONLY_IF_R[OW] { ... }" is handled only if all member input 569 // sections satisfy a given constraint. If not, a directive is handled 570 // as if it wasn't present from the beginning. 571 // 572 // Because we'll iterate over SectionCommands many more times, the easy 573 // way to "make it as if it wasn't present" is to make it empty. 574 if (!matchConstraints(v, osec->constraint)) { 575 for (InputSectionBase *s : v) 576 s->parent = nullptr; 577 osec->sectionCommands.clear(); 578 return false; 579 } 580 581 // Handle subalign (e.g. ".foo : SUBALIGN(32) { ... }"). If subalign 582 // is given, input sections are aligned to that value, whether the 583 // given value is larger or smaller than the original section alignment. 584 if (osec->subalignExpr) { 585 uint32_t subalign = osec->subalignExpr().getValue(); 586 for (InputSectionBase *s : v) 587 s->alignment = subalign; 588 } 589 590 // Set the partition field the same way OutputSection::recordSection() 591 // does. Partitions cannot be used with the SECTIONS command, so this is 592 // always 1. 593 osec->partition = 1; 594 return true; 595 }; 596 597 // Process OVERWRITE_SECTIONS first so that it can overwrite the main script 598 // or orphans. 599 DenseMap<StringRef, OutputSection *> map; 600 size_t i = 0; 601 for (OutputSection *osec : overwriteSections) 602 if (process(osec) && !map.try_emplace(osec->name, osec).second) 603 warn("OVERWRITE_SECTIONS specifies duplicate " + osec->name); 604 for (BaseCommand *&base : sectionCommands) 605 if (auto *osec = dyn_cast<OutputSection>(base)) { 606 if (OutputSection *overwrite = map.lookup(osec->name)) { 607 log(overwrite->location + " overwrites " + osec->name); 608 overwrite->sectionIndex = i++; 609 base = overwrite; 610 } else if (process(osec)) { 611 osec->sectionIndex = i++; 612 } 613 } 614 615 // If an OVERWRITE_SECTIONS specified output section is not in 616 // sectionCommands, append it to the end. The section will be inserted by 617 // orphan placement. 618 for (OutputSection *osec : overwriteSections) 619 if (osec->partition == 1 && osec->sectionIndex == UINT32_MAX) 620 sectionCommands.push_back(osec); 621 } 622 623 void LinkerScript::processSymbolAssignments() { 624 // Dot outside an output section still represents a relative address, whose 625 // sh_shndx should not be SHN_UNDEF or SHN_ABS. Create a dummy aether section 626 // that fills the void outside a section. It has an index of one, which is 627 // indistinguishable from any other regular section index. 628 aether = make<OutputSection>("", 0, SHF_ALLOC); 629 aether->sectionIndex = 1; 630 631 // ctx captures the local AddressState and makes it accessible deliberately. 632 // This is needed as there are some cases where we cannot just thread the 633 // current state through to a lambda function created by the script parser. 634 AddressState state; 635 ctx = &state; 636 ctx->outSec = aether; 637 638 for (BaseCommand *base : sectionCommands) { 639 if (auto *cmd = dyn_cast<SymbolAssignment>(base)) 640 addSymbol(cmd); 641 else 642 for (BaseCommand *sub_base : cast<OutputSection>(base)->sectionCommands) 643 if (auto *cmd = dyn_cast<SymbolAssignment>(sub_base)) 644 addSymbol(cmd); 645 } 646 647 ctx = nullptr; 648 } 649 650 static OutputSection *findByName(ArrayRef<BaseCommand *> vec, 651 StringRef name) { 652 for (BaseCommand *base : vec) 653 if (auto *sec = dyn_cast<OutputSection>(base)) 654 if (sec->name == name) 655 return sec; 656 return nullptr; 657 } 658 659 static OutputSection *createSection(InputSectionBase *isec, 660 StringRef outsecName) { 661 OutputSection *sec = script->createOutputSection(outsecName, "<internal>"); 662 sec->recordSection(isec); 663 return sec; 664 } 665 666 static OutputSection * 667 addInputSec(StringMap<TinyPtrVector<OutputSection *>> &map, 668 InputSectionBase *isec, StringRef outsecName) { 669 // Sections with SHT_GROUP or SHF_GROUP attributes reach here only when the -r 670 // option is given. A section with SHT_GROUP defines a "section group", and 671 // its members have SHF_GROUP attribute. Usually these flags have already been 672 // stripped by InputFiles.cpp as section groups are processed and uniquified. 673 // However, for the -r option, we want to pass through all section groups 674 // as-is because adding/removing members or merging them with other groups 675 // change their semantics. 676 if (isec->type == SHT_GROUP || (isec->flags & SHF_GROUP)) 677 return createSection(isec, outsecName); 678 679 // Imagine .zed : { *(.foo) *(.bar) } script. Both foo and bar may have 680 // relocation sections .rela.foo and .rela.bar for example. Most tools do 681 // not allow multiple REL[A] sections for output section. Hence we 682 // should combine these relocation sections into single output. 683 // We skip synthetic sections because it can be .rela.dyn/.rela.plt or any 684 // other REL[A] sections created by linker itself. 685 if (!isa<SyntheticSection>(isec) && 686 (isec->type == SHT_REL || isec->type == SHT_RELA)) { 687 auto *sec = cast<InputSection>(isec); 688 OutputSection *out = sec->getRelocatedSection()->getOutputSection(); 689 690 if (out->relocationSection) { 691 out->relocationSection->recordSection(sec); 692 return nullptr; 693 } 694 695 out->relocationSection = createSection(isec, outsecName); 696 return out->relocationSection; 697 } 698 699 // The ELF spec just says 700 // ---------------------------------------------------------------- 701 // In the first phase, input sections that match in name, type and 702 // attribute flags should be concatenated into single sections. 703 // ---------------------------------------------------------------- 704 // 705 // However, it is clear that at least some flags have to be ignored for 706 // section merging. At the very least SHF_GROUP and SHF_COMPRESSED have to be 707 // ignored. We should not have two output .text sections just because one was 708 // in a group and another was not for example. 709 // 710 // It also seems that wording was a late addition and didn't get the 711 // necessary scrutiny. 712 // 713 // Merging sections with different flags is expected by some users. One 714 // reason is that if one file has 715 // 716 // int *const bar __attribute__((section(".foo"))) = (int *)0; 717 // 718 // gcc with -fPIC will produce a read only .foo section. But if another 719 // file has 720 // 721 // int zed; 722 // int *const bar __attribute__((section(".foo"))) = (int *)&zed; 723 // 724 // gcc with -fPIC will produce a read write section. 725 // 726 // Last but not least, when using linker script the merge rules are forced by 727 // the script. Unfortunately, linker scripts are name based. This means that 728 // expressions like *(.foo*) can refer to multiple input sections with 729 // different flags. We cannot put them in different output sections or we 730 // would produce wrong results for 731 // 732 // start = .; *(.foo.*) end = .; *(.bar) 733 // 734 // and a mapping of .foo1 and .bar1 to one section and .foo2 and .bar2 to 735 // another. The problem is that there is no way to layout those output 736 // sections such that the .foo sections are the only thing between the start 737 // and end symbols. 738 // 739 // Given the above issues, we instead merge sections by name and error on 740 // incompatible types and flags. 741 TinyPtrVector<OutputSection *> &v = map[outsecName]; 742 for (OutputSection *sec : v) { 743 if (sec->partition != isec->partition) 744 continue; 745 746 if (config->relocatable && (isec->flags & SHF_LINK_ORDER)) { 747 // Merging two SHF_LINK_ORDER sections with different sh_link fields will 748 // change their semantics, so we only merge them in -r links if they will 749 // end up being linked to the same output section. The casts are fine 750 // because everything in the map was created by the orphan placement code. 751 auto *firstIsec = cast<InputSectionBase>( 752 cast<InputSectionDescription>(sec->sectionCommands[0]) 753 ->sectionBases[0]); 754 OutputSection *firstIsecOut = 755 firstIsec->flags & SHF_LINK_ORDER 756 ? firstIsec->getLinkOrderDep()->getOutputSection() 757 : nullptr; 758 if (firstIsecOut != isec->getLinkOrderDep()->getOutputSection()) 759 continue; 760 } 761 762 sec->recordSection(isec); 763 return nullptr; 764 } 765 766 OutputSection *sec = createSection(isec, outsecName); 767 v.push_back(sec); 768 return sec; 769 } 770 771 // Add sections that didn't match any sections command. 772 void LinkerScript::addOrphanSections() { 773 StringMap<TinyPtrVector<OutputSection *>> map; 774 std::vector<OutputSection *> v; 775 776 std::function<void(InputSectionBase *)> add; 777 add = [&](InputSectionBase *s) { 778 if (s->isLive() && !s->parent) { 779 orphanSections.push_back(s); 780 781 StringRef name = getOutputSectionName(s); 782 if (config->unique) { 783 v.push_back(createSection(s, name)); 784 } else if (OutputSection *sec = findByName(sectionCommands, name)) { 785 sec->recordSection(s); 786 } else { 787 if (OutputSection *os = addInputSec(map, s, name)) 788 v.push_back(os); 789 assert(isa<MergeInputSection>(s) || 790 s->getOutputSection()->sectionIndex == UINT32_MAX); 791 } 792 } 793 794 if (config->relocatable) 795 for (InputSectionBase *depSec : s->dependentSections) 796 if (depSec->flags & SHF_LINK_ORDER) 797 add(depSec); 798 }; 799 800 // For further --emit-reloc handling code we need target output section 801 // to be created before we create relocation output section, so we want 802 // to create target sections first. We do not want priority handling 803 // for synthetic sections because them are special. 804 for (InputSectionBase *isec : inputSections) { 805 // In -r links, SHF_LINK_ORDER sections are added while adding their parent 806 // sections because we need to know the parent's output section before we 807 // can select an output section for the SHF_LINK_ORDER section. 808 if (config->relocatable && (isec->flags & SHF_LINK_ORDER)) 809 continue; 810 811 if (auto *sec = dyn_cast<InputSection>(isec)) 812 if (InputSectionBase *rel = sec->getRelocatedSection()) 813 if (auto *relIS = dyn_cast_or_null<InputSectionBase>(rel->parent)) 814 add(relIS); 815 add(isec); 816 } 817 818 // If no SECTIONS command was given, we should insert sections commands 819 // before others, so that we can handle scripts which refers them, 820 // for example: "foo = ABSOLUTE(ADDR(.text)));". 821 // When SECTIONS command is present we just add all orphans to the end. 822 if (hasSectionsCommand) 823 sectionCommands.insert(sectionCommands.end(), v.begin(), v.end()); 824 else 825 sectionCommands.insert(sectionCommands.begin(), v.begin(), v.end()); 826 } 827 828 void LinkerScript::diagnoseOrphanHandling() const { 829 llvm::TimeTraceScope timeScope("Diagnose orphan sections"); 830 if (config->orphanHandling == OrphanHandlingPolicy::Place) 831 return; 832 for (const InputSectionBase *sec : orphanSections) { 833 // Input SHT_REL[A] retained by --emit-relocs are ignored by 834 // computeInputSections(). Don't warn/error. 835 if (isa<InputSection>(sec) && 836 cast<InputSection>(sec)->getRelocatedSection()) 837 continue; 838 839 StringRef name = getOutputSectionName(sec); 840 if (config->orphanHandling == OrphanHandlingPolicy::Error) 841 error(toString(sec) + " is being placed in '" + name + "'"); 842 else 843 warn(toString(sec) + " is being placed in '" + name + "'"); 844 } 845 } 846 847 uint64_t LinkerScript::advance(uint64_t size, unsigned alignment) { 848 bool isTbss = 849 (ctx->outSec->flags & SHF_TLS) && ctx->outSec->type == SHT_NOBITS; 850 uint64_t start = isTbss ? dot + ctx->threadBssOffset : dot; 851 start = alignTo(start, alignment); 852 uint64_t end = start + size; 853 854 if (isTbss) 855 ctx->threadBssOffset = end - dot; 856 else 857 dot = end; 858 return end; 859 } 860 861 void LinkerScript::output(InputSection *s) { 862 assert(ctx->outSec == s->getParent()); 863 uint64_t before = advance(0, 1); 864 uint64_t pos = advance(s->getSize(), s->alignment); 865 s->outSecOff = pos - s->getSize() - ctx->outSec->addr; 866 867 // Update output section size after adding each section. This is so that 868 // SIZEOF works correctly in the case below: 869 // .foo { *(.aaa) a = SIZEOF(.foo); *(.bbb) } 870 expandOutputSection(pos - before); 871 } 872 873 void LinkerScript::switchTo(OutputSection *sec) { 874 ctx->outSec = sec; 875 876 uint64_t pos = advance(0, 1); 877 if (sec->addrExpr && script->hasSectionsCommand) { 878 // The alignment is ignored. 879 ctx->outSec->addr = pos; 880 } else { 881 // ctx->outSec->alignment is the max of ALIGN and the maximum of input 882 // section alignments. 883 ctx->outSec->addr = advance(0, ctx->outSec->alignment); 884 expandMemoryRegions(ctx->outSec->addr - pos); 885 } 886 } 887 888 // This function searches for a memory region to place the given output 889 // section in. If found, a pointer to the appropriate memory region is 890 // returned. Otherwise, a nullptr is returned. 891 MemoryRegion *LinkerScript::findMemoryRegion(OutputSection *sec) { 892 // If a memory region name was specified in the output section command, 893 // then try to find that region first. 894 if (!sec->memoryRegionName.empty()) { 895 if (MemoryRegion *m = memoryRegions.lookup(sec->memoryRegionName)) 896 return m; 897 error("memory region '" + sec->memoryRegionName + "' not declared"); 898 return nullptr; 899 } 900 901 // If at least one memory region is defined, all sections must 902 // belong to some memory region. Otherwise, we don't need to do 903 // anything for memory regions. 904 if (memoryRegions.empty()) 905 return nullptr; 906 907 // See if a region can be found by matching section flags. 908 for (auto &pair : memoryRegions) { 909 MemoryRegion *m = pair.second; 910 if ((m->flags & sec->flags) && (m->negFlags & sec->flags) == 0) 911 return m; 912 } 913 914 // Otherwise, no suitable region was found. 915 if (sec->flags & SHF_ALLOC) 916 error("no memory region specified for section '" + sec->name + "'"); 917 return nullptr; 918 } 919 920 static OutputSection *findFirstSection(PhdrEntry *load) { 921 for (OutputSection *sec : outputSections) 922 if (sec->ptLoad == load) 923 return sec; 924 return nullptr; 925 } 926 927 // This function assigns offsets to input sections and an output section 928 // for a single sections command (e.g. ".text { *(.text); }"). 929 void LinkerScript::assignOffsets(OutputSection *sec) { 930 const bool sameMemRegion = ctx->memRegion == sec->memRegion; 931 const bool prevLMARegionIsDefault = ctx->lmaRegion == nullptr; 932 const uint64_t savedDot = dot; 933 ctx->memRegion = sec->memRegion; 934 ctx->lmaRegion = sec->lmaRegion; 935 936 if (sec->flags & SHF_ALLOC) { 937 if (ctx->memRegion) 938 dot = ctx->memRegion->curPos; 939 if (sec->addrExpr) 940 setDot(sec->addrExpr, sec->location, false); 941 942 // If the address of the section has been moved forward by an explicit 943 // expression so that it now starts past the current curPos of the enclosing 944 // region, we need to expand the current region to account for the space 945 // between the previous section, if any, and the start of this section. 946 if (ctx->memRegion && ctx->memRegion->curPos < dot) 947 expandMemoryRegion(ctx->memRegion, dot - ctx->memRegion->curPos, 948 ctx->memRegion->name, sec->name); 949 } else { 950 // Non-SHF_ALLOC sections have zero addresses. 951 dot = 0; 952 } 953 954 switchTo(sec); 955 956 // ctx->lmaOffset is LMA minus VMA. If LMA is explicitly specified via AT() or 957 // AT>, recompute ctx->lmaOffset; otherwise, if both previous/current LMA 958 // region is the default, and the two sections are in the same memory region, 959 // reuse previous lmaOffset; otherwise, reset lmaOffset to 0. This emulates 960 // heuristics described in 961 // https://sourceware.org/binutils/docs/ld/Output-Section-LMA.html 962 if (sec->lmaExpr) 963 ctx->lmaOffset = sec->lmaExpr().getValue() - dot; 964 else if (MemoryRegion *mr = sec->lmaRegion) 965 ctx->lmaOffset = alignTo(mr->curPos, sec->alignment) - dot; 966 else if (!sameMemRegion || !prevLMARegionIsDefault) 967 ctx->lmaOffset = 0; 968 969 // Propagate ctx->lmaOffset to the first "non-header" section. 970 if (PhdrEntry *l = ctx->outSec->ptLoad) 971 if (sec == findFirstSection(l)) 972 l->lmaOffset = ctx->lmaOffset; 973 974 // We can call this method multiple times during the creation of 975 // thunks and want to start over calculation each time. 976 sec->size = 0; 977 978 // We visited SectionsCommands from processSectionCommands to 979 // layout sections. Now, we visit SectionsCommands again to fix 980 // section offsets. 981 for (BaseCommand *base : sec->sectionCommands) { 982 // This handles the assignments to symbol or to the dot. 983 if (auto *cmd = dyn_cast<SymbolAssignment>(base)) { 984 cmd->addr = dot; 985 assignSymbol(cmd, true); 986 cmd->size = dot - cmd->addr; 987 continue; 988 } 989 990 // Handle BYTE(), SHORT(), LONG(), or QUAD(). 991 if (auto *cmd = dyn_cast<ByteCommand>(base)) { 992 cmd->offset = dot - ctx->outSec->addr; 993 dot += cmd->size; 994 expandOutputSection(cmd->size); 995 continue; 996 } 997 998 // Handle a single input section description command. 999 // It calculates and assigns the offsets for each section and also 1000 // updates the output section size. 1001 for (InputSection *sec : cast<InputSectionDescription>(base)->sections) 1002 output(sec); 1003 } 1004 1005 // Non-SHF_ALLOC sections do not affect the addresses of other OutputSections 1006 // as they are not part of the process image. 1007 if (!(sec->flags & SHF_ALLOC)) 1008 dot = savedDot; 1009 } 1010 1011 static bool isDiscardable(OutputSection &sec) { 1012 if (sec.name == "/DISCARD/") 1013 return true; 1014 1015 // We do not want to remove OutputSections with expressions that reference 1016 // symbols even if the OutputSection is empty. We want to ensure that the 1017 // expressions can be evaluated and report an error if they cannot. 1018 if (sec.expressionsUseSymbols) 1019 return false; 1020 1021 // OutputSections may be referenced by name in ADDR and LOADADDR expressions, 1022 // as an empty Section can has a valid VMA and LMA we keep the OutputSection 1023 // to maintain the integrity of the other Expression. 1024 if (sec.usedInExpression) 1025 return false; 1026 1027 for (BaseCommand *base : sec.sectionCommands) { 1028 if (auto cmd = dyn_cast<SymbolAssignment>(base)) 1029 // Don't create empty output sections just for unreferenced PROVIDE 1030 // symbols. 1031 if (cmd->name != "." && !cmd->sym) 1032 continue; 1033 1034 if (!isa<InputSectionDescription>(*base)) 1035 return false; 1036 } 1037 return true; 1038 } 1039 1040 static void maybePropagatePhdrs(OutputSection &sec, 1041 std::vector<StringRef> &phdrs) { 1042 if (sec.phdrs.empty()) { 1043 // To match the bfd linker script behaviour, only propagate program 1044 // headers to sections that are allocated. 1045 if (sec.flags & SHF_ALLOC) 1046 sec.phdrs = phdrs; 1047 } else { 1048 phdrs = sec.phdrs; 1049 } 1050 } 1051 1052 void LinkerScript::adjustSectionsBeforeSorting() { 1053 // If the output section contains only symbol assignments, create a 1054 // corresponding output section. The issue is what to do with linker script 1055 // like ".foo : { symbol = 42; }". One option would be to convert it to 1056 // "symbol = 42;". That is, move the symbol out of the empty section 1057 // description. That seems to be what bfd does for this simple case. The 1058 // problem is that this is not completely general. bfd will give up and 1059 // create a dummy section too if there is a ". = . + 1" inside the section 1060 // for example. 1061 // Given that we want to create the section, we have to worry what impact 1062 // it will have on the link. For example, if we just create a section with 1063 // 0 for flags, it would change which PT_LOADs are created. 1064 // We could remember that particular section is dummy and ignore it in 1065 // other parts of the linker, but unfortunately there are quite a few places 1066 // that would need to change: 1067 // * The program header creation. 1068 // * The orphan section placement. 1069 // * The address assignment. 1070 // The other option is to pick flags that minimize the impact the section 1071 // will have on the rest of the linker. That is why we copy the flags from 1072 // the previous sections. Only a few flags are needed to keep the impact low. 1073 uint64_t flags = SHF_ALLOC; 1074 1075 std::vector<StringRef> defPhdrs; 1076 for (BaseCommand *&cmd : sectionCommands) { 1077 auto *sec = dyn_cast<OutputSection>(cmd); 1078 if (!sec) 1079 continue; 1080 1081 // Handle align (e.g. ".foo : ALIGN(16) { ... }"). 1082 if (sec->alignExpr) 1083 sec->alignment = 1084 std::max<uint32_t>(sec->alignment, sec->alignExpr().getValue()); 1085 1086 // The input section might have been removed (if it was an empty synthetic 1087 // section), but we at least know the flags. 1088 if (sec->hasInputSections) 1089 flags = sec->flags; 1090 1091 // We do not want to keep any special flags for output section 1092 // in case it is empty. 1093 bool isEmpty = (getFirstInputSection(sec) == nullptr); 1094 if (isEmpty) 1095 sec->flags = flags & ((sec->nonAlloc ? 0 : (uint64_t)SHF_ALLOC) | 1096 SHF_WRITE | SHF_EXECINSTR); 1097 1098 // The code below may remove empty output sections. We should save the 1099 // specified program headers (if exist) and propagate them to subsequent 1100 // sections which do not specify program headers. 1101 // An example of such a linker script is: 1102 // SECTIONS { .empty : { *(.empty) } :rw 1103 // .foo : { *(.foo) } } 1104 // Note: at this point the order of output sections has not been finalized, 1105 // because orphans have not been inserted into their expected positions. We 1106 // will handle them in adjustSectionsAfterSorting(). 1107 if (sec->sectionIndex != UINT32_MAX) 1108 maybePropagatePhdrs(*sec, defPhdrs); 1109 1110 if (isEmpty && isDiscardable(*sec)) { 1111 sec->markDead(); 1112 cmd = nullptr; 1113 } 1114 } 1115 1116 // It is common practice to use very generic linker scripts. So for any 1117 // given run some of the output sections in the script will be empty. 1118 // We could create corresponding empty output sections, but that would 1119 // clutter the output. 1120 // We instead remove trivially empty sections. The bfd linker seems even 1121 // more aggressive at removing them. 1122 llvm::erase_if(sectionCommands, [&](BaseCommand *base) { return !base; }); 1123 } 1124 1125 void LinkerScript::adjustSectionsAfterSorting() { 1126 // Try and find an appropriate memory region to assign offsets in. 1127 for (BaseCommand *base : sectionCommands) { 1128 if (auto *sec = dyn_cast<OutputSection>(base)) { 1129 if (!sec->lmaRegionName.empty()) { 1130 if (MemoryRegion *m = memoryRegions.lookup(sec->lmaRegionName)) 1131 sec->lmaRegion = m; 1132 else 1133 error("memory region '" + sec->lmaRegionName + "' not declared"); 1134 } 1135 sec->memRegion = findMemoryRegion(sec); 1136 } 1137 } 1138 1139 // If output section command doesn't specify any segments, 1140 // and we haven't previously assigned any section to segment, 1141 // then we simply assign section to the very first load segment. 1142 // Below is an example of such linker script: 1143 // PHDRS { seg PT_LOAD; } 1144 // SECTIONS { .aaa : { *(.aaa) } } 1145 std::vector<StringRef> defPhdrs; 1146 auto firstPtLoad = llvm::find_if(phdrsCommands, [](const PhdrsCommand &cmd) { 1147 return cmd.type == PT_LOAD; 1148 }); 1149 if (firstPtLoad != phdrsCommands.end()) 1150 defPhdrs.push_back(firstPtLoad->name); 1151 1152 // Walk the commands and propagate the program headers to commands that don't 1153 // explicitly specify them. 1154 for (BaseCommand *base : sectionCommands) 1155 if (auto *sec = dyn_cast<OutputSection>(base)) 1156 maybePropagatePhdrs(*sec, defPhdrs); 1157 } 1158 1159 static uint64_t computeBase(uint64_t min, bool allocateHeaders) { 1160 // If there is no SECTIONS or if the linkerscript is explicit about program 1161 // headers, do our best to allocate them. 1162 if (!script->hasSectionsCommand || allocateHeaders) 1163 return 0; 1164 // Otherwise only allocate program headers if that would not add a page. 1165 return alignDown(min, config->maxPageSize); 1166 } 1167 1168 // When the SECTIONS command is used, try to find an address for the file and 1169 // program headers output sections, which can be added to the first PT_LOAD 1170 // segment when program headers are created. 1171 // 1172 // We check if the headers fit below the first allocated section. If there isn't 1173 // enough space for these sections, we'll remove them from the PT_LOAD segment, 1174 // and we'll also remove the PT_PHDR segment. 1175 void LinkerScript::allocateHeaders(std::vector<PhdrEntry *> &phdrs) { 1176 uint64_t min = std::numeric_limits<uint64_t>::max(); 1177 for (OutputSection *sec : outputSections) 1178 if (sec->flags & SHF_ALLOC) 1179 min = std::min<uint64_t>(min, sec->addr); 1180 1181 auto it = llvm::find_if( 1182 phdrs, [](const PhdrEntry *e) { return e->p_type == PT_LOAD; }); 1183 if (it == phdrs.end()) 1184 return; 1185 PhdrEntry *firstPTLoad = *it; 1186 1187 bool hasExplicitHeaders = 1188 llvm::any_of(phdrsCommands, [](const PhdrsCommand &cmd) { 1189 return cmd.hasPhdrs || cmd.hasFilehdr; 1190 }); 1191 bool paged = !config->omagic && !config->nmagic; 1192 uint64_t headerSize = getHeaderSize(); 1193 if ((paged || hasExplicitHeaders) && 1194 headerSize <= min - computeBase(min, hasExplicitHeaders)) { 1195 min = alignDown(min - headerSize, config->maxPageSize); 1196 Out::elfHeader->addr = min; 1197 Out::programHeaders->addr = min + Out::elfHeader->size; 1198 return; 1199 } 1200 1201 // Error if we were explicitly asked to allocate headers. 1202 if (hasExplicitHeaders) 1203 error("could not allocate headers"); 1204 1205 Out::elfHeader->ptLoad = nullptr; 1206 Out::programHeaders->ptLoad = nullptr; 1207 firstPTLoad->firstSec = findFirstSection(firstPTLoad); 1208 1209 llvm::erase_if(phdrs, 1210 [](const PhdrEntry *e) { return e->p_type == PT_PHDR; }); 1211 } 1212 1213 LinkerScript::AddressState::AddressState() { 1214 for (auto &mri : script->memoryRegions) { 1215 MemoryRegion *mr = mri.second; 1216 mr->curPos = (mr->origin)().getValue(); 1217 } 1218 } 1219 1220 // Here we assign addresses as instructed by linker script SECTIONS 1221 // sub-commands. Doing that allows us to use final VA values, so here 1222 // we also handle rest commands like symbol assignments and ASSERTs. 1223 // Returns a symbol that has changed its section or value, or nullptr if no 1224 // symbol has changed. 1225 const Defined *LinkerScript::assignAddresses() { 1226 if (script->hasSectionsCommand) { 1227 // With a linker script, assignment of addresses to headers is covered by 1228 // allocateHeaders(). 1229 dot = config->imageBase.getValueOr(0); 1230 } else { 1231 // Assign addresses to headers right now. 1232 dot = target->getImageBase(); 1233 Out::elfHeader->addr = dot; 1234 Out::programHeaders->addr = dot + Out::elfHeader->size; 1235 dot += getHeaderSize(); 1236 } 1237 1238 auto deleter = std::make_unique<AddressState>(); 1239 ctx = deleter.get(); 1240 errorOnMissingSection = true; 1241 switchTo(aether); 1242 1243 SymbolAssignmentMap oldValues = getSymbolAssignmentValues(sectionCommands); 1244 for (BaseCommand *base : sectionCommands) { 1245 if (auto *cmd = dyn_cast<SymbolAssignment>(base)) { 1246 cmd->addr = dot; 1247 assignSymbol(cmd, false); 1248 cmd->size = dot - cmd->addr; 1249 continue; 1250 } 1251 assignOffsets(cast<OutputSection>(base)); 1252 } 1253 1254 ctx = nullptr; 1255 return getChangedSymbolAssignment(oldValues); 1256 } 1257 1258 // Creates program headers as instructed by PHDRS linker script command. 1259 std::vector<PhdrEntry *> LinkerScript::createPhdrs() { 1260 std::vector<PhdrEntry *> ret; 1261 1262 // Process PHDRS and FILEHDR keywords because they are not 1263 // real output sections and cannot be added in the following loop. 1264 for (const PhdrsCommand &cmd : phdrsCommands) { 1265 PhdrEntry *phdr = make<PhdrEntry>(cmd.type, cmd.flags ? *cmd.flags : PF_R); 1266 1267 if (cmd.hasFilehdr) 1268 phdr->add(Out::elfHeader); 1269 if (cmd.hasPhdrs) 1270 phdr->add(Out::programHeaders); 1271 1272 if (cmd.lmaExpr) { 1273 phdr->p_paddr = cmd.lmaExpr().getValue(); 1274 phdr->hasLMA = true; 1275 } 1276 ret.push_back(phdr); 1277 } 1278 1279 // Add output sections to program headers. 1280 for (OutputSection *sec : outputSections) { 1281 // Assign headers specified by linker script 1282 for (size_t id : getPhdrIndices(sec)) { 1283 ret[id]->add(sec); 1284 if (!phdrsCommands[id].flags.hasValue()) 1285 ret[id]->p_flags |= sec->getPhdrFlags(); 1286 } 1287 } 1288 return ret; 1289 } 1290 1291 // Returns true if we should emit an .interp section. 1292 // 1293 // We usually do. But if PHDRS commands are given, and 1294 // no PT_INTERP is there, there's no place to emit an 1295 // .interp, so we don't do that in that case. 1296 bool LinkerScript::needsInterpSection() { 1297 if (phdrsCommands.empty()) 1298 return true; 1299 for (PhdrsCommand &cmd : phdrsCommands) 1300 if (cmd.type == PT_INTERP) 1301 return true; 1302 return false; 1303 } 1304 1305 ExprValue LinkerScript::getSymbolValue(StringRef name, const Twine &loc) { 1306 if (name == ".") { 1307 if (ctx) 1308 return {ctx->outSec, false, dot - ctx->outSec->addr, loc}; 1309 error(loc + ": unable to get location counter value"); 1310 return 0; 1311 } 1312 1313 if (Symbol *sym = symtab->find(name)) { 1314 if (auto *ds = dyn_cast<Defined>(sym)) { 1315 ExprValue v{ds->section, false, ds->value, loc}; 1316 // Retain the original st_type, so that the alias will get the same 1317 // behavior in relocation processing. Any operation will reset st_type to 1318 // STT_NOTYPE. 1319 v.type = ds->type; 1320 return v; 1321 } 1322 if (isa<SharedSymbol>(sym)) 1323 if (!errorOnMissingSection) 1324 return {nullptr, false, 0, loc}; 1325 } 1326 1327 error(loc + ": symbol not found: " + name); 1328 return 0; 1329 } 1330 1331 // Returns the index of the segment named Name. 1332 static Optional<size_t> getPhdrIndex(ArrayRef<PhdrsCommand> vec, 1333 StringRef name) { 1334 for (size_t i = 0; i < vec.size(); ++i) 1335 if (vec[i].name == name) 1336 return i; 1337 return None; 1338 } 1339 1340 // Returns indices of ELF headers containing specific section. Each index is a 1341 // zero based number of ELF header listed within PHDRS {} script block. 1342 std::vector<size_t> LinkerScript::getPhdrIndices(OutputSection *cmd) { 1343 std::vector<size_t> ret; 1344 1345 for (StringRef s : cmd->phdrs) { 1346 if (Optional<size_t> idx = getPhdrIndex(phdrsCommands, s)) 1347 ret.push_back(*idx); 1348 else if (s != "NONE") 1349 error(cmd->location + ": program header '" + s + 1350 "' is not listed in PHDRS"); 1351 } 1352 return ret; 1353 } 1354