1 //===- LinkerScript.cpp ---------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the parser/evaluator of the linker script.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "LinkerScript.h"
14 #include "Config.h"
15 #include "InputSection.h"
16 #include "OutputSections.h"
17 #include "SymbolTable.h"
18 #include "Symbols.h"
19 #include "SyntheticSections.h"
20 #include "Target.h"
21 #include "Writer.h"
22 #include "lld/Common/Memory.h"
23 #include "lld/Common/Strings.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/BinaryFormat/ELF.h"
27 #include "llvm/Support/Casting.h"
28 #include "llvm/Support/Endian.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/FileSystem.h"
31 #include "llvm/Support/Parallel.h"
32 #include "llvm/Support/Path.h"
33 #include <algorithm>
34 #include <cassert>
35 #include <cstddef>
36 #include <cstdint>
37 #include <iterator>
38 #include <limits>
39 #include <string>
40 #include <vector>
41 
42 using namespace llvm;
43 using namespace llvm::ELF;
44 using namespace llvm::object;
45 using namespace llvm::support::endian;
46 using namespace lld;
47 using namespace lld::elf;
48 
49 LinkerScript *elf::script;
50 
51 static uint64_t getOutputSectionVA(SectionBase *sec) {
52   OutputSection *os = sec->getOutputSection();
53   assert(os && "input section has no output section assigned");
54   return os ? os->addr : 0;
55 }
56 
57 uint64_t ExprValue::getValue() const {
58   if (sec)
59     return alignTo(sec->getOffset(val) + getOutputSectionVA(sec),
60                    alignment);
61   return alignTo(val, alignment);
62 }
63 
64 uint64_t ExprValue::getSecAddr() const {
65   if (sec)
66     return sec->getOffset(0) + getOutputSectionVA(sec);
67   return 0;
68 }
69 
70 uint64_t ExprValue::getSectionOffset() const {
71   // If the alignment is trivial, we don't have to compute the full
72   // value to know the offset. This allows this function to succeed in
73   // cases where the output section is not yet known.
74   if (alignment == 1 && !sec)
75     return val;
76   return getValue() - getSecAddr();
77 }
78 
79 OutputSection *LinkerScript::createOutputSection(StringRef name,
80                                                  StringRef location) {
81   OutputSection *&secRef = nameToOutputSection[name];
82   OutputSection *sec;
83   if (secRef && secRef->location.empty()) {
84     // There was a forward reference.
85     sec = secRef;
86   } else {
87     sec = make<OutputSection>(name, SHT_PROGBITS, 0);
88     if (!secRef)
89       secRef = sec;
90   }
91   sec->location = std::string(location);
92   return sec;
93 }
94 
95 OutputSection *LinkerScript::getOrCreateOutputSection(StringRef name) {
96   OutputSection *&cmdRef = nameToOutputSection[name];
97   if (!cmdRef)
98     cmdRef = make<OutputSection>(name, SHT_PROGBITS, 0);
99   return cmdRef;
100 }
101 
102 // Expands the memory region by the specified size.
103 static void expandMemoryRegion(MemoryRegion *memRegion, uint64_t size,
104                                StringRef regionName, StringRef secName) {
105   memRegion->curPos += size;
106   uint64_t newSize = memRegion->curPos - (memRegion->origin)().getValue();
107   uint64_t length = (memRegion->length)().getValue();
108   if (newSize > length)
109     error("section '" + secName + "' will not fit in region '" + regionName +
110           "': overflowed by " + Twine(newSize - length) + " bytes");
111 }
112 
113 void LinkerScript::expandMemoryRegions(uint64_t size) {
114   if (ctx->memRegion)
115     expandMemoryRegion(ctx->memRegion, size, ctx->memRegion->name,
116                        ctx->outSec->name);
117   // Only expand the LMARegion if it is different from memRegion.
118   if (ctx->lmaRegion && ctx->memRegion != ctx->lmaRegion)
119     expandMemoryRegion(ctx->lmaRegion, size, ctx->lmaRegion->name,
120                        ctx->outSec->name);
121 }
122 
123 void LinkerScript::expandOutputSection(uint64_t size) {
124   ctx->outSec->size += size;
125   expandMemoryRegions(size);
126 }
127 
128 void LinkerScript::setDot(Expr e, const Twine &loc, bool inSec) {
129   uint64_t val = e().getValue();
130   if (val < dot && inSec)
131     error(loc + ": unable to move location counter backward for: " +
132           ctx->outSec->name);
133 
134   // Update to location counter means update to section size.
135   if (inSec)
136     expandOutputSection(val - dot);
137 
138   dot = val;
139 }
140 
141 // Used for handling linker symbol assignments, for both finalizing
142 // their values and doing early declarations. Returns true if symbol
143 // should be defined from linker script.
144 static bool shouldDefineSym(SymbolAssignment *cmd) {
145   if (cmd->name == ".")
146     return false;
147 
148   if (!cmd->provide)
149     return true;
150 
151   // If a symbol was in PROVIDE(), we need to define it only
152   // when it is a referenced undefined symbol.
153   Symbol *b = symtab->find(cmd->name);
154   if (b && !b->isDefined())
155     return true;
156   return false;
157 }
158 
159 // Called by processSymbolAssignments() to assign definitions to
160 // linker-script-defined symbols.
161 void LinkerScript::addSymbol(SymbolAssignment *cmd) {
162   if (!shouldDefineSym(cmd))
163     return;
164 
165   // Define a symbol.
166   ExprValue value = cmd->expression();
167   SectionBase *sec = value.isAbsolute() ? nullptr : value.sec;
168   uint8_t visibility = cmd->hidden ? STV_HIDDEN : STV_DEFAULT;
169 
170   // When this function is called, section addresses have not been
171   // fixed yet. So, we may or may not know the value of the RHS
172   // expression.
173   //
174   // For example, if an expression is `x = 42`, we know x is always 42.
175   // However, if an expression is `x = .`, there's no way to know its
176   // value at the moment.
177   //
178   // We want to set symbol values early if we can. This allows us to
179   // use symbols as variables in linker scripts. Doing so allows us to
180   // write expressions like this: `alignment = 16; . = ALIGN(., alignment)`.
181   uint64_t symValue = value.sec ? 0 : value.getValue();
182 
183   Defined newSym(nullptr, cmd->name, STB_GLOBAL, visibility, value.type,
184                  symValue, 0, sec);
185 
186   Symbol *sym = symtab->insert(cmd->name);
187   sym->mergeProperties(newSym);
188   sym->replace(newSym);
189   cmd->sym = cast<Defined>(sym);
190 }
191 
192 // This function is called from LinkerScript::declareSymbols.
193 // It creates a placeholder symbol if needed.
194 static void declareSymbol(SymbolAssignment *cmd) {
195   if (!shouldDefineSym(cmd))
196     return;
197 
198   uint8_t visibility = cmd->hidden ? STV_HIDDEN : STV_DEFAULT;
199   Defined newSym(nullptr, cmd->name, STB_GLOBAL, visibility, STT_NOTYPE, 0, 0,
200                  nullptr);
201 
202   // We can't calculate final value right now.
203   Symbol *sym = symtab->insert(cmd->name);
204   sym->mergeProperties(newSym);
205   sym->replace(newSym);
206 
207   cmd->sym = cast<Defined>(sym);
208   cmd->provide = false;
209   sym->scriptDefined = true;
210 }
211 
212 using SymbolAssignmentMap =
213     DenseMap<const Defined *, std::pair<SectionBase *, uint64_t>>;
214 
215 // Collect section/value pairs of linker-script-defined symbols. This is used to
216 // check whether symbol values converge.
217 static SymbolAssignmentMap
218 getSymbolAssignmentValues(const std::vector<BaseCommand *> &sectionCommands) {
219   SymbolAssignmentMap ret;
220   for (BaseCommand *base : sectionCommands) {
221     if (auto *cmd = dyn_cast<SymbolAssignment>(base)) {
222       if (cmd->sym) // sym is nullptr for dot.
223         ret.try_emplace(cmd->sym,
224                         std::make_pair(cmd->sym->section, cmd->sym->value));
225       continue;
226     }
227     for (BaseCommand *sub_base : cast<OutputSection>(base)->sectionCommands)
228       if (auto *cmd = dyn_cast<SymbolAssignment>(sub_base))
229         if (cmd->sym)
230           ret.try_emplace(cmd->sym,
231                           std::make_pair(cmd->sym->section, cmd->sym->value));
232   }
233   return ret;
234 }
235 
236 // Returns the lexicographical smallest (for determinism) Defined whose
237 // section/value has changed.
238 static const Defined *
239 getChangedSymbolAssignment(const SymbolAssignmentMap &oldValues) {
240   const Defined *changed = nullptr;
241   for (auto &it : oldValues) {
242     const Defined *sym = it.first;
243     if (std::make_pair(sym->section, sym->value) != it.second &&
244         (!changed || sym->getName() < changed->getName()))
245       changed = sym;
246   }
247   return changed;
248 }
249 
250 // Process INSERT [AFTER|BEFORE] commands. For each command, we move the
251 // specified output section to the designated place.
252 void LinkerScript::processInsertCommands() {
253   for (const InsertCommand &cmd : insertCommands) {
254     // If cmd.os is empty, it may have been discarded by
255     // adjustSectionsBeforeSorting(). We do not handle such output sections.
256     auto from = llvm::find(sectionCommands, cmd.os);
257     if (from == sectionCommands.end())
258       continue;
259     sectionCommands.erase(from);
260 
261     auto insertPos = llvm::find_if(sectionCommands, [&cmd](BaseCommand *base) {
262       auto *to = dyn_cast<OutputSection>(base);
263       return to != nullptr && to->name == cmd.where;
264     });
265     if (insertPos == sectionCommands.end()) {
266       error("unable to insert " + cmd.os->name +
267             (cmd.isAfter ? " after " : " before ") + cmd.where);
268     } else {
269       if (cmd.isAfter)
270         ++insertPos;
271       sectionCommands.insert(insertPos, cmd.os);
272     }
273   }
274 }
275 
276 // Symbols defined in script should not be inlined by LTO. At the same time
277 // we don't know their final values until late stages of link. Here we scan
278 // over symbol assignment commands and create placeholder symbols if needed.
279 void LinkerScript::declareSymbols() {
280   assert(!ctx);
281   for (BaseCommand *base : sectionCommands) {
282     if (auto *cmd = dyn_cast<SymbolAssignment>(base)) {
283       declareSymbol(cmd);
284       continue;
285     }
286 
287     // If the output section directive has constraints,
288     // we can't say for sure if it is going to be included or not.
289     // Skip such sections for now. Improve the checks if we ever
290     // need symbols from that sections to be declared early.
291     auto *sec = cast<OutputSection>(base);
292     if (sec->constraint != ConstraintKind::NoConstraint)
293       continue;
294     for (BaseCommand *base2 : sec->sectionCommands)
295       if (auto *cmd = dyn_cast<SymbolAssignment>(base2))
296         declareSymbol(cmd);
297   }
298 }
299 
300 // This function is called from assignAddresses, while we are
301 // fixing the output section addresses. This function is supposed
302 // to set the final value for a given symbol assignment.
303 void LinkerScript::assignSymbol(SymbolAssignment *cmd, bool inSec) {
304   if (cmd->name == ".") {
305     setDot(cmd->expression, cmd->location, inSec);
306     return;
307   }
308 
309   if (!cmd->sym)
310     return;
311 
312   ExprValue v = cmd->expression();
313   if (v.isAbsolute()) {
314     cmd->sym->section = nullptr;
315     cmd->sym->value = v.getValue();
316   } else {
317     cmd->sym->section = v.sec;
318     cmd->sym->value = v.getSectionOffset();
319   }
320   cmd->sym->type = v.type;
321 }
322 
323 static inline StringRef getFilename(const InputFile *file) {
324   return file ? file->getNameForScript() : StringRef();
325 }
326 
327 bool InputSectionDescription::matchesFile(const InputFile *file) const {
328   if (filePat.isTrivialMatchAll())
329     return true;
330 
331   if (!matchesFileCache || matchesFileCache->first != file)
332     matchesFileCache.emplace(file, filePat.match(getFilename(file)));
333 
334   return matchesFileCache->second;
335 }
336 
337 bool SectionPattern::excludesFile(const InputFile *file) const {
338   if (excludedFilePat.empty())
339     return false;
340 
341   if (!excludesFileCache || excludesFileCache->first != file)
342     excludesFileCache.emplace(file, excludedFilePat.match(getFilename(file)));
343 
344   return excludesFileCache->second;
345 }
346 
347 bool LinkerScript::shouldKeep(InputSectionBase *s) {
348   for (InputSectionDescription *id : keptSections)
349     if (id->matchesFile(s->file))
350       for (SectionPattern &p : id->sectionPatterns)
351         if (p.sectionPat.match(s->name) &&
352             (s->flags & id->withFlags) == id->withFlags &&
353             (s->flags & id->withoutFlags) == 0)
354           return true;
355   return false;
356 }
357 
358 // A helper function for the SORT() command.
359 static bool matchConstraints(ArrayRef<InputSectionBase *> sections,
360                              ConstraintKind kind) {
361   if (kind == ConstraintKind::NoConstraint)
362     return true;
363 
364   bool isRW = llvm::any_of(
365       sections, [](InputSectionBase *sec) { return sec->flags & SHF_WRITE; });
366 
367   return (isRW && kind == ConstraintKind::ReadWrite) ||
368          (!isRW && kind == ConstraintKind::ReadOnly);
369 }
370 
371 static void sortSections(MutableArrayRef<InputSectionBase *> vec,
372                          SortSectionPolicy k) {
373   auto alignmentComparator = [](InputSectionBase *a, InputSectionBase *b) {
374     // ">" is not a mistake. Sections with larger alignments are placed
375     // before sections with smaller alignments in order to reduce the
376     // amount of padding necessary. This is compatible with GNU.
377     return a->alignment > b->alignment;
378   };
379   auto nameComparator = [](InputSectionBase *a, InputSectionBase *b) {
380     return a->name < b->name;
381   };
382   auto priorityComparator = [](InputSectionBase *a, InputSectionBase *b) {
383     return getPriority(a->name) < getPriority(b->name);
384   };
385 
386   switch (k) {
387   case SortSectionPolicy::Default:
388   case SortSectionPolicy::None:
389     return;
390   case SortSectionPolicy::Alignment:
391     return llvm::stable_sort(vec, alignmentComparator);
392   case SortSectionPolicy::Name:
393     return llvm::stable_sort(vec, nameComparator);
394   case SortSectionPolicy::Priority:
395     return llvm::stable_sort(vec, priorityComparator);
396   }
397 }
398 
399 // Sort sections as instructed by SORT-family commands and --sort-section
400 // option. Because SORT-family commands can be nested at most two depth
401 // (e.g. SORT_BY_NAME(SORT_BY_ALIGNMENT(.text.*))) and because the command
402 // line option is respected even if a SORT command is given, the exact
403 // behavior we have here is a bit complicated. Here are the rules.
404 //
405 // 1. If two SORT commands are given, --sort-section is ignored.
406 // 2. If one SORT command is given, and if it is not SORT_NONE,
407 //    --sort-section is handled as an inner SORT command.
408 // 3. If one SORT command is given, and if it is SORT_NONE, don't sort.
409 // 4. If no SORT command is given, sort according to --sort-section.
410 static void sortInputSections(MutableArrayRef<InputSectionBase *> vec,
411                               const SectionPattern &pat) {
412   if (pat.sortOuter == SortSectionPolicy::None)
413     return;
414 
415   if (pat.sortInner == SortSectionPolicy::Default)
416     sortSections(vec, config->sortSection);
417   else
418     sortSections(vec, pat.sortInner);
419   sortSections(vec, pat.sortOuter);
420 }
421 
422 // Compute and remember which sections the InputSectionDescription matches.
423 std::vector<InputSectionBase *>
424 LinkerScript::computeInputSections(const InputSectionDescription *cmd,
425                                    ArrayRef<InputSectionBase *> sections) {
426   std::vector<InputSectionBase *> ret;
427 
428   // Collects all sections that satisfy constraints of Cmd.
429   for (const SectionPattern &pat : cmd->sectionPatterns) {
430     size_t sizeBefore = ret.size();
431 
432     for (InputSectionBase *sec : sections) {
433       if (!sec->isLive() || sec->parent)
434         continue;
435 
436       // For -emit-relocs we have to ignore entries like
437       //   .rela.dyn : { *(.rela.data) }
438       // which are common because they are in the default bfd script.
439       // We do not ignore SHT_REL[A] linker-synthesized sections here because
440       // want to support scripts that do custom layout for them.
441       if (isa<InputSection>(sec) &&
442           cast<InputSection>(sec)->getRelocatedSection())
443         continue;
444 
445       // Check the name early to improve performance in the common case.
446       if (!pat.sectionPat.match(sec->name))
447         continue;
448 
449       if (!cmd->matchesFile(sec->file) || pat.excludesFile(sec->file) ||
450           (sec->flags & cmd->withFlags) != cmd->withFlags ||
451           (sec->flags & cmd->withoutFlags) != 0)
452         continue;
453 
454       ret.push_back(sec);
455     }
456 
457     sortInputSections(
458         MutableArrayRef<InputSectionBase *>(ret).slice(sizeBefore), pat);
459   }
460   return ret;
461 }
462 
463 void LinkerScript::discard(InputSectionBase *s) {
464   if (s == in.shStrTab || s == mainPart->relrDyn)
465     error("discarding " + s->name + " section is not allowed");
466 
467   // You can discard .hash and .gnu.hash sections by linker scripts. Since
468   // they are synthesized sections, we need to handle them differently than
469   // other regular sections.
470   if (s == mainPart->gnuHashTab)
471     mainPart->gnuHashTab = nullptr;
472   if (s == mainPart->hashTab)
473     mainPart->hashTab = nullptr;
474 
475   s->markDead();
476   s->parent = nullptr;
477   for (InputSection *ds : s->dependentSections)
478     discard(ds);
479 }
480 
481 void LinkerScript::discardSynthetic(OutputSection &outCmd) {
482   for (Partition &part : partitions) {
483     if (!part.armExidx || !part.armExidx->isLive())
484       continue;
485     std::vector<InputSectionBase *> secs(part.armExidx->exidxSections.begin(),
486                                          part.armExidx->exidxSections.end());
487     for (BaseCommand *base : outCmd.sectionCommands)
488       if (auto *cmd = dyn_cast<InputSectionDescription>(base)) {
489         std::vector<InputSectionBase *> matches =
490             computeInputSections(cmd, secs);
491         for (InputSectionBase *s : matches)
492           discard(s);
493       }
494   }
495 }
496 
497 std::vector<InputSectionBase *>
498 LinkerScript::createInputSectionList(OutputSection &outCmd) {
499   std::vector<InputSectionBase *> ret;
500 
501   for (BaseCommand *base : outCmd.sectionCommands) {
502     if (auto *cmd = dyn_cast<InputSectionDescription>(base)) {
503       cmd->sectionBases = computeInputSections(cmd, inputSections);
504       for (InputSectionBase *s : cmd->sectionBases)
505         s->parent = &outCmd;
506       ret.insert(ret.end(), cmd->sectionBases.begin(), cmd->sectionBases.end());
507     }
508   }
509   return ret;
510 }
511 
512 // Create output sections described by SECTIONS commands.
513 void LinkerScript::processSectionCommands() {
514   size_t i = 0;
515   for (BaseCommand *base : sectionCommands) {
516     if (auto *sec = dyn_cast<OutputSection>(base)) {
517       std::vector<InputSectionBase *> v = createInputSectionList(*sec);
518 
519       // The output section name `/DISCARD/' is special.
520       // Any input section assigned to it is discarded.
521       if (sec->name == "/DISCARD/") {
522         for (InputSectionBase *s : v)
523           discard(s);
524         discardSynthetic(*sec);
525         sec->sectionCommands.clear();
526         continue;
527       }
528 
529       // This is for ONLY_IF_RO and ONLY_IF_RW. An output section directive
530       // ".foo : ONLY_IF_R[OW] { ... }" is handled only if all member input
531       // sections satisfy a given constraint. If not, a directive is handled
532       // as if it wasn't present from the beginning.
533       //
534       // Because we'll iterate over SectionCommands many more times, the easy
535       // way to "make it as if it wasn't present" is to make it empty.
536       if (!matchConstraints(v, sec->constraint)) {
537         for (InputSectionBase *s : v)
538           s->parent = nullptr;
539         sec->sectionCommands.clear();
540         continue;
541       }
542 
543       // Handle subalign (e.g. ".foo : SUBALIGN(32) { ... }"). If subalign
544       // is given, input sections are aligned to that value, whether the
545       // given value is larger or smaller than the original section alignment.
546       if (sec->subalignExpr) {
547         uint32_t subalign = sec->subalignExpr().getValue();
548         for (InputSectionBase *s : v)
549           s->alignment = subalign;
550       }
551 
552       // Set the partition field the same way OutputSection::recordSection()
553       // does. Partitions cannot be used with the SECTIONS command, so this is
554       // always 1.
555       sec->partition = 1;
556 
557       sec->sectionIndex = i++;
558     }
559   }
560 }
561 
562 void LinkerScript::processSymbolAssignments() {
563   // Dot outside an output section still represents a relative address, whose
564   // sh_shndx should not be SHN_UNDEF or SHN_ABS. Create a dummy aether section
565   // that fills the void outside a section. It has an index of one, which is
566   // indistinguishable from any other regular section index.
567   aether = make<OutputSection>("", 0, SHF_ALLOC);
568   aether->sectionIndex = 1;
569 
570   // ctx captures the local AddressState and makes it accessible deliberately.
571   // This is needed as there are some cases where we cannot just thread the
572   // current state through to a lambda function created by the script parser.
573   AddressState state;
574   ctx = &state;
575   ctx->outSec = aether;
576 
577   for (BaseCommand *base : sectionCommands) {
578     if (auto *cmd = dyn_cast<SymbolAssignment>(base))
579       addSymbol(cmd);
580     else
581       for (BaseCommand *sub_base : cast<OutputSection>(base)->sectionCommands)
582         if (auto *cmd = dyn_cast<SymbolAssignment>(sub_base))
583           addSymbol(cmd);
584   }
585 
586   ctx = nullptr;
587 }
588 
589 static OutputSection *findByName(ArrayRef<BaseCommand *> vec,
590                                  StringRef name) {
591   for (BaseCommand *base : vec)
592     if (auto *sec = dyn_cast<OutputSection>(base))
593       if (sec->name == name)
594         return sec;
595   return nullptr;
596 }
597 
598 static OutputSection *createSection(InputSectionBase *isec,
599                                     StringRef outsecName) {
600   OutputSection *sec = script->createOutputSection(outsecName, "<internal>");
601   sec->recordSection(isec);
602   return sec;
603 }
604 
605 static OutputSection *
606 addInputSec(StringMap<TinyPtrVector<OutputSection *>> &map,
607             InputSectionBase *isec, StringRef outsecName) {
608   // Sections with SHT_GROUP or SHF_GROUP attributes reach here only when the -r
609   // option is given. A section with SHT_GROUP defines a "section group", and
610   // its members have SHF_GROUP attribute. Usually these flags have already been
611   // stripped by InputFiles.cpp as section groups are processed and uniquified.
612   // However, for the -r option, we want to pass through all section groups
613   // as-is because adding/removing members or merging them with other groups
614   // change their semantics.
615   if (isec->type == SHT_GROUP || (isec->flags & SHF_GROUP))
616     return createSection(isec, outsecName);
617 
618   // Imagine .zed : { *(.foo) *(.bar) } script. Both foo and bar may have
619   // relocation sections .rela.foo and .rela.bar for example. Most tools do
620   // not allow multiple REL[A] sections for output section. Hence we
621   // should combine these relocation sections into single output.
622   // We skip synthetic sections because it can be .rela.dyn/.rela.plt or any
623   // other REL[A] sections created by linker itself.
624   if (!isa<SyntheticSection>(isec) &&
625       (isec->type == SHT_REL || isec->type == SHT_RELA)) {
626     auto *sec = cast<InputSection>(isec);
627     OutputSection *out = sec->getRelocatedSection()->getOutputSection();
628 
629     if (out->relocationSection) {
630       out->relocationSection->recordSection(sec);
631       return nullptr;
632     }
633 
634     out->relocationSection = createSection(isec, outsecName);
635     return out->relocationSection;
636   }
637 
638   //  The ELF spec just says
639   // ----------------------------------------------------------------
640   // In the first phase, input sections that match in name, type and
641   // attribute flags should be concatenated into single sections.
642   // ----------------------------------------------------------------
643   //
644   // However, it is clear that at least some flags have to be ignored for
645   // section merging. At the very least SHF_GROUP and SHF_COMPRESSED have to be
646   // ignored. We should not have two output .text sections just because one was
647   // in a group and another was not for example.
648   //
649   // It also seems that wording was a late addition and didn't get the
650   // necessary scrutiny.
651   //
652   // Merging sections with different flags is expected by some users. One
653   // reason is that if one file has
654   //
655   // int *const bar __attribute__((section(".foo"))) = (int *)0;
656   //
657   // gcc with -fPIC will produce a read only .foo section. But if another
658   // file has
659   //
660   // int zed;
661   // int *const bar __attribute__((section(".foo"))) = (int *)&zed;
662   //
663   // gcc with -fPIC will produce a read write section.
664   //
665   // Last but not least, when using linker script the merge rules are forced by
666   // the script. Unfortunately, linker scripts are name based. This means that
667   // expressions like *(.foo*) can refer to multiple input sections with
668   // different flags. We cannot put them in different output sections or we
669   // would produce wrong results for
670   //
671   // start = .; *(.foo.*) end = .; *(.bar)
672   //
673   // and a mapping of .foo1 and .bar1 to one section and .foo2 and .bar2 to
674   // another. The problem is that there is no way to layout those output
675   // sections such that the .foo sections are the only thing between the start
676   // and end symbols.
677   //
678   // Given the above issues, we instead merge sections by name and error on
679   // incompatible types and flags.
680   TinyPtrVector<OutputSection *> &v = map[outsecName];
681   for (OutputSection *sec : v) {
682     if (sec->partition != isec->partition)
683       continue;
684 
685     if (config->relocatable && (isec->flags & SHF_LINK_ORDER)) {
686       // Merging two SHF_LINK_ORDER sections with different sh_link fields will
687       // change their semantics, so we only merge them in -r links if they will
688       // end up being linked to the same output section. The casts are fine
689       // because everything in the map was created by the orphan placement code.
690       auto *firstIsec = cast<InputSectionBase>(
691           cast<InputSectionDescription>(sec->sectionCommands[0])
692               ->sectionBases[0]);
693       OutputSection *firstIsecOut =
694           firstIsec->flags & SHF_LINK_ORDER
695               ? firstIsec->getLinkOrderDep()->getOutputSection()
696               : nullptr;
697       if (firstIsecOut != isec->getLinkOrderDep()->getOutputSection())
698         continue;
699     }
700 
701     sec->recordSection(isec);
702     return nullptr;
703   }
704 
705   OutputSection *sec = createSection(isec, outsecName);
706   v.push_back(sec);
707   return sec;
708 }
709 
710 // Add sections that didn't match any sections command.
711 void LinkerScript::addOrphanSections() {
712   StringMap<TinyPtrVector<OutputSection *>> map;
713   std::vector<OutputSection *> v;
714 
715   std::function<void(InputSectionBase *)> add;
716   add = [&](InputSectionBase *s) {
717     if (s->isLive() && !s->parent) {
718       orphanSections.push_back(s);
719 
720       StringRef name = getOutputSectionName(s);
721       if (config->unique) {
722         v.push_back(createSection(s, name));
723       } else if (OutputSection *sec = findByName(sectionCommands, name)) {
724         sec->recordSection(s);
725       } else {
726         if (OutputSection *os = addInputSec(map, s, name))
727           v.push_back(os);
728         assert(isa<MergeInputSection>(s) ||
729                s->getOutputSection()->sectionIndex == UINT32_MAX);
730       }
731     }
732 
733     if (config->relocatable)
734       for (InputSectionBase *depSec : s->dependentSections)
735         if (depSec->flags & SHF_LINK_ORDER)
736           add(depSec);
737   };
738 
739   // For futher --emit-reloc handling code we need target output section
740   // to be created before we create relocation output section, so we want
741   // to create target sections first. We do not want priority handling
742   // for synthetic sections because them are special.
743   for (InputSectionBase *isec : inputSections) {
744     // In -r links, SHF_LINK_ORDER sections are added while adding their parent
745     // sections because we need to know the parent's output section before we
746     // can select an output section for the SHF_LINK_ORDER section.
747     if (config->relocatable && (isec->flags & SHF_LINK_ORDER))
748       continue;
749 
750     if (auto *sec = dyn_cast<InputSection>(isec))
751       if (InputSectionBase *rel = sec->getRelocatedSection())
752         if (auto *relIS = dyn_cast_or_null<InputSectionBase>(rel->parent))
753           add(relIS);
754     add(isec);
755   }
756 
757   // If no SECTIONS command was given, we should insert sections commands
758   // before others, so that we can handle scripts which refers them,
759   // for example: "foo = ABSOLUTE(ADDR(.text)));".
760   // When SECTIONS command is present we just add all orphans to the end.
761   if (hasSectionsCommand)
762     sectionCommands.insert(sectionCommands.end(), v.begin(), v.end());
763   else
764     sectionCommands.insert(sectionCommands.begin(), v.begin(), v.end());
765 }
766 
767 void LinkerScript::diagnoseOrphanHandling() const {
768   for (const InputSectionBase *sec : orphanSections) {
769     // Input SHT_REL[A] retained by --emit-relocs are ignored by
770     // computeInputSections(). Don't warn/error.
771     if (isa<InputSection>(sec) &&
772         cast<InputSection>(sec)->getRelocatedSection())
773       continue;
774 
775     StringRef name = getOutputSectionName(sec);
776     if (config->orphanHandling == OrphanHandlingPolicy::Error)
777       error(toString(sec) + " is being placed in '" + name + "'");
778     else if (config->orphanHandling == OrphanHandlingPolicy::Warn)
779       warn(toString(sec) + " is being placed in '" + name + "'");
780   }
781 }
782 
783 uint64_t LinkerScript::advance(uint64_t size, unsigned alignment) {
784   bool isTbss =
785       (ctx->outSec->flags & SHF_TLS) && ctx->outSec->type == SHT_NOBITS;
786   uint64_t start = isTbss ? dot + ctx->threadBssOffset : dot;
787   start = alignTo(start, alignment);
788   uint64_t end = start + size;
789 
790   if (isTbss)
791     ctx->threadBssOffset = end - dot;
792   else
793     dot = end;
794   return end;
795 }
796 
797 void LinkerScript::output(InputSection *s) {
798   assert(ctx->outSec == s->getParent());
799   uint64_t before = advance(0, 1);
800   uint64_t pos = advance(s->getSize(), s->alignment);
801   s->outSecOff = pos - s->getSize() - ctx->outSec->addr;
802 
803   // Update output section size after adding each section. This is so that
804   // SIZEOF works correctly in the case below:
805   // .foo { *(.aaa) a = SIZEOF(.foo); *(.bbb) }
806   expandOutputSection(pos - before);
807 }
808 
809 void LinkerScript::switchTo(OutputSection *sec) {
810   ctx->outSec = sec;
811 
812   uint64_t pos = advance(0, 1);
813   if (sec->addrExpr && script->hasSectionsCommand) {
814     // The alignment is ignored.
815     ctx->outSec->addr = pos;
816   } else {
817     // ctx->outSec->alignment is the max of ALIGN and the maximum of input
818     // section alignments.
819     ctx->outSec->addr = advance(0, ctx->outSec->alignment);
820     expandMemoryRegions(ctx->outSec->addr - pos);
821   }
822 }
823 
824 // This function searches for a memory region to place the given output
825 // section in. If found, a pointer to the appropriate memory region is
826 // returned. Otherwise, a nullptr is returned.
827 MemoryRegion *LinkerScript::findMemoryRegion(OutputSection *sec) {
828   // If a memory region name was specified in the output section command,
829   // then try to find that region first.
830   if (!sec->memoryRegionName.empty()) {
831     if (MemoryRegion *m = memoryRegions.lookup(sec->memoryRegionName))
832       return m;
833     error("memory region '" + sec->memoryRegionName + "' not declared");
834     return nullptr;
835   }
836 
837   // If at least one memory region is defined, all sections must
838   // belong to some memory region. Otherwise, we don't need to do
839   // anything for memory regions.
840   if (memoryRegions.empty())
841     return nullptr;
842 
843   // See if a region can be found by matching section flags.
844   for (auto &pair : memoryRegions) {
845     MemoryRegion *m = pair.second;
846     if ((m->flags & sec->flags) && (m->negFlags & sec->flags) == 0)
847       return m;
848   }
849 
850   // Otherwise, no suitable region was found.
851   if (sec->flags & SHF_ALLOC)
852     error("no memory region specified for section '" + sec->name + "'");
853   return nullptr;
854 }
855 
856 static OutputSection *findFirstSection(PhdrEntry *load) {
857   for (OutputSection *sec : outputSections)
858     if (sec->ptLoad == load)
859       return sec;
860   return nullptr;
861 }
862 
863 // This function assigns offsets to input sections and an output section
864 // for a single sections command (e.g. ".text { *(.text); }").
865 void LinkerScript::assignOffsets(OutputSection *sec) {
866   const bool sameMemRegion = ctx->memRegion == sec->memRegion;
867   const bool prevLMARegionIsDefault = ctx->lmaRegion == nullptr;
868   const uint64_t savedDot = dot;
869   ctx->memRegion = sec->memRegion;
870   ctx->lmaRegion = sec->lmaRegion;
871 
872   if (sec->flags & SHF_ALLOC) {
873     if (ctx->memRegion)
874       dot = ctx->memRegion->curPos;
875     if (sec->addrExpr)
876       setDot(sec->addrExpr, sec->location, false);
877 
878     // If the address of the section has been moved forward by an explicit
879     // expression so that it now starts past the current curPos of the enclosing
880     // region, we need to expand the current region to account for the space
881     // between the previous section, if any, and the start of this section.
882     if (ctx->memRegion && ctx->memRegion->curPos < dot)
883       expandMemoryRegion(ctx->memRegion, dot - ctx->memRegion->curPos,
884                          ctx->memRegion->name, sec->name);
885   } else {
886     // Non-SHF_ALLOC sections have zero addresses.
887     dot = 0;
888   }
889 
890   switchTo(sec);
891 
892   // ctx->lmaOffset is LMA minus VMA. If LMA is explicitly specified via AT() or
893   // AT>, recompute ctx->lmaOffset; otherwise, if both previous/current LMA
894   // region is the default, and the two sections are in the same memory region,
895   // reuse previous lmaOffset; otherwise, reset lmaOffset to 0. This emulates
896   // heuristics described in
897   // https://sourceware.org/binutils/docs/ld/Output-Section-LMA.html
898   if (sec->lmaExpr)
899     ctx->lmaOffset = sec->lmaExpr().getValue() - dot;
900   else if (MemoryRegion *mr = sec->lmaRegion)
901     ctx->lmaOffset = alignTo(mr->curPos, sec->alignment) - dot;
902   else if (!sameMemRegion || !prevLMARegionIsDefault)
903     ctx->lmaOffset = 0;
904 
905   // Propagate ctx->lmaOffset to the first "non-header" section.
906   if (PhdrEntry *l = ctx->outSec->ptLoad)
907     if (sec == findFirstSection(l))
908       l->lmaOffset = ctx->lmaOffset;
909 
910   // We can call this method multiple times during the creation of
911   // thunks and want to start over calculation each time.
912   sec->size = 0;
913 
914   // We visited SectionsCommands from processSectionCommands to
915   // layout sections. Now, we visit SectionsCommands again to fix
916   // section offsets.
917   for (BaseCommand *base : sec->sectionCommands) {
918     // This handles the assignments to symbol or to the dot.
919     if (auto *cmd = dyn_cast<SymbolAssignment>(base)) {
920       cmd->addr = dot;
921       assignSymbol(cmd, true);
922       cmd->size = dot - cmd->addr;
923       continue;
924     }
925 
926     // Handle BYTE(), SHORT(), LONG(), or QUAD().
927     if (auto *cmd = dyn_cast<ByteCommand>(base)) {
928       cmd->offset = dot - ctx->outSec->addr;
929       dot += cmd->size;
930       expandOutputSection(cmd->size);
931       continue;
932     }
933 
934     // Handle a single input section description command.
935     // It calculates and assigns the offsets for each section and also
936     // updates the output section size.
937     for (InputSection *sec : cast<InputSectionDescription>(base)->sections)
938       output(sec);
939   }
940 
941   // Non-SHF_ALLOC sections do not affect the addresses of other OutputSections
942   // as they are not part of the process image.
943   if (!(sec->flags & SHF_ALLOC))
944     dot = savedDot;
945 }
946 
947 static bool isDiscardable(OutputSection &sec) {
948   if (sec.name == "/DISCARD/")
949     return true;
950 
951   // We do not remove empty sections that are explicitly
952   // assigned to any segment.
953   if (!sec.phdrs.empty())
954     return false;
955 
956   // We do not want to remove OutputSections with expressions that reference
957   // symbols even if the OutputSection is empty. We want to ensure that the
958   // expressions can be evaluated and report an error if they cannot.
959   if (sec.expressionsUseSymbols)
960     return false;
961 
962   // OutputSections may be referenced by name in ADDR and LOADADDR expressions,
963   // as an empty Section can has a valid VMA and LMA we keep the OutputSection
964   // to maintain the integrity of the other Expression.
965   if (sec.usedInExpression)
966     return false;
967 
968   for (BaseCommand *base : sec.sectionCommands) {
969     if (auto cmd = dyn_cast<SymbolAssignment>(base))
970       // Don't create empty output sections just for unreferenced PROVIDE
971       // symbols.
972       if (cmd->name != "." && !cmd->sym)
973         continue;
974 
975     if (!isa<InputSectionDescription>(*base))
976       return false;
977   }
978   return true;
979 }
980 
981 void LinkerScript::adjustSectionsBeforeSorting() {
982   // If the output section contains only symbol assignments, create a
983   // corresponding output section. The issue is what to do with linker script
984   // like ".foo : { symbol = 42; }". One option would be to convert it to
985   // "symbol = 42;". That is, move the symbol out of the empty section
986   // description. That seems to be what bfd does for this simple case. The
987   // problem is that this is not completely general. bfd will give up and
988   // create a dummy section too if there is a ". = . + 1" inside the section
989   // for example.
990   // Given that we want to create the section, we have to worry what impact
991   // it will have on the link. For example, if we just create a section with
992   // 0 for flags, it would change which PT_LOADs are created.
993   // We could remember that particular section is dummy and ignore it in
994   // other parts of the linker, but unfortunately there are quite a few places
995   // that would need to change:
996   //   * The program header creation.
997   //   * The orphan section placement.
998   //   * The address assignment.
999   // The other option is to pick flags that minimize the impact the section
1000   // will have on the rest of the linker. That is why we copy the flags from
1001   // the previous sections. Only a few flags are needed to keep the impact low.
1002   uint64_t flags = SHF_ALLOC;
1003 
1004   for (BaseCommand *&cmd : sectionCommands) {
1005     auto *sec = dyn_cast<OutputSection>(cmd);
1006     if (!sec)
1007       continue;
1008 
1009     // Handle align (e.g. ".foo : ALIGN(16) { ... }").
1010     if (sec->alignExpr)
1011       sec->alignment =
1012           std::max<uint32_t>(sec->alignment, sec->alignExpr().getValue());
1013 
1014     // The input section might have been removed (if it was an empty synthetic
1015     // section), but we at least know the flags.
1016     if (sec->hasInputSections)
1017       flags = sec->flags;
1018 
1019     // We do not want to keep any special flags for output section
1020     // in case it is empty.
1021     bool isEmpty = (getFirstInputSection(sec) == nullptr);
1022     if (isEmpty)
1023       sec->flags = flags & ((sec->nonAlloc ? 0 : (uint64_t)SHF_ALLOC) |
1024                             SHF_WRITE | SHF_EXECINSTR);
1025 
1026     if (isEmpty && isDiscardable(*sec)) {
1027       sec->markDead();
1028       cmd = nullptr;
1029     }
1030   }
1031 
1032   // It is common practice to use very generic linker scripts. So for any
1033   // given run some of the output sections in the script will be empty.
1034   // We could create corresponding empty output sections, but that would
1035   // clutter the output.
1036   // We instead remove trivially empty sections. The bfd linker seems even
1037   // more aggressive at removing them.
1038   llvm::erase_if(sectionCommands, [&](BaseCommand *base) { return !base; });
1039 }
1040 
1041 void LinkerScript::adjustSectionsAfterSorting() {
1042   // Try and find an appropriate memory region to assign offsets in.
1043   for (BaseCommand *base : sectionCommands) {
1044     if (auto *sec = dyn_cast<OutputSection>(base)) {
1045       if (!sec->lmaRegionName.empty()) {
1046         if (MemoryRegion *m = memoryRegions.lookup(sec->lmaRegionName))
1047           sec->lmaRegion = m;
1048         else
1049           error("memory region '" + sec->lmaRegionName + "' not declared");
1050       }
1051       sec->memRegion = findMemoryRegion(sec);
1052     }
1053   }
1054 
1055   // If output section command doesn't specify any segments,
1056   // and we haven't previously assigned any section to segment,
1057   // then we simply assign section to the very first load segment.
1058   // Below is an example of such linker script:
1059   // PHDRS { seg PT_LOAD; }
1060   // SECTIONS { .aaa : { *(.aaa) } }
1061   std::vector<StringRef> defPhdrs;
1062   auto firstPtLoad = llvm::find_if(phdrsCommands, [](const PhdrsCommand &cmd) {
1063     return cmd.type == PT_LOAD;
1064   });
1065   if (firstPtLoad != phdrsCommands.end())
1066     defPhdrs.push_back(firstPtLoad->name);
1067 
1068   // Walk the commands and propagate the program headers to commands that don't
1069   // explicitly specify them.
1070   for (BaseCommand *base : sectionCommands) {
1071     auto *sec = dyn_cast<OutputSection>(base);
1072     if (!sec)
1073       continue;
1074 
1075     if (sec->phdrs.empty()) {
1076       // To match the bfd linker script behaviour, only propagate program
1077       // headers to sections that are allocated.
1078       if (sec->flags & SHF_ALLOC)
1079         sec->phdrs = defPhdrs;
1080     } else {
1081       defPhdrs = sec->phdrs;
1082     }
1083   }
1084 }
1085 
1086 static uint64_t computeBase(uint64_t min, bool allocateHeaders) {
1087   // If there is no SECTIONS or if the linkerscript is explicit about program
1088   // headers, do our best to allocate them.
1089   if (!script->hasSectionsCommand || allocateHeaders)
1090     return 0;
1091   // Otherwise only allocate program headers if that would not add a page.
1092   return alignDown(min, config->maxPageSize);
1093 }
1094 
1095 // When the SECTIONS command is used, try to find an address for the file and
1096 // program headers output sections, which can be added to the first PT_LOAD
1097 // segment when program headers are created.
1098 //
1099 // We check if the headers fit below the first allocated section. If there isn't
1100 // enough space for these sections, we'll remove them from the PT_LOAD segment,
1101 // and we'll also remove the PT_PHDR segment.
1102 void LinkerScript::allocateHeaders(std::vector<PhdrEntry *> &phdrs) {
1103   uint64_t min = std::numeric_limits<uint64_t>::max();
1104   for (OutputSection *sec : outputSections)
1105     if (sec->flags & SHF_ALLOC)
1106       min = std::min<uint64_t>(min, sec->addr);
1107 
1108   auto it = llvm::find_if(
1109       phdrs, [](const PhdrEntry *e) { return e->p_type == PT_LOAD; });
1110   if (it == phdrs.end())
1111     return;
1112   PhdrEntry *firstPTLoad = *it;
1113 
1114   bool hasExplicitHeaders =
1115       llvm::any_of(phdrsCommands, [](const PhdrsCommand &cmd) {
1116         return cmd.hasPhdrs || cmd.hasFilehdr;
1117       });
1118   bool paged = !config->omagic && !config->nmagic;
1119   uint64_t headerSize = getHeaderSize();
1120   if ((paged || hasExplicitHeaders) &&
1121       headerSize <= min - computeBase(min, hasExplicitHeaders)) {
1122     min = alignDown(min - headerSize, config->maxPageSize);
1123     Out::elfHeader->addr = min;
1124     Out::programHeaders->addr = min + Out::elfHeader->size;
1125     return;
1126   }
1127 
1128   // Error if we were explicitly asked to allocate headers.
1129   if (hasExplicitHeaders)
1130     error("could not allocate headers");
1131 
1132   Out::elfHeader->ptLoad = nullptr;
1133   Out::programHeaders->ptLoad = nullptr;
1134   firstPTLoad->firstSec = findFirstSection(firstPTLoad);
1135 
1136   llvm::erase_if(phdrs,
1137                  [](const PhdrEntry *e) { return e->p_type == PT_PHDR; });
1138 }
1139 
1140 LinkerScript::AddressState::AddressState() {
1141   for (auto &mri : script->memoryRegions) {
1142     MemoryRegion *mr = mri.second;
1143     mr->curPos = (mr->origin)().getValue();
1144   }
1145 }
1146 
1147 // Here we assign addresses as instructed by linker script SECTIONS
1148 // sub-commands. Doing that allows us to use final VA values, so here
1149 // we also handle rest commands like symbol assignments and ASSERTs.
1150 // Returns a symbol that has changed its section or value, or nullptr if no
1151 // symbol has changed.
1152 const Defined *LinkerScript::assignAddresses() {
1153   if (script->hasSectionsCommand) {
1154     // With a linker script, assignment of addresses to headers is covered by
1155     // allocateHeaders().
1156     dot = config->imageBase.getValueOr(0);
1157   } else {
1158     // Assign addresses to headers right now.
1159     dot = target->getImageBase();
1160     Out::elfHeader->addr = dot;
1161     Out::programHeaders->addr = dot + Out::elfHeader->size;
1162     dot += getHeaderSize();
1163   }
1164 
1165   auto deleter = std::make_unique<AddressState>();
1166   ctx = deleter.get();
1167   errorOnMissingSection = true;
1168   switchTo(aether);
1169 
1170   SymbolAssignmentMap oldValues = getSymbolAssignmentValues(sectionCommands);
1171   for (BaseCommand *base : sectionCommands) {
1172     if (auto *cmd = dyn_cast<SymbolAssignment>(base)) {
1173       cmd->addr = dot;
1174       assignSymbol(cmd, false);
1175       cmd->size = dot - cmd->addr;
1176       continue;
1177     }
1178     assignOffsets(cast<OutputSection>(base));
1179   }
1180 
1181   ctx = nullptr;
1182   return getChangedSymbolAssignment(oldValues);
1183 }
1184 
1185 // Creates program headers as instructed by PHDRS linker script command.
1186 std::vector<PhdrEntry *> LinkerScript::createPhdrs() {
1187   std::vector<PhdrEntry *> ret;
1188 
1189   // Process PHDRS and FILEHDR keywords because they are not
1190   // real output sections and cannot be added in the following loop.
1191   for (const PhdrsCommand &cmd : phdrsCommands) {
1192     PhdrEntry *phdr = make<PhdrEntry>(cmd.type, cmd.flags ? *cmd.flags : PF_R);
1193 
1194     if (cmd.hasFilehdr)
1195       phdr->add(Out::elfHeader);
1196     if (cmd.hasPhdrs)
1197       phdr->add(Out::programHeaders);
1198 
1199     if (cmd.lmaExpr) {
1200       phdr->p_paddr = cmd.lmaExpr().getValue();
1201       phdr->hasLMA = true;
1202     }
1203     ret.push_back(phdr);
1204   }
1205 
1206   // Add output sections to program headers.
1207   for (OutputSection *sec : outputSections) {
1208     // Assign headers specified by linker script
1209     for (size_t id : getPhdrIndices(sec)) {
1210       ret[id]->add(sec);
1211       if (!phdrsCommands[id].flags.hasValue())
1212         ret[id]->p_flags |= sec->getPhdrFlags();
1213     }
1214   }
1215   return ret;
1216 }
1217 
1218 // Returns true if we should emit an .interp section.
1219 //
1220 // We usually do. But if PHDRS commands are given, and
1221 // no PT_INTERP is there, there's no place to emit an
1222 // .interp, so we don't do that in that case.
1223 bool LinkerScript::needsInterpSection() {
1224   if (phdrsCommands.empty())
1225     return true;
1226   for (PhdrsCommand &cmd : phdrsCommands)
1227     if (cmd.type == PT_INTERP)
1228       return true;
1229   return false;
1230 }
1231 
1232 ExprValue LinkerScript::getSymbolValue(StringRef name, const Twine &loc) {
1233   if (name == ".") {
1234     if (ctx)
1235       return {ctx->outSec, false, dot - ctx->outSec->addr, loc};
1236     error(loc + ": unable to get location counter value");
1237     return 0;
1238   }
1239 
1240   if (Symbol *sym = symtab->find(name)) {
1241     if (auto *ds = dyn_cast<Defined>(sym)) {
1242       ExprValue v{ds->section, false, ds->value, loc};
1243       // Retain the original st_type, so that the alias will get the same
1244       // behavior in relocation processing. Any operation will reset st_type to
1245       // STT_NOTYPE.
1246       v.type = ds->type;
1247       return v;
1248     }
1249     if (isa<SharedSymbol>(sym))
1250       if (!errorOnMissingSection)
1251         return {nullptr, false, 0, loc};
1252   }
1253 
1254   error(loc + ": symbol not found: " + name);
1255   return 0;
1256 }
1257 
1258 // Returns the index of the segment named Name.
1259 static Optional<size_t> getPhdrIndex(ArrayRef<PhdrsCommand> vec,
1260                                      StringRef name) {
1261   for (size_t i = 0; i < vec.size(); ++i)
1262     if (vec[i].name == name)
1263       return i;
1264   return None;
1265 }
1266 
1267 // Returns indices of ELF headers containing specific section. Each index is a
1268 // zero based number of ELF header listed within PHDRS {} script block.
1269 std::vector<size_t> LinkerScript::getPhdrIndices(OutputSection *cmd) {
1270   std::vector<size_t> ret;
1271 
1272   for (StringRef s : cmd->phdrs) {
1273     if (Optional<size_t> idx = getPhdrIndex(phdrsCommands, s))
1274       ret.push_back(*idx);
1275     else if (s != "NONE")
1276       error(cmd->location + ": program header '" + s +
1277             "' is not listed in PHDRS");
1278   }
1279   return ret;
1280 }
1281