1 //===- LinkerScript.cpp ---------------------------------------------------===// 2 // 3 // The LLVM Linker 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the parser/evaluator of the linker script. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "LinkerScript.h" 15 #include "Config.h" 16 #include "Driver.h" 17 #include "InputSection.h" 18 #include "Memory.h" 19 #include "OutputSections.h" 20 #include "ScriptLexer.h" 21 #include "Strings.h" 22 #include "SymbolTable.h" 23 #include "Symbols.h" 24 #include "SyntheticSections.h" 25 #include "Target.h" 26 #include "Writer.h" 27 #include "llvm/ADT/STLExtras.h" 28 #include "llvm/ADT/SmallString.h" 29 #include "llvm/ADT/StringRef.h" 30 #include "llvm/ADT/StringSwitch.h" 31 #include "llvm/Support/Casting.h" 32 #include "llvm/Support/ELF.h" 33 #include "llvm/Support/Endian.h" 34 #include "llvm/Support/ErrorHandling.h" 35 #include "llvm/Support/FileSystem.h" 36 #include "llvm/Support/MathExtras.h" 37 #include "llvm/Support/Path.h" 38 #include <algorithm> 39 #include <cassert> 40 #include <cstddef> 41 #include <cstdint> 42 #include <iterator> 43 #include <limits> 44 #include <memory> 45 #include <string> 46 #include <tuple> 47 #include <vector> 48 49 using namespace llvm; 50 using namespace llvm::ELF; 51 using namespace llvm::object; 52 using namespace llvm::support::endian; 53 using namespace lld; 54 using namespace lld::elf; 55 56 uint64_t ExprValue::getValue() const { 57 if (Sec) 58 return Sec->getOffset(Val) + Sec->getOutputSection()->Addr; 59 return Val; 60 } 61 62 uint64_t ExprValue::getSecAddr() const { 63 if (Sec) 64 return Sec->getOffset(0) + Sec->getOutputSection()->Addr; 65 return 0; 66 } 67 68 // Some operations only support one non absolute value. Move the 69 // absolute one to the right hand side for convenience. 70 static void moveAbsRight(ExprValue &A, ExprValue &B) { 71 if (A.isAbsolute()) 72 std::swap(A, B); 73 if (!B.isAbsolute()) 74 error("At least one side of the expression must be absolute"); 75 } 76 77 static ExprValue add(ExprValue A, ExprValue B) { 78 moveAbsRight(A, B); 79 return {A.Sec, A.ForceAbsolute, A.Val + B.getValue()}; 80 } 81 static ExprValue sub(ExprValue A, ExprValue B) { 82 return {A.Sec, A.Val - B.getValue()}; 83 } 84 static ExprValue mul(ExprValue A, ExprValue B) { 85 return A.getValue() * B.getValue(); 86 } 87 static ExprValue div(ExprValue A, ExprValue B) { 88 if (uint64_t BV = B.getValue()) 89 return A.getValue() / BV; 90 error("division by zero"); 91 return 0; 92 } 93 static ExprValue leftShift(ExprValue A, ExprValue B) { 94 return A.getValue() << B.getValue(); 95 } 96 static ExprValue rightShift(ExprValue A, ExprValue B) { 97 return A.getValue() >> B.getValue(); 98 } 99 static ExprValue bitAnd(ExprValue A, ExprValue B) { 100 moveAbsRight(A, B); 101 return {A.Sec, A.ForceAbsolute, 102 (A.getValue() & B.getValue()) - A.getSecAddr()}; 103 } 104 static ExprValue bitOr(ExprValue A, ExprValue B) { 105 moveAbsRight(A, B); 106 return {A.Sec, A.ForceAbsolute, 107 (A.getValue() | B.getValue()) - A.getSecAddr()}; 108 } 109 static ExprValue bitNot(ExprValue A) { return ~A.getValue(); } 110 static ExprValue minus(ExprValue A) { return -A.getValue(); } 111 112 LinkerScriptBase *elf::Script; 113 ScriptConfiguration *elf::ScriptConfig; 114 115 template <class ELFT> static SymbolBody *addRegular(SymbolAssignment *Cmd) { 116 Symbol *Sym; 117 uint8_t Visibility = Cmd->Hidden ? STV_HIDDEN : STV_DEFAULT; 118 std::tie(Sym, std::ignore) = Symtab<ELFT>::X->insert( 119 Cmd->Name, /*Type*/ 0, Visibility, /*CanOmitFromDynSym*/ false, 120 /*File*/ nullptr); 121 Sym->Binding = STB_GLOBAL; 122 ExprValue Value = Cmd->Expression(); 123 SectionBase *Sec = Value.isAbsolute() ? nullptr : Value.Sec; 124 replaceBody<DefinedRegular>(Sym, Cmd->Name, /*IsLocal=*/false, Visibility, 125 STT_NOTYPE, 0, 0, Sec, nullptr); 126 return Sym->body(); 127 } 128 129 static bool isUnderSysroot(StringRef Path) { 130 if (Config->Sysroot == "") 131 return false; 132 for (; !Path.empty(); Path = sys::path::parent_path(Path)) 133 if (sys::fs::equivalent(Config->Sysroot, Path)) 134 return true; 135 return false; 136 } 137 138 OutputSection *LinkerScriptBase::getOutputSection(const Twine &Loc, 139 StringRef Name) { 140 static OutputSection FakeSec("", 0, 0); 141 142 for (OutputSection *Sec : *OutputSections) 143 if (Sec->Name == Name) 144 return Sec; 145 146 if (ErrorOnMissingSection) 147 error(Loc + ": undefined section " + Name); 148 return &FakeSec; 149 } 150 151 // This function is essentially the same as getOutputSection(Name)->Size, 152 // but it won't print out an error message if a given section is not found. 153 // 154 // Linker script does not create an output section if its content is empty. 155 // We want to allow SIZEOF(.foo) where .foo is a section which happened to 156 // be empty. That is why this function is different from getOutputSection(). 157 uint64_t LinkerScriptBase::getOutputSectionSize(StringRef Name) { 158 for (OutputSection *Sec : *OutputSections) 159 if (Sec->Name == Name) 160 return Sec->Size; 161 return 0; 162 } 163 164 void LinkerScriptBase::setDot(Expr E, const Twine &Loc, bool InSec) { 165 uint64_t Val = E().getValue(); 166 if (Val < Dot) { 167 if (InSec) 168 error(Loc + ": unable to move location counter backward for: " + 169 CurOutSec->Name); 170 else 171 error(Loc + ": unable to move location counter backward"); 172 } 173 Dot = Val; 174 // Update to location counter means update to section size. 175 if (InSec) 176 CurOutSec->Size = Dot - CurOutSec->Addr; 177 } 178 179 // Sets value of a symbol. Two kinds of symbols are processed: synthetic 180 // symbols, whose value is an offset from beginning of section and regular 181 // symbols whose value is absolute. 182 void LinkerScriptBase::assignSymbol(SymbolAssignment *Cmd, bool InSec) { 183 if (Cmd->Name == ".") { 184 setDot(Cmd->Expression, Cmd->Location, InSec); 185 return; 186 } 187 188 if (!Cmd->Sym) 189 return; 190 191 auto *Sym = cast<DefinedRegular>(Cmd->Sym); 192 ExprValue V = Cmd->Expression(); 193 if (V.isAbsolute()) { 194 Sym->Value = V.getValue(); 195 } else { 196 Sym->Section = V.Sec; 197 if (Sym->Section->Flags & SHF_ALLOC) 198 Sym->Value = V.Val; 199 else 200 Sym->Value = V.getValue(); 201 } 202 } 203 204 static SymbolBody *findSymbol(StringRef S) { 205 switch (Config->EKind) { 206 case ELF32LEKind: 207 return Symtab<ELF32LE>::X->find(S); 208 case ELF32BEKind: 209 return Symtab<ELF32BE>::X->find(S); 210 case ELF64LEKind: 211 return Symtab<ELF64LE>::X->find(S); 212 case ELF64BEKind: 213 return Symtab<ELF64BE>::X->find(S); 214 default: 215 llvm_unreachable("unknown Config->EKind"); 216 } 217 } 218 219 static SymbolBody *addRegularSymbol(SymbolAssignment *Cmd) { 220 switch (Config->EKind) { 221 case ELF32LEKind: 222 return addRegular<ELF32LE>(Cmd); 223 case ELF32BEKind: 224 return addRegular<ELF32BE>(Cmd); 225 case ELF64LEKind: 226 return addRegular<ELF64LE>(Cmd); 227 case ELF64BEKind: 228 return addRegular<ELF64BE>(Cmd); 229 default: 230 llvm_unreachable("unknown Config->EKind"); 231 } 232 } 233 234 void LinkerScriptBase::addSymbol(SymbolAssignment *Cmd) { 235 if (Cmd->Name == ".") 236 return; 237 238 // If a symbol was in PROVIDE(), we need to define it only when 239 // it is a referenced undefined symbol. 240 SymbolBody *B = findSymbol(Cmd->Name); 241 if (Cmd->Provide && (!B || B->isDefined())) 242 return; 243 244 Cmd->Sym = addRegularSymbol(Cmd); 245 } 246 247 bool SymbolAssignment::classof(const BaseCommand *C) { 248 return C->Kind == AssignmentKind; 249 } 250 251 bool OutputSectionCommand::classof(const BaseCommand *C) { 252 return C->Kind == OutputSectionKind; 253 } 254 255 bool InputSectionDescription::classof(const BaseCommand *C) { 256 return C->Kind == InputSectionKind; 257 } 258 259 bool AssertCommand::classof(const BaseCommand *C) { 260 return C->Kind == AssertKind; 261 } 262 263 bool BytesDataCommand::classof(const BaseCommand *C) { 264 return C->Kind == BytesDataKind; 265 } 266 267 static StringRef basename(InputSectionBase *S) { 268 if (S->File) 269 return sys::path::filename(S->File->getName()); 270 return ""; 271 } 272 273 bool LinkerScriptBase::shouldKeep(InputSectionBase *S) { 274 for (InputSectionDescription *ID : Opt.KeptSections) 275 if (ID->FilePat.match(basename(S))) 276 for (SectionPattern &P : ID->SectionPatterns) 277 if (P.SectionPat.match(S->Name)) 278 return true; 279 return false; 280 } 281 282 static bool comparePriority(InputSectionBase *A, InputSectionBase *B) { 283 return getPriority(A->Name) < getPriority(B->Name); 284 } 285 286 static bool compareName(InputSectionBase *A, InputSectionBase *B) { 287 return A->Name < B->Name; 288 } 289 290 static bool compareAlignment(InputSectionBase *A, InputSectionBase *B) { 291 // ">" is not a mistake. Larger alignments are placed before smaller 292 // alignments in order to reduce the amount of padding necessary. 293 // This is compatible with GNU. 294 return A->Alignment > B->Alignment; 295 } 296 297 static std::function<bool(InputSectionBase *, InputSectionBase *)> 298 getComparator(SortSectionPolicy K) { 299 switch (K) { 300 case SortSectionPolicy::Alignment: 301 return compareAlignment; 302 case SortSectionPolicy::Name: 303 return compareName; 304 case SortSectionPolicy::Priority: 305 return comparePriority; 306 default: 307 llvm_unreachable("unknown sort policy"); 308 } 309 } 310 311 static bool matchConstraints(ArrayRef<InputSectionBase *> Sections, 312 ConstraintKind Kind) { 313 if (Kind == ConstraintKind::NoConstraint) 314 return true; 315 bool IsRW = llvm::any_of(Sections, [=](InputSectionBase *Sec2) { 316 auto *Sec = static_cast<InputSectionBase *>(Sec2); 317 return Sec->Flags & SHF_WRITE; 318 }); 319 return (IsRW && Kind == ConstraintKind::ReadWrite) || 320 (!IsRW && Kind == ConstraintKind::ReadOnly); 321 } 322 323 static void sortSections(InputSectionBase **Begin, InputSectionBase **End, 324 SortSectionPolicy K) { 325 if (K != SortSectionPolicy::Default && K != SortSectionPolicy::None) 326 std::stable_sort(Begin, End, getComparator(K)); 327 } 328 329 // Compute and remember which sections the InputSectionDescription matches. 330 void LinkerScriptBase::computeInputSections(InputSectionDescription *I) { 331 // Collects all sections that satisfy constraints of I 332 // and attach them to I. 333 for (SectionPattern &Pat : I->SectionPatterns) { 334 size_t SizeBefore = I->Sections.size(); 335 336 for (InputSectionBase *S : InputSections) { 337 if (S->Assigned) 338 continue; 339 // For -emit-relocs we have to ignore entries like 340 // .rela.dyn : { *(.rela.data) } 341 // which are common because they are in the default bfd script. 342 if (S->Type == SHT_REL || S->Type == SHT_RELA) 343 continue; 344 345 StringRef Filename = basename(S); 346 if (!I->FilePat.match(Filename) || Pat.ExcludedFilePat.match(Filename)) 347 continue; 348 if (!Pat.SectionPat.match(S->Name)) 349 continue; 350 I->Sections.push_back(S); 351 S->Assigned = true; 352 } 353 354 // Sort sections as instructed by SORT-family commands and --sort-section 355 // option. Because SORT-family commands can be nested at most two depth 356 // (e.g. SORT_BY_NAME(SORT_BY_ALIGNMENT(.text.*))) and because the command 357 // line option is respected even if a SORT command is given, the exact 358 // behavior we have here is a bit complicated. Here are the rules. 359 // 360 // 1. If two SORT commands are given, --sort-section is ignored. 361 // 2. If one SORT command is given, and if it is not SORT_NONE, 362 // --sort-section is handled as an inner SORT command. 363 // 3. If one SORT command is given, and if it is SORT_NONE, don't sort. 364 // 4. If no SORT command is given, sort according to --sort-section. 365 InputSectionBase **Begin = I->Sections.data() + SizeBefore; 366 InputSectionBase **End = I->Sections.data() + I->Sections.size(); 367 if (Pat.SortOuter != SortSectionPolicy::None) { 368 if (Pat.SortInner == SortSectionPolicy::Default) 369 sortSections(Begin, End, Config->SortSection); 370 else 371 sortSections(Begin, End, Pat.SortInner); 372 sortSections(Begin, End, Pat.SortOuter); 373 } 374 } 375 } 376 377 void LinkerScriptBase::discard(ArrayRef<InputSectionBase *> V) { 378 for (InputSectionBase *S : V) { 379 S->Live = false; 380 if (S == InX::ShStrTab) 381 error("discarding .shstrtab section is not allowed"); 382 discard(S->DependentSections); 383 } 384 } 385 386 std::vector<InputSectionBase *> 387 LinkerScriptBase::createInputSectionList(OutputSectionCommand &OutCmd) { 388 std::vector<InputSectionBase *> Ret; 389 390 for (const std::unique_ptr<BaseCommand> &Base : OutCmd.Commands) { 391 auto *Cmd = dyn_cast<InputSectionDescription>(Base.get()); 392 if (!Cmd) 393 continue; 394 computeInputSections(Cmd); 395 for (InputSectionBase *S : Cmd->Sections) 396 Ret.push_back(static_cast<InputSectionBase *>(S)); 397 } 398 399 return Ret; 400 } 401 402 void LinkerScriptBase::processCommands(OutputSectionFactory &Factory) { 403 // A symbol can be assigned before any section is mentioned in the linker 404 // script. In an DSO, the symbol values are addresses, so the only important 405 // section values are: 406 // * SHN_UNDEF 407 // * SHN_ABS 408 // * Any value meaning a regular section. 409 // To handle that, create a dummy aether section that fills the void before 410 // the linker scripts switches to another section. It has an index of one 411 // which will map to whatever the first actual section is. 412 Aether = make<OutputSection>("", 0, SHF_ALLOC); 413 Aether->SectionIndex = 1; 414 CurOutSec = Aether; 415 Dot = 0; 416 417 for (unsigned I = 0; I < Opt.Commands.size(); ++I) { 418 auto Iter = Opt.Commands.begin() + I; 419 const std::unique_ptr<BaseCommand> &Base1 = *Iter; 420 421 // Handle symbol assignments outside of any output section. 422 if (auto *Cmd = dyn_cast<SymbolAssignment>(Base1.get())) { 423 addSymbol(Cmd); 424 continue; 425 } 426 427 if (auto *Cmd = dyn_cast<OutputSectionCommand>(Base1.get())) { 428 std::vector<InputSectionBase *> V = createInputSectionList(*Cmd); 429 430 // The output section name `/DISCARD/' is special. 431 // Any input section assigned to it is discarded. 432 if (Cmd->Name == "/DISCARD/") { 433 discard(V); 434 continue; 435 } 436 437 // This is for ONLY_IF_RO and ONLY_IF_RW. An output section directive 438 // ".foo : ONLY_IF_R[OW] { ... }" is handled only if all member input 439 // sections satisfy a given constraint. If not, a directive is handled 440 // as if it wasn't present from the beginning. 441 // 442 // Because we'll iterate over Commands many more times, the easiest 443 // way to "make it as if it wasn't present" is to just remove it. 444 if (!matchConstraints(V, Cmd->Constraint)) { 445 for (InputSectionBase *S : V) 446 S->Assigned = false; 447 Opt.Commands.erase(Iter); 448 --I; 449 continue; 450 } 451 452 // A directive may contain symbol definitions like this: 453 // ".foo : { ...; bar = .; }". Handle them. 454 for (const std::unique_ptr<BaseCommand> &Base : Cmd->Commands) 455 if (auto *OutCmd = dyn_cast<SymbolAssignment>(Base.get())) 456 addSymbol(OutCmd); 457 458 // Handle subalign (e.g. ".foo : SUBALIGN(32) { ... }"). If subalign 459 // is given, input sections are aligned to that value, whether the 460 // given value is larger or smaller than the original section alignment. 461 if (Cmd->SubalignExpr) { 462 uint32_t Subalign = Cmd->SubalignExpr().getValue(); 463 for (InputSectionBase *S : V) 464 S->Alignment = Subalign; 465 } 466 467 // Add input sections to an output section. 468 for (InputSectionBase *S : V) 469 Factory.addInputSec(S, Cmd->Name); 470 } 471 } 472 CurOutSec = nullptr; 473 } 474 475 // Add sections that didn't match any sections command. 476 void LinkerScriptBase::addOrphanSections(OutputSectionFactory &Factory) { 477 for (InputSectionBase *S : InputSections) 478 if (S->Live && !S->OutSec) 479 Factory.addInputSec(S, getOutputSectionName(S->Name)); 480 } 481 482 static bool isTbss(OutputSection *Sec) { 483 return (Sec->Flags & SHF_TLS) && Sec->Type == SHT_NOBITS; 484 } 485 486 void LinkerScriptBase::output(InputSection *S) { 487 if (!AlreadyOutputIS.insert(S).second) 488 return; 489 bool IsTbss = isTbss(CurOutSec); 490 491 uint64_t Pos = IsTbss ? Dot + ThreadBssOffset : Dot; 492 Pos = alignTo(Pos, S->Alignment); 493 S->OutSecOff = Pos - CurOutSec->Addr; 494 Pos += S->getSize(); 495 496 // Update output section size after adding each section. This is so that 497 // SIZEOF works correctly in the case below: 498 // .foo { *(.aaa) a = SIZEOF(.foo); *(.bbb) } 499 CurOutSec->Size = Pos - CurOutSec->Addr; 500 501 // If there is a memory region associated with this input section, then 502 // place the section in that region and update the region index. 503 if (CurMemRegion) { 504 CurMemRegion->Offset += CurOutSec->Size; 505 uint64_t CurSize = CurMemRegion->Offset - CurMemRegion->Origin; 506 if (CurSize > CurMemRegion->Length) { 507 uint64_t OverflowAmt = CurSize - CurMemRegion->Length; 508 error("section '" + CurOutSec->Name + "' will not fit in region '" + 509 CurMemRegion->Name + "': overflowed by " + Twine(OverflowAmt) + 510 " bytes"); 511 } 512 } 513 514 if (IsTbss) 515 ThreadBssOffset = Pos - Dot; 516 else 517 Dot = Pos; 518 } 519 520 void LinkerScriptBase::flush() { 521 assert(CurOutSec); 522 if (!AlreadyOutputOS.insert(CurOutSec).second) 523 return; 524 for (InputSection *I : CurOutSec->Sections) 525 output(I); 526 } 527 528 void LinkerScriptBase::switchTo(OutputSection *Sec) { 529 if (CurOutSec == Sec) 530 return; 531 if (AlreadyOutputOS.count(Sec)) 532 return; 533 534 CurOutSec = Sec; 535 536 Dot = alignTo(Dot, CurOutSec->Alignment); 537 CurOutSec->Addr = isTbss(CurOutSec) ? Dot + ThreadBssOffset : Dot; 538 539 // If neither AT nor AT> is specified for an allocatable section, the linker 540 // will set the LMA such that the difference between VMA and LMA for the 541 // section is the same as the preceding output section in the same region 542 // https://sourceware.org/binutils/docs-2.20/ld/Output-Section-LMA.html 543 if (LMAOffset) 544 CurOutSec->LMAOffset = LMAOffset(); 545 } 546 547 void LinkerScriptBase::process(BaseCommand &Base) { 548 // This handles the assignments to symbol or to a location counter (.) 549 if (auto *AssignCmd = dyn_cast<SymbolAssignment>(&Base)) { 550 assignSymbol(AssignCmd, true); 551 return; 552 } 553 554 // Handle BYTE(), SHORT(), LONG(), or QUAD(). 555 if (auto *DataCmd = dyn_cast<BytesDataCommand>(&Base)) { 556 DataCmd->Offset = Dot - CurOutSec->Addr; 557 Dot += DataCmd->Size; 558 CurOutSec->Size = Dot - CurOutSec->Addr; 559 return; 560 } 561 562 if (auto *AssertCmd = dyn_cast<AssertCommand>(&Base)) { 563 AssertCmd->Expression(); 564 return; 565 } 566 567 // It handles single input section description command, 568 // calculates and assigns the offsets for each section and also 569 // updates the output section size. 570 auto &ICmd = cast<InputSectionDescription>(Base); 571 for (InputSectionBase *IB : ICmd.Sections) { 572 // We tentatively added all synthetic sections at the beginning and removed 573 // empty ones afterwards (because there is no way to know whether they were 574 // going be empty or not other than actually running linker scripts.) 575 // We need to ignore remains of empty sections. 576 if (auto *Sec = dyn_cast<SyntheticSection>(IB)) 577 if (Sec->empty()) 578 continue; 579 580 if (!IB->Live) 581 continue; 582 assert(CurOutSec == IB->OutSec || AlreadyOutputOS.count(IB->OutSec)); 583 output(cast<InputSection>(IB)); 584 } 585 } 586 587 static OutputSection * 588 findSection(StringRef Name, const std::vector<OutputSection *> &Sections) { 589 auto End = Sections.end(); 590 auto HasName = [=](OutputSection *Sec) { return Sec->Name == Name; }; 591 auto I = std::find_if(Sections.begin(), End, HasName); 592 std::vector<OutputSection *> Ret; 593 if (I == End) 594 return nullptr; 595 assert(std::find_if(I + 1, End, HasName) == End); 596 return *I; 597 } 598 599 // This function searches for a memory region to place the given output 600 // section in. If found, a pointer to the appropriate memory region is 601 // returned. Otherwise, a nullptr is returned. 602 MemoryRegion *LinkerScriptBase::findMemoryRegion(OutputSectionCommand *Cmd, 603 OutputSection *Sec) { 604 // If a memory region name was specified in the output section command, 605 // then try to find that region first. 606 if (!Cmd->MemoryRegionName.empty()) { 607 auto It = Opt.MemoryRegions.find(Cmd->MemoryRegionName); 608 if (It != Opt.MemoryRegions.end()) 609 return &It->second; 610 error("memory region '" + Cmd->MemoryRegionName + "' not declared"); 611 return nullptr; 612 } 613 614 // The memory region name is empty, thus a suitable region must be 615 // searched for in the region map. If the region map is empty, just 616 // return. Note that this check doesn't happen at the very beginning 617 // so that uses of undeclared regions can be caught. 618 if (!Opt.MemoryRegions.size()) 619 return nullptr; 620 621 // See if a region can be found by matching section flags. 622 for (auto &MRI : Opt.MemoryRegions) { 623 MemoryRegion &MR = MRI.second; 624 if ((MR.Flags & Sec->Flags) != 0 && (MR.NegFlags & Sec->Flags) == 0) 625 return &MR; 626 } 627 628 // Otherwise, no suitable region was found. 629 if (Sec->Flags & SHF_ALLOC) 630 error("no memory region specified for section '" + Sec->Name + "'"); 631 return nullptr; 632 } 633 634 // This function assigns offsets to input sections and an output section 635 // for a single sections command (e.g. ".text { *(.text); }"). 636 void LinkerScriptBase::assignOffsets(OutputSectionCommand *Cmd) { 637 OutputSection *Sec = findSection(Cmd->Name, *OutputSections); 638 if (!Sec) 639 return; 640 641 if (Cmd->AddrExpr && Sec->Flags & SHF_ALLOC) 642 setDot(Cmd->AddrExpr, Cmd->Location); 643 644 if (Cmd->LMAExpr) { 645 uint64_t D = Dot; 646 LMAOffset = [=] { return Cmd->LMAExpr().getValue() - D; }; 647 } 648 649 // Handle align (e.g. ".foo : ALIGN(16) { ... }"). 650 if (Cmd->AlignExpr) 651 Sec->updateAlignment(Cmd->AlignExpr().getValue()); 652 653 // Try and find an appropriate memory region to assign offsets in. 654 CurMemRegion = findMemoryRegion(Cmd, Sec); 655 if (CurMemRegion) 656 Dot = CurMemRegion->Offset; 657 switchTo(Sec); 658 659 // Find the last section output location. We will output orphan sections 660 // there so that end symbols point to the correct location. 661 auto E = std::find_if(Cmd->Commands.rbegin(), Cmd->Commands.rend(), 662 [](const std::unique_ptr<BaseCommand> &Cmd) { 663 return !isa<SymbolAssignment>(*Cmd); 664 }) 665 .base(); 666 for (auto I = Cmd->Commands.begin(); I != E; ++I) 667 process(**I); 668 flush(); 669 std::for_each(E, Cmd->Commands.end(), 670 [this](std::unique_ptr<BaseCommand> &B) { process(*B.get()); }); 671 } 672 673 void LinkerScriptBase::removeEmptyCommands() { 674 // It is common practice to use very generic linker scripts. So for any 675 // given run some of the output sections in the script will be empty. 676 // We could create corresponding empty output sections, but that would 677 // clutter the output. 678 // We instead remove trivially empty sections. The bfd linker seems even 679 // more aggressive at removing them. 680 auto Pos = std::remove_if( 681 Opt.Commands.begin(), Opt.Commands.end(), 682 [&](const std::unique_ptr<BaseCommand> &Base) { 683 if (auto *Cmd = dyn_cast<OutputSectionCommand>(Base.get())) 684 return !findSection(Cmd->Name, *OutputSections); 685 return false; 686 }); 687 Opt.Commands.erase(Pos, Opt.Commands.end()); 688 } 689 690 static bool isAllSectionDescription(const OutputSectionCommand &Cmd) { 691 for (const std::unique_ptr<BaseCommand> &I : Cmd.Commands) 692 if (!isa<InputSectionDescription>(*I)) 693 return false; 694 return true; 695 } 696 697 void LinkerScriptBase::adjustSectionsBeforeSorting() { 698 // If the output section contains only symbol assignments, create a 699 // corresponding output section. The bfd linker seems to only create them if 700 // '.' is assigned to, but creating these section should not have any bad 701 // consequeces and gives us a section to put the symbol in. 702 uint64_t Flags = SHF_ALLOC; 703 uint32_t Type = SHT_NOBITS; 704 for (const std::unique_ptr<BaseCommand> &Base : Opt.Commands) { 705 auto *Cmd = dyn_cast<OutputSectionCommand>(Base.get()); 706 if (!Cmd) 707 continue; 708 if (OutputSection *Sec = findSection(Cmd->Name, *OutputSections)) { 709 Flags = Sec->Flags; 710 Type = Sec->Type; 711 continue; 712 } 713 714 if (isAllSectionDescription(*Cmd)) 715 continue; 716 717 auto *OutSec = make<OutputSection>(Cmd->Name, Type, Flags); 718 OutputSections->push_back(OutSec); 719 } 720 } 721 722 void LinkerScriptBase::adjustSectionsAfterSorting() { 723 placeOrphanSections(); 724 725 // If output section command doesn't specify any segments, 726 // and we haven't previously assigned any section to segment, 727 // then we simply assign section to the very first load segment. 728 // Below is an example of such linker script: 729 // PHDRS { seg PT_LOAD; } 730 // SECTIONS { .aaa : { *(.aaa) } } 731 std::vector<StringRef> DefPhdrs; 732 auto FirstPtLoad = 733 std::find_if(Opt.PhdrsCommands.begin(), Opt.PhdrsCommands.end(), 734 [](const PhdrsCommand &Cmd) { return Cmd.Type == PT_LOAD; }); 735 if (FirstPtLoad != Opt.PhdrsCommands.end()) 736 DefPhdrs.push_back(FirstPtLoad->Name); 737 738 // Walk the commands and propagate the program headers to commands that don't 739 // explicitly specify them. 740 for (const std::unique_ptr<BaseCommand> &Base : Opt.Commands) { 741 auto *Cmd = dyn_cast<OutputSectionCommand>(Base.get()); 742 if (!Cmd) 743 continue; 744 if (Cmd->Phdrs.empty()) 745 Cmd->Phdrs = DefPhdrs; 746 else 747 DefPhdrs = Cmd->Phdrs; 748 } 749 750 removeEmptyCommands(); 751 } 752 753 // When placing orphan sections, we want to place them after symbol assignments 754 // so that an orphan after 755 // begin_foo = .; 756 // foo : { *(foo) } 757 // end_foo = .; 758 // doesn't break the intended meaning of the begin/end symbols. 759 // We don't want to go over sections since Writer<ELFT>::sortSections is the 760 // one in charge of deciding the order of the sections. 761 // We don't want to go over alignments, since doing so in 762 // rx_sec : { *(rx_sec) } 763 // . = ALIGN(0x1000); 764 // /* The RW PT_LOAD starts here*/ 765 // rw_sec : { *(rw_sec) } 766 // would mean that the RW PT_LOAD would become unaligned. 767 static bool shouldSkip(const BaseCommand &Cmd) { 768 if (isa<OutputSectionCommand>(Cmd)) 769 return false; 770 const auto *Assign = dyn_cast<SymbolAssignment>(&Cmd); 771 if (!Assign) 772 return true; 773 return Assign->Name != "."; 774 } 775 776 // Orphan sections are sections present in the input files which are 777 // not explicitly placed into the output file by the linker script. 778 // 779 // When the control reaches this function, Opt.Commands contains 780 // output section commands for non-orphan sections only. This function 781 // adds new elements for orphan sections to Opt.Commands so that all 782 // sections are explicitly handled by Opt.Commands. 783 // 784 // Writer<ELFT>::sortSections has already sorted output sections. 785 // What we need to do is to scan OutputSections vector and 786 // Opt.Commands in parallel to find orphan sections. If there is an 787 // output section that doesn't have a corresponding entry in 788 // Opt.Commands, we will insert a new entry to Opt.Commands. 789 // 790 // There is some ambiguity as to where exactly a new entry should be 791 // inserted, because Opt.Commands contains not only output section 792 // commands but other types of commands such as symbol assignment 793 // expressions. There's no correct answer here due to the lack of the 794 // formal specification of the linker script. We use heuristics to 795 // determine whether a new output command should be added before or 796 // after another commands. For the details, look at shouldSkip 797 // function. 798 void LinkerScriptBase::placeOrphanSections() { 799 // The OutputSections are already in the correct order. 800 // This loops creates or moves commands as needed so that they are in the 801 // correct order. 802 int CmdIndex = 0; 803 804 // As a horrible special case, skip the first . assignment if it is before any 805 // section. We do this because it is common to set a load address by starting 806 // the script with ". = 0xabcd" and the expectation is that every section is 807 // after that. 808 auto FirstSectionOrDotAssignment = 809 std::find_if(Opt.Commands.begin(), Opt.Commands.end(), 810 [](const std::unique_ptr<BaseCommand> &Cmd) { 811 if (isa<OutputSectionCommand>(*Cmd)) 812 return true; 813 const auto *Assign = dyn_cast<SymbolAssignment>(Cmd.get()); 814 if (!Assign) 815 return false; 816 return Assign->Name == "."; 817 }); 818 if (FirstSectionOrDotAssignment != Opt.Commands.end()) { 819 CmdIndex = FirstSectionOrDotAssignment - Opt.Commands.begin(); 820 if (isa<SymbolAssignment>(**FirstSectionOrDotAssignment)) 821 ++CmdIndex; 822 } 823 824 for (OutputSection *Sec : *OutputSections) { 825 StringRef Name = Sec->Name; 826 827 // Find the last spot where we can insert a command and still get the 828 // correct result. 829 auto CmdIter = Opt.Commands.begin() + CmdIndex; 830 auto E = Opt.Commands.end(); 831 while (CmdIter != E && shouldSkip(**CmdIter)) { 832 ++CmdIter; 833 ++CmdIndex; 834 } 835 836 auto Pos = 837 std::find_if(CmdIter, E, [&](const std::unique_ptr<BaseCommand> &Base) { 838 auto *Cmd = dyn_cast<OutputSectionCommand>(Base.get()); 839 return Cmd && Cmd->Name == Name; 840 }); 841 if (Pos == E) { 842 Opt.Commands.insert(CmdIter, 843 llvm::make_unique<OutputSectionCommand>(Name)); 844 ++CmdIndex; 845 continue; 846 } 847 848 // Continue from where we found it. 849 CmdIndex = (Pos - Opt.Commands.begin()) + 1; 850 } 851 } 852 853 void LinkerScriptBase::processNonSectionCommands() { 854 for (const std::unique_ptr<BaseCommand> &Base : Opt.Commands) { 855 if (auto *Cmd = dyn_cast<SymbolAssignment>(Base.get())) 856 assignSymbol(Cmd); 857 else if (auto *Cmd = dyn_cast<AssertCommand>(Base.get())) 858 Cmd->Expression(); 859 } 860 } 861 862 void LinkerScriptBase::assignAddresses(std::vector<PhdrEntry> &Phdrs) { 863 // Assign addresses as instructed by linker script SECTIONS sub-commands. 864 Dot = 0; 865 ErrorOnMissingSection = true; 866 switchTo(Aether); 867 868 for (const std::unique_ptr<BaseCommand> &Base : Opt.Commands) { 869 if (auto *Cmd = dyn_cast<SymbolAssignment>(Base.get())) { 870 assignSymbol(Cmd); 871 continue; 872 } 873 874 if (auto *Cmd = dyn_cast<AssertCommand>(Base.get())) { 875 Cmd->Expression(); 876 continue; 877 } 878 879 auto *Cmd = cast<OutputSectionCommand>(Base.get()); 880 assignOffsets(Cmd); 881 } 882 883 uint64_t MinVA = std::numeric_limits<uint64_t>::max(); 884 for (OutputSection *Sec : *OutputSections) { 885 if (Sec->Flags & SHF_ALLOC) 886 MinVA = std::min<uint64_t>(MinVA, Sec->Addr); 887 else 888 Sec->Addr = 0; 889 } 890 891 allocateHeaders(Phdrs, *OutputSections, MinVA); 892 } 893 894 // Creates program headers as instructed by PHDRS linker script command. 895 std::vector<PhdrEntry> LinkerScriptBase::createPhdrs() { 896 std::vector<PhdrEntry> Ret; 897 898 // Process PHDRS and FILEHDR keywords because they are not 899 // real output sections and cannot be added in the following loop. 900 for (const PhdrsCommand &Cmd : Opt.PhdrsCommands) { 901 Ret.emplace_back(Cmd.Type, Cmd.Flags == UINT_MAX ? PF_R : Cmd.Flags); 902 PhdrEntry &Phdr = Ret.back(); 903 904 if (Cmd.HasFilehdr) 905 Phdr.add(Out::ElfHeader); 906 if (Cmd.HasPhdrs) 907 Phdr.add(Out::ProgramHeaders); 908 909 if (Cmd.LMAExpr) { 910 Phdr.p_paddr = Cmd.LMAExpr().getValue(); 911 Phdr.HasLMA = true; 912 } 913 } 914 915 // Add output sections to program headers. 916 for (OutputSection *Sec : *OutputSections) { 917 if (!(Sec->Flags & SHF_ALLOC)) 918 break; 919 920 // Assign headers specified by linker script 921 for (size_t Id : getPhdrIndices(Sec->Name)) { 922 Ret[Id].add(Sec); 923 if (Opt.PhdrsCommands[Id].Flags == UINT_MAX) 924 Ret[Id].p_flags |= Sec->getPhdrFlags(); 925 } 926 } 927 return Ret; 928 } 929 930 bool LinkerScriptBase::ignoreInterpSection() { 931 // Ignore .interp section in case we have PHDRS specification 932 // and PT_INTERP isn't listed. 933 return !Opt.PhdrsCommands.empty() && 934 llvm::find_if(Opt.PhdrsCommands, [](const PhdrsCommand &Cmd) { 935 return Cmd.Type == PT_INTERP; 936 }) == Opt.PhdrsCommands.end(); 937 } 938 939 uint32_t LinkerScriptBase::getFiller(StringRef Name) { 940 for (const std::unique_ptr<BaseCommand> &Base : Opt.Commands) 941 if (auto *Cmd = dyn_cast<OutputSectionCommand>(Base.get())) 942 if (Cmd->Name == Name) 943 return Cmd->Filler; 944 return 0; 945 } 946 947 static void writeInt(uint8_t *Buf, uint64_t Data, uint64_t Size) { 948 const endianness E = Config->IsLE ? endianness::little : endianness::big; 949 950 switch (Size) { 951 case 1: 952 *Buf = (uint8_t)Data; 953 break; 954 case 2: 955 write16(Buf, Data, E); 956 break; 957 case 4: 958 write32(Buf, Data, E); 959 break; 960 case 8: 961 write64(Buf, Data, E); 962 break; 963 default: 964 llvm_unreachable("unsupported Size argument"); 965 } 966 } 967 968 void LinkerScriptBase::writeDataBytes(StringRef Name, uint8_t *Buf) { 969 int I = getSectionIndex(Name); 970 if (I == INT_MAX) 971 return; 972 973 auto *Cmd = dyn_cast<OutputSectionCommand>(Opt.Commands[I].get()); 974 for (const std::unique_ptr<BaseCommand> &Base : Cmd->Commands) 975 if (auto *Data = dyn_cast<BytesDataCommand>(Base.get())) 976 writeInt(Buf + Data->Offset, Data->Expression().getValue(), Data->Size); 977 } 978 979 bool LinkerScriptBase::hasLMA(StringRef Name) { 980 for (const std::unique_ptr<BaseCommand> &Base : Opt.Commands) 981 if (auto *Cmd = dyn_cast<OutputSectionCommand>(Base.get())) 982 if (Cmd->LMAExpr && Cmd->Name == Name) 983 return true; 984 return false; 985 } 986 987 // Returns the index of the given section name in linker script 988 // SECTIONS commands. Sections are laid out as the same order as they 989 // were in the script. If a given name did not appear in the script, 990 // it returns INT_MAX, so that it will be laid out at end of file. 991 int LinkerScriptBase::getSectionIndex(StringRef Name) { 992 for (int I = 0, E = Opt.Commands.size(); I != E; ++I) 993 if (auto *Cmd = dyn_cast<OutputSectionCommand>(Opt.Commands[I].get())) 994 if (Cmd->Name == Name) 995 return I; 996 return INT_MAX; 997 } 998 999 ExprValue LinkerScriptBase::getSymbolValue(const Twine &Loc, StringRef S) { 1000 if (S == ".") 1001 return {CurOutSec, Dot - CurOutSec->Addr}; 1002 if (SymbolBody *B = findSymbol(S)) { 1003 if (auto *D = dyn_cast<DefinedRegular>(B)) 1004 return {D->Section, D->Value}; 1005 auto *C = cast<DefinedCommon>(B); 1006 return {InX::Common, C->Offset}; 1007 } 1008 error(Loc + ": symbol not found: " + S); 1009 return 0; 1010 } 1011 1012 bool LinkerScriptBase::isDefined(StringRef S) { 1013 return findSymbol(S) != nullptr; 1014 } 1015 1016 // Returns indices of ELF headers containing specific section, identified 1017 // by Name. Each index is a zero based number of ELF header listed within 1018 // PHDRS {} script block. 1019 std::vector<size_t> LinkerScriptBase::getPhdrIndices(StringRef SectionName) { 1020 for (const std::unique_ptr<BaseCommand> &Base : Opt.Commands) { 1021 auto *Cmd = dyn_cast<OutputSectionCommand>(Base.get()); 1022 if (!Cmd || Cmd->Name != SectionName) 1023 continue; 1024 1025 std::vector<size_t> Ret; 1026 for (StringRef PhdrName : Cmd->Phdrs) 1027 Ret.push_back(getPhdrIndex(Cmd->Location, PhdrName)); 1028 return Ret; 1029 } 1030 return {}; 1031 } 1032 1033 size_t LinkerScriptBase::getPhdrIndex(const Twine &Loc, StringRef PhdrName) { 1034 size_t I = 0; 1035 for (PhdrsCommand &Cmd : Opt.PhdrsCommands) { 1036 if (Cmd.Name == PhdrName) 1037 return I; 1038 ++I; 1039 } 1040 error(Loc + ": section header '" + PhdrName + "' is not listed in PHDRS"); 1041 return 0; 1042 } 1043 1044 class elf::ScriptParser final : public ScriptLexer { 1045 typedef void (ScriptParser::*Handler)(); 1046 1047 public: 1048 ScriptParser(MemoryBufferRef MB) 1049 : ScriptLexer(MB), 1050 IsUnderSysroot(isUnderSysroot(MB.getBufferIdentifier())) {} 1051 1052 void readLinkerScript(); 1053 void readVersionScript(); 1054 void readDynamicList(); 1055 1056 private: 1057 void addFile(StringRef Path); 1058 1059 void readAsNeeded(); 1060 void readEntry(); 1061 void readExtern(); 1062 void readGroup(); 1063 void readInclude(); 1064 void readMemory(); 1065 void readOutput(); 1066 void readOutputArch(); 1067 void readOutputFormat(); 1068 void readPhdrs(); 1069 void readSearchDir(); 1070 void readSections(); 1071 void readVersion(); 1072 void readVersionScriptCommand(); 1073 1074 SymbolAssignment *readAssignment(StringRef Name); 1075 BytesDataCommand *readBytesDataCommand(StringRef Tok); 1076 uint32_t readFill(); 1077 OutputSectionCommand *readOutputSectionDescription(StringRef OutSec); 1078 uint32_t readOutputSectionFiller(StringRef Tok); 1079 std::vector<StringRef> readOutputSectionPhdrs(); 1080 InputSectionDescription *readInputSectionDescription(StringRef Tok); 1081 StringMatcher readFilePatterns(); 1082 std::vector<SectionPattern> readInputSectionsList(); 1083 InputSectionDescription *readInputSectionRules(StringRef FilePattern); 1084 unsigned readPhdrType(); 1085 SortSectionPolicy readSortKind(); 1086 SymbolAssignment *readProvideHidden(bool Provide, bool Hidden); 1087 SymbolAssignment *readProvideOrAssignment(StringRef Tok); 1088 void readSort(); 1089 Expr readAssert(); 1090 1091 uint64_t readMemoryAssignment(StringRef, StringRef, StringRef); 1092 std::pair<uint32_t, uint32_t> readMemoryAttributes(); 1093 1094 Expr readExpr(); 1095 Expr readExpr1(Expr Lhs, int MinPrec); 1096 StringRef readParenLiteral(); 1097 Expr readPrimary(); 1098 Expr readTernary(Expr Cond); 1099 Expr readParenExpr(); 1100 1101 // For parsing version script. 1102 std::vector<SymbolVersion> readVersionExtern(); 1103 void readAnonymousDeclaration(); 1104 void readVersionDeclaration(StringRef VerStr); 1105 1106 std::pair<std::vector<SymbolVersion>, std::vector<SymbolVersion>> 1107 readSymbols(); 1108 1109 ScriptConfiguration &Opt = *ScriptConfig; 1110 bool IsUnderSysroot; 1111 }; 1112 1113 void ScriptParser::readDynamicList() { 1114 expect("{"); 1115 readAnonymousDeclaration(); 1116 if (!atEOF()) 1117 setError("EOF expected, but got " + next()); 1118 } 1119 1120 void ScriptParser::readVersionScript() { 1121 readVersionScriptCommand(); 1122 if (!atEOF()) 1123 setError("EOF expected, but got " + next()); 1124 } 1125 1126 void ScriptParser::readVersionScriptCommand() { 1127 if (consume("{")) { 1128 readAnonymousDeclaration(); 1129 return; 1130 } 1131 1132 while (!atEOF() && !Error && peek() != "}") { 1133 StringRef VerStr = next(); 1134 if (VerStr == "{") { 1135 setError("anonymous version definition is used in " 1136 "combination with other version definitions"); 1137 return; 1138 } 1139 expect("{"); 1140 readVersionDeclaration(VerStr); 1141 } 1142 } 1143 1144 void ScriptParser::readVersion() { 1145 expect("{"); 1146 readVersionScriptCommand(); 1147 expect("}"); 1148 } 1149 1150 void ScriptParser::readLinkerScript() { 1151 while (!atEOF()) { 1152 StringRef Tok = next(); 1153 if (Tok == ";") 1154 continue; 1155 1156 if (Tok == "ASSERT") { 1157 Opt.Commands.emplace_back(new AssertCommand(readAssert())); 1158 } else if (Tok == "ENTRY") { 1159 readEntry(); 1160 } else if (Tok == "EXTERN") { 1161 readExtern(); 1162 } else if (Tok == "GROUP" || Tok == "INPUT") { 1163 readGroup(); 1164 } else if (Tok == "INCLUDE") { 1165 readInclude(); 1166 } else if (Tok == "MEMORY") { 1167 readMemory(); 1168 } else if (Tok == "OUTPUT") { 1169 readOutput(); 1170 } else if (Tok == "OUTPUT_ARCH") { 1171 readOutputArch(); 1172 } else if (Tok == "OUTPUT_FORMAT") { 1173 readOutputFormat(); 1174 } else if (Tok == "PHDRS") { 1175 readPhdrs(); 1176 } else if (Tok == "SEARCH_DIR") { 1177 readSearchDir(); 1178 } else if (Tok == "SECTIONS") { 1179 readSections(); 1180 } else if (Tok == "VERSION") { 1181 readVersion(); 1182 } else if (SymbolAssignment *Cmd = readProvideOrAssignment(Tok)) { 1183 Opt.Commands.emplace_back(Cmd); 1184 } else { 1185 setError("unknown directive: " + Tok); 1186 } 1187 } 1188 } 1189 1190 void ScriptParser::addFile(StringRef S) { 1191 if (IsUnderSysroot && S.startswith("/")) { 1192 SmallString<128> PathData; 1193 StringRef Path = (Config->Sysroot + S).toStringRef(PathData); 1194 if (sys::fs::exists(Path)) { 1195 Driver->addFile(Saver.save(Path)); 1196 return; 1197 } 1198 } 1199 1200 if (sys::path::is_absolute(S)) { 1201 Driver->addFile(S); 1202 } else if (S.startswith("=")) { 1203 if (Config->Sysroot.empty()) 1204 Driver->addFile(S.substr(1)); 1205 else 1206 Driver->addFile(Saver.save(Config->Sysroot + "/" + S.substr(1))); 1207 } else if (S.startswith("-l")) { 1208 Driver->addLibrary(S.substr(2)); 1209 } else if (sys::fs::exists(S)) { 1210 Driver->addFile(S); 1211 } else { 1212 if (Optional<std::string> Path = findFromSearchPaths(S)) 1213 Driver->addFile(Saver.save(*Path)); 1214 else 1215 setError("unable to find " + S); 1216 } 1217 } 1218 1219 void ScriptParser::readAsNeeded() { 1220 expect("("); 1221 bool Orig = Config->AsNeeded; 1222 Config->AsNeeded = true; 1223 while (!Error && !consume(")")) 1224 addFile(unquote(next())); 1225 Config->AsNeeded = Orig; 1226 } 1227 1228 void ScriptParser::readEntry() { 1229 // -e <symbol> takes predecence over ENTRY(<symbol>). 1230 expect("("); 1231 StringRef Tok = next(); 1232 if (Config->Entry.empty()) 1233 Config->Entry = Tok; 1234 expect(")"); 1235 } 1236 1237 void ScriptParser::readExtern() { 1238 expect("("); 1239 while (!Error && !consume(")")) 1240 Config->Undefined.push_back(next()); 1241 } 1242 1243 void ScriptParser::readGroup() { 1244 expect("("); 1245 while (!Error && !consume(")")) { 1246 StringRef Tok = next(); 1247 if (Tok == "AS_NEEDED") 1248 readAsNeeded(); 1249 else 1250 addFile(unquote(Tok)); 1251 } 1252 } 1253 1254 void ScriptParser::readInclude() { 1255 StringRef Tok = unquote(next()); 1256 1257 // https://sourceware.org/binutils/docs/ld/File-Commands.html: 1258 // The file will be searched for in the current directory, and in any 1259 // directory specified with the -L option. 1260 if (sys::fs::exists(Tok)) { 1261 if (Optional<MemoryBufferRef> MB = readFile(Tok)) 1262 tokenize(*MB); 1263 return; 1264 } 1265 if (Optional<std::string> Path = findFromSearchPaths(Tok)) { 1266 if (Optional<MemoryBufferRef> MB = readFile(*Path)) 1267 tokenize(*MB); 1268 return; 1269 } 1270 setError("cannot open " + Tok); 1271 } 1272 1273 void ScriptParser::readOutput() { 1274 // -o <file> takes predecence over OUTPUT(<file>). 1275 expect("("); 1276 StringRef Tok = next(); 1277 if (Config->OutputFile.empty()) 1278 Config->OutputFile = unquote(Tok); 1279 expect(")"); 1280 } 1281 1282 void ScriptParser::readOutputArch() { 1283 // OUTPUT_ARCH is ignored for now. 1284 expect("("); 1285 while (!Error && !consume(")")) 1286 skip(); 1287 } 1288 1289 void ScriptParser::readOutputFormat() { 1290 // Error checking only for now. 1291 expect("("); 1292 skip(); 1293 StringRef Tok = next(); 1294 if (Tok == ")") 1295 return; 1296 if (Tok != ",") { 1297 setError("unexpected token: " + Tok); 1298 return; 1299 } 1300 skip(); 1301 expect(","); 1302 skip(); 1303 expect(")"); 1304 } 1305 1306 void ScriptParser::readPhdrs() { 1307 expect("{"); 1308 while (!Error && !consume("}")) { 1309 StringRef Tok = next(); 1310 Opt.PhdrsCommands.push_back( 1311 {Tok, PT_NULL, false, false, UINT_MAX, nullptr}); 1312 PhdrsCommand &PhdrCmd = Opt.PhdrsCommands.back(); 1313 1314 PhdrCmd.Type = readPhdrType(); 1315 do { 1316 Tok = next(); 1317 if (Tok == ";") 1318 break; 1319 if (Tok == "FILEHDR") 1320 PhdrCmd.HasFilehdr = true; 1321 else if (Tok == "PHDRS") 1322 PhdrCmd.HasPhdrs = true; 1323 else if (Tok == "AT") 1324 PhdrCmd.LMAExpr = readParenExpr(); 1325 else if (Tok == "FLAGS") { 1326 expect("("); 1327 // Passing 0 for the value of dot is a bit of a hack. It means that 1328 // we accept expressions like ".|1". 1329 PhdrCmd.Flags = readExpr()().getValue(); 1330 expect(")"); 1331 } else 1332 setError("unexpected header attribute: " + Tok); 1333 } while (!Error); 1334 } 1335 } 1336 1337 void ScriptParser::readSearchDir() { 1338 expect("("); 1339 StringRef Tok = next(); 1340 if (!Config->Nostdlib) 1341 Config->SearchPaths.push_back(unquote(Tok)); 1342 expect(")"); 1343 } 1344 1345 void ScriptParser::readSections() { 1346 Opt.HasSections = true; 1347 // -no-rosegment is used to avoid placing read only non-executable sections in 1348 // their own segment. We do the same if SECTIONS command is present in linker 1349 // script. See comment for computeFlags(). 1350 Config->SingleRoRx = true; 1351 1352 expect("{"); 1353 while (!Error && !consume("}")) { 1354 StringRef Tok = next(); 1355 BaseCommand *Cmd = readProvideOrAssignment(Tok); 1356 if (!Cmd) { 1357 if (Tok == "ASSERT") 1358 Cmd = new AssertCommand(readAssert()); 1359 else 1360 Cmd = readOutputSectionDescription(Tok); 1361 } 1362 Opt.Commands.emplace_back(Cmd); 1363 } 1364 } 1365 1366 static int precedence(StringRef Op) { 1367 return StringSwitch<int>(Op) 1368 .Cases("*", "/", 5) 1369 .Cases("+", "-", 4) 1370 .Cases("<<", ">>", 3) 1371 .Cases("<", "<=", ">", ">=", "==", "!=", 2) 1372 .Cases("&", "|", 1) 1373 .Default(-1); 1374 } 1375 1376 StringMatcher ScriptParser::readFilePatterns() { 1377 std::vector<StringRef> V; 1378 while (!Error && !consume(")")) 1379 V.push_back(next()); 1380 return StringMatcher(V); 1381 } 1382 1383 SortSectionPolicy ScriptParser::readSortKind() { 1384 if (consume("SORT") || consume("SORT_BY_NAME")) 1385 return SortSectionPolicy::Name; 1386 if (consume("SORT_BY_ALIGNMENT")) 1387 return SortSectionPolicy::Alignment; 1388 if (consume("SORT_BY_INIT_PRIORITY")) 1389 return SortSectionPolicy::Priority; 1390 if (consume("SORT_NONE")) 1391 return SortSectionPolicy::None; 1392 return SortSectionPolicy::Default; 1393 } 1394 1395 // Method reads a list of sequence of excluded files and section globs given in 1396 // a following form: ((EXCLUDE_FILE(file_pattern+))? section_pattern+)+ 1397 // Example: *(.foo.1 EXCLUDE_FILE (*a.o) .foo.2 EXCLUDE_FILE (*b.o) .foo.3) 1398 // The semantics of that is next: 1399 // * Include .foo.1 from every file. 1400 // * Include .foo.2 from every file but a.o 1401 // * Include .foo.3 from every file but b.o 1402 std::vector<SectionPattern> ScriptParser::readInputSectionsList() { 1403 std::vector<SectionPattern> Ret; 1404 while (!Error && peek() != ")") { 1405 StringMatcher ExcludeFilePat; 1406 if (consume("EXCLUDE_FILE")) { 1407 expect("("); 1408 ExcludeFilePat = readFilePatterns(); 1409 } 1410 1411 std::vector<StringRef> V; 1412 while (!Error && peek() != ")" && peek() != "EXCLUDE_FILE") 1413 V.push_back(next()); 1414 1415 if (!V.empty()) 1416 Ret.push_back({std::move(ExcludeFilePat), StringMatcher(V)}); 1417 else 1418 setError("section pattern is expected"); 1419 } 1420 return Ret; 1421 } 1422 1423 // Reads contents of "SECTIONS" directive. That directive contains a 1424 // list of glob patterns for input sections. The grammar is as follows. 1425 // 1426 // <patterns> ::= <section-list> 1427 // | <sort> "(" <section-list> ")" 1428 // | <sort> "(" <sort> "(" <section-list> ")" ")" 1429 // 1430 // <sort> ::= "SORT" | "SORT_BY_NAME" | "SORT_BY_ALIGNMENT" 1431 // | "SORT_BY_INIT_PRIORITY" | "SORT_NONE" 1432 // 1433 // <section-list> is parsed by readInputSectionsList(). 1434 InputSectionDescription * 1435 ScriptParser::readInputSectionRules(StringRef FilePattern) { 1436 auto *Cmd = new InputSectionDescription(FilePattern); 1437 expect("("); 1438 while (!Error && !consume(")")) { 1439 SortSectionPolicy Outer = readSortKind(); 1440 SortSectionPolicy Inner = SortSectionPolicy::Default; 1441 std::vector<SectionPattern> V; 1442 if (Outer != SortSectionPolicy::Default) { 1443 expect("("); 1444 Inner = readSortKind(); 1445 if (Inner != SortSectionPolicy::Default) { 1446 expect("("); 1447 V = readInputSectionsList(); 1448 expect(")"); 1449 } else { 1450 V = readInputSectionsList(); 1451 } 1452 expect(")"); 1453 } else { 1454 V = readInputSectionsList(); 1455 } 1456 1457 for (SectionPattern &Pat : V) { 1458 Pat.SortInner = Inner; 1459 Pat.SortOuter = Outer; 1460 } 1461 1462 std::move(V.begin(), V.end(), std::back_inserter(Cmd->SectionPatterns)); 1463 } 1464 return Cmd; 1465 } 1466 1467 InputSectionDescription * 1468 ScriptParser::readInputSectionDescription(StringRef Tok) { 1469 // Input section wildcard can be surrounded by KEEP. 1470 // https://sourceware.org/binutils/docs/ld/Input-Section-Keep.html#Input-Section-Keep 1471 if (Tok == "KEEP") { 1472 expect("("); 1473 StringRef FilePattern = next(); 1474 InputSectionDescription *Cmd = readInputSectionRules(FilePattern); 1475 expect(")"); 1476 Opt.KeptSections.push_back(Cmd); 1477 return Cmd; 1478 } 1479 return readInputSectionRules(Tok); 1480 } 1481 1482 void ScriptParser::readSort() { 1483 expect("("); 1484 expect("CONSTRUCTORS"); 1485 expect(")"); 1486 } 1487 1488 Expr ScriptParser::readAssert() { 1489 expect("("); 1490 Expr E = readExpr(); 1491 expect(","); 1492 StringRef Msg = unquote(next()); 1493 expect(")"); 1494 return [=] { 1495 if (!E().getValue()) 1496 error(Msg); 1497 return Script->getDot(); 1498 }; 1499 } 1500 1501 // Reads a FILL(expr) command. We handle the FILL command as an 1502 // alias for =fillexp section attribute, which is different from 1503 // what GNU linkers do. 1504 // https://sourceware.org/binutils/docs/ld/Output-Section-Data.html 1505 uint32_t ScriptParser::readFill() { 1506 expect("("); 1507 uint32_t V = readOutputSectionFiller(next()); 1508 expect(")"); 1509 expect(";"); 1510 return V; 1511 } 1512 1513 OutputSectionCommand * 1514 ScriptParser::readOutputSectionDescription(StringRef OutSec) { 1515 OutputSectionCommand *Cmd = new OutputSectionCommand(OutSec); 1516 Cmd->Location = getCurrentLocation(); 1517 1518 // Read an address expression. 1519 // https://sourceware.org/binutils/docs/ld/Output-Section-Address.html#Output-Section-Address 1520 if (peek() != ":") 1521 Cmd->AddrExpr = readExpr(); 1522 1523 expect(":"); 1524 1525 if (consume("AT")) 1526 Cmd->LMAExpr = readParenExpr(); 1527 if (consume("ALIGN")) 1528 Cmd->AlignExpr = readParenExpr(); 1529 if (consume("SUBALIGN")) 1530 Cmd->SubalignExpr = readParenExpr(); 1531 1532 // Parse constraints. 1533 if (consume("ONLY_IF_RO")) 1534 Cmd->Constraint = ConstraintKind::ReadOnly; 1535 if (consume("ONLY_IF_RW")) 1536 Cmd->Constraint = ConstraintKind::ReadWrite; 1537 expect("{"); 1538 1539 while (!Error && !consume("}")) { 1540 StringRef Tok = next(); 1541 if (Tok == ";") { 1542 // Empty commands are allowed. Do nothing here. 1543 } else if (SymbolAssignment *Assignment = readProvideOrAssignment(Tok)) { 1544 Cmd->Commands.emplace_back(Assignment); 1545 } else if (BytesDataCommand *Data = readBytesDataCommand(Tok)) { 1546 Cmd->Commands.emplace_back(Data); 1547 } else if (Tok == "ASSERT") { 1548 Cmd->Commands.emplace_back(new AssertCommand(readAssert())); 1549 expect(";"); 1550 } else if (Tok == "CONSTRUCTORS") { 1551 // CONSTRUCTORS is a keyword to make the linker recognize C++ ctors/dtors 1552 // by name. This is for very old file formats such as ECOFF/XCOFF. 1553 // For ELF, we should ignore. 1554 } else if (Tok == "FILL") { 1555 Cmd->Filler = readFill(); 1556 } else if (Tok == "SORT") { 1557 readSort(); 1558 } else if (peek() == "(") { 1559 Cmd->Commands.emplace_back(readInputSectionDescription(Tok)); 1560 } else { 1561 setError("unknown command " + Tok); 1562 } 1563 } 1564 1565 if (consume(">")) 1566 Cmd->MemoryRegionName = next(); 1567 1568 Cmd->Phdrs = readOutputSectionPhdrs(); 1569 1570 if (consume("=")) 1571 Cmd->Filler = readOutputSectionFiller(next()); 1572 else if (peek().startswith("=")) 1573 Cmd->Filler = readOutputSectionFiller(next().drop_front()); 1574 1575 // Consume optional comma following output section command. 1576 consume(","); 1577 1578 return Cmd; 1579 } 1580 1581 // Read "=<number>" where <number> is an octal/decimal/hexadecimal number. 1582 // https://sourceware.org/binutils/docs/ld/Output-Section-Fill.html 1583 // 1584 // ld.gold is not fully compatible with ld.bfd. ld.bfd handles 1585 // hexstrings as blobs of arbitrary sizes, while ld.gold handles them 1586 // as 32-bit big-endian values. We will do the same as ld.gold does 1587 // because it's simpler than what ld.bfd does. 1588 uint32_t ScriptParser::readOutputSectionFiller(StringRef Tok) { 1589 uint32_t V; 1590 if (!Tok.getAsInteger(0, V)) 1591 return V; 1592 setError("invalid filler expression: " + Tok); 1593 return 0; 1594 } 1595 1596 SymbolAssignment *ScriptParser::readProvideHidden(bool Provide, bool Hidden) { 1597 expect("("); 1598 SymbolAssignment *Cmd = readAssignment(next()); 1599 Cmd->Provide = Provide; 1600 Cmd->Hidden = Hidden; 1601 expect(")"); 1602 expect(";"); 1603 return Cmd; 1604 } 1605 1606 SymbolAssignment *ScriptParser::readProvideOrAssignment(StringRef Tok) { 1607 SymbolAssignment *Cmd = nullptr; 1608 if (peek() == "=" || peek() == "+=") { 1609 Cmd = readAssignment(Tok); 1610 expect(";"); 1611 } else if (Tok == "PROVIDE") { 1612 Cmd = readProvideHidden(true, false); 1613 } else if (Tok == "HIDDEN") { 1614 Cmd = readProvideHidden(false, true); 1615 } else if (Tok == "PROVIDE_HIDDEN") { 1616 Cmd = readProvideHidden(true, true); 1617 } 1618 return Cmd; 1619 } 1620 1621 SymbolAssignment *ScriptParser::readAssignment(StringRef Name) { 1622 StringRef Op = next(); 1623 assert(Op == "=" || Op == "+="); 1624 Expr E = readExpr(); 1625 if (Op == "+=") { 1626 std::string Loc = getCurrentLocation(); 1627 E = [=] { return add(Script->getSymbolValue(Loc, Name), E()); }; 1628 } 1629 return new SymbolAssignment(Name, E, getCurrentLocation()); 1630 } 1631 1632 // This is an operator-precedence parser to parse a linker 1633 // script expression. 1634 Expr ScriptParser::readExpr() { 1635 // Our lexer is context-aware. Set the in-expression bit so that 1636 // they apply different tokenization rules. 1637 bool Orig = InExpr; 1638 InExpr = true; 1639 Expr E = readExpr1(readPrimary(), 0); 1640 InExpr = Orig; 1641 return E; 1642 } 1643 1644 static Expr combine(StringRef Op, Expr L, Expr R) { 1645 if (Op == "*") 1646 return [=] { return mul(L(), R()); }; 1647 if (Op == "/") { 1648 return [=] { return div(L(), R()); }; 1649 } 1650 if (Op == "+") 1651 return [=] { return add(L(), R()); }; 1652 if (Op == "-") 1653 return [=] { return sub(L(), R()); }; 1654 if (Op == "<<") 1655 return [=] { return leftShift(L(), R()); }; 1656 if (Op == ">>") 1657 return [=] { return rightShift(L(), R()); }; 1658 if (Op == "<") 1659 return [=] { return L().getValue() < R().getValue(); }; 1660 if (Op == ">") 1661 return [=] { return L().getValue() > R().getValue(); }; 1662 if (Op == ">=") 1663 return [=] { return L().getValue() >= R().getValue(); }; 1664 if (Op == "<=") 1665 return [=] { return L().getValue() <= R().getValue(); }; 1666 if (Op == "==") 1667 return [=] { return L().getValue() == R().getValue(); }; 1668 if (Op == "!=") 1669 return [=] { return L().getValue() != R().getValue(); }; 1670 if (Op == "&") 1671 return [=] { return bitAnd(L(), R()); }; 1672 if (Op == "|") 1673 return [=] { return bitOr(L(), R()); }; 1674 llvm_unreachable("invalid operator"); 1675 } 1676 1677 // This is a part of the operator-precedence parser. This function 1678 // assumes that the remaining token stream starts with an operator. 1679 Expr ScriptParser::readExpr1(Expr Lhs, int MinPrec) { 1680 while (!atEOF() && !Error) { 1681 // Read an operator and an expression. 1682 if (consume("?")) 1683 return readTernary(Lhs); 1684 StringRef Op1 = peek(); 1685 if (precedence(Op1) < MinPrec) 1686 break; 1687 skip(); 1688 Expr Rhs = readPrimary(); 1689 1690 // Evaluate the remaining part of the expression first if the 1691 // next operator has greater precedence than the previous one. 1692 // For example, if we have read "+" and "3", and if the next 1693 // operator is "*", then we'll evaluate 3 * ... part first. 1694 while (!atEOF()) { 1695 StringRef Op2 = peek(); 1696 if (precedence(Op2) <= precedence(Op1)) 1697 break; 1698 Rhs = readExpr1(Rhs, precedence(Op2)); 1699 } 1700 1701 Lhs = combine(Op1, Lhs, Rhs); 1702 } 1703 return Lhs; 1704 } 1705 1706 uint64_t static getConstant(StringRef S) { 1707 if (S == "COMMONPAGESIZE") 1708 return Target->PageSize; 1709 if (S == "MAXPAGESIZE") 1710 return Config->MaxPageSize; 1711 error("unknown constant: " + S); 1712 return 0; 1713 } 1714 1715 // Parses Tok as an integer. Returns true if successful. 1716 // It recognizes hexadecimal (prefixed with "0x" or suffixed with "H") 1717 // and decimal numbers. Decimal numbers may have "K" (kilo) or 1718 // "M" (mega) prefixes. 1719 static bool readInteger(StringRef Tok, uint64_t &Result) { 1720 // Negative number 1721 if (Tok.startswith("-")) { 1722 if (!readInteger(Tok.substr(1), Result)) 1723 return false; 1724 Result = -Result; 1725 return true; 1726 } 1727 1728 // Hexadecimal 1729 if (Tok.startswith_lower("0x")) 1730 return !Tok.substr(2).getAsInteger(16, Result); 1731 if (Tok.endswith_lower("H")) 1732 return !Tok.drop_back().getAsInteger(16, Result); 1733 1734 // Decimal 1735 int Suffix = 1; 1736 if (Tok.endswith_lower("K")) { 1737 Suffix = 1024; 1738 Tok = Tok.drop_back(); 1739 } else if (Tok.endswith_lower("M")) { 1740 Suffix = 1024 * 1024; 1741 Tok = Tok.drop_back(); 1742 } 1743 if (Tok.getAsInteger(10, Result)) 1744 return false; 1745 Result *= Suffix; 1746 return true; 1747 } 1748 1749 BytesDataCommand *ScriptParser::readBytesDataCommand(StringRef Tok) { 1750 int Size = StringSwitch<unsigned>(Tok) 1751 .Case("BYTE", 1) 1752 .Case("SHORT", 2) 1753 .Case("LONG", 4) 1754 .Case("QUAD", 8) 1755 .Default(-1); 1756 if (Size == -1) 1757 return nullptr; 1758 1759 return new BytesDataCommand(readParenExpr(), Size); 1760 } 1761 1762 StringRef ScriptParser::readParenLiteral() { 1763 expect("("); 1764 StringRef Tok = next(); 1765 expect(")"); 1766 return Tok; 1767 } 1768 1769 Expr ScriptParser::readPrimary() { 1770 if (peek() == "(") 1771 return readParenExpr(); 1772 1773 StringRef Tok = next(); 1774 std::string Location = getCurrentLocation(); 1775 1776 if (Tok == "~") { 1777 Expr E = readPrimary(); 1778 return [=] { return bitNot(E()); }; 1779 } 1780 if (Tok == "-") { 1781 Expr E = readPrimary(); 1782 return [=] { return minus(E()); }; 1783 } 1784 1785 // Built-in functions are parsed here. 1786 // https://sourceware.org/binutils/docs/ld/Builtin-Functions.html. 1787 if (Tok == "ABSOLUTE") { 1788 Expr Inner = readParenExpr(); 1789 return [=] { 1790 ExprValue I = Inner(); 1791 I.ForceAbsolute = true; 1792 return I; 1793 }; 1794 } 1795 if (Tok == "ADDR") { 1796 StringRef Name = readParenLiteral(); 1797 return [=]() -> ExprValue { 1798 return {Script->getOutputSection(Location, Name), 0}; 1799 }; 1800 } 1801 if (Tok == "LOADADDR") { 1802 StringRef Name = readParenLiteral(); 1803 return [=] { return Script->getOutputSection(Location, Name)->getLMA(); }; 1804 } 1805 if (Tok == "ASSERT") 1806 return readAssert(); 1807 if (Tok == "ALIGN") { 1808 expect("("); 1809 Expr E = readExpr(); 1810 if (consume(",")) { 1811 Expr E2 = readExpr(); 1812 expect(")"); 1813 return [=] { return alignTo(E().getValue(), E2().getValue()); }; 1814 } 1815 expect(")"); 1816 return [=] { return alignTo(Script->getDot(), E().getValue()); }; 1817 } 1818 if (Tok == "CONSTANT") { 1819 StringRef Name = readParenLiteral(); 1820 return [=] { return getConstant(Name); }; 1821 } 1822 if (Tok == "DEFINED") { 1823 StringRef Name = readParenLiteral(); 1824 return [=] { return Script->isDefined(Name) ? 1 : 0; }; 1825 } 1826 if (Tok == "SEGMENT_START") { 1827 expect("("); 1828 skip(); 1829 expect(","); 1830 Expr E = readExpr(); 1831 expect(")"); 1832 return [=] { return E(); }; 1833 } 1834 if (Tok == "DATA_SEGMENT_ALIGN") { 1835 expect("("); 1836 Expr E = readExpr(); 1837 expect(","); 1838 readExpr(); 1839 expect(")"); 1840 return [=] { return alignTo(Script->getDot(), E().getValue()); }; 1841 } 1842 if (Tok == "DATA_SEGMENT_END") { 1843 expect("("); 1844 expect("."); 1845 expect(")"); 1846 return [] { return Script->getDot(); }; 1847 } 1848 // GNU linkers implements more complicated logic to handle 1849 // DATA_SEGMENT_RELRO_END. We instead ignore the arguments and just align to 1850 // the next page boundary for simplicity. 1851 if (Tok == "DATA_SEGMENT_RELRO_END") { 1852 expect("("); 1853 readExpr(); 1854 expect(","); 1855 readExpr(); 1856 expect(")"); 1857 return [] { return alignTo(Script->getDot(), Target->PageSize); }; 1858 } 1859 if (Tok == "SIZEOF") { 1860 StringRef Name = readParenLiteral(); 1861 return [=] { return Script->getOutputSectionSize(Name); }; 1862 } 1863 if (Tok == "ALIGNOF") { 1864 StringRef Name = readParenLiteral(); 1865 return [=] { return Script->getOutputSection(Location, Name)->Alignment; }; 1866 } 1867 if (Tok == "SIZEOF_HEADERS") 1868 return [=] { return elf::getHeaderSize(); }; 1869 1870 // Tok is a literal number. 1871 uint64_t V; 1872 if (readInteger(Tok, V)) 1873 return [=] { return V; }; 1874 1875 // Tok is a symbol name. 1876 if (Tok != "." && !isValidCIdentifier(Tok)) 1877 setError("malformed number: " + Tok); 1878 return [=] { return Script->getSymbolValue(Location, Tok); }; 1879 } 1880 1881 Expr ScriptParser::readTernary(Expr Cond) { 1882 Expr L = readExpr(); 1883 expect(":"); 1884 Expr R = readExpr(); 1885 return [=] { return Cond().getValue() ? L() : R(); }; 1886 } 1887 1888 Expr ScriptParser::readParenExpr() { 1889 expect("("); 1890 Expr E = readExpr(); 1891 expect(")"); 1892 return E; 1893 } 1894 1895 std::vector<StringRef> ScriptParser::readOutputSectionPhdrs() { 1896 std::vector<StringRef> Phdrs; 1897 while (!Error && peek().startswith(":")) { 1898 StringRef Tok = next(); 1899 Phdrs.push_back((Tok.size() == 1) ? next() : Tok.substr(1)); 1900 } 1901 return Phdrs; 1902 } 1903 1904 // Read a program header type name. The next token must be a 1905 // name of a program header type or a constant (e.g. "0x3"). 1906 unsigned ScriptParser::readPhdrType() { 1907 StringRef Tok = next(); 1908 uint64_t Val; 1909 if (readInteger(Tok, Val)) 1910 return Val; 1911 1912 unsigned Ret = StringSwitch<unsigned>(Tok) 1913 .Case("PT_NULL", PT_NULL) 1914 .Case("PT_LOAD", PT_LOAD) 1915 .Case("PT_DYNAMIC", PT_DYNAMIC) 1916 .Case("PT_INTERP", PT_INTERP) 1917 .Case("PT_NOTE", PT_NOTE) 1918 .Case("PT_SHLIB", PT_SHLIB) 1919 .Case("PT_PHDR", PT_PHDR) 1920 .Case("PT_TLS", PT_TLS) 1921 .Case("PT_GNU_EH_FRAME", PT_GNU_EH_FRAME) 1922 .Case("PT_GNU_STACK", PT_GNU_STACK) 1923 .Case("PT_GNU_RELRO", PT_GNU_RELRO) 1924 .Case("PT_OPENBSD_RANDOMIZE", PT_OPENBSD_RANDOMIZE) 1925 .Case("PT_OPENBSD_WXNEEDED", PT_OPENBSD_WXNEEDED) 1926 .Case("PT_OPENBSD_BOOTDATA", PT_OPENBSD_BOOTDATA) 1927 .Default(-1); 1928 1929 if (Ret == (unsigned)-1) { 1930 setError("invalid program header type: " + Tok); 1931 return PT_NULL; 1932 } 1933 return Ret; 1934 } 1935 1936 // Reads an anonymous version declaration. 1937 void ScriptParser::readAnonymousDeclaration() { 1938 std::vector<SymbolVersion> Locals; 1939 std::vector<SymbolVersion> Globals; 1940 std::tie(Locals, Globals) = readSymbols(); 1941 1942 for (SymbolVersion V : Locals) { 1943 if (V.Name == "*") 1944 Config->DefaultSymbolVersion = VER_NDX_LOCAL; 1945 else 1946 Config->VersionScriptLocals.push_back(V); 1947 } 1948 1949 for (SymbolVersion V : Globals) 1950 Config->VersionScriptGlobals.push_back(V); 1951 1952 expect(";"); 1953 } 1954 1955 // Reads a non-anonymous version definition, 1956 // e.g. "VerStr { global: foo; bar; local: *; };". 1957 void ScriptParser::readVersionDeclaration(StringRef VerStr) { 1958 // Read a symbol list. 1959 std::vector<SymbolVersion> Locals; 1960 std::vector<SymbolVersion> Globals; 1961 std::tie(Locals, Globals) = readSymbols(); 1962 1963 for (SymbolVersion V : Locals) { 1964 if (V.Name == "*") 1965 Config->DefaultSymbolVersion = VER_NDX_LOCAL; 1966 else 1967 Config->VersionScriptLocals.push_back(V); 1968 } 1969 1970 // Create a new version definition and add that to the global symbols. 1971 VersionDefinition Ver; 1972 Ver.Name = VerStr; 1973 Ver.Globals = Globals; 1974 1975 // User-defined version number starts from 2 because 0 and 1 are 1976 // reserved for VER_NDX_LOCAL and VER_NDX_GLOBAL, respectively. 1977 Ver.Id = Config->VersionDefinitions.size() + 2; 1978 Config->VersionDefinitions.push_back(Ver); 1979 1980 // Each version may have a parent version. For example, "Ver2" 1981 // defined as "Ver2 { global: foo; local: *; } Ver1;" has "Ver1" 1982 // as a parent. This version hierarchy is, probably against your 1983 // instinct, purely for hint; the runtime doesn't care about it 1984 // at all. In LLD, we simply ignore it. 1985 if (peek() != ";") 1986 skip(); 1987 expect(";"); 1988 } 1989 1990 // Reads a list of symbols, e.g. "{ global: foo; bar; local: *; };". 1991 std::pair<std::vector<SymbolVersion>, std::vector<SymbolVersion>> 1992 ScriptParser::readSymbols() { 1993 std::vector<SymbolVersion> Locals; 1994 std::vector<SymbolVersion> Globals; 1995 std::vector<SymbolVersion> *V = &Globals; 1996 1997 while (!Error) { 1998 if (consume("}")) 1999 break; 2000 if (consumeLabel("local")) { 2001 V = &Locals; 2002 continue; 2003 } 2004 if (consumeLabel("global")) { 2005 V = &Globals; 2006 continue; 2007 } 2008 2009 if (consume("extern")) { 2010 std::vector<SymbolVersion> Ext = readVersionExtern(); 2011 V->insert(V->end(), Ext.begin(), Ext.end()); 2012 } else { 2013 StringRef Tok = next(); 2014 V->push_back({unquote(Tok), false, hasWildcard(Tok)}); 2015 } 2016 expect(";"); 2017 } 2018 return {Locals, Globals}; 2019 } 2020 2021 // Reads an "extern C++" directive, e.g., 2022 // "extern "C++" { ns::*; "f(int, double)"; };" 2023 std::vector<SymbolVersion> ScriptParser::readVersionExtern() { 2024 StringRef Tok = next(); 2025 bool IsCXX = Tok == "\"C++\""; 2026 if (!IsCXX && Tok != "\"C\"") 2027 setError("Unknown language"); 2028 expect("{"); 2029 2030 std::vector<SymbolVersion> Ret; 2031 while (!Error && peek() != "}") { 2032 StringRef Tok = next(); 2033 bool HasWildcard = !Tok.startswith("\"") && hasWildcard(Tok); 2034 Ret.push_back({unquote(Tok), IsCXX, HasWildcard}); 2035 expect(";"); 2036 } 2037 2038 expect("}"); 2039 return Ret; 2040 } 2041 2042 uint64_t ScriptParser::readMemoryAssignment(StringRef S1, StringRef S2, 2043 StringRef S3) { 2044 if (!(consume(S1) || consume(S2) || consume(S3))) { 2045 setError("expected one of: " + S1 + ", " + S2 + ", or " + S3); 2046 return 0; 2047 } 2048 expect("="); 2049 2050 // TODO: Fully support constant expressions. 2051 uint64_t Val; 2052 if (!readInteger(next(), Val)) 2053 setError("nonconstant expression for " + S1); 2054 return Val; 2055 } 2056 2057 // Parse the MEMORY command as specified in: 2058 // https://sourceware.org/binutils/docs/ld/MEMORY.html 2059 // 2060 // MEMORY { name [(attr)] : ORIGIN = origin, LENGTH = len ... } 2061 void ScriptParser::readMemory() { 2062 expect("{"); 2063 while (!Error && !consume("}")) { 2064 StringRef Name = next(); 2065 2066 uint32_t Flags = 0; 2067 uint32_t NegFlags = 0; 2068 if (consume("(")) { 2069 std::tie(Flags, NegFlags) = readMemoryAttributes(); 2070 expect(")"); 2071 } 2072 expect(":"); 2073 2074 uint64_t Origin = readMemoryAssignment("ORIGIN", "org", "o"); 2075 expect(","); 2076 uint64_t Length = readMemoryAssignment("LENGTH", "len", "l"); 2077 2078 // Add the memory region to the region map (if it doesn't already exist). 2079 auto It = Opt.MemoryRegions.find(Name); 2080 if (It != Opt.MemoryRegions.end()) 2081 setError("region '" + Name + "' already defined"); 2082 else 2083 Opt.MemoryRegions[Name] = {Name, Origin, Length, Origin, Flags, NegFlags}; 2084 } 2085 } 2086 2087 // This function parses the attributes used to match against section 2088 // flags when placing output sections in a memory region. These flags 2089 // are only used when an explicit memory region name is not used. 2090 std::pair<uint32_t, uint32_t> ScriptParser::readMemoryAttributes() { 2091 uint32_t Flags = 0; 2092 uint32_t NegFlags = 0; 2093 bool Invert = false; 2094 2095 for (char C : next().lower()) { 2096 uint32_t Flag = 0; 2097 if (C == '!') 2098 Invert = !Invert; 2099 else if (C == 'w') 2100 Flag = SHF_WRITE; 2101 else if (C == 'x') 2102 Flag = SHF_EXECINSTR; 2103 else if (C == 'a') 2104 Flag = SHF_ALLOC; 2105 else if (C != 'r') 2106 setError("invalid memory region attribute"); 2107 2108 if (Invert) 2109 NegFlags |= Flag; 2110 else 2111 Flags |= Flag; 2112 } 2113 return {Flags, NegFlags}; 2114 } 2115 2116 void elf::readLinkerScript(MemoryBufferRef MB) { 2117 ScriptParser(MB).readLinkerScript(); 2118 } 2119 2120 void elf::readVersionScript(MemoryBufferRef MB) { 2121 ScriptParser(MB).readVersionScript(); 2122 } 2123 2124 void elf::readDynamicList(MemoryBufferRef MB) { 2125 ScriptParser(MB).readDynamicList(); 2126 } 2127