1 //===- LinkerScript.cpp ---------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the parser/evaluator of the linker script. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "LinkerScript.h" 14 #include "Config.h" 15 #include "InputSection.h" 16 #include "OutputSections.h" 17 #include "SymbolTable.h" 18 #include "Symbols.h" 19 #include "SyntheticSections.h" 20 #include "Target.h" 21 #include "Writer.h" 22 #include "lld/Common/Memory.h" 23 #include "lld/Common/Strings.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/BinaryFormat/ELF.h" 27 #include "llvm/Support/Casting.h" 28 #include "llvm/Support/Endian.h" 29 #include "llvm/Support/ErrorHandling.h" 30 #include "llvm/Support/FileSystem.h" 31 #include "llvm/Support/Parallel.h" 32 #include "llvm/Support/Path.h" 33 #include "llvm/Support/TimeProfiler.h" 34 #include <algorithm> 35 #include <cassert> 36 #include <cstddef> 37 #include <cstdint> 38 #include <iterator> 39 #include <limits> 40 #include <string> 41 #include <vector> 42 43 using namespace llvm; 44 using namespace llvm::ELF; 45 using namespace llvm::object; 46 using namespace llvm::support::endian; 47 using namespace lld; 48 using namespace lld::elf; 49 50 LinkerScript *elf::script; 51 52 static bool isSectionPrefix(StringRef prefix, StringRef name) { 53 return name.startswith(prefix) || name == prefix.drop_back(); 54 } 55 56 static uint64_t getOutputSectionVA(SectionBase *sec) { 57 OutputSection *os = sec->getOutputSection(); 58 assert(os && "input section has no output section assigned"); 59 return os ? os->addr : 0; 60 } 61 62 static StringRef getOutputSectionName(const InputSectionBase *s) { 63 if (config->relocatable) 64 return s->name; 65 66 // This is for --emit-relocs. If .text.foo is emitted as .text.bar, we want 67 // to emit .rela.text.foo as .rela.text.bar for consistency (this is not 68 // technically required, but not doing it is odd). This code guarantees that. 69 if (auto *isec = dyn_cast<InputSection>(s)) { 70 if (InputSectionBase *rel = isec->getRelocatedSection()) { 71 OutputSection *out = rel->getOutputSection(); 72 if (s->type == SHT_RELA) 73 return saver.save(".rela" + out->name); 74 return saver.save(".rel" + out->name); 75 } 76 } 77 78 // A BssSection created for a common symbol is identified as "COMMON" in 79 // linker scripts. It should go to .bss section. 80 if (s->name == "COMMON") 81 return ".bss"; 82 83 if (script->hasSectionsCommand) 84 return s->name; 85 86 // When no SECTIONS is specified, emulate GNU ld's internal linker scripts 87 // by grouping sections with certain prefixes. 88 89 // GNU ld places text sections with prefix ".text.hot.", ".text.unknown.", 90 // ".text.unlikely.", ".text.startup." or ".text.exit." before others. 91 // We provide an option -z keep-text-section-prefix to group such sections 92 // into separate output sections. This is more flexible. See also 93 // sortISDBySectionOrder(). 94 // ".text.unknown" means the hotness of the section is unknown. When 95 // SampleFDO is used, if a function doesn't have sample, it could be very 96 // cold or it could be a new function never being sampled. Those functions 97 // will be kept in the ".text.unknown" section. 98 // ".text.split." holds symbols which are split out from functions in other 99 // input sections. For example, with -fsplit-machine-functions, placing the 100 // cold parts in .text.split instead of .text.unlikely mitigates against poor 101 // profile inaccuracy. Techniques such as hugepage remapping can make 102 // conservative decisions at the section granularity. 103 if (config->zKeepTextSectionPrefix) 104 for (StringRef v : {".text.hot.", ".text.unknown.", ".text.unlikely.", 105 ".text.startup.", ".text.exit.", ".text.split."}) 106 if (isSectionPrefix(v, s->name)) 107 return v.drop_back(); 108 109 for (StringRef v : 110 {".text.", ".rodata.", ".data.rel.ro.", ".data.", ".bss.rel.ro.", 111 ".bss.", ".init_array.", ".fini_array.", ".ctors.", ".dtors.", ".tbss.", 112 ".gcc_except_table.", ".tdata.", ".ARM.exidx.", ".ARM.extab."}) 113 if (isSectionPrefix(v, s->name)) 114 return v.drop_back(); 115 116 return s->name; 117 } 118 119 uint64_t ExprValue::getValue() const { 120 if (sec) 121 return alignTo(sec->getOffset(val) + getOutputSectionVA(sec), 122 alignment); 123 return alignTo(val, alignment); 124 } 125 126 uint64_t ExprValue::getSecAddr() const { 127 if (sec) 128 return sec->getOffset(0) + getOutputSectionVA(sec); 129 return 0; 130 } 131 132 uint64_t ExprValue::getSectionOffset() const { 133 // If the alignment is trivial, we don't have to compute the full 134 // value to know the offset. This allows this function to succeed in 135 // cases where the output section is not yet known. 136 if (alignment == 1 && !sec) 137 return val; 138 return getValue() - getSecAddr(); 139 } 140 141 OutputSection *LinkerScript::createOutputSection(StringRef name, 142 StringRef location) { 143 OutputSection *&secRef = nameToOutputSection[name]; 144 OutputSection *sec; 145 if (secRef && secRef->location.empty()) { 146 // There was a forward reference. 147 sec = secRef; 148 } else { 149 sec = make<OutputSection>(name, SHT_PROGBITS, 0); 150 if (!secRef) 151 secRef = sec; 152 } 153 sec->location = std::string(location); 154 return sec; 155 } 156 157 OutputSection *LinkerScript::getOrCreateOutputSection(StringRef name) { 158 OutputSection *&cmdRef = nameToOutputSection[name]; 159 if (!cmdRef) 160 cmdRef = make<OutputSection>(name, SHT_PROGBITS, 0); 161 return cmdRef; 162 } 163 164 // Expands the memory region by the specified size. 165 static void expandMemoryRegion(MemoryRegion *memRegion, uint64_t size, 166 StringRef secName) { 167 memRegion->curPos += size; 168 uint64_t newSize = memRegion->curPos - (memRegion->origin)().getValue(); 169 uint64_t length = (memRegion->length)().getValue(); 170 if (newSize > length) 171 error("section '" + secName + "' will not fit in region '" + 172 memRegion->name + "': overflowed by " + Twine(newSize - length) + 173 " bytes"); 174 } 175 176 void LinkerScript::expandMemoryRegions(uint64_t size) { 177 if (ctx->memRegion) 178 expandMemoryRegion(ctx->memRegion, size, ctx->outSec->name); 179 // Only expand the LMARegion if it is different from memRegion. 180 if (ctx->lmaRegion && ctx->memRegion != ctx->lmaRegion) 181 expandMemoryRegion(ctx->lmaRegion, size, ctx->outSec->name); 182 } 183 184 void LinkerScript::expandOutputSection(uint64_t size) { 185 ctx->outSec->size += size; 186 expandMemoryRegions(size); 187 } 188 189 void LinkerScript::setDot(Expr e, const Twine &loc, bool inSec) { 190 uint64_t val = e().getValue(); 191 if (val < dot && inSec) 192 error(loc + ": unable to move location counter backward for: " + 193 ctx->outSec->name); 194 195 // Update to location counter means update to section size. 196 if (inSec) 197 expandOutputSection(val - dot); 198 199 dot = val; 200 } 201 202 // Used for handling linker symbol assignments, for both finalizing 203 // their values and doing early declarations. Returns true if symbol 204 // should be defined from linker script. 205 static bool shouldDefineSym(SymbolAssignment *cmd) { 206 if (cmd->name == ".") 207 return false; 208 209 if (!cmd->provide) 210 return true; 211 212 // If a symbol was in PROVIDE(), we need to define it only 213 // when it is a referenced undefined symbol. 214 Symbol *b = symtab->find(cmd->name); 215 if (b && !b->isDefined()) 216 return true; 217 return false; 218 } 219 220 // Called by processSymbolAssignments() to assign definitions to 221 // linker-script-defined symbols. 222 void LinkerScript::addSymbol(SymbolAssignment *cmd) { 223 if (!shouldDefineSym(cmd)) 224 return; 225 226 // Define a symbol. 227 ExprValue value = cmd->expression(); 228 SectionBase *sec = value.isAbsolute() ? nullptr : value.sec; 229 uint8_t visibility = cmd->hidden ? STV_HIDDEN : STV_DEFAULT; 230 231 // When this function is called, section addresses have not been 232 // fixed yet. So, we may or may not know the value of the RHS 233 // expression. 234 // 235 // For example, if an expression is `x = 42`, we know x is always 42. 236 // However, if an expression is `x = .`, there's no way to know its 237 // value at the moment. 238 // 239 // We want to set symbol values early if we can. This allows us to 240 // use symbols as variables in linker scripts. Doing so allows us to 241 // write expressions like this: `alignment = 16; . = ALIGN(., alignment)`. 242 uint64_t symValue = value.sec ? 0 : value.getValue(); 243 244 Defined newSym(nullptr, cmd->name, STB_GLOBAL, visibility, value.type, 245 symValue, 0, sec); 246 247 Symbol *sym = symtab->insert(cmd->name); 248 sym->mergeProperties(newSym); 249 sym->replace(newSym); 250 cmd->sym = cast<Defined>(sym); 251 } 252 253 // This function is called from LinkerScript::declareSymbols. 254 // It creates a placeholder symbol if needed. 255 static void declareSymbol(SymbolAssignment *cmd) { 256 if (!shouldDefineSym(cmd)) 257 return; 258 259 uint8_t visibility = cmd->hidden ? STV_HIDDEN : STV_DEFAULT; 260 Defined newSym(nullptr, cmd->name, STB_GLOBAL, visibility, STT_NOTYPE, 0, 0, 261 nullptr); 262 263 // We can't calculate final value right now. 264 Symbol *sym = symtab->insert(cmd->name); 265 sym->mergeProperties(newSym); 266 sym->replace(newSym); 267 268 cmd->sym = cast<Defined>(sym); 269 cmd->provide = false; 270 sym->scriptDefined = true; 271 } 272 273 using SymbolAssignmentMap = 274 DenseMap<const Defined *, std::pair<SectionBase *, uint64_t>>; 275 276 // Collect section/value pairs of linker-script-defined symbols. This is used to 277 // check whether symbol values converge. 278 static SymbolAssignmentMap 279 getSymbolAssignmentValues(const std::vector<BaseCommand *> §ionCommands) { 280 SymbolAssignmentMap ret; 281 for (BaseCommand *base : sectionCommands) { 282 if (auto *cmd = dyn_cast<SymbolAssignment>(base)) { 283 if (cmd->sym) // sym is nullptr for dot. 284 ret.try_emplace(cmd->sym, 285 std::make_pair(cmd->sym->section, cmd->sym->value)); 286 continue; 287 } 288 for (BaseCommand *sub_base : cast<OutputSection>(base)->sectionCommands) 289 if (auto *cmd = dyn_cast<SymbolAssignment>(sub_base)) 290 if (cmd->sym) 291 ret.try_emplace(cmd->sym, 292 std::make_pair(cmd->sym->section, cmd->sym->value)); 293 } 294 return ret; 295 } 296 297 // Returns the lexicographical smallest (for determinism) Defined whose 298 // section/value has changed. 299 static const Defined * 300 getChangedSymbolAssignment(const SymbolAssignmentMap &oldValues) { 301 const Defined *changed = nullptr; 302 for (auto &it : oldValues) { 303 const Defined *sym = it.first; 304 if (std::make_pair(sym->section, sym->value) != it.second && 305 (!changed || sym->getName() < changed->getName())) 306 changed = sym; 307 } 308 return changed; 309 } 310 311 // Process INSERT [AFTER|BEFORE] commands. For each command, we move the 312 // specified output section to the designated place. 313 void LinkerScript::processInsertCommands() { 314 std::vector<OutputSection *> moves; 315 for (const InsertCommand &cmd : insertCommands) { 316 for (StringRef name : cmd.names) { 317 // If base is empty, it may have been discarded by 318 // adjustSectionsBeforeSorting(). We do not handle such output sections. 319 auto from = llvm::find_if(sectionCommands, [&](BaseCommand *base) { 320 return isa<OutputSection>(base) && 321 cast<OutputSection>(base)->name == name; 322 }); 323 if (from == sectionCommands.end()) 324 continue; 325 moves.push_back(cast<OutputSection>(*from)); 326 sectionCommands.erase(from); 327 } 328 329 auto insertPos = llvm::find_if(sectionCommands, [&cmd](BaseCommand *base) { 330 auto *to = dyn_cast<OutputSection>(base); 331 return to != nullptr && to->name == cmd.where; 332 }); 333 if (insertPos == sectionCommands.end()) { 334 error("unable to insert " + cmd.names[0] + 335 (cmd.isAfter ? " after " : " before ") + cmd.where); 336 } else { 337 if (cmd.isAfter) 338 ++insertPos; 339 sectionCommands.insert(insertPos, moves.begin(), moves.end()); 340 } 341 moves.clear(); 342 } 343 } 344 345 // Symbols defined in script should not be inlined by LTO. At the same time 346 // we don't know their final values until late stages of link. Here we scan 347 // over symbol assignment commands and create placeholder symbols if needed. 348 void LinkerScript::declareSymbols() { 349 assert(!ctx); 350 for (BaseCommand *base : sectionCommands) { 351 if (auto *cmd = dyn_cast<SymbolAssignment>(base)) { 352 declareSymbol(cmd); 353 continue; 354 } 355 356 // If the output section directive has constraints, 357 // we can't say for sure if it is going to be included or not. 358 // Skip such sections for now. Improve the checks if we ever 359 // need symbols from that sections to be declared early. 360 auto *sec = cast<OutputSection>(base); 361 if (sec->constraint != ConstraintKind::NoConstraint) 362 continue; 363 for (BaseCommand *base2 : sec->sectionCommands) 364 if (auto *cmd = dyn_cast<SymbolAssignment>(base2)) 365 declareSymbol(cmd); 366 } 367 } 368 369 // This function is called from assignAddresses, while we are 370 // fixing the output section addresses. This function is supposed 371 // to set the final value for a given symbol assignment. 372 void LinkerScript::assignSymbol(SymbolAssignment *cmd, bool inSec) { 373 if (cmd->name == ".") { 374 setDot(cmd->expression, cmd->location, inSec); 375 return; 376 } 377 378 if (!cmd->sym) 379 return; 380 381 ExprValue v = cmd->expression(); 382 if (v.isAbsolute()) { 383 cmd->sym->section = nullptr; 384 cmd->sym->value = v.getValue(); 385 } else { 386 cmd->sym->section = v.sec; 387 cmd->sym->value = v.getSectionOffset(); 388 } 389 cmd->sym->type = v.type; 390 } 391 392 static inline StringRef getFilename(const InputFile *file) { 393 return file ? file->getNameForScript() : StringRef(); 394 } 395 396 bool InputSectionDescription::matchesFile(const InputFile *file) const { 397 if (filePat.isTrivialMatchAll()) 398 return true; 399 400 if (!matchesFileCache || matchesFileCache->first != file) 401 matchesFileCache.emplace(file, filePat.match(getFilename(file))); 402 403 return matchesFileCache->second; 404 } 405 406 bool SectionPattern::excludesFile(const InputFile *file) const { 407 if (excludedFilePat.empty()) 408 return false; 409 410 if (!excludesFileCache || excludesFileCache->first != file) 411 excludesFileCache.emplace(file, excludedFilePat.match(getFilename(file))); 412 413 return excludesFileCache->second; 414 } 415 416 bool LinkerScript::shouldKeep(InputSectionBase *s) { 417 for (InputSectionDescription *id : keptSections) 418 if (id->matchesFile(s->file)) 419 for (SectionPattern &p : id->sectionPatterns) 420 if (p.sectionPat.match(s->name) && 421 (s->flags & id->withFlags) == id->withFlags && 422 (s->flags & id->withoutFlags) == 0) 423 return true; 424 return false; 425 } 426 427 // A helper function for the SORT() command. 428 static bool matchConstraints(ArrayRef<InputSectionBase *> sections, 429 ConstraintKind kind) { 430 if (kind == ConstraintKind::NoConstraint) 431 return true; 432 433 bool isRW = llvm::any_of( 434 sections, [](InputSectionBase *sec) { return sec->flags & SHF_WRITE; }); 435 436 return (isRW && kind == ConstraintKind::ReadWrite) || 437 (!isRW && kind == ConstraintKind::ReadOnly); 438 } 439 440 static void sortSections(MutableArrayRef<InputSectionBase *> vec, 441 SortSectionPolicy k) { 442 auto alignmentComparator = [](InputSectionBase *a, InputSectionBase *b) { 443 // ">" is not a mistake. Sections with larger alignments are placed 444 // before sections with smaller alignments in order to reduce the 445 // amount of padding necessary. This is compatible with GNU. 446 return a->alignment > b->alignment; 447 }; 448 auto nameComparator = [](InputSectionBase *a, InputSectionBase *b) { 449 return a->name < b->name; 450 }; 451 auto priorityComparator = [](InputSectionBase *a, InputSectionBase *b) { 452 return getPriority(a->name) < getPriority(b->name); 453 }; 454 455 switch (k) { 456 case SortSectionPolicy::Default: 457 case SortSectionPolicy::None: 458 return; 459 case SortSectionPolicy::Alignment: 460 return llvm::stable_sort(vec, alignmentComparator); 461 case SortSectionPolicy::Name: 462 return llvm::stable_sort(vec, nameComparator); 463 case SortSectionPolicy::Priority: 464 return llvm::stable_sort(vec, priorityComparator); 465 } 466 } 467 468 // Sort sections as instructed by SORT-family commands and --sort-section 469 // option. Because SORT-family commands can be nested at most two depth 470 // (e.g. SORT_BY_NAME(SORT_BY_ALIGNMENT(.text.*))) and because the command 471 // line option is respected even if a SORT command is given, the exact 472 // behavior we have here is a bit complicated. Here are the rules. 473 // 474 // 1. If two SORT commands are given, --sort-section is ignored. 475 // 2. If one SORT command is given, and if it is not SORT_NONE, 476 // --sort-section is handled as an inner SORT command. 477 // 3. If one SORT command is given, and if it is SORT_NONE, don't sort. 478 // 4. If no SORT command is given, sort according to --sort-section. 479 static void sortInputSections(MutableArrayRef<InputSectionBase *> vec, 480 SortSectionPolicy outer, 481 SortSectionPolicy inner) { 482 if (outer == SortSectionPolicy::None) 483 return; 484 485 if (inner == SortSectionPolicy::Default) 486 sortSections(vec, config->sortSection); 487 else 488 sortSections(vec, inner); 489 sortSections(vec, outer); 490 } 491 492 // Compute and remember which sections the InputSectionDescription matches. 493 std::vector<InputSectionBase *> 494 LinkerScript::computeInputSections(const InputSectionDescription *cmd, 495 ArrayRef<InputSectionBase *> sections) { 496 std::vector<InputSectionBase *> ret; 497 std::vector<size_t> indexes; 498 DenseSet<size_t> seen; 499 auto sortByPositionThenCommandLine = [&](size_t begin, size_t end) { 500 llvm::sort(MutableArrayRef<size_t>(indexes).slice(begin, end - begin)); 501 for (size_t i = begin; i != end; ++i) 502 ret[i] = sections[indexes[i]]; 503 sortInputSections( 504 MutableArrayRef<InputSectionBase *>(ret).slice(begin, end - begin), 505 config->sortSection, SortSectionPolicy::None); 506 }; 507 508 // Collects all sections that satisfy constraints of Cmd. 509 size_t sizeAfterPrevSort = 0; 510 for (const SectionPattern &pat : cmd->sectionPatterns) { 511 size_t sizeBeforeCurrPat = ret.size(); 512 513 for (size_t i = 0, e = sections.size(); i != e; ++i) { 514 // Skip if the section is dead or has been matched by a previous input 515 // section description or a previous pattern. 516 InputSectionBase *sec = sections[i]; 517 if (!sec->isLive() || sec->parent || seen.contains(i)) 518 continue; 519 520 // For --emit-relocs we have to ignore entries like 521 // .rela.dyn : { *(.rela.data) } 522 // which are common because they are in the default bfd script. 523 // We do not ignore SHT_REL[A] linker-synthesized sections here because 524 // want to support scripts that do custom layout for them. 525 if (isa<InputSection>(sec) && 526 cast<InputSection>(sec)->getRelocatedSection()) 527 continue; 528 529 // Check the name early to improve performance in the common case. 530 if (!pat.sectionPat.match(sec->name)) 531 continue; 532 533 if (!cmd->matchesFile(sec->file) || pat.excludesFile(sec->file) || 534 (sec->flags & cmd->withFlags) != cmd->withFlags || 535 (sec->flags & cmd->withoutFlags) != 0) 536 continue; 537 538 ret.push_back(sec); 539 indexes.push_back(i); 540 seen.insert(i); 541 } 542 543 if (pat.sortOuter == SortSectionPolicy::Default) 544 continue; 545 546 // Matched sections are ordered by radix sort with the keys being (SORT*, 547 // --sort-section, input order), where SORT* (if present) is most 548 // significant. 549 // 550 // Matched sections between the previous SORT* and this SORT* are sorted by 551 // (--sort-alignment, input order). 552 sortByPositionThenCommandLine(sizeAfterPrevSort, sizeBeforeCurrPat); 553 // Matched sections by this SORT* pattern are sorted using all 3 keys. 554 // ret[sizeBeforeCurrPat,ret.size()) are already in the input order, so we 555 // just sort by sortOuter and sortInner. 556 sortInputSections( 557 MutableArrayRef<InputSectionBase *>(ret).slice(sizeBeforeCurrPat), 558 pat.sortOuter, pat.sortInner); 559 sizeAfterPrevSort = ret.size(); 560 } 561 // Matched sections after the last SORT* are sorted by (--sort-alignment, 562 // input order). 563 sortByPositionThenCommandLine(sizeAfterPrevSort, ret.size()); 564 return ret; 565 } 566 567 void LinkerScript::discard(InputSectionBase *s) { 568 if (s == in.shStrTab || s == mainPart->relrDyn) 569 error("discarding " + s->name + " section is not allowed"); 570 571 // You can discard .hash and .gnu.hash sections by linker scripts. Since 572 // they are synthesized sections, we need to handle them differently than 573 // other regular sections. 574 if (s == mainPart->gnuHashTab) 575 mainPart->gnuHashTab = nullptr; 576 if (s == mainPart->hashTab) 577 mainPart->hashTab = nullptr; 578 579 s->markDead(); 580 s->parent = nullptr; 581 for (InputSection *ds : s->dependentSections) 582 discard(ds); 583 } 584 585 void LinkerScript::discardSynthetic(OutputSection &outCmd) { 586 for (Partition &part : partitions) { 587 if (!part.armExidx || !part.armExidx->isLive()) 588 continue; 589 std::vector<InputSectionBase *> secs(part.armExidx->exidxSections.begin(), 590 part.armExidx->exidxSections.end()); 591 for (BaseCommand *base : outCmd.sectionCommands) 592 if (auto *cmd = dyn_cast<InputSectionDescription>(base)) { 593 std::vector<InputSectionBase *> matches = 594 computeInputSections(cmd, secs); 595 for (InputSectionBase *s : matches) 596 discard(s); 597 } 598 } 599 } 600 601 std::vector<InputSectionBase *> 602 LinkerScript::createInputSectionList(OutputSection &outCmd) { 603 std::vector<InputSectionBase *> ret; 604 605 for (BaseCommand *base : outCmd.sectionCommands) { 606 if (auto *cmd = dyn_cast<InputSectionDescription>(base)) { 607 cmd->sectionBases = computeInputSections(cmd, inputSections); 608 for (InputSectionBase *s : cmd->sectionBases) 609 s->parent = &outCmd; 610 ret.insert(ret.end(), cmd->sectionBases.begin(), cmd->sectionBases.end()); 611 } 612 } 613 return ret; 614 } 615 616 // Create output sections described by SECTIONS commands. 617 void LinkerScript::processSectionCommands() { 618 auto process = [this](OutputSection *osec) { 619 std::vector<InputSectionBase *> v = createInputSectionList(*osec); 620 621 // The output section name `/DISCARD/' is special. 622 // Any input section assigned to it is discarded. 623 if (osec->name == "/DISCARD/") { 624 for (InputSectionBase *s : v) 625 discard(s); 626 discardSynthetic(*osec); 627 osec->sectionCommands.clear(); 628 return false; 629 } 630 631 // This is for ONLY_IF_RO and ONLY_IF_RW. An output section directive 632 // ".foo : ONLY_IF_R[OW] { ... }" is handled only if all member input 633 // sections satisfy a given constraint. If not, a directive is handled 634 // as if it wasn't present from the beginning. 635 // 636 // Because we'll iterate over SectionCommands many more times, the easy 637 // way to "make it as if it wasn't present" is to make it empty. 638 if (!matchConstraints(v, osec->constraint)) { 639 for (InputSectionBase *s : v) 640 s->parent = nullptr; 641 osec->sectionCommands.clear(); 642 return false; 643 } 644 645 // Handle subalign (e.g. ".foo : SUBALIGN(32) { ... }"). If subalign 646 // is given, input sections are aligned to that value, whether the 647 // given value is larger or smaller than the original section alignment. 648 if (osec->subalignExpr) { 649 uint32_t subalign = osec->subalignExpr().getValue(); 650 for (InputSectionBase *s : v) 651 s->alignment = subalign; 652 } 653 654 // Set the partition field the same way OutputSection::recordSection() 655 // does. Partitions cannot be used with the SECTIONS command, so this is 656 // always 1. 657 osec->partition = 1; 658 return true; 659 }; 660 661 // Process OVERWRITE_SECTIONS first so that it can overwrite the main script 662 // or orphans. 663 DenseMap<StringRef, OutputSection *> map; 664 size_t i = 0; 665 for (OutputSection *osec : overwriteSections) 666 if (process(osec) && !map.try_emplace(osec->name, osec).second) 667 warn("OVERWRITE_SECTIONS specifies duplicate " + osec->name); 668 for (BaseCommand *&base : sectionCommands) 669 if (auto *osec = dyn_cast<OutputSection>(base)) { 670 if (OutputSection *overwrite = map.lookup(osec->name)) { 671 log(overwrite->location + " overwrites " + osec->name); 672 overwrite->sectionIndex = i++; 673 base = overwrite; 674 } else if (process(osec)) { 675 osec->sectionIndex = i++; 676 } 677 } 678 679 // If an OVERWRITE_SECTIONS specified output section is not in 680 // sectionCommands, append it to the end. The section will be inserted by 681 // orphan placement. 682 for (OutputSection *osec : overwriteSections) 683 if (osec->partition == 1 && osec->sectionIndex == UINT32_MAX) 684 sectionCommands.push_back(osec); 685 } 686 687 void LinkerScript::processSymbolAssignments() { 688 // Dot outside an output section still represents a relative address, whose 689 // sh_shndx should not be SHN_UNDEF or SHN_ABS. Create a dummy aether section 690 // that fills the void outside a section. It has an index of one, which is 691 // indistinguishable from any other regular section index. 692 aether = make<OutputSection>("", 0, SHF_ALLOC); 693 aether->sectionIndex = 1; 694 695 // ctx captures the local AddressState and makes it accessible deliberately. 696 // This is needed as there are some cases where we cannot just thread the 697 // current state through to a lambda function created by the script parser. 698 AddressState state; 699 ctx = &state; 700 ctx->outSec = aether; 701 702 for (BaseCommand *base : sectionCommands) { 703 if (auto *cmd = dyn_cast<SymbolAssignment>(base)) 704 addSymbol(cmd); 705 else 706 for (BaseCommand *sub_base : cast<OutputSection>(base)->sectionCommands) 707 if (auto *cmd = dyn_cast<SymbolAssignment>(sub_base)) 708 addSymbol(cmd); 709 } 710 711 ctx = nullptr; 712 } 713 714 static OutputSection *findByName(ArrayRef<BaseCommand *> vec, 715 StringRef name) { 716 for (BaseCommand *base : vec) 717 if (auto *sec = dyn_cast<OutputSection>(base)) 718 if (sec->name == name) 719 return sec; 720 return nullptr; 721 } 722 723 static OutputSection *createSection(InputSectionBase *isec, 724 StringRef outsecName) { 725 OutputSection *sec = script->createOutputSection(outsecName, "<internal>"); 726 sec->recordSection(isec); 727 return sec; 728 } 729 730 static OutputSection * 731 addInputSec(StringMap<TinyPtrVector<OutputSection *>> &map, 732 InputSectionBase *isec, StringRef outsecName) { 733 // Sections with SHT_GROUP or SHF_GROUP attributes reach here only when the -r 734 // option is given. A section with SHT_GROUP defines a "section group", and 735 // its members have SHF_GROUP attribute. Usually these flags have already been 736 // stripped by InputFiles.cpp as section groups are processed and uniquified. 737 // However, for the -r option, we want to pass through all section groups 738 // as-is because adding/removing members or merging them with other groups 739 // change their semantics. 740 if (isec->type == SHT_GROUP || (isec->flags & SHF_GROUP)) 741 return createSection(isec, outsecName); 742 743 // Imagine .zed : { *(.foo) *(.bar) } script. Both foo and bar may have 744 // relocation sections .rela.foo and .rela.bar for example. Most tools do 745 // not allow multiple REL[A] sections for output section. Hence we 746 // should combine these relocation sections into single output. 747 // We skip synthetic sections because it can be .rela.dyn/.rela.plt or any 748 // other REL[A] sections created by linker itself. 749 if (!isa<SyntheticSection>(isec) && 750 (isec->type == SHT_REL || isec->type == SHT_RELA)) { 751 auto *sec = cast<InputSection>(isec); 752 OutputSection *out = sec->getRelocatedSection()->getOutputSection(); 753 754 if (out->relocationSection) { 755 out->relocationSection->recordSection(sec); 756 return nullptr; 757 } 758 759 out->relocationSection = createSection(isec, outsecName); 760 return out->relocationSection; 761 } 762 763 // The ELF spec just says 764 // ---------------------------------------------------------------- 765 // In the first phase, input sections that match in name, type and 766 // attribute flags should be concatenated into single sections. 767 // ---------------------------------------------------------------- 768 // 769 // However, it is clear that at least some flags have to be ignored for 770 // section merging. At the very least SHF_GROUP and SHF_COMPRESSED have to be 771 // ignored. We should not have two output .text sections just because one was 772 // in a group and another was not for example. 773 // 774 // It also seems that wording was a late addition and didn't get the 775 // necessary scrutiny. 776 // 777 // Merging sections with different flags is expected by some users. One 778 // reason is that if one file has 779 // 780 // int *const bar __attribute__((section(".foo"))) = (int *)0; 781 // 782 // gcc with -fPIC will produce a read only .foo section. But if another 783 // file has 784 // 785 // int zed; 786 // int *const bar __attribute__((section(".foo"))) = (int *)&zed; 787 // 788 // gcc with -fPIC will produce a read write section. 789 // 790 // Last but not least, when using linker script the merge rules are forced by 791 // the script. Unfortunately, linker scripts are name based. This means that 792 // expressions like *(.foo*) can refer to multiple input sections with 793 // different flags. We cannot put them in different output sections or we 794 // would produce wrong results for 795 // 796 // start = .; *(.foo.*) end = .; *(.bar) 797 // 798 // and a mapping of .foo1 and .bar1 to one section and .foo2 and .bar2 to 799 // another. The problem is that there is no way to layout those output 800 // sections such that the .foo sections are the only thing between the start 801 // and end symbols. 802 // 803 // Given the above issues, we instead merge sections by name and error on 804 // incompatible types and flags. 805 TinyPtrVector<OutputSection *> &v = map[outsecName]; 806 for (OutputSection *sec : v) { 807 if (sec->partition != isec->partition) 808 continue; 809 810 if (config->relocatable && (isec->flags & SHF_LINK_ORDER)) { 811 // Merging two SHF_LINK_ORDER sections with different sh_link fields will 812 // change their semantics, so we only merge them in -r links if they will 813 // end up being linked to the same output section. The casts are fine 814 // because everything in the map was created by the orphan placement code. 815 auto *firstIsec = cast<InputSectionBase>( 816 cast<InputSectionDescription>(sec->sectionCommands[0]) 817 ->sectionBases[0]); 818 OutputSection *firstIsecOut = 819 firstIsec->flags & SHF_LINK_ORDER 820 ? firstIsec->getLinkOrderDep()->getOutputSection() 821 : nullptr; 822 if (firstIsecOut != isec->getLinkOrderDep()->getOutputSection()) 823 continue; 824 } 825 826 sec->recordSection(isec); 827 return nullptr; 828 } 829 830 OutputSection *sec = createSection(isec, outsecName); 831 v.push_back(sec); 832 return sec; 833 } 834 835 // Add sections that didn't match any sections command. 836 void LinkerScript::addOrphanSections() { 837 StringMap<TinyPtrVector<OutputSection *>> map; 838 std::vector<OutputSection *> v; 839 840 std::function<void(InputSectionBase *)> add; 841 add = [&](InputSectionBase *s) { 842 if (s->isLive() && !s->parent) { 843 orphanSections.push_back(s); 844 845 StringRef name = getOutputSectionName(s); 846 if (config->unique) { 847 v.push_back(createSection(s, name)); 848 } else if (OutputSection *sec = findByName(sectionCommands, name)) { 849 sec->recordSection(s); 850 } else { 851 if (OutputSection *os = addInputSec(map, s, name)) 852 v.push_back(os); 853 assert(isa<MergeInputSection>(s) || 854 s->getOutputSection()->sectionIndex == UINT32_MAX); 855 } 856 } 857 858 if (config->relocatable) 859 for (InputSectionBase *depSec : s->dependentSections) 860 if (depSec->flags & SHF_LINK_ORDER) 861 add(depSec); 862 }; 863 864 // For further --emit-reloc handling code we need target output section 865 // to be created before we create relocation output section, so we want 866 // to create target sections first. We do not want priority handling 867 // for synthetic sections because them are special. 868 for (InputSectionBase *isec : inputSections) { 869 // In -r links, SHF_LINK_ORDER sections are added while adding their parent 870 // sections because we need to know the parent's output section before we 871 // can select an output section for the SHF_LINK_ORDER section. 872 if (config->relocatable && (isec->flags & SHF_LINK_ORDER)) 873 continue; 874 875 if (auto *sec = dyn_cast<InputSection>(isec)) 876 if (InputSectionBase *rel = sec->getRelocatedSection()) 877 if (auto *relIS = dyn_cast_or_null<InputSectionBase>(rel->parent)) 878 add(relIS); 879 add(isec); 880 } 881 882 // If no SECTIONS command was given, we should insert sections commands 883 // before others, so that we can handle scripts which refers them, 884 // for example: "foo = ABSOLUTE(ADDR(.text)));". 885 // When SECTIONS command is present we just add all orphans to the end. 886 if (hasSectionsCommand) 887 sectionCommands.insert(sectionCommands.end(), v.begin(), v.end()); 888 else 889 sectionCommands.insert(sectionCommands.begin(), v.begin(), v.end()); 890 } 891 892 void LinkerScript::diagnoseOrphanHandling() const { 893 llvm::TimeTraceScope timeScope("Diagnose orphan sections"); 894 if (config->orphanHandling == OrphanHandlingPolicy::Place) 895 return; 896 for (const InputSectionBase *sec : orphanSections) { 897 // Input SHT_REL[A] retained by --emit-relocs are ignored by 898 // computeInputSections(). Don't warn/error. 899 if (isa<InputSection>(sec) && 900 cast<InputSection>(sec)->getRelocatedSection()) 901 continue; 902 903 StringRef name = getOutputSectionName(sec); 904 if (config->orphanHandling == OrphanHandlingPolicy::Error) 905 error(toString(sec) + " is being placed in '" + name + "'"); 906 else 907 warn(toString(sec) + " is being placed in '" + name + "'"); 908 } 909 } 910 911 uint64_t LinkerScript::advance(uint64_t size, unsigned alignment) { 912 dot = alignTo(dot, alignment) + size; 913 return dot; 914 } 915 916 void LinkerScript::output(InputSection *s) { 917 assert(ctx->outSec == s->getParent()); 918 uint64_t before = advance(0, 1); 919 uint64_t pos = advance(s->getSize(), s->alignment); 920 s->outSecOff = pos - s->getSize() - ctx->outSec->addr; 921 922 // Update output section size after adding each section. This is so that 923 // SIZEOF works correctly in the case below: 924 // .foo { *(.aaa) a = SIZEOF(.foo); *(.bbb) } 925 expandOutputSection(pos - before); 926 } 927 928 void LinkerScript::switchTo(OutputSection *sec) { 929 ctx->outSec = sec; 930 931 uint64_t pos = advance(0, 1); 932 if (sec->addrExpr && script->hasSectionsCommand) { 933 // The alignment is ignored. 934 ctx->outSec->addr = pos; 935 } else { 936 // ctx->outSec->alignment is the max of ALIGN and the maximum of input 937 // section alignments. 938 ctx->outSec->addr = advance(0, ctx->outSec->alignment); 939 expandMemoryRegions(ctx->outSec->addr - pos); 940 } 941 } 942 943 // This function searches for a memory region to place the given output 944 // section in. If found, a pointer to the appropriate memory region is 945 // returned in the first member of the pair. Otherwise, a nullptr is returned. 946 // The second member of the pair is a hint that should be passed to the 947 // subsequent call of this method. 948 std::pair<MemoryRegion *, MemoryRegion *> 949 LinkerScript::findMemoryRegion(OutputSection *sec, MemoryRegion *hint) { 950 // Non-allocatable sections are not part of the process image. 951 if (!(sec->flags & SHF_ALLOC)) { 952 if (!sec->memoryRegionName.empty()) 953 warn("ignoring memory region assignment for non-allocatable section '" + 954 sec->name + "'"); 955 return {nullptr, nullptr}; 956 } 957 958 // If a memory region name was specified in the output section command, 959 // then try to find that region first. 960 if (!sec->memoryRegionName.empty()) { 961 if (MemoryRegion *m = memoryRegions.lookup(sec->memoryRegionName)) 962 return {m, m}; 963 error("memory region '" + sec->memoryRegionName + "' not declared"); 964 return {nullptr, nullptr}; 965 } 966 967 // If at least one memory region is defined, all sections must 968 // belong to some memory region. Otherwise, we don't need to do 969 // anything for memory regions. 970 if (memoryRegions.empty()) 971 return {nullptr, nullptr}; 972 973 // An orphan section should continue the previous memory region. 974 if (sec->sectionIndex == UINT32_MAX && hint) 975 return {hint, hint}; 976 977 // See if a region can be found by matching section flags. 978 for (auto &pair : memoryRegions) { 979 MemoryRegion *m = pair.second; 980 if ((m->flags & sec->flags) && (m->negFlags & sec->flags) == 0) 981 return {m, nullptr}; 982 } 983 984 // Otherwise, no suitable region was found. 985 error("no memory region specified for section '" + sec->name + "'"); 986 return {nullptr, nullptr}; 987 } 988 989 static OutputSection *findFirstSection(PhdrEntry *load) { 990 for (OutputSection *sec : outputSections) 991 if (sec->ptLoad == load) 992 return sec; 993 return nullptr; 994 } 995 996 // This function assigns offsets to input sections and an output section 997 // for a single sections command (e.g. ".text { *(.text); }"). 998 void LinkerScript::assignOffsets(OutputSection *sec) { 999 const bool isTbss = (sec->flags & SHF_TLS) && sec->type == SHT_NOBITS; 1000 const bool sameMemRegion = ctx->memRegion == sec->memRegion; 1001 const bool prevLMARegionIsDefault = ctx->lmaRegion == nullptr; 1002 const uint64_t savedDot = dot; 1003 ctx->memRegion = sec->memRegion; 1004 ctx->lmaRegion = sec->lmaRegion; 1005 1006 if (!(sec->flags & SHF_ALLOC)) { 1007 // Non-SHF_ALLOC sections have zero addresses. 1008 dot = 0; 1009 } else if (isTbss) { 1010 // Allow consecutive SHF_TLS SHT_NOBITS output sections. The address range 1011 // starts from the end address of the previous tbss section. 1012 if (ctx->tbssAddr == 0) 1013 ctx->tbssAddr = dot; 1014 else 1015 dot = ctx->tbssAddr; 1016 } else { 1017 if (ctx->memRegion) 1018 dot = ctx->memRegion->curPos; 1019 if (sec->addrExpr) 1020 setDot(sec->addrExpr, sec->location, false); 1021 1022 // If the address of the section has been moved forward by an explicit 1023 // expression so that it now starts past the current curPos of the enclosing 1024 // region, we need to expand the current region to account for the space 1025 // between the previous section, if any, and the start of this section. 1026 if (ctx->memRegion && ctx->memRegion->curPos < dot) 1027 expandMemoryRegion(ctx->memRegion, dot - ctx->memRegion->curPos, 1028 sec->name); 1029 } 1030 1031 switchTo(sec); 1032 1033 // ctx->lmaOffset is LMA minus VMA. If LMA is explicitly specified via AT() or 1034 // AT>, recompute ctx->lmaOffset; otherwise, if both previous/current LMA 1035 // region is the default, and the two sections are in the same memory region, 1036 // reuse previous lmaOffset; otherwise, reset lmaOffset to 0. This emulates 1037 // heuristics described in 1038 // https://sourceware.org/binutils/docs/ld/Output-Section-LMA.html 1039 if (sec->lmaExpr) { 1040 ctx->lmaOffset = sec->lmaExpr().getValue() - dot; 1041 } else if (MemoryRegion *mr = sec->lmaRegion) { 1042 uint64_t lmaStart = alignTo(mr->curPos, sec->alignment); 1043 if (mr->curPos < lmaStart) 1044 expandMemoryRegion(mr, lmaStart - mr->curPos, sec->name); 1045 ctx->lmaOffset = lmaStart - dot; 1046 } else if (!sameMemRegion || !prevLMARegionIsDefault) { 1047 ctx->lmaOffset = 0; 1048 } 1049 1050 // Propagate ctx->lmaOffset to the first "non-header" section. 1051 if (PhdrEntry *l = ctx->outSec->ptLoad) 1052 if (sec == findFirstSection(l)) 1053 l->lmaOffset = ctx->lmaOffset; 1054 1055 // We can call this method multiple times during the creation of 1056 // thunks and want to start over calculation each time. 1057 sec->size = 0; 1058 1059 // We visited SectionsCommands from processSectionCommands to 1060 // layout sections. Now, we visit SectionsCommands again to fix 1061 // section offsets. 1062 for (BaseCommand *base : sec->sectionCommands) { 1063 // This handles the assignments to symbol or to the dot. 1064 if (auto *cmd = dyn_cast<SymbolAssignment>(base)) { 1065 cmd->addr = dot; 1066 assignSymbol(cmd, true); 1067 cmd->size = dot - cmd->addr; 1068 continue; 1069 } 1070 1071 // Handle BYTE(), SHORT(), LONG(), or QUAD(). 1072 if (auto *cmd = dyn_cast<ByteCommand>(base)) { 1073 cmd->offset = dot - ctx->outSec->addr; 1074 dot += cmd->size; 1075 expandOutputSection(cmd->size); 1076 continue; 1077 } 1078 1079 // Handle a single input section description command. 1080 // It calculates and assigns the offsets for each section and also 1081 // updates the output section size. 1082 for (InputSection *sec : cast<InputSectionDescription>(base)->sections) 1083 output(sec); 1084 } 1085 1086 // Non-SHF_ALLOC sections do not affect the addresses of other OutputSections 1087 // as they are not part of the process image. 1088 if (!(sec->flags & SHF_ALLOC)) { 1089 dot = savedDot; 1090 } else if (isTbss) { 1091 // NOBITS TLS sections are similar. Additionally save the end address. 1092 ctx->tbssAddr = dot; 1093 dot = savedDot; 1094 } 1095 } 1096 1097 static bool isDiscardable(const OutputSection &sec) { 1098 if (sec.name == "/DISCARD/") 1099 return true; 1100 1101 // We do not want to remove OutputSections with expressions that reference 1102 // symbols even if the OutputSection is empty. We want to ensure that the 1103 // expressions can be evaluated and report an error if they cannot. 1104 if (sec.expressionsUseSymbols) 1105 return false; 1106 1107 // OutputSections may be referenced by name in ADDR and LOADADDR expressions, 1108 // as an empty Section can has a valid VMA and LMA we keep the OutputSection 1109 // to maintain the integrity of the other Expression. 1110 if (sec.usedInExpression) 1111 return false; 1112 1113 for (BaseCommand *base : sec.sectionCommands) { 1114 if (auto cmd = dyn_cast<SymbolAssignment>(base)) 1115 // Don't create empty output sections just for unreferenced PROVIDE 1116 // symbols. 1117 if (cmd->name != "." && !cmd->sym) 1118 continue; 1119 1120 if (!isa<InputSectionDescription>(*base)) 1121 return false; 1122 } 1123 return true; 1124 } 1125 1126 bool LinkerScript::isDiscarded(const OutputSection *sec) const { 1127 return hasSectionsCommand && (getFirstInputSection(sec) == nullptr) && 1128 isDiscardable(*sec); 1129 } 1130 1131 static void maybePropagatePhdrs(OutputSection &sec, 1132 std::vector<StringRef> &phdrs) { 1133 if (sec.phdrs.empty()) { 1134 // To match the bfd linker script behaviour, only propagate program 1135 // headers to sections that are allocated. 1136 if (sec.flags & SHF_ALLOC) 1137 sec.phdrs = phdrs; 1138 } else { 1139 phdrs = sec.phdrs; 1140 } 1141 } 1142 1143 void LinkerScript::adjustSectionsBeforeSorting() { 1144 // If the output section contains only symbol assignments, create a 1145 // corresponding output section. The issue is what to do with linker script 1146 // like ".foo : { symbol = 42; }". One option would be to convert it to 1147 // "symbol = 42;". That is, move the symbol out of the empty section 1148 // description. That seems to be what bfd does for this simple case. The 1149 // problem is that this is not completely general. bfd will give up and 1150 // create a dummy section too if there is a ". = . + 1" inside the section 1151 // for example. 1152 // Given that we want to create the section, we have to worry what impact 1153 // it will have on the link. For example, if we just create a section with 1154 // 0 for flags, it would change which PT_LOADs are created. 1155 // We could remember that particular section is dummy and ignore it in 1156 // other parts of the linker, but unfortunately there are quite a few places 1157 // that would need to change: 1158 // * The program header creation. 1159 // * The orphan section placement. 1160 // * The address assignment. 1161 // The other option is to pick flags that minimize the impact the section 1162 // will have on the rest of the linker. That is why we copy the flags from 1163 // the previous sections. Only a few flags are needed to keep the impact low. 1164 uint64_t flags = SHF_ALLOC; 1165 1166 std::vector<StringRef> defPhdrs; 1167 for (BaseCommand *&cmd : sectionCommands) { 1168 auto *sec = dyn_cast<OutputSection>(cmd); 1169 if (!sec) 1170 continue; 1171 1172 // Handle align (e.g. ".foo : ALIGN(16) { ... }"). 1173 if (sec->alignExpr) 1174 sec->alignment = 1175 std::max<uint32_t>(sec->alignment, sec->alignExpr().getValue()); 1176 1177 // The input section might have been removed (if it was an empty synthetic 1178 // section), but we at least know the flags. 1179 if (sec->hasInputSections) 1180 flags = sec->flags; 1181 1182 // We do not want to keep any special flags for output section 1183 // in case it is empty. 1184 bool isEmpty = (getFirstInputSection(sec) == nullptr); 1185 if (isEmpty) 1186 sec->flags = flags & ((sec->nonAlloc ? 0 : (uint64_t)SHF_ALLOC) | 1187 SHF_WRITE | SHF_EXECINSTR); 1188 1189 // The code below may remove empty output sections. We should save the 1190 // specified program headers (if exist) and propagate them to subsequent 1191 // sections which do not specify program headers. 1192 // An example of such a linker script is: 1193 // SECTIONS { .empty : { *(.empty) } :rw 1194 // .foo : { *(.foo) } } 1195 // Note: at this point the order of output sections has not been finalized, 1196 // because orphans have not been inserted into their expected positions. We 1197 // will handle them in adjustSectionsAfterSorting(). 1198 if (sec->sectionIndex != UINT32_MAX) 1199 maybePropagatePhdrs(*sec, defPhdrs); 1200 1201 if (isEmpty && isDiscardable(*sec)) { 1202 sec->markDead(); 1203 cmd = nullptr; 1204 } 1205 } 1206 1207 // It is common practice to use very generic linker scripts. So for any 1208 // given run some of the output sections in the script will be empty. 1209 // We could create corresponding empty output sections, but that would 1210 // clutter the output. 1211 // We instead remove trivially empty sections. The bfd linker seems even 1212 // more aggressive at removing them. 1213 llvm::erase_if(sectionCommands, [&](BaseCommand *base) { return !base; }); 1214 } 1215 1216 void LinkerScript::adjustSectionsAfterSorting() { 1217 // Try and find an appropriate memory region to assign offsets in. 1218 MemoryRegion *hint = nullptr; 1219 for (BaseCommand *base : sectionCommands) { 1220 if (auto *sec = dyn_cast<OutputSection>(base)) { 1221 if (!sec->lmaRegionName.empty()) { 1222 if (MemoryRegion *m = memoryRegions.lookup(sec->lmaRegionName)) 1223 sec->lmaRegion = m; 1224 else 1225 error("memory region '" + sec->lmaRegionName + "' not declared"); 1226 } 1227 std::tie(sec->memRegion, hint) = findMemoryRegion(sec, hint); 1228 } 1229 } 1230 1231 // If output section command doesn't specify any segments, 1232 // and we haven't previously assigned any section to segment, 1233 // then we simply assign section to the very first load segment. 1234 // Below is an example of such linker script: 1235 // PHDRS { seg PT_LOAD; } 1236 // SECTIONS { .aaa : { *(.aaa) } } 1237 std::vector<StringRef> defPhdrs; 1238 auto firstPtLoad = llvm::find_if(phdrsCommands, [](const PhdrsCommand &cmd) { 1239 return cmd.type == PT_LOAD; 1240 }); 1241 if (firstPtLoad != phdrsCommands.end()) 1242 defPhdrs.push_back(firstPtLoad->name); 1243 1244 // Walk the commands and propagate the program headers to commands that don't 1245 // explicitly specify them. 1246 for (BaseCommand *base : sectionCommands) 1247 if (auto *sec = dyn_cast<OutputSection>(base)) 1248 maybePropagatePhdrs(*sec, defPhdrs); 1249 } 1250 1251 static uint64_t computeBase(uint64_t min, bool allocateHeaders) { 1252 // If there is no SECTIONS or if the linkerscript is explicit about program 1253 // headers, do our best to allocate them. 1254 if (!script->hasSectionsCommand || allocateHeaders) 1255 return 0; 1256 // Otherwise only allocate program headers if that would not add a page. 1257 return alignDown(min, config->maxPageSize); 1258 } 1259 1260 // When the SECTIONS command is used, try to find an address for the file and 1261 // program headers output sections, which can be added to the first PT_LOAD 1262 // segment when program headers are created. 1263 // 1264 // We check if the headers fit below the first allocated section. If there isn't 1265 // enough space for these sections, we'll remove them from the PT_LOAD segment, 1266 // and we'll also remove the PT_PHDR segment. 1267 void LinkerScript::allocateHeaders(std::vector<PhdrEntry *> &phdrs) { 1268 uint64_t min = std::numeric_limits<uint64_t>::max(); 1269 for (OutputSection *sec : outputSections) 1270 if (sec->flags & SHF_ALLOC) 1271 min = std::min<uint64_t>(min, sec->addr); 1272 1273 auto it = llvm::find_if( 1274 phdrs, [](const PhdrEntry *e) { return e->p_type == PT_LOAD; }); 1275 if (it == phdrs.end()) 1276 return; 1277 PhdrEntry *firstPTLoad = *it; 1278 1279 bool hasExplicitHeaders = 1280 llvm::any_of(phdrsCommands, [](const PhdrsCommand &cmd) { 1281 return cmd.hasPhdrs || cmd.hasFilehdr; 1282 }); 1283 bool paged = !config->omagic && !config->nmagic; 1284 uint64_t headerSize = getHeaderSize(); 1285 if ((paged || hasExplicitHeaders) && 1286 headerSize <= min - computeBase(min, hasExplicitHeaders)) { 1287 min = alignDown(min - headerSize, config->maxPageSize); 1288 Out::elfHeader->addr = min; 1289 Out::programHeaders->addr = min + Out::elfHeader->size; 1290 return; 1291 } 1292 1293 // Error if we were explicitly asked to allocate headers. 1294 if (hasExplicitHeaders) 1295 error("could not allocate headers"); 1296 1297 Out::elfHeader->ptLoad = nullptr; 1298 Out::programHeaders->ptLoad = nullptr; 1299 firstPTLoad->firstSec = findFirstSection(firstPTLoad); 1300 1301 llvm::erase_if(phdrs, 1302 [](const PhdrEntry *e) { return e->p_type == PT_PHDR; }); 1303 } 1304 1305 LinkerScript::AddressState::AddressState() { 1306 for (auto &mri : script->memoryRegions) { 1307 MemoryRegion *mr = mri.second; 1308 mr->curPos = (mr->origin)().getValue(); 1309 } 1310 } 1311 1312 // Here we assign addresses as instructed by linker script SECTIONS 1313 // sub-commands. Doing that allows us to use final VA values, so here 1314 // we also handle rest commands like symbol assignments and ASSERTs. 1315 // Returns a symbol that has changed its section or value, or nullptr if no 1316 // symbol has changed. 1317 const Defined *LinkerScript::assignAddresses() { 1318 if (script->hasSectionsCommand) { 1319 // With a linker script, assignment of addresses to headers is covered by 1320 // allocateHeaders(). 1321 dot = config->imageBase.getValueOr(0); 1322 } else { 1323 // Assign addresses to headers right now. 1324 dot = target->getImageBase(); 1325 Out::elfHeader->addr = dot; 1326 Out::programHeaders->addr = dot + Out::elfHeader->size; 1327 dot += getHeaderSize(); 1328 } 1329 1330 auto deleter = std::make_unique<AddressState>(); 1331 ctx = deleter.get(); 1332 errorOnMissingSection = true; 1333 switchTo(aether); 1334 1335 SymbolAssignmentMap oldValues = getSymbolAssignmentValues(sectionCommands); 1336 for (BaseCommand *base : sectionCommands) { 1337 if (auto *cmd = dyn_cast<SymbolAssignment>(base)) { 1338 cmd->addr = dot; 1339 assignSymbol(cmd, false); 1340 cmd->size = dot - cmd->addr; 1341 continue; 1342 } 1343 assignOffsets(cast<OutputSection>(base)); 1344 } 1345 1346 ctx = nullptr; 1347 return getChangedSymbolAssignment(oldValues); 1348 } 1349 1350 // Creates program headers as instructed by PHDRS linker script command. 1351 std::vector<PhdrEntry *> LinkerScript::createPhdrs() { 1352 std::vector<PhdrEntry *> ret; 1353 1354 // Process PHDRS and FILEHDR keywords because they are not 1355 // real output sections and cannot be added in the following loop. 1356 for (const PhdrsCommand &cmd : phdrsCommands) { 1357 PhdrEntry *phdr = make<PhdrEntry>(cmd.type, cmd.flags ? *cmd.flags : PF_R); 1358 1359 if (cmd.hasFilehdr) 1360 phdr->add(Out::elfHeader); 1361 if (cmd.hasPhdrs) 1362 phdr->add(Out::programHeaders); 1363 1364 if (cmd.lmaExpr) { 1365 phdr->p_paddr = cmd.lmaExpr().getValue(); 1366 phdr->hasLMA = true; 1367 } 1368 ret.push_back(phdr); 1369 } 1370 1371 // Add output sections to program headers. 1372 for (OutputSection *sec : outputSections) { 1373 // Assign headers specified by linker script 1374 for (size_t id : getPhdrIndices(sec)) { 1375 ret[id]->add(sec); 1376 if (!phdrsCommands[id].flags.hasValue()) 1377 ret[id]->p_flags |= sec->getPhdrFlags(); 1378 } 1379 } 1380 return ret; 1381 } 1382 1383 // Returns true if we should emit an .interp section. 1384 // 1385 // We usually do. But if PHDRS commands are given, and 1386 // no PT_INTERP is there, there's no place to emit an 1387 // .interp, so we don't do that in that case. 1388 bool LinkerScript::needsInterpSection() { 1389 if (phdrsCommands.empty()) 1390 return true; 1391 for (PhdrsCommand &cmd : phdrsCommands) 1392 if (cmd.type == PT_INTERP) 1393 return true; 1394 return false; 1395 } 1396 1397 ExprValue LinkerScript::getSymbolValue(StringRef name, const Twine &loc) { 1398 if (name == ".") { 1399 if (ctx) 1400 return {ctx->outSec, false, dot - ctx->outSec->addr, loc}; 1401 error(loc + ": unable to get location counter value"); 1402 return 0; 1403 } 1404 1405 if (Symbol *sym = symtab->find(name)) { 1406 if (auto *ds = dyn_cast<Defined>(sym)) { 1407 ExprValue v{ds->section, false, ds->value, loc}; 1408 // Retain the original st_type, so that the alias will get the same 1409 // behavior in relocation processing. Any operation will reset st_type to 1410 // STT_NOTYPE. 1411 v.type = ds->type; 1412 return v; 1413 } 1414 if (isa<SharedSymbol>(sym)) 1415 if (!errorOnMissingSection) 1416 return {nullptr, false, 0, loc}; 1417 } 1418 1419 error(loc + ": symbol not found: " + name); 1420 return 0; 1421 } 1422 1423 // Returns the index of the segment named Name. 1424 static Optional<size_t> getPhdrIndex(ArrayRef<PhdrsCommand> vec, 1425 StringRef name) { 1426 for (size_t i = 0; i < vec.size(); ++i) 1427 if (vec[i].name == name) 1428 return i; 1429 return None; 1430 } 1431 1432 // Returns indices of ELF headers containing specific section. Each index is a 1433 // zero based number of ELF header listed within PHDRS {} script block. 1434 std::vector<size_t> LinkerScript::getPhdrIndices(OutputSection *cmd) { 1435 std::vector<size_t> ret; 1436 1437 for (StringRef s : cmd->phdrs) { 1438 if (Optional<size_t> idx = getPhdrIndex(phdrsCommands, s)) 1439 ret.push_back(*idx); 1440 else if (s != "NONE") 1441 error(cmd->location + ": program header '" + s + 1442 "' is not listed in PHDRS"); 1443 } 1444 return ret; 1445 } 1446