1 //===- InputFiles.cpp -----------------------------------------------------===// 2 // 3 // The LLVM Linker 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "InputFiles.h" 11 #include "Driver.h" 12 #include "Error.h" 13 #include "InputSection.h" 14 #include "LinkerScript.h" 15 #include "ELFCreator.h" 16 #include "SymbolTable.h" 17 #include "Symbols.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/Bitcode/ReaderWriter.h" 20 #include "llvm/CodeGen/Analysis.h" 21 #include "llvm/IR/LLVMContext.h" 22 #include "llvm/IR/Module.h" 23 #include "llvm/MC/StringTableBuilder.h" 24 #include "llvm/Support/Path.h" 25 #include "llvm/Support/raw_ostream.h" 26 27 using namespace llvm; 28 using namespace llvm::ELF; 29 using namespace llvm::object; 30 using namespace llvm::sys::fs; 31 32 using namespace lld; 33 using namespace lld::elf; 34 35 // Returns "(internal)", "foo.a(bar.o)" or "baz.o". 36 std::string elf::getFilename(const InputFile *F) { 37 if (!F) 38 return "(internal)"; 39 if (!F->ArchiveName.empty()) 40 return (F->ArchiveName + "(" + F->getName() + ")").str(); 41 return F->getName(); 42 } 43 44 template <class ELFT> 45 static ELFFile<ELFT> createELFObj(MemoryBufferRef MB) { 46 std::error_code EC; 47 ELFFile<ELFT> F(MB.getBuffer(), EC); 48 if (EC) 49 error(EC, "failed to read " + MB.getBufferIdentifier()); 50 return F; 51 } 52 53 template <class ELFT> static ELFKind getELFKind() { 54 if (ELFT::TargetEndianness == support::little) 55 return ELFT::Is64Bits ? ELF64LEKind : ELF32LEKind; 56 return ELFT::Is64Bits ? ELF64BEKind : ELF32BEKind; 57 } 58 59 template <class ELFT> 60 ELFFileBase<ELFT>::ELFFileBase(Kind K, MemoryBufferRef MB) 61 : InputFile(K, MB), ELFObj(createELFObj<ELFT>(MB)) { 62 EKind = getELFKind<ELFT>(); 63 EMachine = ELFObj.getHeader()->e_machine; 64 } 65 66 template <class ELFT> 67 typename ELFT::SymRange ELFFileBase<ELFT>::getElfSymbols(bool OnlyGlobals) { 68 if (!Symtab) 69 return Elf_Sym_Range(nullptr, nullptr); 70 Elf_Sym_Range Syms = ELFObj.symbols(Symtab); 71 uint32_t NumSymbols = std::distance(Syms.begin(), Syms.end()); 72 uint32_t FirstNonLocal = Symtab->sh_info; 73 if (FirstNonLocal > NumSymbols) 74 fatal(getFilename(this) + ": invalid sh_info in symbol table"); 75 76 if (OnlyGlobals) 77 return makeArrayRef(Syms.begin() + FirstNonLocal, Syms.end()); 78 return makeArrayRef(Syms.begin(), Syms.end()); 79 } 80 81 template <class ELFT> 82 uint32_t ELFFileBase<ELFT>::getSectionIndex(const Elf_Sym &Sym) const { 83 uint32_t I = Sym.st_shndx; 84 if (I == ELF::SHN_XINDEX) 85 return ELFObj.getExtendedSymbolTableIndex(&Sym, Symtab, SymtabSHNDX); 86 if (I >= ELF::SHN_LORESERVE) 87 return 0; 88 return I; 89 } 90 91 template <class ELFT> void ELFFileBase<ELFT>::initStringTable() { 92 if (!Symtab) 93 return; 94 StringTable = check(ELFObj.getStringTableForSymtab(*Symtab)); 95 } 96 97 template <class ELFT> 98 elf::ObjectFile<ELFT>::ObjectFile(MemoryBufferRef M) 99 : ELFFileBase<ELFT>(Base::ObjectKind, M) {} 100 101 template <class ELFT> 102 ArrayRef<SymbolBody *> elf::ObjectFile<ELFT>::getNonLocalSymbols() { 103 if (!this->Symtab) 104 return this->SymbolBodies; 105 uint32_t FirstNonLocal = this->Symtab->sh_info; 106 return makeArrayRef(this->SymbolBodies).slice(FirstNonLocal); 107 } 108 109 template <class ELFT> 110 ArrayRef<SymbolBody *> elf::ObjectFile<ELFT>::getLocalSymbols() { 111 if (!this->Symtab) 112 return this->SymbolBodies; 113 uint32_t FirstNonLocal = this->Symtab->sh_info; 114 return makeArrayRef(this->SymbolBodies).slice(1, FirstNonLocal - 1); 115 } 116 117 template <class ELFT> 118 ArrayRef<SymbolBody *> elf::ObjectFile<ELFT>::getSymbols() { 119 if (!this->Symtab) 120 return this->SymbolBodies; 121 return makeArrayRef(this->SymbolBodies).slice(1); 122 } 123 124 template <class ELFT> uint32_t elf::ObjectFile<ELFT>::getMipsGp0() const { 125 if (ELFT::Is64Bits && MipsOptions && MipsOptions->Reginfo) 126 return MipsOptions->Reginfo->ri_gp_value; 127 if (!ELFT::Is64Bits && MipsReginfo && MipsReginfo->Reginfo) 128 return MipsReginfo->Reginfo->ri_gp_value; 129 return 0; 130 } 131 132 template <class ELFT> 133 void elf::ObjectFile<ELFT>::parse(DenseSet<StringRef> &ComdatGroups) { 134 // Read section and symbol tables. 135 initializeSections(ComdatGroups); 136 initializeSymbols(); 137 } 138 139 // Sections with SHT_GROUP and comdat bits define comdat section groups. 140 // They are identified and deduplicated by group name. This function 141 // returns a group name. 142 template <class ELFT> 143 StringRef elf::ObjectFile<ELFT>::getShtGroupSignature(const Elf_Shdr &Sec) { 144 const ELFFile<ELFT> &Obj = this->ELFObj; 145 const Elf_Shdr *Symtab = check(Obj.getSection(Sec.sh_link)); 146 const Elf_Sym *Sym = Obj.getSymbol(Symtab, Sec.sh_info); 147 StringRef Strtab = check(Obj.getStringTableForSymtab(*Symtab)); 148 return check(Sym->getName(Strtab)); 149 } 150 151 template <class ELFT> 152 ArrayRef<typename elf::ObjectFile<ELFT>::Elf_Word> 153 elf::ObjectFile<ELFT>::getShtGroupEntries(const Elf_Shdr &Sec) { 154 const ELFFile<ELFT> &Obj = this->ELFObj; 155 ArrayRef<Elf_Word> Entries = 156 check(Obj.template getSectionContentsAsArray<Elf_Word>(&Sec)); 157 if (Entries.empty() || Entries[0] != GRP_COMDAT) 158 fatal(getFilename(this) + ": unsupported SHT_GROUP format"); 159 return Entries.slice(1); 160 } 161 162 template <class ELFT> 163 bool elf::ObjectFile<ELFT>::shouldMerge(const Elf_Shdr &Sec) { 164 // We don't merge sections if -O0 (default is -O1). This makes sometimes 165 // the linker significantly faster, although the output will be bigger. 166 if (Config->Optimize == 0) 167 return false; 168 169 // We don't merge if linker script has SECTIONS command. When script 170 // do layout it can merge several sections with different attributes 171 // into single output sections. We currently do not support adding 172 // mergeable input sections to regular output ones as well as adding 173 // regular input sections to mergeable output. 174 if (ScriptConfig->HasContents) 175 return false; 176 177 // A mergeable section with size 0 is useless because they don't have 178 // any data to merge. A mergeable string section with size 0 can be 179 // argued as invalid because it doesn't end with a null character. 180 // We'll avoid a mess by handling them as if they were non-mergeable. 181 if (Sec.sh_size == 0) 182 return false; 183 184 uintX_t Flags = Sec.sh_flags; 185 if (!(Flags & SHF_MERGE)) 186 return false; 187 if (Flags & SHF_WRITE) 188 fatal(getFilename(this) + ": writable SHF_MERGE section is not supported"); 189 uintX_t EntSize = Sec.sh_entsize; 190 if (!EntSize || Sec.sh_size % EntSize) 191 fatal(getFilename(this) + 192 ": SHF_MERGE section size must be a multiple of sh_entsize"); 193 194 // Don't try to merge if the alignment is larger than the sh_entsize and this 195 // is not SHF_STRINGS. 196 // 197 // Since this is not a SHF_STRINGS, we would need to pad after every entity. 198 // It would be equivalent for the producer of the .o to just set a larger 199 // sh_entsize. 200 if (Flags & SHF_STRINGS) 201 return true; 202 203 return Sec.sh_addralign <= EntSize; 204 } 205 206 template <class ELFT> 207 void elf::ObjectFile<ELFT>::initializeSections( 208 DenseSet<StringRef> &ComdatGroups) { 209 uint64_t Size = this->ELFObj.getNumSections(); 210 Sections.resize(Size); 211 unsigned I = -1; 212 const ELFFile<ELFT> &Obj = this->ELFObj; 213 for (const Elf_Shdr &Sec : Obj.sections()) { 214 ++I; 215 if (Sections[I] == &InputSection<ELFT>::Discarded) 216 continue; 217 218 switch (Sec.sh_type) { 219 case SHT_GROUP: 220 Sections[I] = &InputSection<ELFT>::Discarded; 221 if (ComdatGroups.insert(getShtGroupSignature(Sec)).second) 222 continue; 223 for (uint32_t SecIndex : getShtGroupEntries(Sec)) { 224 if (SecIndex >= Size) 225 fatal(getFilename(this) + ": invalid section index in group: " + 226 Twine(SecIndex)); 227 Sections[SecIndex] = &InputSection<ELFT>::Discarded; 228 } 229 break; 230 case SHT_SYMTAB: 231 this->Symtab = &Sec; 232 break; 233 case SHT_SYMTAB_SHNDX: 234 this->SymtabSHNDX = check(Obj.getSHNDXTable(Sec)); 235 break; 236 case SHT_STRTAB: 237 case SHT_NULL: 238 break; 239 default: 240 Sections[I] = createInputSection(Sec); 241 } 242 } 243 } 244 245 template <class ELFT> 246 InputSectionBase<ELFT> * 247 elf::ObjectFile<ELFT>::getRelocTarget(const Elf_Shdr &Sec) { 248 uint32_t Idx = Sec.sh_info; 249 if (Idx >= Sections.size()) 250 fatal(getFilename(this) + ": invalid relocated section index: " + 251 Twine(Idx)); 252 InputSectionBase<ELFT> *Target = Sections[Idx]; 253 254 // Strictly speaking, a relocation section must be included in the 255 // group of the section it relocates. However, LLVM 3.3 and earlier 256 // would fail to do so, so we gracefully handle that case. 257 if (Target == &InputSection<ELFT>::Discarded) 258 return nullptr; 259 260 if (!Target) 261 fatal(getFilename(this) + ": unsupported relocation reference"); 262 return Target; 263 } 264 265 template <class ELFT> 266 InputSectionBase<ELFT> * 267 elf::ObjectFile<ELFT>::createInputSection(const Elf_Shdr &Sec) { 268 StringRef Name = check(this->ELFObj.getSectionName(&Sec)); 269 270 switch (Sec.sh_type) { 271 case SHT_ARM_ATTRIBUTES: 272 // FIXME: ARM meta-data section. At present attributes are ignored, 273 // they can be used to reason about object compatibility. 274 return &InputSection<ELFT>::Discarded; 275 case SHT_MIPS_REGINFO: 276 MipsReginfo.reset(new MipsReginfoInputSection<ELFT>(this, &Sec, Name)); 277 return MipsReginfo.get(); 278 case SHT_MIPS_OPTIONS: 279 MipsOptions.reset(new MipsOptionsInputSection<ELFT>(this, &Sec, Name)); 280 return MipsOptions.get(); 281 case SHT_MIPS_ABIFLAGS: 282 MipsAbiFlags.reset(new MipsAbiFlagsInputSection<ELFT>(this, &Sec, Name)); 283 return MipsAbiFlags.get(); 284 case SHT_RELA: 285 case SHT_REL: { 286 // This section contains relocation information. 287 // If -r is given, we do not interpret or apply relocation 288 // but just copy relocation sections to output. 289 if (Config->Relocatable) 290 return new (IAlloc.Allocate()) InputSection<ELFT>(this, &Sec, Name); 291 292 // Find the relocation target section and associate this 293 // section with it. 294 InputSectionBase<ELFT> *Target = getRelocTarget(Sec); 295 if (!Target) 296 return nullptr; 297 if (auto *S = dyn_cast<InputSection<ELFT>>(Target)) { 298 S->RelocSections.push_back(&Sec); 299 return nullptr; 300 } 301 if (auto *S = dyn_cast<EhInputSection<ELFT>>(Target)) { 302 if (S->RelocSection) 303 fatal(getFilename(this) + 304 ": multiple relocation sections to .eh_frame are not supported"); 305 S->RelocSection = &Sec; 306 return nullptr; 307 } 308 fatal(getFilename(this) + 309 ": relocations pointing to SHF_MERGE are not supported"); 310 } 311 } 312 313 // .note.GNU-stack is a marker section to control the presence of 314 // PT_GNU_STACK segment in outputs. Since the presence of the segment 315 // is controlled only by the command line option (-z execstack) in LLD, 316 // .note.GNU-stack is ignored. 317 if (Name == ".note.GNU-stack") 318 return &InputSection<ELFT>::Discarded; 319 320 if (Name == ".note.GNU-split-stack") { 321 error("objects using splitstacks are not supported"); 322 return &InputSection<ELFT>::Discarded; 323 } 324 325 if (Config->Strip != StripPolicy::None && Name.startswith(".debug")) 326 return &InputSection<ELFT>::Discarded; 327 328 // The linker merges EH (exception handling) frames and creates a 329 // .eh_frame_hdr section for runtime. So we handle them with a special 330 // class. For relocatable outputs, they are just passed through. 331 if (Name == ".eh_frame" && !Config->Relocatable) 332 return new (EHAlloc.Allocate()) EhInputSection<ELFT>(this, &Sec, Name); 333 334 if (shouldMerge(Sec)) 335 return new (MAlloc.Allocate()) MergeInputSection<ELFT>(this, &Sec, Name); 336 return new (IAlloc.Allocate()) InputSection<ELFT>(this, &Sec, Name); 337 } 338 339 template <class ELFT> void elf::ObjectFile<ELFT>::initializeSymbols() { 340 this->initStringTable(); 341 Elf_Sym_Range Syms = this->getElfSymbols(false); 342 uint32_t NumSymbols = std::distance(Syms.begin(), Syms.end()); 343 SymbolBodies.reserve(NumSymbols); 344 for (const Elf_Sym &Sym : Syms) 345 SymbolBodies.push_back(createSymbolBody(&Sym)); 346 } 347 348 template <class ELFT> 349 InputSectionBase<ELFT> * 350 elf::ObjectFile<ELFT>::getSection(const Elf_Sym &Sym) const { 351 uint32_t Index = this->getSectionIndex(Sym); 352 if (Index == 0) 353 return nullptr; 354 if (Index >= Sections.size()) 355 fatal(getFilename(this) + ": invalid section index: " + Twine(Index)); 356 InputSectionBase<ELFT> *S = Sections[Index]; 357 // We found that GNU assembler 2.17.50 [FreeBSD] 2007-07-03 358 // could generate broken objects. STT_SECTION symbols can be 359 // associated with SHT_REL[A]/SHT_SYMTAB/SHT_STRTAB sections. 360 // In this case it is fine for section to be null here as we 361 // do not allocate sections of these types. 362 if (!S || S == &InputSectionBase<ELFT>::Discarded) 363 return S; 364 return S->Repl; 365 } 366 367 template <class ELFT> 368 SymbolBody *elf::ObjectFile<ELFT>::createSymbolBody(const Elf_Sym *Sym) { 369 int Binding = Sym->getBinding(); 370 InputSectionBase<ELFT> *Sec = getSection(*Sym); 371 if (Binding == STB_LOCAL) { 372 if (Sym->st_shndx == SHN_UNDEF) 373 return new (this->Alloc) 374 Undefined(Sym->st_name, Sym->st_other, Sym->getType(), this); 375 return new (this->Alloc) DefinedRegular<ELFT>(*Sym, Sec); 376 } 377 378 StringRef Name = check(Sym->getName(this->StringTable)); 379 380 switch (Sym->st_shndx) { 381 case SHN_UNDEF: 382 return elf::Symtab<ELFT>::X 383 ->addUndefined(Name, Binding, Sym->st_other, Sym->getType(), 384 /*CanOmitFromDynSym*/ false, /*HasUnnamedAddr*/ false, 385 this) 386 ->body(); 387 case SHN_COMMON: 388 return elf::Symtab<ELFT>::X 389 ->addCommon(Name, Sym->st_size, Sym->st_value, Binding, Sym->st_other, 390 Sym->getType(), /*HasUnnamedAddr*/ false, this) 391 ->body(); 392 } 393 394 switch (Binding) { 395 default: 396 fatal(getFilename(this) + ": unexpected binding: " + Twine(Binding)); 397 case STB_GLOBAL: 398 case STB_WEAK: 399 case STB_GNU_UNIQUE: 400 if (Sec == &InputSection<ELFT>::Discarded) 401 return elf::Symtab<ELFT>::X 402 ->addUndefined(Name, Binding, Sym->st_other, Sym->getType(), 403 /*CanOmitFromDynSym*/ false, 404 /*HasUnnamedAddr*/ false, this) 405 ->body(); 406 return elf::Symtab<ELFT>::X->addRegular(Name, *Sym, Sec)->body(); 407 } 408 } 409 410 template <class ELFT> void ArchiveFile::parse() { 411 File = check(Archive::create(MB), "failed to parse archive"); 412 413 // Read the symbol table to construct Lazy objects. 414 for (const Archive::Symbol &Sym : File->symbols()) 415 Symtab<ELFT>::X->addLazyArchive(this, Sym); 416 } 417 418 // Returns a buffer pointing to a member file containing a given symbol. 419 MemoryBufferRef ArchiveFile::getMember(const Archive::Symbol *Sym) { 420 Archive::Child C = 421 check(Sym->getMember(), 422 "could not get the member for symbol " + Sym->getName()); 423 424 if (!Seen.insert(C.getChildOffset()).second) 425 return MemoryBufferRef(); 426 427 MemoryBufferRef Ret = 428 check(C.getMemoryBufferRef(), 429 "could not get the buffer for the member defining symbol " + 430 Sym->getName()); 431 432 if (C.getParent()->isThin() && Driver->Cpio) 433 Driver->Cpio->append(relativeToRoot(check(C.getFullName())), 434 Ret.getBuffer()); 435 436 return Ret; 437 } 438 439 template <class ELFT> 440 SharedFile<ELFT>::SharedFile(MemoryBufferRef M) 441 : ELFFileBase<ELFT>(Base::SharedKind, M), AsNeeded(Config->AsNeeded) {} 442 443 template <class ELFT> 444 const typename ELFT::Shdr * 445 SharedFile<ELFT>::getSection(const Elf_Sym &Sym) const { 446 uint32_t Index = this->getSectionIndex(Sym); 447 if (Index == 0) 448 return nullptr; 449 return check(this->ELFObj.getSection(Index)); 450 } 451 452 // Partially parse the shared object file so that we can call 453 // getSoName on this object. 454 template <class ELFT> void SharedFile<ELFT>::parseSoName() { 455 typedef typename ELFT::Dyn Elf_Dyn; 456 typedef typename ELFT::uint uintX_t; 457 const Elf_Shdr *DynamicSec = nullptr; 458 459 const ELFFile<ELFT> Obj = this->ELFObj; 460 for (const Elf_Shdr &Sec : Obj.sections()) { 461 switch (Sec.sh_type) { 462 default: 463 continue; 464 case SHT_DYNSYM: 465 this->Symtab = &Sec; 466 break; 467 case SHT_DYNAMIC: 468 DynamicSec = &Sec; 469 break; 470 case SHT_SYMTAB_SHNDX: 471 this->SymtabSHNDX = check(Obj.getSHNDXTable(Sec)); 472 break; 473 case SHT_GNU_versym: 474 this->VersymSec = &Sec; 475 break; 476 case SHT_GNU_verdef: 477 this->VerdefSec = &Sec; 478 break; 479 } 480 } 481 482 this->initStringTable(); 483 484 // DSOs are identified by soname, and they usually contain 485 // DT_SONAME tag in their header. But if they are missing, 486 // filenames are used as default sonames. 487 SoName = sys::path::filename(this->getName()); 488 489 if (!DynamicSec) 490 return; 491 auto *Begin = 492 reinterpret_cast<const Elf_Dyn *>(Obj.base() + DynamicSec->sh_offset); 493 const Elf_Dyn *End = Begin + DynamicSec->sh_size / sizeof(Elf_Dyn); 494 495 for (const Elf_Dyn &Dyn : make_range(Begin, End)) { 496 if (Dyn.d_tag == DT_SONAME) { 497 uintX_t Val = Dyn.getVal(); 498 if (Val >= this->StringTable.size()) 499 fatal(getFilename(this) + ": invalid DT_SONAME entry"); 500 SoName = StringRef(this->StringTable.data() + Val); 501 return; 502 } 503 } 504 } 505 506 // Parse the version definitions in the object file if present. Returns a vector 507 // whose nth element contains a pointer to the Elf_Verdef for version identifier 508 // n. Version identifiers that are not definitions map to nullptr. The array 509 // always has at least length 1. 510 template <class ELFT> 511 std::vector<const typename ELFT::Verdef *> 512 SharedFile<ELFT>::parseVerdefs(const Elf_Versym *&Versym) { 513 std::vector<const Elf_Verdef *> Verdefs(1); 514 // We only need to process symbol versions for this DSO if it has both a 515 // versym and a verdef section, which indicates that the DSO contains symbol 516 // version definitions. 517 if (!VersymSec || !VerdefSec) 518 return Verdefs; 519 520 // The location of the first global versym entry. 521 Versym = reinterpret_cast<const Elf_Versym *>(this->ELFObj.base() + 522 VersymSec->sh_offset) + 523 this->Symtab->sh_info; 524 525 // We cannot determine the largest verdef identifier without inspecting 526 // every Elf_Verdef, but both bfd and gold assign verdef identifiers 527 // sequentially starting from 1, so we predict that the largest identifier 528 // will be VerdefCount. 529 unsigned VerdefCount = VerdefSec->sh_info; 530 Verdefs.resize(VerdefCount + 1); 531 532 // Build the Verdefs array by following the chain of Elf_Verdef objects 533 // from the start of the .gnu.version_d section. 534 const uint8_t *Verdef = this->ELFObj.base() + VerdefSec->sh_offset; 535 for (unsigned I = 0; I != VerdefCount; ++I) { 536 auto *CurVerdef = reinterpret_cast<const Elf_Verdef *>(Verdef); 537 Verdef += CurVerdef->vd_next; 538 unsigned VerdefIndex = CurVerdef->vd_ndx; 539 if (Verdefs.size() <= VerdefIndex) 540 Verdefs.resize(VerdefIndex + 1); 541 Verdefs[VerdefIndex] = CurVerdef; 542 } 543 544 return Verdefs; 545 } 546 547 // Fully parse the shared object file. This must be called after parseSoName(). 548 template <class ELFT> void SharedFile<ELFT>::parseRest() { 549 // Create mapping from version identifiers to Elf_Verdef entries. 550 const Elf_Versym *Versym = nullptr; 551 std::vector<const Elf_Verdef *> Verdefs = parseVerdefs(Versym); 552 553 Elf_Sym_Range Syms = this->getElfSymbols(true); 554 for (const Elf_Sym &Sym : Syms) { 555 unsigned VersymIndex = 0; 556 if (Versym) { 557 VersymIndex = Versym->vs_index; 558 ++Versym; 559 } 560 561 StringRef Name = check(Sym.getName(this->StringTable)); 562 if (Sym.isUndefined()) { 563 Undefs.push_back(Name); 564 continue; 565 } 566 567 if (Versym) { 568 // Ignore local symbols and non-default versions. 569 if (VersymIndex == VER_NDX_LOCAL || (VersymIndex & VERSYM_HIDDEN)) 570 continue; 571 } 572 573 const Elf_Verdef *V = 574 VersymIndex == VER_NDX_GLOBAL ? nullptr : Verdefs[VersymIndex]; 575 elf::Symtab<ELFT>::X->addShared(this, Name, Sym, V); 576 } 577 } 578 579 static ELFKind getBitcodeELFKind(MemoryBufferRef MB) { 580 Triple T(getBitcodeTargetTriple(MB, Driver->Context)); 581 if (T.isLittleEndian()) 582 return T.isArch64Bit() ? ELF64LEKind : ELF32LEKind; 583 return T.isArch64Bit() ? ELF64BEKind : ELF32BEKind; 584 } 585 586 static uint8_t getBitcodeMachineKind(MemoryBufferRef MB) { 587 Triple T(getBitcodeTargetTriple(MB, Driver->Context)); 588 switch (T.getArch()) { 589 case Triple::aarch64: 590 return EM_AARCH64; 591 case Triple::arm: 592 return EM_ARM; 593 case Triple::mips: 594 case Triple::mipsel: 595 case Triple::mips64: 596 case Triple::mips64el: 597 return EM_MIPS; 598 case Triple::ppc: 599 return EM_PPC; 600 case Triple::ppc64: 601 return EM_PPC64; 602 case Triple::x86: 603 return T.isOSIAMCU() ? EM_IAMCU : EM_386; 604 case Triple::x86_64: 605 return EM_X86_64; 606 default: 607 fatal(MB.getBufferIdentifier() + 608 ": could not infer e_machine from bitcode target triple " + T.str()); 609 } 610 } 611 612 BitcodeFile::BitcodeFile(MemoryBufferRef MB) : InputFile(BitcodeKind, MB) { 613 EKind = getBitcodeELFKind(MB); 614 EMachine = getBitcodeMachineKind(MB); 615 } 616 617 static uint8_t getGvVisibility(const GlobalValue *GV) { 618 switch (GV->getVisibility()) { 619 case GlobalValue::DefaultVisibility: 620 return STV_DEFAULT; 621 case GlobalValue::HiddenVisibility: 622 return STV_HIDDEN; 623 case GlobalValue::ProtectedVisibility: 624 return STV_PROTECTED; 625 } 626 llvm_unreachable("unknown visibility"); 627 } 628 629 template <class ELFT> 630 Symbol *BitcodeFile::createSymbol(const DenseSet<const Comdat *> &KeptComdats, 631 const IRObjectFile &Obj, 632 const BasicSymbolRef &Sym) { 633 const GlobalValue *GV = Obj.getSymbolGV(Sym.getRawDataRefImpl()); 634 635 SmallString<64> Name; 636 raw_svector_ostream OS(Name); 637 Sym.printName(OS); 638 StringRef NameRef = Saver.save(StringRef(Name)); 639 640 uint32_t Flags = Sym.getFlags(); 641 uint32_t Binding = (Flags & BasicSymbolRef::SF_Weak) ? STB_WEAK : STB_GLOBAL; 642 643 uint8_t Type = STT_NOTYPE; 644 uint8_t Visibility; 645 bool CanOmitFromDynSym = false; 646 bool HasUnnamedAddr = false; 647 648 // FIXME: Expose a thread-local flag for module asm symbols. 649 if (GV) { 650 if (GV->isThreadLocal()) 651 Type = STT_TLS; 652 CanOmitFromDynSym = canBeOmittedFromSymbolTable(GV); 653 Visibility = getGvVisibility(GV); 654 HasUnnamedAddr = 655 GV->getUnnamedAddr() == llvm::GlobalValue::UnnamedAddr::Global; 656 } else { 657 // FIXME: Set SF_Hidden flag correctly for module asm symbols, and expose 658 // protected visibility. 659 Visibility = STV_DEFAULT; 660 } 661 662 if (GV) 663 if (const Comdat *C = GV->getComdat()) 664 if (!KeptComdats.count(C)) 665 return Symtab<ELFT>::X->addUndefined(NameRef, Binding, Visibility, Type, 666 CanOmitFromDynSym, HasUnnamedAddr, 667 this); 668 669 const Module &M = Obj.getModule(); 670 if (Flags & BasicSymbolRef::SF_Undefined) 671 return Symtab<ELFT>::X->addUndefined(NameRef, Binding, Visibility, Type, 672 CanOmitFromDynSym, HasUnnamedAddr, 673 this); 674 if (Flags & BasicSymbolRef::SF_Common) { 675 // FIXME: Set SF_Common flag correctly for module asm symbols, and expose 676 // size and alignment. 677 assert(GV); 678 const DataLayout &DL = M.getDataLayout(); 679 uint64_t Size = DL.getTypeAllocSize(GV->getValueType()); 680 return Symtab<ELFT>::X->addCommon(NameRef, Size, GV->getAlignment(), 681 Binding, Visibility, STT_OBJECT, 682 HasUnnamedAddr, this); 683 } 684 return Symtab<ELFT>::X->addBitcode(NameRef, Binding, Visibility, Type, 685 CanOmitFromDynSym, HasUnnamedAddr, this); 686 } 687 688 bool BitcodeFile::shouldSkip(uint32_t Flags) { 689 return !(Flags & BasicSymbolRef::SF_Global) || 690 (Flags & BasicSymbolRef::SF_FormatSpecific); 691 } 692 693 template <class ELFT> 694 void BitcodeFile::parse(DenseSet<StringRef> &ComdatGroups) { 695 Obj = check(IRObjectFile::create(MB, Driver->Context)); 696 const Module &M = Obj->getModule(); 697 698 DenseSet<const Comdat *> KeptComdats; 699 for (const auto &P : M.getComdatSymbolTable()) { 700 StringRef N = Saver.save(P.first()); 701 if (ComdatGroups.insert(N).second) 702 KeptComdats.insert(&P.second); 703 } 704 705 for (const BasicSymbolRef &Sym : Obj->symbols()) 706 if (!shouldSkip(Sym.getFlags())) 707 Symbols.push_back(createSymbol<ELFT>(KeptComdats, *Obj, Sym)); 708 } 709 710 template <template <class> class T> 711 static std::unique_ptr<InputFile> createELFFile(MemoryBufferRef MB) { 712 unsigned char Size; 713 unsigned char Endian; 714 std::tie(Size, Endian) = getElfArchType(MB.getBuffer()); 715 if (Endian != ELFDATA2LSB && Endian != ELFDATA2MSB) 716 fatal("invalid data encoding: " + MB.getBufferIdentifier()); 717 718 std::unique_ptr<InputFile> Obj; 719 if (Size == ELFCLASS32 && Endian == ELFDATA2LSB) 720 Obj.reset(new T<ELF32LE>(MB)); 721 else if (Size == ELFCLASS32 && Endian == ELFDATA2MSB) 722 Obj.reset(new T<ELF32BE>(MB)); 723 else if (Size == ELFCLASS64 && Endian == ELFDATA2LSB) 724 Obj.reset(new T<ELF64LE>(MB)); 725 else if (Size == ELFCLASS64 && Endian == ELFDATA2MSB) 726 Obj.reset(new T<ELF64BE>(MB)); 727 else 728 fatal("invalid file class: " + MB.getBufferIdentifier()); 729 730 if (!Config->FirstElf) 731 Config->FirstElf = Obj.get(); 732 return Obj; 733 } 734 735 template <class ELFT> std::unique_ptr<InputFile> BinaryFile::createELF() { 736 // Wrap the binary blob with an ELF header and footer 737 // so that we can link it as a regular ELF file. 738 ELFCreator<ELFT> ELF(ET_REL, Config->EMachine); 739 auto DataSec = ELF.addSection(".data"); 740 DataSec.Header->sh_flags = SHF_ALLOC; 741 DataSec.Header->sh_size = MB.getBufferSize(); 742 DataSec.Header->sh_type = SHT_PROGBITS; 743 DataSec.Header->sh_addralign = 8; 744 745 std::string Filepath = MB.getBufferIdentifier(); 746 std::transform(Filepath.begin(), Filepath.end(), Filepath.begin(), 747 [](char C) { return isalnum(C) ? C : '_'; }); 748 std::string StartSym = "_binary_" + Filepath + "_start"; 749 std::string EndSym = "_binary_" + Filepath + "_end"; 750 std::string SizeSym = "_binary_" + Filepath + "_size"; 751 752 auto SSym = ELF.addSymbol(StartSym); 753 SSym.Sym->setBindingAndType(STB_GLOBAL, STT_OBJECT); 754 SSym.Sym->st_shndx = DataSec.Index; 755 756 auto ESym = ELF.addSymbol(EndSym); 757 ESym.Sym->setBindingAndType(STB_GLOBAL, STT_OBJECT); 758 ESym.Sym->st_shndx = DataSec.Index; 759 ESym.Sym->st_value = MB.getBufferSize(); 760 761 auto SZSym = ELF.addSymbol(SizeSym); 762 SZSym.Sym->setBindingAndType(STB_GLOBAL, STT_OBJECT); 763 SZSym.Sym->st_shndx = SHN_ABS; 764 SZSym.Sym->st_value = MB.getBufferSize(); 765 766 std::size_t Size = ELF.layout(); 767 ELFData.resize(Size); 768 769 ELF.write(ELFData.data()); 770 771 // .data 772 std::copy(MB.getBufferStart(), MB.getBufferEnd(), 773 ELFData.data() + DataSec.Header->sh_offset); 774 775 return createELFFile<ObjectFile>(MemoryBufferRef( 776 StringRef((char *)ELFData.data(), Size), MB.getBufferIdentifier())); 777 } 778 779 static bool isBitcode(MemoryBufferRef MB) { 780 using namespace sys::fs; 781 return identify_magic(MB.getBuffer()) == file_magic::bitcode; 782 } 783 784 std::unique_ptr<InputFile> elf::createObjectFile(MemoryBufferRef MB, 785 StringRef ArchiveName) { 786 std::unique_ptr<InputFile> F; 787 if (isBitcode(MB)) 788 F.reset(new BitcodeFile(MB)); 789 else 790 F = createELFFile<ObjectFile>(MB); 791 F->ArchiveName = ArchiveName; 792 return F; 793 } 794 795 std::unique_ptr<InputFile> elf::createSharedFile(MemoryBufferRef MB) { 796 return createELFFile<SharedFile>(MB); 797 } 798 799 MemoryBufferRef LazyObjectFile::getBuffer() { 800 if (Seen) 801 return MemoryBufferRef(); 802 Seen = true; 803 return MB; 804 } 805 806 template <class ELFT> 807 void LazyObjectFile::parse() { 808 for (StringRef Sym : getSymbols()) 809 Symtab<ELFT>::X->addLazyObject(Sym, *this); 810 } 811 812 template <class ELFT> std::vector<StringRef> LazyObjectFile::getElfSymbols() { 813 typedef typename ELFT::Shdr Elf_Shdr; 814 typedef typename ELFT::Sym Elf_Sym; 815 typedef typename ELFT::SymRange Elf_Sym_Range; 816 817 const ELFFile<ELFT> Obj = createELFObj<ELFT>(this->MB); 818 for (const Elf_Shdr &Sec : Obj.sections()) { 819 if (Sec.sh_type != SHT_SYMTAB) 820 continue; 821 Elf_Sym_Range Syms = Obj.symbols(&Sec); 822 uint32_t FirstNonLocal = Sec.sh_info; 823 StringRef StringTable = check(Obj.getStringTableForSymtab(Sec)); 824 std::vector<StringRef> V; 825 for (const Elf_Sym &Sym : Syms.slice(FirstNonLocal)) 826 if (Sym.st_shndx != SHN_UNDEF) 827 V.push_back(check(Sym.getName(StringTable))); 828 return V; 829 } 830 return {}; 831 } 832 833 std::vector<StringRef> LazyObjectFile::getBitcodeSymbols() { 834 LLVMContext Context; 835 std::unique_ptr<IRObjectFile> Obj = 836 check(IRObjectFile::create(this->MB, Context)); 837 std::vector<StringRef> V; 838 for (const BasicSymbolRef &Sym : Obj->symbols()) { 839 uint32_t Flags = Sym.getFlags(); 840 if (BitcodeFile::shouldSkip(Flags)) 841 continue; 842 if (Flags & BasicSymbolRef::SF_Undefined) 843 continue; 844 SmallString<64> Name; 845 raw_svector_ostream OS(Name); 846 Sym.printName(OS); 847 V.push_back(Saver.save(StringRef(Name))); 848 } 849 return V; 850 } 851 852 // Returns a vector of globally-visible defined symbol names. 853 std::vector<StringRef> LazyObjectFile::getSymbols() { 854 if (isBitcode(this->MB)) 855 return getBitcodeSymbols(); 856 857 unsigned char Size; 858 unsigned char Endian; 859 std::tie(Size, Endian) = getElfArchType(this->MB.getBuffer()); 860 if (Size == ELFCLASS32) { 861 if (Endian == ELFDATA2LSB) 862 return getElfSymbols<ELF32LE>(); 863 return getElfSymbols<ELF32BE>(); 864 } 865 if (Endian == ELFDATA2LSB) 866 return getElfSymbols<ELF64LE>(); 867 return getElfSymbols<ELF64BE>(); 868 } 869 870 template void ArchiveFile::parse<ELF32LE>(); 871 template void ArchiveFile::parse<ELF32BE>(); 872 template void ArchiveFile::parse<ELF64LE>(); 873 template void ArchiveFile::parse<ELF64BE>(); 874 875 template void BitcodeFile::parse<ELF32LE>(DenseSet<StringRef> &); 876 template void BitcodeFile::parse<ELF32BE>(DenseSet<StringRef> &); 877 template void BitcodeFile::parse<ELF64LE>(DenseSet<StringRef> &); 878 template void BitcodeFile::parse<ELF64BE>(DenseSet<StringRef> &); 879 880 template void LazyObjectFile::parse<ELF32LE>(); 881 template void LazyObjectFile::parse<ELF32BE>(); 882 template void LazyObjectFile::parse<ELF64LE>(); 883 template void LazyObjectFile::parse<ELF64BE>(); 884 885 template class elf::ELFFileBase<ELF32LE>; 886 template class elf::ELFFileBase<ELF32BE>; 887 template class elf::ELFFileBase<ELF64LE>; 888 template class elf::ELFFileBase<ELF64BE>; 889 890 template class elf::ObjectFile<ELF32LE>; 891 template class elf::ObjectFile<ELF32BE>; 892 template class elf::ObjectFile<ELF64LE>; 893 template class elf::ObjectFile<ELF64BE>; 894 895 template class elf::SharedFile<ELF32LE>; 896 template class elf::SharedFile<ELF32BE>; 897 template class elf::SharedFile<ELF64LE>; 898 template class elf::SharedFile<ELF64BE>; 899 900 template std::unique_ptr<InputFile> BinaryFile::createELF<ELF32LE>(); 901 template std::unique_ptr<InputFile> BinaryFile::createELF<ELF32BE>(); 902 template std::unique_ptr<InputFile> BinaryFile::createELF<ELF64LE>(); 903 template std::unique_ptr<InputFile> BinaryFile::createELF<ELF64BE>(); 904