1 //===- InputFiles.cpp -----------------------------------------------------===// 2 // 3 // The LLVM Linker 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "InputFiles.h" 11 #include "InputSection.h" 12 #include "LinkerScript.h" 13 #include "SymbolTable.h" 14 #include "Symbols.h" 15 #include "SyntheticSections.h" 16 #include "lld/Common/ErrorHandler.h" 17 #include "lld/Common/Memory.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/CodeGen/Analysis.h" 20 #include "llvm/DebugInfo/DWARF/DWARFContext.h" 21 #include "llvm/IR/LLVMContext.h" 22 #include "llvm/IR/Module.h" 23 #include "llvm/LTO/LTO.h" 24 #include "llvm/MC/StringTableBuilder.h" 25 #include "llvm/Object/ELFObjectFile.h" 26 #include "llvm/Support/ARMAttributeParser.h" 27 #include "llvm/Support/ARMBuildAttributes.h" 28 #include "llvm/Support/Path.h" 29 #include "llvm/Support/TarWriter.h" 30 #include "llvm/Support/raw_ostream.h" 31 32 using namespace llvm; 33 using namespace llvm::ELF; 34 using namespace llvm::object; 35 using namespace llvm::sys::fs; 36 37 using namespace lld; 38 using namespace lld::elf; 39 40 std::vector<BinaryFile *> elf::BinaryFiles; 41 std::vector<BitcodeFile *> elf::BitcodeFiles; 42 std::vector<InputFile *> elf::ObjectFiles; 43 std::vector<InputFile *> elf::SharedFiles; 44 45 TarWriter *elf::Tar; 46 47 InputFile::InputFile(Kind K, MemoryBufferRef M) : MB(M), FileKind(K) {} 48 49 Optional<MemoryBufferRef> elf::readFile(StringRef Path) { 50 // The --chroot option changes our virtual root directory. 51 // This is useful when you are dealing with files created by --reproduce. 52 if (!Config->Chroot.empty() && Path.startswith("/")) 53 Path = Saver.save(Config->Chroot + Path); 54 55 log(Path); 56 57 auto MBOrErr = MemoryBuffer::getFile(Path); 58 if (auto EC = MBOrErr.getError()) { 59 error("cannot open " + Path + ": " + EC.message()); 60 return None; 61 } 62 63 std::unique_ptr<MemoryBuffer> &MB = *MBOrErr; 64 MemoryBufferRef MBRef = MB->getMemBufferRef(); 65 make<std::unique_ptr<MemoryBuffer>>(std::move(MB)); // take MB ownership 66 67 if (Tar) 68 Tar->append(relativeToRoot(Path), MBRef.getBuffer()); 69 return MBRef; 70 } 71 72 template <class ELFT> void ObjFile<ELFT>::initializeDwarf() { 73 DWARFContext Dwarf(make_unique<LLDDwarfObj<ELFT>>(this)); 74 const DWARFObject &Obj = Dwarf.getDWARFObj(); 75 DwarfLine.reset(new DWARFDebugLine); 76 DWARFDataExtractor LineData(Obj, Obj.getLineSection(), Config->IsLE, 77 Config->Wordsize); 78 79 // The second parameter is offset in .debug_line section 80 // for compilation unit (CU) of interest. We have only one 81 // CU (object file), so offset is always 0. 82 // FIXME: Provide the associated DWARFUnit if there is one. DWARF v5 83 // needs it in order to find indirect strings. 84 const DWARFDebugLine::LineTable *LT = 85 DwarfLine->getOrParseLineTable(LineData, 0, nullptr); 86 87 // Return if there is no debug information about CU available. 88 if (!Dwarf.getNumCompileUnits()) 89 return; 90 91 // Loop over variable records and insert them to VariableLoc. 92 DWARFCompileUnit *CU = Dwarf.getCompileUnitAtIndex(0); 93 for (const auto &Entry : CU->dies()) { 94 DWARFDie Die(CU, &Entry); 95 // Skip all tags that are not variables. 96 if (Die.getTag() != dwarf::DW_TAG_variable) 97 continue; 98 99 // Skip if a local variable because we don't need them for generating error 100 // messages. In general, only non-local symbols can fail to be linked. 101 if (!dwarf::toUnsigned(Die.find(dwarf::DW_AT_external), 0)) 102 continue; 103 104 // Get the source filename index for the variable. 105 unsigned File = dwarf::toUnsigned(Die.find(dwarf::DW_AT_decl_file), 0); 106 if (!LT->hasFileAtIndex(File)) 107 continue; 108 109 // Get the line number on which the variable is declared. 110 unsigned Line = dwarf::toUnsigned(Die.find(dwarf::DW_AT_decl_line), 0); 111 112 // Get the name of the variable and add the collected information to 113 // VariableLoc. Usually Name is non-empty, but it can be empty if the input 114 // object file lacks some debug info. 115 StringRef Name = dwarf::toString(Die.find(dwarf::DW_AT_name), ""); 116 if (!Name.empty()) 117 VariableLoc.insert({Name, {File, Line}}); 118 } 119 } 120 121 // Returns the pair of file name and line number describing location of data 122 // object (variable, array, etc) definition. 123 template <class ELFT> 124 Optional<std::pair<std::string, unsigned>> 125 ObjFile<ELFT>::getVariableLoc(StringRef Name) { 126 llvm::call_once(InitDwarfLine, [this]() { initializeDwarf(); }); 127 128 // There is always only one CU so it's offset is 0. 129 const DWARFDebugLine::LineTable *LT = DwarfLine->getLineTable(0); 130 if (!LT) 131 return None; 132 133 // Return if we have no debug information about data object. 134 auto It = VariableLoc.find(Name); 135 if (It == VariableLoc.end()) 136 return None; 137 138 // Take file name string from line table. 139 std::string FileName; 140 if (!LT->getFileNameByIndex( 141 It->second.first /* File */, nullptr, 142 DILineInfoSpecifier::FileLineInfoKind::AbsoluteFilePath, FileName)) 143 return None; 144 145 return std::make_pair(FileName, It->second.second /*Line*/); 146 } 147 148 // Returns source line information for a given offset 149 // using DWARF debug info. 150 template <class ELFT> 151 Optional<DILineInfo> ObjFile<ELFT>::getDILineInfo(InputSectionBase *S, 152 uint64_t Offset) { 153 llvm::call_once(InitDwarfLine, [this]() { initializeDwarf(); }); 154 155 // The offset to CU is 0. 156 const DWARFDebugLine::LineTable *Tbl = DwarfLine->getLineTable(0); 157 if (!Tbl) 158 return None; 159 160 // Use fake address calcuated by adding section file offset and offset in 161 // section. See comments for ObjectInfo class. 162 DILineInfo Info; 163 Tbl->getFileLineInfoForAddress( 164 S->getOffsetInFile() + Offset, nullptr, 165 DILineInfoSpecifier::FileLineInfoKind::AbsoluteFilePath, Info); 166 if (Info.Line == 0) 167 return None; 168 return Info; 169 } 170 171 // Returns source line information for a given offset 172 // using DWARF debug info. 173 template <class ELFT> 174 std::string ObjFile<ELFT>::getLineInfo(InputSectionBase *S, uint64_t Offset) { 175 if (Optional<DILineInfo> Info = getDILineInfo(S, Offset)) 176 return Info->FileName + ":" + std::to_string(Info->Line); 177 return ""; 178 } 179 180 // Returns "<internal>", "foo.a(bar.o)" or "baz.o". 181 std::string lld::toString(const InputFile *F) { 182 if (!F) 183 return "<internal>"; 184 185 if (F->ToStringCache.empty()) { 186 if (F->ArchiveName.empty()) 187 F->ToStringCache = F->getName(); 188 else 189 F->ToStringCache = (F->ArchiveName + "(" + F->getName() + ")").str(); 190 } 191 return F->ToStringCache; 192 } 193 194 template <class ELFT> 195 ELFFileBase<ELFT>::ELFFileBase(Kind K, MemoryBufferRef MB) : InputFile(K, MB) { 196 if (ELFT::TargetEndianness == support::little) 197 EKind = ELFT::Is64Bits ? ELF64LEKind : ELF32LEKind; 198 else 199 EKind = ELFT::Is64Bits ? ELF64BEKind : ELF32BEKind; 200 201 EMachine = getObj().getHeader()->e_machine; 202 OSABI = getObj().getHeader()->e_ident[llvm::ELF::EI_OSABI]; 203 } 204 205 template <class ELFT> 206 typename ELFT::SymRange ELFFileBase<ELFT>::getGlobalELFSyms() { 207 return makeArrayRef(ELFSyms.begin() + FirstNonLocal, ELFSyms.end()); 208 } 209 210 template <class ELFT> 211 uint32_t ELFFileBase<ELFT>::getSectionIndex(const Elf_Sym &Sym) const { 212 return check(getObj().getSectionIndex(&Sym, ELFSyms, SymtabSHNDX), 213 toString(this)); 214 } 215 216 template <class ELFT> 217 void ELFFileBase<ELFT>::initSymtab(ArrayRef<Elf_Shdr> Sections, 218 const Elf_Shdr *Symtab) { 219 FirstNonLocal = Symtab->sh_info; 220 ELFSyms = check(getObj().symbols(Symtab), toString(this)); 221 if (FirstNonLocal == 0 || FirstNonLocal > ELFSyms.size()) 222 fatal(toString(this) + ": invalid sh_info in symbol table"); 223 224 StringTable = check(getObj().getStringTableForSymtab(*Symtab, Sections), 225 toString(this)); 226 } 227 228 template <class ELFT> 229 ObjFile<ELFT>::ObjFile(MemoryBufferRef M, StringRef ArchiveName) 230 : ELFFileBase<ELFT>(Base::ObjKind, M) { 231 this->ArchiveName = ArchiveName; 232 } 233 234 template <class ELFT> ArrayRef<Symbol *> ObjFile<ELFT>::getLocalSymbols() { 235 if (this->Symbols.empty()) 236 return {}; 237 return makeArrayRef(this->Symbols).slice(1, this->FirstNonLocal - 1); 238 } 239 240 template <class ELFT> 241 void ObjFile<ELFT>::parse(DenseSet<CachedHashStringRef> &ComdatGroups) { 242 // Read section and symbol tables. 243 initializeSections(ComdatGroups); 244 initializeSymbols(); 245 } 246 247 // Sections with SHT_GROUP and comdat bits define comdat section groups. 248 // They are identified and deduplicated by group name. This function 249 // returns a group name. 250 template <class ELFT> 251 StringRef ObjFile<ELFT>::getShtGroupSignature(ArrayRef<Elf_Shdr> Sections, 252 const Elf_Shdr &Sec) { 253 // Group signatures are stored as symbol names in object files. 254 // sh_info contains a symbol index, so we fetch a symbol and read its name. 255 if (this->ELFSyms.empty()) 256 this->initSymtab( 257 Sections, 258 check(object::getSection<ELFT>(Sections, Sec.sh_link), toString(this))); 259 260 const Elf_Sym *Sym = check( 261 object::getSymbol<ELFT>(this->ELFSyms, Sec.sh_info), toString(this)); 262 StringRef Signature = check(Sym->getName(this->StringTable), toString(this)); 263 264 // As a special case, if a symbol is a section symbol and has no name, 265 // we use a section name as a signature. 266 // 267 // Such SHT_GROUP sections are invalid from the perspective of the ELF 268 // standard, but GNU gold 1.14 (the neweset version as of July 2017) or 269 // older produce such sections as outputs for the -r option, so we need 270 // a bug-compatibility. 271 if (Signature.empty() && Sym->getType() == STT_SECTION) 272 return getSectionName(Sec); 273 return Signature; 274 } 275 276 template <class ELFT> 277 ArrayRef<typename ObjFile<ELFT>::Elf_Word> 278 ObjFile<ELFT>::getShtGroupEntries(const Elf_Shdr &Sec) { 279 const ELFFile<ELFT> &Obj = this->getObj(); 280 ArrayRef<Elf_Word> Entries = check( 281 Obj.template getSectionContentsAsArray<Elf_Word>(&Sec), toString(this)); 282 if (Entries.empty() || Entries[0] != GRP_COMDAT) 283 fatal(toString(this) + ": unsupported SHT_GROUP format"); 284 return Entries.slice(1); 285 } 286 287 template <class ELFT> bool ObjFile<ELFT>::shouldMerge(const Elf_Shdr &Sec) { 288 // We don't merge sections if -O0 (default is -O1). This makes sometimes 289 // the linker significantly faster, although the output will be bigger. 290 if (Config->Optimize == 0) 291 return false; 292 293 // A mergeable section with size 0 is useless because they don't have 294 // any data to merge. A mergeable string section with size 0 can be 295 // argued as invalid because it doesn't end with a null character. 296 // We'll avoid a mess by handling them as if they were non-mergeable. 297 if (Sec.sh_size == 0) 298 return false; 299 300 // Check for sh_entsize. The ELF spec is not clear about the zero 301 // sh_entsize. It says that "the member [sh_entsize] contains 0 if 302 // the section does not hold a table of fixed-size entries". We know 303 // that Rust 1.13 produces a string mergeable section with a zero 304 // sh_entsize. Here we just accept it rather than being picky about it. 305 uint64_t EntSize = Sec.sh_entsize; 306 if (EntSize == 0) 307 return false; 308 if (Sec.sh_size % EntSize) 309 fatal(toString(this) + 310 ": SHF_MERGE section size must be a multiple of sh_entsize"); 311 312 uint64_t Flags = Sec.sh_flags; 313 if (!(Flags & SHF_MERGE)) 314 return false; 315 if (Flags & SHF_WRITE) 316 fatal(toString(this) + ": writable SHF_MERGE section is not supported"); 317 318 return true; 319 } 320 321 template <class ELFT> 322 void ObjFile<ELFT>::initializeSections( 323 DenseSet<CachedHashStringRef> &ComdatGroups) { 324 const ELFFile<ELFT> &Obj = this->getObj(); 325 326 ArrayRef<Elf_Shdr> ObjSections = 327 check(this->getObj().sections(), toString(this)); 328 uint64_t Size = ObjSections.size(); 329 this->Sections.resize(Size); 330 this->SectionStringTable = 331 check(Obj.getSectionStringTable(ObjSections), toString(this)); 332 333 for (size_t I = 0, E = ObjSections.size(); I < E; I++) { 334 if (this->Sections[I] == &InputSection::Discarded) 335 continue; 336 const Elf_Shdr &Sec = ObjSections[I]; 337 338 // SHF_EXCLUDE'ed sections are discarded by the linker. However, 339 // if -r is given, we'll let the final link discard such sections. 340 // This is compatible with GNU. 341 if ((Sec.sh_flags & SHF_EXCLUDE) && !Config->Relocatable) { 342 this->Sections[I] = &InputSection::Discarded; 343 continue; 344 } 345 346 switch (Sec.sh_type) { 347 case SHT_GROUP: { 348 // De-duplicate section groups by their signatures. 349 StringRef Signature = getShtGroupSignature(ObjSections, Sec); 350 bool IsNew = ComdatGroups.insert(CachedHashStringRef(Signature)).second; 351 this->Sections[I] = &InputSection::Discarded; 352 353 // If it is a new section group, we want to keep group members. 354 // Group leader sections, which contain indices of group members, are 355 // discarded because they are useless beyond this point. The only 356 // exception is the -r option because in order to produce re-linkable 357 // object files, we want to pass through basically everything. 358 if (IsNew) { 359 if (Config->Relocatable) 360 this->Sections[I] = createInputSection(Sec); 361 continue; 362 } 363 364 // Otherwise, discard group members. 365 for (uint32_t SecIndex : getShtGroupEntries(Sec)) { 366 if (SecIndex >= Size) 367 fatal(toString(this) + 368 ": invalid section index in group: " + Twine(SecIndex)); 369 this->Sections[SecIndex] = &InputSection::Discarded; 370 } 371 break; 372 } 373 case SHT_SYMTAB: 374 this->initSymtab(ObjSections, &Sec); 375 break; 376 case SHT_SYMTAB_SHNDX: 377 this->SymtabSHNDX = 378 check(Obj.getSHNDXTable(Sec, ObjSections), toString(this)); 379 break; 380 case SHT_STRTAB: 381 case SHT_NULL: 382 break; 383 default: 384 this->Sections[I] = createInputSection(Sec); 385 } 386 387 // .ARM.exidx sections have a reverse dependency on the InputSection they 388 // have a SHF_LINK_ORDER dependency, this is identified by the sh_link. 389 if (Sec.sh_flags & SHF_LINK_ORDER) { 390 if (Sec.sh_link >= this->Sections.size()) 391 fatal(toString(this) + ": invalid sh_link index: " + 392 Twine(Sec.sh_link)); 393 this->Sections[Sec.sh_link]->DependentSections.push_back( 394 cast<InputSection>(this->Sections[I])); 395 } 396 } 397 } 398 399 // The ARM support in lld makes some use of instructions that are not available 400 // on all ARM architectures. Namely: 401 // - Use of BLX instruction for interworking between ARM and Thumb state. 402 // - Use of the extended Thumb branch encoding in relocation. 403 // - Use of the MOVT/MOVW instructions in Thumb Thunks. 404 // The ARM Attributes section contains information about the architecture chosen 405 // at compile time. We follow the convention that if at least one input object 406 // is compiled with an architecture that supports these features then lld is 407 // permitted to use them. 408 static void updateSupportedARMFeatures(const ARMAttributeParser &Attributes) { 409 if (!Attributes.hasAttribute(ARMBuildAttrs::CPU_arch)) 410 return; 411 auto Arch = Attributes.getAttributeValue(ARMBuildAttrs::CPU_arch); 412 switch (Arch) { 413 case ARMBuildAttrs::Pre_v4: 414 case ARMBuildAttrs::v4: 415 case ARMBuildAttrs::v4T: 416 // Architectures prior to v5 do not support BLX instruction 417 break; 418 case ARMBuildAttrs::v5T: 419 case ARMBuildAttrs::v5TE: 420 case ARMBuildAttrs::v5TEJ: 421 case ARMBuildAttrs::v6: 422 case ARMBuildAttrs::v6KZ: 423 case ARMBuildAttrs::v6K: 424 Config->ARMHasBlx = true; 425 // Architectures used in pre-Cortex processors do not support 426 // The J1 = 1 J2 = 1 Thumb branch range extension, with the exception 427 // of Architecture v6T2 (arm1156t2-s and arm1156t2f-s) that do. 428 break; 429 default: 430 // All other Architectures have BLX and extended branch encoding 431 Config->ARMHasBlx = true; 432 Config->ARMJ1J2BranchEncoding = true; 433 if (Arch != ARMBuildAttrs::v6_M && Arch != ARMBuildAttrs::v6S_M) 434 // All Architectures used in Cortex processors with the exception 435 // of v6-M and v6S-M have the MOVT and MOVW instructions. 436 Config->ARMHasMovtMovw = true; 437 break; 438 } 439 } 440 441 template <class ELFT> 442 InputSectionBase *ObjFile<ELFT>::getRelocTarget(const Elf_Shdr &Sec) { 443 uint32_t Idx = Sec.sh_info; 444 if (Idx >= this->Sections.size()) 445 fatal(toString(this) + ": invalid relocated section index: " + Twine(Idx)); 446 InputSectionBase *Target = this->Sections[Idx]; 447 448 // Strictly speaking, a relocation section must be included in the 449 // group of the section it relocates. However, LLVM 3.3 and earlier 450 // would fail to do so, so we gracefully handle that case. 451 if (Target == &InputSection::Discarded) 452 return nullptr; 453 454 if (!Target) 455 fatal(toString(this) + ": unsupported relocation reference"); 456 return Target; 457 } 458 459 // Create a regular InputSection class that has the same contents 460 // as a given section. 461 InputSectionBase *toRegularSection(MergeInputSection *Sec) { 462 auto *Ret = make<InputSection>(Sec->Flags, Sec->Type, Sec->Alignment, 463 Sec->Data, Sec->Name); 464 Ret->File = Sec->File; 465 return Ret; 466 } 467 468 template <class ELFT> 469 InputSectionBase *ObjFile<ELFT>::createInputSection(const Elf_Shdr &Sec) { 470 StringRef Name = getSectionName(Sec); 471 472 switch (Sec.sh_type) { 473 case SHT_ARM_ATTRIBUTES: { 474 if (Config->EMachine != EM_ARM) 475 break; 476 ARMAttributeParser Attributes; 477 ArrayRef<uint8_t> Contents = check(this->getObj().getSectionContents(&Sec)); 478 Attributes.Parse(Contents, /*isLittle*/Config->EKind == ELF32LEKind); 479 updateSupportedARMFeatures(Attributes); 480 // FIXME: Retain the first attribute section we see. The eglibc ARM 481 // dynamic loaders require the presence of an attribute section for dlopen 482 // to work. In a full implementation we would merge all attribute sections. 483 if (InX::ARMAttributes == nullptr) { 484 InX::ARMAttributes = make<InputSection>(this, &Sec, Name); 485 return InX::ARMAttributes; 486 } 487 return &InputSection::Discarded; 488 } 489 case SHT_RELA: 490 case SHT_REL: { 491 // Find the relocation target section and associate this 492 // section with it. Target can be discarded, for example 493 // if it is a duplicated member of SHT_GROUP section, we 494 // do not create or proccess relocatable sections then. 495 InputSectionBase *Target = getRelocTarget(Sec); 496 if (!Target) 497 return nullptr; 498 499 // This section contains relocation information. 500 // If -r is given, we do not interpret or apply relocation 501 // but just copy relocation sections to output. 502 if (Config->Relocatable) 503 return make<InputSection>(this, &Sec, Name); 504 505 if (Target->FirstRelocation) 506 fatal(toString(this) + 507 ": multiple relocation sections to one section are not supported"); 508 509 // Mergeable sections with relocations are tricky because relocations 510 // need to be taken into account when comparing section contents for 511 // merging. It's not worth supporting such mergeable sections because 512 // they are rare and it'd complicates the internal design (we usually 513 // have to determine if two sections are mergeable early in the link 514 // process much before applying relocations). We simply handle mergeable 515 // sections with relocations as non-mergeable. 516 if (auto *MS = dyn_cast<MergeInputSection>(Target)) { 517 Target = toRegularSection(MS); 518 this->Sections[Sec.sh_info] = Target; 519 } 520 521 size_t NumRelocations; 522 if (Sec.sh_type == SHT_RELA) { 523 ArrayRef<Elf_Rela> Rels = 524 check(this->getObj().relas(&Sec), toString(this)); 525 Target->FirstRelocation = Rels.begin(); 526 NumRelocations = Rels.size(); 527 Target->AreRelocsRela = true; 528 } else { 529 ArrayRef<Elf_Rel> Rels = check(this->getObj().rels(&Sec), toString(this)); 530 Target->FirstRelocation = Rels.begin(); 531 NumRelocations = Rels.size(); 532 Target->AreRelocsRela = false; 533 } 534 assert(isUInt<31>(NumRelocations)); 535 Target->NumRelocations = NumRelocations; 536 537 // Relocation sections processed by the linker are usually removed 538 // from the output, so returning `nullptr` for the normal case. 539 // However, if -emit-relocs is given, we need to leave them in the output. 540 // (Some post link analysis tools need this information.) 541 if (Config->EmitRelocs) { 542 InputSection *RelocSec = make<InputSection>(this, &Sec, Name); 543 // We will not emit relocation section if target was discarded. 544 Target->DependentSections.push_back(RelocSec); 545 return RelocSec; 546 } 547 return nullptr; 548 } 549 } 550 551 // The GNU linker uses .note.GNU-stack section as a marker indicating 552 // that the code in the object file does not expect that the stack is 553 // executable (in terms of NX bit). If all input files have the marker, 554 // the GNU linker adds a PT_GNU_STACK segment to tells the loader to 555 // make the stack non-executable. Most object files have this section as 556 // of 2017. 557 // 558 // But making the stack non-executable is a norm today for security 559 // reasons. Failure to do so may result in a serious security issue. 560 // Therefore, we make LLD always add PT_GNU_STACK unless it is 561 // explicitly told to do otherwise (by -z execstack). Because the stack 562 // executable-ness is controlled solely by command line options, 563 // .note.GNU-stack sections are simply ignored. 564 if (Name == ".note.GNU-stack") 565 return &InputSection::Discarded; 566 567 // Split stacks is a feature to support a discontiguous stack. At least 568 // as of 2017, it seems that the feature is not being used widely. 569 // Only GNU gold supports that. We don't. For the details about that, 570 // see https://gcc.gnu.org/wiki/SplitStacks 571 if (Name == ".note.GNU-split-stack") { 572 error(toString(this) + 573 ": object file compiled with -fsplit-stack is not supported"); 574 return &InputSection::Discarded; 575 } 576 577 // The linkonce feature is a sort of proto-comdat. Some glibc i386 object 578 // files contain definitions of symbol "__x86.get_pc_thunk.bx" in linkonce 579 // sections. Drop those sections to avoid duplicate symbol errors. 580 // FIXME: This is glibc PR20543, we should remove this hack once that has been 581 // fixed for a while. 582 if (Name.startswith(".gnu.linkonce.")) 583 return &InputSection::Discarded; 584 585 // The linker merges EH (exception handling) frames and creates a 586 // .eh_frame_hdr section for runtime. So we handle them with a special 587 // class. For relocatable outputs, they are just passed through. 588 if (Name == ".eh_frame" && !Config->Relocatable) 589 return make<EhInputSection>(this, &Sec, Name); 590 591 if (shouldMerge(Sec)) 592 return make<MergeInputSection>(this, &Sec, Name); 593 return make<InputSection>(this, &Sec, Name); 594 } 595 596 template <class ELFT> 597 StringRef ObjFile<ELFT>::getSectionName(const Elf_Shdr &Sec) { 598 return check(this->getObj().getSectionName(&Sec, SectionStringTable), 599 toString(this)); 600 } 601 602 template <class ELFT> void ObjFile<ELFT>::initializeSymbols() { 603 this->Symbols.reserve(this->ELFSyms.size()); 604 for (const Elf_Sym &Sym : this->ELFSyms) 605 this->Symbols.push_back(createSymbol(&Sym)); 606 } 607 608 template <class ELFT> 609 InputSectionBase *ObjFile<ELFT>::getSection(uint32_t Index) const { 610 if (Index == 0) 611 return nullptr; 612 if (Index >= this->Sections.size()) 613 fatal(toString(this) + ": invalid section index: " + Twine(Index)); 614 615 if (InputSectionBase *Sec = this->Sections[Index]) 616 return Sec->Repl; 617 return nullptr; 618 } 619 620 template <class ELFT> Symbol *ObjFile<ELFT>::createSymbol(const Elf_Sym *Sym) { 621 int Binding = Sym->getBinding(); 622 InputSectionBase *Sec = getSection(this->getSectionIndex(*Sym)); 623 624 uint8_t StOther = Sym->st_other; 625 uint8_t Type = Sym->getType(); 626 uint64_t Value = Sym->st_value; 627 uint64_t Size = Sym->st_size; 628 629 if (Binding == STB_LOCAL) { 630 if (Sym->getType() == STT_FILE) 631 SourceFile = check(Sym->getName(this->StringTable), toString(this)); 632 633 if (this->StringTable.size() <= Sym->st_name) 634 fatal(toString(this) + ": invalid symbol name offset"); 635 636 StringRefZ Name = this->StringTable.data() + Sym->st_name; 637 if (Sym->st_shndx == SHN_UNDEF) 638 return make<Undefined>(this, Name, Binding, StOther, Type); 639 640 return make<Defined>(this, Name, Binding, StOther, Type, Value, Size, Sec); 641 } 642 643 StringRef Name = check(Sym->getName(this->StringTable), toString(this)); 644 645 switch (Sym->st_shndx) { 646 case SHN_UNDEF: 647 return Symtab->addUndefined<ELFT>(Name, Binding, StOther, Type, 648 /*CanOmitFromDynSym=*/false, this); 649 case SHN_COMMON: 650 if (Value == 0 || Value >= UINT32_MAX) 651 fatal(toString(this) + ": common symbol '" + Name + 652 "' has invalid alignment: " + Twine(Value)); 653 return Symtab->addCommon(Name, Size, Value, Binding, StOther, Type, this); 654 } 655 656 switch (Binding) { 657 default: 658 fatal(toString(this) + ": unexpected binding: " + Twine(Binding)); 659 case STB_GLOBAL: 660 case STB_WEAK: 661 case STB_GNU_UNIQUE: 662 if (Sec == &InputSection::Discarded) 663 return Symtab->addUndefined<ELFT>(Name, Binding, StOther, Type, 664 /*CanOmitFromDynSym=*/false, this); 665 return Symtab->addRegular<ELFT>(Name, StOther, Type, Value, Size, Binding, 666 Sec, this); 667 } 668 } 669 670 ArchiveFile::ArchiveFile(std::unique_ptr<Archive> &&File) 671 : InputFile(ArchiveKind, File->getMemoryBufferRef()), 672 File(std::move(File)) {} 673 674 template <class ELFT> void ArchiveFile::parse() { 675 Symbols.reserve(File->getNumberOfSymbols()); 676 for (const Archive::Symbol &Sym : File->symbols()) 677 Symbols.push_back(Symtab->addLazyArchive<ELFT>(Sym.getName(), this, Sym)); 678 } 679 680 // Returns a buffer pointing to a member file containing a given symbol. 681 std::pair<MemoryBufferRef, uint64_t> 682 ArchiveFile::getMember(const Archive::Symbol *Sym) { 683 Archive::Child C = 684 check(Sym->getMember(), toString(this) + 685 ": could not get the member for symbol " + 686 Sym->getName()); 687 688 if (!Seen.insert(C.getChildOffset()).second) 689 return {MemoryBufferRef(), 0}; 690 691 MemoryBufferRef Ret = 692 check(C.getMemoryBufferRef(), 693 toString(this) + 694 ": could not get the buffer for the member defining symbol " + 695 Sym->getName()); 696 697 if (C.getParent()->isThin() && Tar) 698 Tar->append(relativeToRoot(check(C.getFullName(), toString(this))), 699 Ret.getBuffer()); 700 if (C.getParent()->isThin()) 701 return {Ret, 0}; 702 return {Ret, C.getChildOffset()}; 703 } 704 705 template <class ELFT> 706 SharedFile<ELFT>::SharedFile(MemoryBufferRef M, StringRef DefaultSoName) 707 : ELFFileBase<ELFT>(Base::SharedKind, M), SoName(DefaultSoName), 708 IsNeeded(!Config->AsNeeded) {} 709 710 // Partially parse the shared object file so that we can call 711 // getSoName on this object. 712 template <class ELFT> void SharedFile<ELFT>::parseSoName() { 713 const Elf_Shdr *DynamicSec = nullptr; 714 const ELFFile<ELFT> Obj = this->getObj(); 715 ArrayRef<Elf_Shdr> Sections = check(Obj.sections(), toString(this)); 716 717 // Search for .dynsym, .dynamic, .symtab, .gnu.version and .gnu.version_d. 718 for (const Elf_Shdr &Sec : Sections) { 719 switch (Sec.sh_type) { 720 default: 721 continue; 722 case SHT_DYNSYM: 723 this->initSymtab(Sections, &Sec); 724 break; 725 case SHT_DYNAMIC: 726 DynamicSec = &Sec; 727 break; 728 case SHT_SYMTAB_SHNDX: 729 this->SymtabSHNDX = 730 check(Obj.getSHNDXTable(Sec, Sections), toString(this)); 731 break; 732 case SHT_GNU_versym: 733 this->VersymSec = &Sec; 734 break; 735 case SHT_GNU_verdef: 736 this->VerdefSec = &Sec; 737 break; 738 } 739 } 740 741 if (this->VersymSec && this->ELFSyms.empty()) 742 error("SHT_GNU_versym should be associated with symbol table"); 743 744 // Search for a DT_SONAME tag to initialize this->SoName. 745 if (!DynamicSec) 746 return; 747 ArrayRef<Elf_Dyn> Arr = 748 check(Obj.template getSectionContentsAsArray<Elf_Dyn>(DynamicSec), 749 toString(this)); 750 for (const Elf_Dyn &Dyn : Arr) { 751 if (Dyn.d_tag == DT_SONAME) { 752 uint64_t Val = Dyn.getVal(); 753 if (Val >= this->StringTable.size()) 754 fatal(toString(this) + ": invalid DT_SONAME entry"); 755 SoName = this->StringTable.data() + Val; 756 return; 757 } 758 } 759 } 760 761 // Parse the version definitions in the object file if present. Returns a vector 762 // whose nth element contains a pointer to the Elf_Verdef for version identifier 763 // n. Version identifiers that are not definitions map to nullptr. The array 764 // always has at least length 1. 765 template <class ELFT> 766 std::vector<const typename ELFT::Verdef *> 767 SharedFile<ELFT>::parseVerdefs(const Elf_Versym *&Versym) { 768 std::vector<const Elf_Verdef *> Verdefs(1); 769 // We only need to process symbol versions for this DSO if it has both a 770 // versym and a verdef section, which indicates that the DSO contains symbol 771 // version definitions. 772 if (!VersymSec || !VerdefSec) 773 return Verdefs; 774 775 // The location of the first global versym entry. 776 const char *Base = this->MB.getBuffer().data(); 777 Versym = reinterpret_cast<const Elf_Versym *>(Base + VersymSec->sh_offset) + 778 this->FirstNonLocal; 779 780 // We cannot determine the largest verdef identifier without inspecting 781 // every Elf_Verdef, but both bfd and gold assign verdef identifiers 782 // sequentially starting from 1, so we predict that the largest identifier 783 // will be VerdefCount. 784 unsigned VerdefCount = VerdefSec->sh_info; 785 Verdefs.resize(VerdefCount + 1); 786 787 // Build the Verdefs array by following the chain of Elf_Verdef objects 788 // from the start of the .gnu.version_d section. 789 const char *Verdef = Base + VerdefSec->sh_offset; 790 for (unsigned I = 0; I != VerdefCount; ++I) { 791 auto *CurVerdef = reinterpret_cast<const Elf_Verdef *>(Verdef); 792 Verdef += CurVerdef->vd_next; 793 unsigned VerdefIndex = CurVerdef->vd_ndx; 794 if (Verdefs.size() <= VerdefIndex) 795 Verdefs.resize(VerdefIndex + 1); 796 Verdefs[VerdefIndex] = CurVerdef; 797 } 798 799 return Verdefs; 800 } 801 802 // Fully parse the shared object file. This must be called after parseSoName(). 803 template <class ELFT> void SharedFile<ELFT>::parseRest() { 804 // Create mapping from version identifiers to Elf_Verdef entries. 805 const Elf_Versym *Versym = nullptr; 806 std::vector<const Elf_Verdef *> Verdefs = parseVerdefs(Versym); 807 808 ArrayRef<Elf_Shdr> Sections = 809 check(this->getObj().sections(), toString(this)); 810 811 // Add symbols to the symbol table. 812 Elf_Sym_Range Syms = this->getGlobalELFSyms(); 813 for (const Elf_Sym &Sym : Syms) { 814 unsigned VersymIndex = 0; 815 if (Versym) { 816 VersymIndex = Versym->vs_index; 817 ++Versym; 818 } 819 bool Hidden = VersymIndex & VERSYM_HIDDEN; 820 VersymIndex = VersymIndex & ~VERSYM_HIDDEN; 821 822 StringRef Name = check(Sym.getName(this->StringTable), toString(this)); 823 if (Sym.isUndefined()) { 824 Undefs.push_back(Name); 825 continue; 826 } 827 828 // Ignore local symbols. 829 if (Versym && VersymIndex == VER_NDX_LOCAL) 830 continue; 831 const Elf_Verdef *Ver = nullptr; 832 if (VersymIndex != VER_NDX_GLOBAL) { 833 if (VersymIndex >= Verdefs.size()) { 834 error("corrupt input file: version definition index " + 835 Twine(VersymIndex) + " for symbol " + Name + 836 " is out of bounds\n>>> defined in " + toString(this)); 837 continue; 838 } 839 Ver = Verdefs[VersymIndex]; 840 } 841 842 // We do not usually care about alignments of data in shared object 843 // files because the loader takes care of it. However, if we promote a 844 // DSO symbol to point to .bss due to copy relocation, we need to keep 845 // the original alignment requirements. We infer it here. 846 uint64_t Alignment = 1; 847 if (Sym.st_value) 848 Alignment = 1ULL << countTrailingZeros((uint64_t)Sym.st_value); 849 if (0 < Sym.st_shndx && Sym.st_shndx < Sections.size()) { 850 uint64_t SecAlign = Sections[Sym.st_shndx].sh_addralign; 851 Alignment = std::min(Alignment, SecAlign); 852 } 853 if (Alignment > UINT32_MAX) 854 error(toString(this) + ": alignment too large: " + Name); 855 856 if (!Hidden) 857 Symtab->addShared(Name, this, Sym, Alignment, Ver); 858 859 // Also add the symbol with the versioned name to handle undefined symbols 860 // with explicit versions. 861 if (Ver) { 862 StringRef VerName = this->StringTable.data() + Ver->getAux()->vda_name; 863 Name = Saver.save(Name + "@" + VerName); 864 Symtab->addShared(Name, this, Sym, Alignment, Ver); 865 } 866 } 867 } 868 869 static ELFKind getBitcodeELFKind(const Triple &T) { 870 if (T.isLittleEndian()) 871 return T.isArch64Bit() ? ELF64LEKind : ELF32LEKind; 872 return T.isArch64Bit() ? ELF64BEKind : ELF32BEKind; 873 } 874 875 static uint8_t getBitcodeMachineKind(StringRef Path, const Triple &T) { 876 switch (T.getArch()) { 877 case Triple::aarch64: 878 return EM_AARCH64; 879 case Triple::arm: 880 case Triple::thumb: 881 return EM_ARM; 882 case Triple::avr: 883 return EM_AVR; 884 case Triple::mips: 885 case Triple::mipsel: 886 case Triple::mips64: 887 case Triple::mips64el: 888 return EM_MIPS; 889 case Triple::ppc: 890 return EM_PPC; 891 case Triple::ppc64: 892 return EM_PPC64; 893 case Triple::x86: 894 return T.isOSIAMCU() ? EM_IAMCU : EM_386; 895 case Triple::x86_64: 896 return EM_X86_64; 897 default: 898 fatal(Path + ": could not infer e_machine from bitcode target triple " + 899 T.str()); 900 } 901 } 902 903 BitcodeFile::BitcodeFile(MemoryBufferRef MB, StringRef ArchiveName, 904 uint64_t OffsetInArchive) 905 : InputFile(BitcodeKind, MB) { 906 this->ArchiveName = ArchiveName; 907 908 // Here we pass a new MemoryBufferRef which is identified by ArchiveName 909 // (the fully resolved path of the archive) + member name + offset of the 910 // member in the archive. 911 // ThinLTO uses the MemoryBufferRef identifier to access its internal 912 // data structures and if two archives define two members with the same name, 913 // this causes a collision which result in only one of the objects being 914 // taken into consideration at LTO time (which very likely causes undefined 915 // symbols later in the link stage). 916 MemoryBufferRef MBRef(MB.getBuffer(), 917 Saver.save(ArchiveName + MB.getBufferIdentifier() + 918 utostr(OffsetInArchive))); 919 Obj = check(lto::InputFile::create(MBRef), toString(this)); 920 921 Triple T(Obj->getTargetTriple()); 922 EKind = getBitcodeELFKind(T); 923 EMachine = getBitcodeMachineKind(MB.getBufferIdentifier(), T); 924 } 925 926 static uint8_t mapVisibility(GlobalValue::VisibilityTypes GvVisibility) { 927 switch (GvVisibility) { 928 case GlobalValue::DefaultVisibility: 929 return STV_DEFAULT; 930 case GlobalValue::HiddenVisibility: 931 return STV_HIDDEN; 932 case GlobalValue::ProtectedVisibility: 933 return STV_PROTECTED; 934 } 935 llvm_unreachable("unknown visibility"); 936 } 937 938 template <class ELFT> 939 static Symbol *createBitcodeSymbol(const std::vector<bool> &KeptComdats, 940 const lto::InputFile::Symbol &ObjSym, 941 BitcodeFile *F) { 942 StringRef NameRef = Saver.save(ObjSym.getName()); 943 uint32_t Binding = ObjSym.isWeak() ? STB_WEAK : STB_GLOBAL; 944 945 uint8_t Type = ObjSym.isTLS() ? STT_TLS : STT_NOTYPE; 946 uint8_t Visibility = mapVisibility(ObjSym.getVisibility()); 947 bool CanOmitFromDynSym = ObjSym.canBeOmittedFromSymbolTable(); 948 949 int C = ObjSym.getComdatIndex(); 950 if (C != -1 && !KeptComdats[C]) 951 return Symtab->addUndefined<ELFT>(NameRef, Binding, Visibility, Type, 952 CanOmitFromDynSym, F); 953 954 if (ObjSym.isUndefined()) 955 return Symtab->addUndefined<ELFT>(NameRef, Binding, Visibility, Type, 956 CanOmitFromDynSym, F); 957 958 if (ObjSym.isCommon()) 959 return Symtab->addCommon(NameRef, ObjSym.getCommonSize(), 960 ObjSym.getCommonAlignment(), Binding, Visibility, 961 STT_OBJECT, F); 962 963 return Symtab->addBitcode(NameRef, Binding, Visibility, Type, 964 CanOmitFromDynSym, F); 965 } 966 967 template <class ELFT> 968 void BitcodeFile::parse(DenseSet<CachedHashStringRef> &ComdatGroups) { 969 std::vector<bool> KeptComdats; 970 for (StringRef S : Obj->getComdatTable()) 971 KeptComdats.push_back(ComdatGroups.insert(CachedHashStringRef(S)).second); 972 973 for (const lto::InputFile::Symbol &ObjSym : Obj->symbols()) 974 Symbols.push_back(createBitcodeSymbol<ELFT>(KeptComdats, ObjSym, this)); 975 } 976 977 static ELFKind getELFKind(MemoryBufferRef MB) { 978 unsigned char Size; 979 unsigned char Endian; 980 std::tie(Size, Endian) = getElfArchType(MB.getBuffer()); 981 982 if (Endian != ELFDATA2LSB && Endian != ELFDATA2MSB) 983 fatal(MB.getBufferIdentifier() + ": invalid data encoding"); 984 if (Size != ELFCLASS32 && Size != ELFCLASS64) 985 fatal(MB.getBufferIdentifier() + ": invalid file class"); 986 987 size_t BufSize = MB.getBuffer().size(); 988 if ((Size == ELFCLASS32 && BufSize < sizeof(Elf32_Ehdr)) || 989 (Size == ELFCLASS64 && BufSize < sizeof(Elf64_Ehdr))) 990 fatal(MB.getBufferIdentifier() + ": file is too short"); 991 992 if (Size == ELFCLASS32) 993 return (Endian == ELFDATA2LSB) ? ELF32LEKind : ELF32BEKind; 994 return (Endian == ELFDATA2LSB) ? ELF64LEKind : ELF64BEKind; 995 } 996 997 template <class ELFT> void BinaryFile::parse() { 998 ArrayRef<uint8_t> Data = toArrayRef(MB.getBuffer()); 999 auto *Section = 1000 make<InputSection>(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, 8, Data, ".data"); 1001 Sections.push_back(Section); 1002 1003 // For each input file foo that is embedded to a result as a binary 1004 // blob, we define _binary_foo_{start,end,size} symbols, so that 1005 // user programs can access blobs by name. Non-alphanumeric 1006 // characters in a filename are replaced with underscore. 1007 std::string S = "_binary_" + MB.getBufferIdentifier().str(); 1008 for (size_t I = 0; I < S.size(); ++I) 1009 if (!isAlnum(S[I])) 1010 S[I] = '_'; 1011 1012 Symtab->addRegular<ELFT>(Saver.save(S + "_start"), STV_DEFAULT, STT_OBJECT, 1013 0, 0, STB_GLOBAL, Section, nullptr); 1014 Symtab->addRegular<ELFT>(Saver.save(S + "_end"), STV_DEFAULT, STT_OBJECT, 1015 Data.size(), 0, STB_GLOBAL, Section, nullptr); 1016 Symtab->addRegular<ELFT>(Saver.save(S + "_size"), STV_DEFAULT, STT_OBJECT, 1017 Data.size(), 0, STB_GLOBAL, nullptr, nullptr); 1018 } 1019 1020 static bool isBitcode(MemoryBufferRef MB) { 1021 using namespace sys::fs; 1022 return identify_magic(MB.getBuffer()) == file_magic::bitcode; 1023 } 1024 1025 InputFile *elf::createObjectFile(MemoryBufferRef MB, StringRef ArchiveName, 1026 uint64_t OffsetInArchive) { 1027 if (isBitcode(MB)) 1028 return make<BitcodeFile>(MB, ArchiveName, OffsetInArchive); 1029 1030 switch (getELFKind(MB)) { 1031 case ELF32LEKind: 1032 return make<ObjFile<ELF32LE>>(MB, ArchiveName); 1033 case ELF32BEKind: 1034 return make<ObjFile<ELF32BE>>(MB, ArchiveName); 1035 case ELF64LEKind: 1036 return make<ObjFile<ELF64LE>>(MB, ArchiveName); 1037 case ELF64BEKind: 1038 return make<ObjFile<ELF64BE>>(MB, ArchiveName); 1039 default: 1040 llvm_unreachable("getELFKind"); 1041 } 1042 } 1043 1044 InputFile *elf::createSharedFile(MemoryBufferRef MB, StringRef DefaultSoName) { 1045 switch (getELFKind(MB)) { 1046 case ELF32LEKind: 1047 return make<SharedFile<ELF32LE>>(MB, DefaultSoName); 1048 case ELF32BEKind: 1049 return make<SharedFile<ELF32BE>>(MB, DefaultSoName); 1050 case ELF64LEKind: 1051 return make<SharedFile<ELF64LE>>(MB, DefaultSoName); 1052 case ELF64BEKind: 1053 return make<SharedFile<ELF64BE>>(MB, DefaultSoName); 1054 default: 1055 llvm_unreachable("getELFKind"); 1056 } 1057 } 1058 1059 MemoryBufferRef LazyObjFile::getBuffer() { 1060 if (Seen) 1061 return MemoryBufferRef(); 1062 Seen = true; 1063 return MB; 1064 } 1065 1066 InputFile *LazyObjFile::fetch() { 1067 MemoryBufferRef MBRef = getBuffer(); 1068 if (MBRef.getBuffer().empty()) 1069 return nullptr; 1070 return createObjectFile(MBRef, ArchiveName, OffsetInArchive); 1071 } 1072 1073 template <class ELFT> void LazyObjFile::parse() { 1074 for (StringRef Sym : getSymbolNames()) 1075 Symtab->addLazyObject<ELFT>(Sym, *this); 1076 } 1077 1078 template <class ELFT> std::vector<StringRef> LazyObjFile::getElfSymbols() { 1079 typedef typename ELFT::Shdr Elf_Shdr; 1080 typedef typename ELFT::Sym Elf_Sym; 1081 typedef typename ELFT::SymRange Elf_Sym_Range; 1082 1083 ELFFile<ELFT> Obj = check(ELFFile<ELFT>::create(this->MB.getBuffer())); 1084 ArrayRef<Elf_Shdr> Sections = check(Obj.sections(), toString(this)); 1085 for (const Elf_Shdr &Sec : Sections) { 1086 if (Sec.sh_type != SHT_SYMTAB) 1087 continue; 1088 1089 Elf_Sym_Range Syms = check(Obj.symbols(&Sec), toString(this)); 1090 uint32_t FirstNonLocal = Sec.sh_info; 1091 StringRef StringTable = 1092 check(Obj.getStringTableForSymtab(Sec, Sections), toString(this)); 1093 std::vector<StringRef> V; 1094 1095 for (const Elf_Sym &Sym : Syms.slice(FirstNonLocal)) 1096 if (Sym.st_shndx != SHN_UNDEF) 1097 V.push_back(check(Sym.getName(StringTable), toString(this))); 1098 return V; 1099 } 1100 return {}; 1101 } 1102 1103 std::vector<StringRef> LazyObjFile::getBitcodeSymbols() { 1104 std::unique_ptr<lto::InputFile> Obj = 1105 check(lto::InputFile::create(this->MB), toString(this)); 1106 std::vector<StringRef> V; 1107 for (const lto::InputFile::Symbol &Sym : Obj->symbols()) 1108 if (!Sym.isUndefined()) 1109 V.push_back(Saver.save(Sym.getName())); 1110 return V; 1111 } 1112 1113 // Returns a vector of globally-visible defined symbol names. 1114 std::vector<StringRef> LazyObjFile::getSymbolNames() { 1115 if (isBitcode(this->MB)) 1116 return getBitcodeSymbols(); 1117 1118 switch (getELFKind(this->MB)) { 1119 case ELF32LEKind: 1120 return getElfSymbols<ELF32LE>(); 1121 case ELF32BEKind: 1122 return getElfSymbols<ELF32BE>(); 1123 case ELF64LEKind: 1124 return getElfSymbols<ELF64LE>(); 1125 case ELF64BEKind: 1126 return getElfSymbols<ELF64BE>(); 1127 default: 1128 llvm_unreachable("getELFKind"); 1129 } 1130 } 1131 1132 template void ArchiveFile::parse<ELF32LE>(); 1133 template void ArchiveFile::parse<ELF32BE>(); 1134 template void ArchiveFile::parse<ELF64LE>(); 1135 template void ArchiveFile::parse<ELF64BE>(); 1136 1137 template void BitcodeFile::parse<ELF32LE>(DenseSet<CachedHashStringRef> &); 1138 template void BitcodeFile::parse<ELF32BE>(DenseSet<CachedHashStringRef> &); 1139 template void BitcodeFile::parse<ELF64LE>(DenseSet<CachedHashStringRef> &); 1140 template void BitcodeFile::parse<ELF64BE>(DenseSet<CachedHashStringRef> &); 1141 1142 template void LazyObjFile::parse<ELF32LE>(); 1143 template void LazyObjFile::parse<ELF32BE>(); 1144 template void LazyObjFile::parse<ELF64LE>(); 1145 template void LazyObjFile::parse<ELF64BE>(); 1146 1147 template class elf::ELFFileBase<ELF32LE>; 1148 template class elf::ELFFileBase<ELF32BE>; 1149 template class elf::ELFFileBase<ELF64LE>; 1150 template class elf::ELFFileBase<ELF64BE>; 1151 1152 template class elf::ObjFile<ELF32LE>; 1153 template class elf::ObjFile<ELF32BE>; 1154 template class elf::ObjFile<ELF64LE>; 1155 template class elf::ObjFile<ELF64BE>; 1156 1157 template class elf::SharedFile<ELF32LE>; 1158 template class elf::SharedFile<ELF32BE>; 1159 template class elf::SharedFile<ELF64LE>; 1160 template class elf::SharedFile<ELF64BE>; 1161 1162 template void BinaryFile::parse<ELF32LE>(); 1163 template void BinaryFile::parse<ELF32BE>(); 1164 template void BinaryFile::parse<ELF64LE>(); 1165 template void BinaryFile::parse<ELF64BE>(); 1166