1 //===- InputFiles.cpp -----------------------------------------------------===//
2 //
3 //                             The LLVM Linker
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "InputFiles.h"
11 #include "InputSection.h"
12 #include "LinkerScript.h"
13 #include "SymbolTable.h"
14 #include "Symbols.h"
15 #include "SyntheticSections.h"
16 #include "lld/Common/ErrorHandler.h"
17 #include "lld/Common/Memory.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/CodeGen/Analysis.h"
20 #include "llvm/DebugInfo/DWARF/DWARFContext.h"
21 #include "llvm/IR/LLVMContext.h"
22 #include "llvm/IR/Module.h"
23 #include "llvm/LTO/LTO.h"
24 #include "llvm/MC/StringTableBuilder.h"
25 #include "llvm/Object/ELFObjectFile.h"
26 #include "llvm/Support/ARMAttributeParser.h"
27 #include "llvm/Support/ARMBuildAttributes.h"
28 #include "llvm/Support/Path.h"
29 #include "llvm/Support/TarWriter.h"
30 #include "llvm/Support/raw_ostream.h"
31 
32 using namespace llvm;
33 using namespace llvm::ELF;
34 using namespace llvm::object;
35 using namespace llvm::sys::fs;
36 
37 using namespace lld;
38 using namespace lld::elf;
39 
40 std::vector<BinaryFile *> elf::BinaryFiles;
41 std::vector<BitcodeFile *> elf::BitcodeFiles;
42 std::vector<InputFile *> elf::ObjectFiles;
43 std::vector<InputFile *> elf::SharedFiles;
44 
45 TarWriter *elf::Tar;
46 
47 InputFile::InputFile(Kind K, MemoryBufferRef M) : MB(M), FileKind(K) {}
48 
49 Optional<MemoryBufferRef> elf::readFile(StringRef Path) {
50   // The --chroot option changes our virtual root directory.
51   // This is useful when you are dealing with files created by --reproduce.
52   if (!Config->Chroot.empty() && Path.startswith("/"))
53     Path = Saver.save(Config->Chroot + Path);
54 
55   log(Path);
56 
57   auto MBOrErr = MemoryBuffer::getFile(Path);
58   if (auto EC = MBOrErr.getError()) {
59     error("cannot open " + Path + ": " + EC.message());
60     return None;
61   }
62 
63   std::unique_ptr<MemoryBuffer> &MB = *MBOrErr;
64   MemoryBufferRef MBRef = MB->getMemBufferRef();
65   make<std::unique_ptr<MemoryBuffer>>(std::move(MB)); // take MB ownership
66 
67   if (Tar)
68     Tar->append(relativeToRoot(Path), MBRef.getBuffer());
69   return MBRef;
70 }
71 
72 template <class ELFT> void ObjFile<ELFT>::initializeDwarf() {
73   DWARFContext Dwarf(make_unique<LLDDwarfObj<ELFT>>(this));
74   const DWARFObject &Obj = Dwarf.getDWARFObj();
75   DwarfLine.reset(new DWARFDebugLine);
76   DWARFDataExtractor LineData(Obj, Obj.getLineSection(), Config->IsLE,
77                               Config->Wordsize);
78 
79   // The second parameter is offset in .debug_line section
80   // for compilation unit (CU) of interest. We have only one
81   // CU (object file), so offset is always 0.
82   // FIXME: Provide the associated DWARFUnit if there is one.  DWARF v5
83   // needs it in order to find indirect strings.
84   const DWARFDebugLine::LineTable *LT =
85       DwarfLine->getOrParseLineTable(LineData, 0, nullptr);
86 
87   // Return if there is no debug information about CU available.
88   if (!Dwarf.getNumCompileUnits())
89     return;
90 
91   // Loop over variable records and insert them to VariableLoc.
92   DWARFCompileUnit *CU = Dwarf.getCompileUnitAtIndex(0);
93   for (const auto &Entry : CU->dies()) {
94     DWARFDie Die(CU, &Entry);
95     // Skip all tags that are not variables.
96     if (Die.getTag() != dwarf::DW_TAG_variable)
97       continue;
98 
99     // Skip if a local variable because we don't need them for generating error
100     // messages. In general, only non-local symbols can fail to be linked.
101     if (!dwarf::toUnsigned(Die.find(dwarf::DW_AT_external), 0))
102       continue;
103 
104     // Get the source filename index for the variable.
105     unsigned File = dwarf::toUnsigned(Die.find(dwarf::DW_AT_decl_file), 0);
106     if (!LT->hasFileAtIndex(File))
107       continue;
108 
109     // Get the line number on which the variable is declared.
110     unsigned Line = dwarf::toUnsigned(Die.find(dwarf::DW_AT_decl_line), 0);
111 
112     // Get the name of the variable and add the collected information to
113     // VariableLoc. Usually Name is non-empty, but it can be empty if the input
114     // object file lacks some debug info.
115     StringRef Name = dwarf::toString(Die.find(dwarf::DW_AT_name), "");
116     if (!Name.empty())
117       VariableLoc.insert({Name, {File, Line}});
118   }
119 }
120 
121 // Returns the pair of file name and line number describing location of data
122 // object (variable, array, etc) definition.
123 template <class ELFT>
124 Optional<std::pair<std::string, unsigned>>
125 ObjFile<ELFT>::getVariableLoc(StringRef Name) {
126   llvm::call_once(InitDwarfLine, [this]() { initializeDwarf(); });
127 
128   // There is always only one CU so it's offset is 0.
129   const DWARFDebugLine::LineTable *LT = DwarfLine->getLineTable(0);
130   if (!LT)
131     return None;
132 
133   // Return if we have no debug information about data object.
134   auto It = VariableLoc.find(Name);
135   if (It == VariableLoc.end())
136     return None;
137 
138   // Take file name string from line table.
139   std::string FileName;
140   if (!LT->getFileNameByIndex(
141           It->second.first /* File */, nullptr,
142           DILineInfoSpecifier::FileLineInfoKind::AbsoluteFilePath, FileName))
143     return None;
144 
145   return std::make_pair(FileName, It->second.second /*Line*/);
146 }
147 
148 // Returns source line information for a given offset
149 // using DWARF debug info.
150 template <class ELFT>
151 Optional<DILineInfo> ObjFile<ELFT>::getDILineInfo(InputSectionBase *S,
152                                                   uint64_t Offset) {
153   llvm::call_once(InitDwarfLine, [this]() { initializeDwarf(); });
154 
155   // The offset to CU is 0.
156   const DWARFDebugLine::LineTable *Tbl = DwarfLine->getLineTable(0);
157   if (!Tbl)
158     return None;
159 
160   // Use fake address calcuated by adding section file offset and offset in
161   // section. See comments for ObjectInfo class.
162   DILineInfo Info;
163   Tbl->getFileLineInfoForAddress(
164       S->getOffsetInFile() + Offset, nullptr,
165       DILineInfoSpecifier::FileLineInfoKind::AbsoluteFilePath, Info);
166   if (Info.Line == 0)
167     return None;
168   return Info;
169 }
170 
171 // Returns source line information for a given offset
172 // using DWARF debug info.
173 template <class ELFT>
174 std::string ObjFile<ELFT>::getLineInfo(InputSectionBase *S, uint64_t Offset) {
175   if (Optional<DILineInfo> Info = getDILineInfo(S, Offset))
176     return Info->FileName + ":" + std::to_string(Info->Line);
177   return "";
178 }
179 
180 // Returns "<internal>", "foo.a(bar.o)" or "baz.o".
181 std::string lld::toString(const InputFile *F) {
182   if (!F)
183     return "<internal>";
184 
185   if (F->ToStringCache.empty()) {
186     if (F->ArchiveName.empty())
187       F->ToStringCache = F->getName();
188     else
189       F->ToStringCache = (F->ArchiveName + "(" + F->getName() + ")").str();
190   }
191   return F->ToStringCache;
192 }
193 
194 template <class ELFT>
195 ELFFileBase<ELFT>::ELFFileBase(Kind K, MemoryBufferRef MB) : InputFile(K, MB) {
196   if (ELFT::TargetEndianness == support::little)
197     EKind = ELFT::Is64Bits ? ELF64LEKind : ELF32LEKind;
198   else
199     EKind = ELFT::Is64Bits ? ELF64BEKind : ELF32BEKind;
200 
201   EMachine = getObj().getHeader()->e_machine;
202   OSABI = getObj().getHeader()->e_ident[llvm::ELF::EI_OSABI];
203 }
204 
205 template <class ELFT>
206 typename ELFT::SymRange ELFFileBase<ELFT>::getGlobalELFSyms() {
207   return makeArrayRef(ELFSyms.begin() + FirstNonLocal, ELFSyms.end());
208 }
209 
210 template <class ELFT>
211 uint32_t ELFFileBase<ELFT>::getSectionIndex(const Elf_Sym &Sym) const {
212   return check(getObj().getSectionIndex(&Sym, ELFSyms, SymtabSHNDX),
213                toString(this));
214 }
215 
216 template <class ELFT>
217 void ELFFileBase<ELFT>::initSymtab(ArrayRef<Elf_Shdr> Sections,
218                                    const Elf_Shdr *Symtab) {
219   FirstNonLocal = Symtab->sh_info;
220   ELFSyms = check(getObj().symbols(Symtab), toString(this));
221   if (FirstNonLocal == 0 || FirstNonLocal > ELFSyms.size())
222     fatal(toString(this) + ": invalid sh_info in symbol table");
223 
224   StringTable = check(getObj().getStringTableForSymtab(*Symtab, Sections),
225                       toString(this));
226 }
227 
228 template <class ELFT>
229 ObjFile<ELFT>::ObjFile(MemoryBufferRef M, StringRef ArchiveName)
230     : ELFFileBase<ELFT>(Base::ObjKind, M) {
231   this->ArchiveName = ArchiveName;
232 }
233 
234 template <class ELFT> ArrayRef<Symbol *> ObjFile<ELFT>::getLocalSymbols() {
235   if (this->Symbols.empty())
236     return {};
237   return makeArrayRef(this->Symbols).slice(1, this->FirstNonLocal - 1);
238 }
239 
240 template <class ELFT>
241 void ObjFile<ELFT>::parse(DenseSet<CachedHashStringRef> &ComdatGroups) {
242   // Read section and symbol tables.
243   initializeSections(ComdatGroups);
244   initializeSymbols();
245 }
246 
247 // Sections with SHT_GROUP and comdat bits define comdat section groups.
248 // They are identified and deduplicated by group name. This function
249 // returns a group name.
250 template <class ELFT>
251 StringRef ObjFile<ELFT>::getShtGroupSignature(ArrayRef<Elf_Shdr> Sections,
252                                               const Elf_Shdr &Sec) {
253   // Group signatures are stored as symbol names in object files.
254   // sh_info contains a symbol index, so we fetch a symbol and read its name.
255   if (this->ELFSyms.empty())
256     this->initSymtab(
257         Sections,
258         check(object::getSection<ELFT>(Sections, Sec.sh_link), toString(this)));
259 
260   const Elf_Sym *Sym = check(
261       object::getSymbol<ELFT>(this->ELFSyms, Sec.sh_info), toString(this));
262   StringRef Signature = check(Sym->getName(this->StringTable), toString(this));
263 
264   // As a special case, if a symbol is a section symbol and has no name,
265   // we use a section name as a signature.
266   //
267   // Such SHT_GROUP sections are invalid from the perspective of the ELF
268   // standard, but GNU gold 1.14 (the neweset version as of July 2017) or
269   // older produce such sections as outputs for the -r option, so we need
270   // a bug-compatibility.
271   if (Signature.empty() && Sym->getType() == STT_SECTION)
272     return getSectionName(Sec);
273   return Signature;
274 }
275 
276 template <class ELFT>
277 ArrayRef<typename ObjFile<ELFT>::Elf_Word>
278 ObjFile<ELFT>::getShtGroupEntries(const Elf_Shdr &Sec) {
279   const ELFFile<ELFT> &Obj = this->getObj();
280   ArrayRef<Elf_Word> Entries = check(
281       Obj.template getSectionContentsAsArray<Elf_Word>(&Sec), toString(this));
282   if (Entries.empty() || Entries[0] != GRP_COMDAT)
283     fatal(toString(this) + ": unsupported SHT_GROUP format");
284   return Entries.slice(1);
285 }
286 
287 template <class ELFT> bool ObjFile<ELFT>::shouldMerge(const Elf_Shdr &Sec) {
288   // We don't merge sections if -O0 (default is -O1). This makes sometimes
289   // the linker significantly faster, although the output will be bigger.
290   if (Config->Optimize == 0)
291     return false;
292 
293   // A mergeable section with size 0 is useless because they don't have
294   // any data to merge. A mergeable string section with size 0 can be
295   // argued as invalid because it doesn't end with a null character.
296   // We'll avoid a mess by handling them as if they were non-mergeable.
297   if (Sec.sh_size == 0)
298     return false;
299 
300   // Check for sh_entsize. The ELF spec is not clear about the zero
301   // sh_entsize. It says that "the member [sh_entsize] contains 0 if
302   // the section does not hold a table of fixed-size entries". We know
303   // that Rust 1.13 produces a string mergeable section with a zero
304   // sh_entsize. Here we just accept it rather than being picky about it.
305   uint64_t EntSize = Sec.sh_entsize;
306   if (EntSize == 0)
307     return false;
308   if (Sec.sh_size % EntSize)
309     fatal(toString(this) +
310           ": SHF_MERGE section size must be a multiple of sh_entsize");
311 
312   uint64_t Flags = Sec.sh_flags;
313   if (!(Flags & SHF_MERGE))
314     return false;
315   if (Flags & SHF_WRITE)
316     fatal(toString(this) + ": writable SHF_MERGE section is not supported");
317 
318   return true;
319 }
320 
321 template <class ELFT>
322 void ObjFile<ELFT>::initializeSections(
323     DenseSet<CachedHashStringRef> &ComdatGroups) {
324   const ELFFile<ELFT> &Obj = this->getObj();
325 
326   ArrayRef<Elf_Shdr> ObjSections =
327       check(this->getObj().sections(), toString(this));
328   uint64_t Size = ObjSections.size();
329   this->Sections.resize(Size);
330   this->SectionStringTable =
331       check(Obj.getSectionStringTable(ObjSections), toString(this));
332 
333   for (size_t I = 0, E = ObjSections.size(); I < E; I++) {
334     if (this->Sections[I] == &InputSection::Discarded)
335       continue;
336     const Elf_Shdr &Sec = ObjSections[I];
337 
338     // SHF_EXCLUDE'ed sections are discarded by the linker. However,
339     // if -r is given, we'll let the final link discard such sections.
340     // This is compatible with GNU.
341     if ((Sec.sh_flags & SHF_EXCLUDE) && !Config->Relocatable) {
342       this->Sections[I] = &InputSection::Discarded;
343       continue;
344     }
345 
346     switch (Sec.sh_type) {
347     case SHT_GROUP: {
348       // De-duplicate section groups by their signatures.
349       StringRef Signature = getShtGroupSignature(ObjSections, Sec);
350       bool IsNew = ComdatGroups.insert(CachedHashStringRef(Signature)).second;
351       this->Sections[I] = &InputSection::Discarded;
352 
353       // If it is a new section group, we want to keep group members.
354       // Group leader sections, which contain indices of group members, are
355       // discarded because they are useless beyond this point. The only
356       // exception is the -r option because in order to produce re-linkable
357       // object files, we want to pass through basically everything.
358       if (IsNew) {
359         if (Config->Relocatable)
360           this->Sections[I] = createInputSection(Sec);
361         continue;
362       }
363 
364       // Otherwise, discard group members.
365       for (uint32_t SecIndex : getShtGroupEntries(Sec)) {
366         if (SecIndex >= Size)
367           fatal(toString(this) +
368                 ": invalid section index in group: " + Twine(SecIndex));
369         this->Sections[SecIndex] = &InputSection::Discarded;
370       }
371       break;
372     }
373     case SHT_SYMTAB:
374       this->initSymtab(ObjSections, &Sec);
375       break;
376     case SHT_SYMTAB_SHNDX:
377       this->SymtabSHNDX =
378           check(Obj.getSHNDXTable(Sec, ObjSections), toString(this));
379       break;
380     case SHT_STRTAB:
381     case SHT_NULL:
382       break;
383     default:
384       this->Sections[I] = createInputSection(Sec);
385     }
386 
387     // .ARM.exidx sections have a reverse dependency on the InputSection they
388     // have a SHF_LINK_ORDER dependency, this is identified by the sh_link.
389     if (Sec.sh_flags & SHF_LINK_ORDER) {
390       if (Sec.sh_link >= this->Sections.size())
391         fatal(toString(this) + ": invalid sh_link index: " +
392               Twine(Sec.sh_link));
393       this->Sections[Sec.sh_link]->DependentSections.push_back(
394           cast<InputSection>(this->Sections[I]));
395     }
396   }
397 }
398 
399 // The ARM support in lld makes some use of instructions that are not available
400 // on all ARM architectures. Namely:
401 // - Use of BLX instruction for interworking between ARM and Thumb state.
402 // - Use of the extended Thumb branch encoding in relocation.
403 // - Use of the MOVT/MOVW instructions in Thumb Thunks.
404 // The ARM Attributes section contains information about the architecture chosen
405 // at compile time. We follow the convention that if at least one input object
406 // is compiled with an architecture that supports these features then lld is
407 // permitted to use them.
408 static void updateSupportedARMFeatures(const ARMAttributeParser &Attributes) {
409   if (!Attributes.hasAttribute(ARMBuildAttrs::CPU_arch))
410     return;
411   auto Arch = Attributes.getAttributeValue(ARMBuildAttrs::CPU_arch);
412   switch (Arch) {
413   case ARMBuildAttrs::Pre_v4:
414   case ARMBuildAttrs::v4:
415   case ARMBuildAttrs::v4T:
416     // Architectures prior to v5 do not support BLX instruction
417     break;
418   case ARMBuildAttrs::v5T:
419   case ARMBuildAttrs::v5TE:
420   case ARMBuildAttrs::v5TEJ:
421   case ARMBuildAttrs::v6:
422   case ARMBuildAttrs::v6KZ:
423   case ARMBuildAttrs::v6K:
424     Config->ARMHasBlx = true;
425     // Architectures used in pre-Cortex processors do not support
426     // The J1 = 1 J2 = 1 Thumb branch range extension, with the exception
427     // of Architecture v6T2 (arm1156t2-s and arm1156t2f-s) that do.
428     break;
429   default:
430     // All other Architectures have BLX and extended branch encoding
431     Config->ARMHasBlx = true;
432     Config->ARMJ1J2BranchEncoding = true;
433     if (Arch != ARMBuildAttrs::v6_M && Arch != ARMBuildAttrs::v6S_M)
434       // All Architectures used in Cortex processors with the exception
435       // of v6-M and v6S-M have the MOVT and MOVW instructions.
436       Config->ARMHasMovtMovw = true;
437     break;
438   }
439 }
440 
441 template <class ELFT>
442 InputSectionBase *ObjFile<ELFT>::getRelocTarget(const Elf_Shdr &Sec) {
443   uint32_t Idx = Sec.sh_info;
444   if (Idx >= this->Sections.size())
445     fatal(toString(this) + ": invalid relocated section index: " + Twine(Idx));
446   InputSectionBase *Target = this->Sections[Idx];
447 
448   // Strictly speaking, a relocation section must be included in the
449   // group of the section it relocates. However, LLVM 3.3 and earlier
450   // would fail to do so, so we gracefully handle that case.
451   if (Target == &InputSection::Discarded)
452     return nullptr;
453 
454   if (!Target)
455     fatal(toString(this) + ": unsupported relocation reference");
456   return Target;
457 }
458 
459 // Create a regular InputSection class that has the same contents
460 // as a given section.
461 InputSectionBase *toRegularSection(MergeInputSection *Sec) {
462   auto *Ret = make<InputSection>(Sec->Flags, Sec->Type, Sec->Alignment,
463                                  Sec->Data, Sec->Name);
464   Ret->File = Sec->File;
465   return Ret;
466 }
467 
468 template <class ELFT>
469 InputSectionBase *ObjFile<ELFT>::createInputSection(const Elf_Shdr &Sec) {
470   StringRef Name = getSectionName(Sec);
471 
472   switch (Sec.sh_type) {
473   case SHT_ARM_ATTRIBUTES: {
474     if (Config->EMachine != EM_ARM)
475       break;
476     ARMAttributeParser Attributes;
477     ArrayRef<uint8_t> Contents = check(this->getObj().getSectionContents(&Sec));
478     Attributes.Parse(Contents, /*isLittle*/Config->EKind == ELF32LEKind);
479     updateSupportedARMFeatures(Attributes);
480     // FIXME: Retain the first attribute section we see. The eglibc ARM
481     // dynamic loaders require the presence of an attribute section for dlopen
482     // to work. In a full implementation we would merge all attribute sections.
483     if (InX::ARMAttributes == nullptr) {
484       InX::ARMAttributes = make<InputSection>(this, &Sec, Name);
485       return InX::ARMAttributes;
486     }
487     return &InputSection::Discarded;
488   }
489   case SHT_RELA:
490   case SHT_REL: {
491     // Find the relocation target section and associate this
492     // section with it. Target can be discarded, for example
493     // if it is a duplicated member of SHT_GROUP section, we
494     // do not create or proccess relocatable sections then.
495     InputSectionBase *Target = getRelocTarget(Sec);
496     if (!Target)
497       return nullptr;
498 
499     // This section contains relocation information.
500     // If -r is given, we do not interpret or apply relocation
501     // but just copy relocation sections to output.
502     if (Config->Relocatable)
503       return make<InputSection>(this, &Sec, Name);
504 
505     if (Target->FirstRelocation)
506       fatal(toString(this) +
507             ": multiple relocation sections to one section are not supported");
508 
509     // Mergeable sections with relocations are tricky because relocations
510     // need to be taken into account when comparing section contents for
511     // merging. It's not worth supporting such mergeable sections because
512     // they are rare and it'd complicates the internal design (we usually
513     // have to determine if two sections are mergeable early in the link
514     // process much before applying relocations). We simply handle mergeable
515     // sections with relocations as non-mergeable.
516     if (auto *MS = dyn_cast<MergeInputSection>(Target)) {
517       Target = toRegularSection(MS);
518       this->Sections[Sec.sh_info] = Target;
519     }
520 
521     size_t NumRelocations;
522     if (Sec.sh_type == SHT_RELA) {
523       ArrayRef<Elf_Rela> Rels =
524           check(this->getObj().relas(&Sec), toString(this));
525       Target->FirstRelocation = Rels.begin();
526       NumRelocations = Rels.size();
527       Target->AreRelocsRela = true;
528     } else {
529       ArrayRef<Elf_Rel> Rels = check(this->getObj().rels(&Sec), toString(this));
530       Target->FirstRelocation = Rels.begin();
531       NumRelocations = Rels.size();
532       Target->AreRelocsRela = false;
533     }
534     assert(isUInt<31>(NumRelocations));
535     Target->NumRelocations = NumRelocations;
536 
537     // Relocation sections processed by the linker are usually removed
538     // from the output, so returning `nullptr` for the normal case.
539     // However, if -emit-relocs is given, we need to leave them in the output.
540     // (Some post link analysis tools need this information.)
541     if (Config->EmitRelocs) {
542       InputSection *RelocSec = make<InputSection>(this, &Sec, Name);
543       // We will not emit relocation section if target was discarded.
544       Target->DependentSections.push_back(RelocSec);
545       return RelocSec;
546     }
547     return nullptr;
548   }
549   }
550 
551   // The GNU linker uses .note.GNU-stack section as a marker indicating
552   // that the code in the object file does not expect that the stack is
553   // executable (in terms of NX bit). If all input files have the marker,
554   // the GNU linker adds a PT_GNU_STACK segment to tells the loader to
555   // make the stack non-executable. Most object files have this section as
556   // of 2017.
557   //
558   // But making the stack non-executable is a norm today for security
559   // reasons. Failure to do so may result in a serious security issue.
560   // Therefore, we make LLD always add PT_GNU_STACK unless it is
561   // explicitly told to do otherwise (by -z execstack). Because the stack
562   // executable-ness is controlled solely by command line options,
563   // .note.GNU-stack sections are simply ignored.
564   if (Name == ".note.GNU-stack")
565     return &InputSection::Discarded;
566 
567   // Split stacks is a feature to support a discontiguous stack. At least
568   // as of 2017, it seems that the feature is not being used widely.
569   // Only GNU gold supports that. We don't. For the details about that,
570   // see https://gcc.gnu.org/wiki/SplitStacks
571   if (Name == ".note.GNU-split-stack") {
572     error(toString(this) +
573           ": object file compiled with -fsplit-stack is not supported");
574     return &InputSection::Discarded;
575   }
576 
577   // The linkonce feature is a sort of proto-comdat. Some glibc i386 object
578   // files contain definitions of symbol "__x86.get_pc_thunk.bx" in linkonce
579   // sections. Drop those sections to avoid duplicate symbol errors.
580   // FIXME: This is glibc PR20543, we should remove this hack once that has been
581   // fixed for a while.
582   if (Name.startswith(".gnu.linkonce."))
583     return &InputSection::Discarded;
584 
585   // The linker merges EH (exception handling) frames and creates a
586   // .eh_frame_hdr section for runtime. So we handle them with a special
587   // class. For relocatable outputs, they are just passed through.
588   if (Name == ".eh_frame" && !Config->Relocatable)
589     return make<EhInputSection>(this, &Sec, Name);
590 
591   if (shouldMerge(Sec))
592     return make<MergeInputSection>(this, &Sec, Name);
593   return make<InputSection>(this, &Sec, Name);
594 }
595 
596 template <class ELFT>
597 StringRef ObjFile<ELFT>::getSectionName(const Elf_Shdr &Sec) {
598   return check(this->getObj().getSectionName(&Sec, SectionStringTable),
599                toString(this));
600 }
601 
602 template <class ELFT> void ObjFile<ELFT>::initializeSymbols() {
603   this->Symbols.reserve(this->ELFSyms.size());
604   for (const Elf_Sym &Sym : this->ELFSyms)
605     this->Symbols.push_back(createSymbol(&Sym));
606 }
607 
608 template <class ELFT>
609 InputSectionBase *ObjFile<ELFT>::getSection(uint32_t Index) const {
610   if (Index == 0)
611     return nullptr;
612   if (Index >= this->Sections.size())
613     fatal(toString(this) + ": invalid section index: " + Twine(Index));
614 
615   if (InputSectionBase *Sec = this->Sections[Index])
616     return Sec->Repl;
617   return nullptr;
618 }
619 
620 template <class ELFT> Symbol *ObjFile<ELFT>::createSymbol(const Elf_Sym *Sym) {
621   int Binding = Sym->getBinding();
622   InputSectionBase *Sec = getSection(this->getSectionIndex(*Sym));
623 
624   uint8_t StOther = Sym->st_other;
625   uint8_t Type = Sym->getType();
626   uint64_t Value = Sym->st_value;
627   uint64_t Size = Sym->st_size;
628 
629   if (Binding == STB_LOCAL) {
630     if (Sym->getType() == STT_FILE)
631       SourceFile = check(Sym->getName(this->StringTable), toString(this));
632 
633     if (this->StringTable.size() <= Sym->st_name)
634       fatal(toString(this) + ": invalid symbol name offset");
635 
636     StringRefZ Name = this->StringTable.data() + Sym->st_name;
637     if (Sym->st_shndx == SHN_UNDEF)
638       return make<Undefined>(this, Name, Binding, StOther, Type);
639 
640     return make<Defined>(this, Name, Binding, StOther, Type, Value, Size, Sec);
641   }
642 
643   StringRef Name = check(Sym->getName(this->StringTable), toString(this));
644 
645   switch (Sym->st_shndx) {
646   case SHN_UNDEF:
647     return Symtab->addUndefined<ELFT>(Name, Binding, StOther, Type,
648                                       /*CanOmitFromDynSym=*/false, this);
649   case SHN_COMMON:
650     if (Value == 0 || Value >= UINT32_MAX)
651       fatal(toString(this) + ": common symbol '" + Name +
652             "' has invalid alignment: " + Twine(Value));
653     return Symtab->addCommon(Name, Size, Value, Binding, StOther, Type, this);
654   }
655 
656   switch (Binding) {
657   default:
658     fatal(toString(this) + ": unexpected binding: " + Twine(Binding));
659   case STB_GLOBAL:
660   case STB_WEAK:
661   case STB_GNU_UNIQUE:
662     if (Sec == &InputSection::Discarded)
663       return Symtab->addUndefined<ELFT>(Name, Binding, StOther, Type,
664                                         /*CanOmitFromDynSym=*/false, this);
665     return Symtab->addRegular<ELFT>(Name, StOther, Type, Value, Size, Binding,
666                                     Sec, this);
667   }
668 }
669 
670 ArchiveFile::ArchiveFile(std::unique_ptr<Archive> &&File)
671     : InputFile(ArchiveKind, File->getMemoryBufferRef()),
672       File(std::move(File)) {}
673 
674 template <class ELFT> void ArchiveFile::parse() {
675   Symbols.reserve(File->getNumberOfSymbols());
676   for (const Archive::Symbol &Sym : File->symbols())
677     Symbols.push_back(Symtab->addLazyArchive<ELFT>(Sym.getName(), this, Sym));
678 }
679 
680 // Returns a buffer pointing to a member file containing a given symbol.
681 std::pair<MemoryBufferRef, uint64_t>
682 ArchiveFile::getMember(const Archive::Symbol *Sym) {
683   Archive::Child C =
684       check(Sym->getMember(), toString(this) +
685                                   ": could not get the member for symbol " +
686                                   Sym->getName());
687 
688   if (!Seen.insert(C.getChildOffset()).second)
689     return {MemoryBufferRef(), 0};
690 
691   MemoryBufferRef Ret =
692       check(C.getMemoryBufferRef(),
693             toString(this) +
694                 ": could not get the buffer for the member defining symbol " +
695                 Sym->getName());
696 
697   if (C.getParent()->isThin() && Tar)
698     Tar->append(relativeToRoot(check(C.getFullName(), toString(this))),
699                 Ret.getBuffer());
700   if (C.getParent()->isThin())
701     return {Ret, 0};
702   return {Ret, C.getChildOffset()};
703 }
704 
705 template <class ELFT>
706 SharedFile<ELFT>::SharedFile(MemoryBufferRef M, StringRef DefaultSoName)
707     : ELFFileBase<ELFT>(Base::SharedKind, M), SoName(DefaultSoName),
708       IsNeeded(!Config->AsNeeded) {}
709 
710 // Partially parse the shared object file so that we can call
711 // getSoName on this object.
712 template <class ELFT> void SharedFile<ELFT>::parseSoName() {
713   const Elf_Shdr *DynamicSec = nullptr;
714   const ELFFile<ELFT> Obj = this->getObj();
715   ArrayRef<Elf_Shdr> Sections = check(Obj.sections(), toString(this));
716 
717   // Search for .dynsym, .dynamic, .symtab, .gnu.version and .gnu.version_d.
718   for (const Elf_Shdr &Sec : Sections) {
719     switch (Sec.sh_type) {
720     default:
721       continue;
722     case SHT_DYNSYM:
723       this->initSymtab(Sections, &Sec);
724       break;
725     case SHT_DYNAMIC:
726       DynamicSec = &Sec;
727       break;
728     case SHT_SYMTAB_SHNDX:
729       this->SymtabSHNDX =
730           check(Obj.getSHNDXTable(Sec, Sections), toString(this));
731       break;
732     case SHT_GNU_versym:
733       this->VersymSec = &Sec;
734       break;
735     case SHT_GNU_verdef:
736       this->VerdefSec = &Sec;
737       break;
738     }
739   }
740 
741   if (this->VersymSec && this->ELFSyms.empty())
742     error("SHT_GNU_versym should be associated with symbol table");
743 
744   // Search for a DT_SONAME tag to initialize this->SoName.
745   if (!DynamicSec)
746     return;
747   ArrayRef<Elf_Dyn> Arr =
748       check(Obj.template getSectionContentsAsArray<Elf_Dyn>(DynamicSec),
749             toString(this));
750   for (const Elf_Dyn &Dyn : Arr) {
751     if (Dyn.d_tag == DT_SONAME) {
752       uint64_t Val = Dyn.getVal();
753       if (Val >= this->StringTable.size())
754         fatal(toString(this) + ": invalid DT_SONAME entry");
755       SoName = this->StringTable.data() + Val;
756       return;
757     }
758   }
759 }
760 
761 // Parse the version definitions in the object file if present. Returns a vector
762 // whose nth element contains a pointer to the Elf_Verdef for version identifier
763 // n. Version identifiers that are not definitions map to nullptr. The array
764 // always has at least length 1.
765 template <class ELFT>
766 std::vector<const typename ELFT::Verdef *>
767 SharedFile<ELFT>::parseVerdefs(const Elf_Versym *&Versym) {
768   std::vector<const Elf_Verdef *> Verdefs(1);
769   // We only need to process symbol versions for this DSO if it has both a
770   // versym and a verdef section, which indicates that the DSO contains symbol
771   // version definitions.
772   if (!VersymSec || !VerdefSec)
773     return Verdefs;
774 
775   // The location of the first global versym entry.
776   const char *Base = this->MB.getBuffer().data();
777   Versym = reinterpret_cast<const Elf_Versym *>(Base + VersymSec->sh_offset) +
778            this->FirstNonLocal;
779 
780   // We cannot determine the largest verdef identifier without inspecting
781   // every Elf_Verdef, but both bfd and gold assign verdef identifiers
782   // sequentially starting from 1, so we predict that the largest identifier
783   // will be VerdefCount.
784   unsigned VerdefCount = VerdefSec->sh_info;
785   Verdefs.resize(VerdefCount + 1);
786 
787   // Build the Verdefs array by following the chain of Elf_Verdef objects
788   // from the start of the .gnu.version_d section.
789   const char *Verdef = Base + VerdefSec->sh_offset;
790   for (unsigned I = 0; I != VerdefCount; ++I) {
791     auto *CurVerdef = reinterpret_cast<const Elf_Verdef *>(Verdef);
792     Verdef += CurVerdef->vd_next;
793     unsigned VerdefIndex = CurVerdef->vd_ndx;
794     if (Verdefs.size() <= VerdefIndex)
795       Verdefs.resize(VerdefIndex + 1);
796     Verdefs[VerdefIndex] = CurVerdef;
797   }
798 
799   return Verdefs;
800 }
801 
802 // Fully parse the shared object file. This must be called after parseSoName().
803 template <class ELFT> void SharedFile<ELFT>::parseRest() {
804   // Create mapping from version identifiers to Elf_Verdef entries.
805   const Elf_Versym *Versym = nullptr;
806   std::vector<const Elf_Verdef *> Verdefs = parseVerdefs(Versym);
807 
808   ArrayRef<Elf_Shdr> Sections =
809       check(this->getObj().sections(), toString(this));
810 
811   // Add symbols to the symbol table.
812   Elf_Sym_Range Syms = this->getGlobalELFSyms();
813   for (const Elf_Sym &Sym : Syms) {
814     unsigned VersymIndex = 0;
815     if (Versym) {
816       VersymIndex = Versym->vs_index;
817       ++Versym;
818     }
819     bool Hidden = VersymIndex & VERSYM_HIDDEN;
820     VersymIndex = VersymIndex & ~VERSYM_HIDDEN;
821 
822     StringRef Name = check(Sym.getName(this->StringTable), toString(this));
823     if (Sym.isUndefined()) {
824       Undefs.push_back(Name);
825       continue;
826     }
827 
828     // Ignore local symbols.
829     if (Versym && VersymIndex == VER_NDX_LOCAL)
830       continue;
831     const Elf_Verdef *Ver = nullptr;
832     if (VersymIndex != VER_NDX_GLOBAL) {
833       if (VersymIndex >= Verdefs.size()) {
834         error("corrupt input file: version definition index " +
835               Twine(VersymIndex) + " for symbol " + Name +
836               " is out of bounds\n>>> defined in " + toString(this));
837         continue;
838       }
839       Ver = Verdefs[VersymIndex];
840     }
841 
842     // We do not usually care about alignments of data in shared object
843     // files because the loader takes care of it. However, if we promote a
844     // DSO symbol to point to .bss due to copy relocation, we need to keep
845     // the original alignment requirements. We infer it here.
846     uint64_t Alignment = 1;
847     if (Sym.st_value)
848       Alignment = 1ULL << countTrailingZeros((uint64_t)Sym.st_value);
849     if (0 < Sym.st_shndx && Sym.st_shndx < Sections.size()) {
850       uint64_t SecAlign = Sections[Sym.st_shndx].sh_addralign;
851       Alignment = std::min(Alignment, SecAlign);
852     }
853     if (Alignment > UINT32_MAX)
854       error(toString(this) + ": alignment too large: " + Name);
855 
856     if (!Hidden)
857       Symtab->addShared(Name, this, Sym, Alignment, Ver);
858 
859     // Also add the symbol with the versioned name to handle undefined symbols
860     // with explicit versions.
861     if (Ver) {
862       StringRef VerName = this->StringTable.data() + Ver->getAux()->vda_name;
863       Name = Saver.save(Name + "@" + VerName);
864       Symtab->addShared(Name, this, Sym, Alignment, Ver);
865     }
866   }
867 }
868 
869 static ELFKind getBitcodeELFKind(const Triple &T) {
870   if (T.isLittleEndian())
871     return T.isArch64Bit() ? ELF64LEKind : ELF32LEKind;
872   return T.isArch64Bit() ? ELF64BEKind : ELF32BEKind;
873 }
874 
875 static uint8_t getBitcodeMachineKind(StringRef Path, const Triple &T) {
876   switch (T.getArch()) {
877   case Triple::aarch64:
878     return EM_AARCH64;
879   case Triple::arm:
880   case Triple::thumb:
881     return EM_ARM;
882   case Triple::avr:
883     return EM_AVR;
884   case Triple::mips:
885   case Triple::mipsel:
886   case Triple::mips64:
887   case Triple::mips64el:
888     return EM_MIPS;
889   case Triple::ppc:
890     return EM_PPC;
891   case Triple::ppc64:
892     return EM_PPC64;
893   case Triple::x86:
894     return T.isOSIAMCU() ? EM_IAMCU : EM_386;
895   case Triple::x86_64:
896     return EM_X86_64;
897   default:
898     fatal(Path + ": could not infer e_machine from bitcode target triple " +
899           T.str());
900   }
901 }
902 
903 BitcodeFile::BitcodeFile(MemoryBufferRef MB, StringRef ArchiveName,
904                          uint64_t OffsetInArchive)
905     : InputFile(BitcodeKind, MB) {
906   this->ArchiveName = ArchiveName;
907 
908   // Here we pass a new MemoryBufferRef which is identified by ArchiveName
909   // (the fully resolved path of the archive) + member name + offset of the
910   // member in the archive.
911   // ThinLTO uses the MemoryBufferRef identifier to access its internal
912   // data structures and if two archives define two members with the same name,
913   // this causes a collision which result in only one of the objects being
914   // taken into consideration at LTO time (which very likely causes undefined
915   // symbols later in the link stage).
916   MemoryBufferRef MBRef(MB.getBuffer(),
917                         Saver.save(ArchiveName + MB.getBufferIdentifier() +
918                                    utostr(OffsetInArchive)));
919   Obj = check(lto::InputFile::create(MBRef), toString(this));
920 
921   Triple T(Obj->getTargetTriple());
922   EKind = getBitcodeELFKind(T);
923   EMachine = getBitcodeMachineKind(MB.getBufferIdentifier(), T);
924 }
925 
926 static uint8_t mapVisibility(GlobalValue::VisibilityTypes GvVisibility) {
927   switch (GvVisibility) {
928   case GlobalValue::DefaultVisibility:
929     return STV_DEFAULT;
930   case GlobalValue::HiddenVisibility:
931     return STV_HIDDEN;
932   case GlobalValue::ProtectedVisibility:
933     return STV_PROTECTED;
934   }
935   llvm_unreachable("unknown visibility");
936 }
937 
938 template <class ELFT>
939 static Symbol *createBitcodeSymbol(const std::vector<bool> &KeptComdats,
940                                    const lto::InputFile::Symbol &ObjSym,
941                                    BitcodeFile *F) {
942   StringRef NameRef = Saver.save(ObjSym.getName());
943   uint32_t Binding = ObjSym.isWeak() ? STB_WEAK : STB_GLOBAL;
944 
945   uint8_t Type = ObjSym.isTLS() ? STT_TLS : STT_NOTYPE;
946   uint8_t Visibility = mapVisibility(ObjSym.getVisibility());
947   bool CanOmitFromDynSym = ObjSym.canBeOmittedFromSymbolTable();
948 
949   int C = ObjSym.getComdatIndex();
950   if (C != -1 && !KeptComdats[C])
951     return Symtab->addUndefined<ELFT>(NameRef, Binding, Visibility, Type,
952                                       CanOmitFromDynSym, F);
953 
954   if (ObjSym.isUndefined())
955     return Symtab->addUndefined<ELFT>(NameRef, Binding, Visibility, Type,
956                                       CanOmitFromDynSym, F);
957 
958   if (ObjSym.isCommon())
959     return Symtab->addCommon(NameRef, ObjSym.getCommonSize(),
960                              ObjSym.getCommonAlignment(), Binding, Visibility,
961                              STT_OBJECT, F);
962 
963   return Symtab->addBitcode(NameRef, Binding, Visibility, Type,
964                             CanOmitFromDynSym, F);
965 }
966 
967 template <class ELFT>
968 void BitcodeFile::parse(DenseSet<CachedHashStringRef> &ComdatGroups) {
969   std::vector<bool> KeptComdats;
970   for (StringRef S : Obj->getComdatTable())
971     KeptComdats.push_back(ComdatGroups.insert(CachedHashStringRef(S)).second);
972 
973   for (const lto::InputFile::Symbol &ObjSym : Obj->symbols())
974     Symbols.push_back(createBitcodeSymbol<ELFT>(KeptComdats, ObjSym, this));
975 }
976 
977 static ELFKind getELFKind(MemoryBufferRef MB) {
978   unsigned char Size;
979   unsigned char Endian;
980   std::tie(Size, Endian) = getElfArchType(MB.getBuffer());
981 
982   if (Endian != ELFDATA2LSB && Endian != ELFDATA2MSB)
983     fatal(MB.getBufferIdentifier() + ": invalid data encoding");
984   if (Size != ELFCLASS32 && Size != ELFCLASS64)
985     fatal(MB.getBufferIdentifier() + ": invalid file class");
986 
987   size_t BufSize = MB.getBuffer().size();
988   if ((Size == ELFCLASS32 && BufSize < sizeof(Elf32_Ehdr)) ||
989       (Size == ELFCLASS64 && BufSize < sizeof(Elf64_Ehdr)))
990     fatal(MB.getBufferIdentifier() + ": file is too short");
991 
992   if (Size == ELFCLASS32)
993     return (Endian == ELFDATA2LSB) ? ELF32LEKind : ELF32BEKind;
994   return (Endian == ELFDATA2LSB) ? ELF64LEKind : ELF64BEKind;
995 }
996 
997 template <class ELFT> void BinaryFile::parse() {
998   ArrayRef<uint8_t> Data = toArrayRef(MB.getBuffer());
999   auto *Section =
1000       make<InputSection>(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, 8, Data, ".data");
1001   Sections.push_back(Section);
1002 
1003   // For each input file foo that is embedded to a result as a binary
1004   // blob, we define _binary_foo_{start,end,size} symbols, so that
1005   // user programs can access blobs by name. Non-alphanumeric
1006   // characters in a filename are replaced with underscore.
1007   std::string S = "_binary_" + MB.getBufferIdentifier().str();
1008   for (size_t I = 0; I < S.size(); ++I)
1009     if (!isAlnum(S[I]))
1010       S[I] = '_';
1011 
1012   Symtab->addRegular<ELFT>(Saver.save(S + "_start"), STV_DEFAULT, STT_OBJECT,
1013                            0, 0, STB_GLOBAL, Section, nullptr);
1014   Symtab->addRegular<ELFT>(Saver.save(S + "_end"), STV_DEFAULT, STT_OBJECT,
1015                            Data.size(), 0, STB_GLOBAL, Section, nullptr);
1016   Symtab->addRegular<ELFT>(Saver.save(S + "_size"), STV_DEFAULT, STT_OBJECT,
1017                            Data.size(), 0, STB_GLOBAL, nullptr, nullptr);
1018 }
1019 
1020 static bool isBitcode(MemoryBufferRef MB) {
1021   using namespace sys::fs;
1022   return identify_magic(MB.getBuffer()) == file_magic::bitcode;
1023 }
1024 
1025 InputFile *elf::createObjectFile(MemoryBufferRef MB, StringRef ArchiveName,
1026                                  uint64_t OffsetInArchive) {
1027   if (isBitcode(MB))
1028     return make<BitcodeFile>(MB, ArchiveName, OffsetInArchive);
1029 
1030   switch (getELFKind(MB)) {
1031   case ELF32LEKind:
1032     return make<ObjFile<ELF32LE>>(MB, ArchiveName);
1033   case ELF32BEKind:
1034     return make<ObjFile<ELF32BE>>(MB, ArchiveName);
1035   case ELF64LEKind:
1036     return make<ObjFile<ELF64LE>>(MB, ArchiveName);
1037   case ELF64BEKind:
1038     return make<ObjFile<ELF64BE>>(MB, ArchiveName);
1039   default:
1040     llvm_unreachable("getELFKind");
1041   }
1042 }
1043 
1044 InputFile *elf::createSharedFile(MemoryBufferRef MB, StringRef DefaultSoName) {
1045   switch (getELFKind(MB)) {
1046   case ELF32LEKind:
1047     return make<SharedFile<ELF32LE>>(MB, DefaultSoName);
1048   case ELF32BEKind:
1049     return make<SharedFile<ELF32BE>>(MB, DefaultSoName);
1050   case ELF64LEKind:
1051     return make<SharedFile<ELF64LE>>(MB, DefaultSoName);
1052   case ELF64BEKind:
1053     return make<SharedFile<ELF64BE>>(MB, DefaultSoName);
1054   default:
1055     llvm_unreachable("getELFKind");
1056   }
1057 }
1058 
1059 MemoryBufferRef LazyObjFile::getBuffer() {
1060   if (Seen)
1061     return MemoryBufferRef();
1062   Seen = true;
1063   return MB;
1064 }
1065 
1066 InputFile *LazyObjFile::fetch() {
1067   MemoryBufferRef MBRef = getBuffer();
1068   if (MBRef.getBuffer().empty())
1069     return nullptr;
1070   return createObjectFile(MBRef, ArchiveName, OffsetInArchive);
1071 }
1072 
1073 template <class ELFT> void LazyObjFile::parse() {
1074   for (StringRef Sym : getSymbolNames())
1075     Symtab->addLazyObject<ELFT>(Sym, *this);
1076 }
1077 
1078 template <class ELFT> std::vector<StringRef> LazyObjFile::getElfSymbols() {
1079   typedef typename ELFT::Shdr Elf_Shdr;
1080   typedef typename ELFT::Sym Elf_Sym;
1081   typedef typename ELFT::SymRange Elf_Sym_Range;
1082 
1083   ELFFile<ELFT> Obj = check(ELFFile<ELFT>::create(this->MB.getBuffer()));
1084   ArrayRef<Elf_Shdr> Sections = check(Obj.sections(), toString(this));
1085   for (const Elf_Shdr &Sec : Sections) {
1086     if (Sec.sh_type != SHT_SYMTAB)
1087       continue;
1088 
1089     Elf_Sym_Range Syms = check(Obj.symbols(&Sec), toString(this));
1090     uint32_t FirstNonLocal = Sec.sh_info;
1091     StringRef StringTable =
1092         check(Obj.getStringTableForSymtab(Sec, Sections), toString(this));
1093     std::vector<StringRef> V;
1094 
1095     for (const Elf_Sym &Sym : Syms.slice(FirstNonLocal))
1096       if (Sym.st_shndx != SHN_UNDEF)
1097         V.push_back(check(Sym.getName(StringTable), toString(this)));
1098     return V;
1099   }
1100   return {};
1101 }
1102 
1103 std::vector<StringRef> LazyObjFile::getBitcodeSymbols() {
1104   std::unique_ptr<lto::InputFile> Obj =
1105       check(lto::InputFile::create(this->MB), toString(this));
1106   std::vector<StringRef> V;
1107   for (const lto::InputFile::Symbol &Sym : Obj->symbols())
1108     if (!Sym.isUndefined())
1109       V.push_back(Saver.save(Sym.getName()));
1110   return V;
1111 }
1112 
1113 // Returns a vector of globally-visible defined symbol names.
1114 std::vector<StringRef> LazyObjFile::getSymbolNames() {
1115   if (isBitcode(this->MB))
1116     return getBitcodeSymbols();
1117 
1118   switch (getELFKind(this->MB)) {
1119   case ELF32LEKind:
1120     return getElfSymbols<ELF32LE>();
1121   case ELF32BEKind:
1122     return getElfSymbols<ELF32BE>();
1123   case ELF64LEKind:
1124     return getElfSymbols<ELF64LE>();
1125   case ELF64BEKind:
1126     return getElfSymbols<ELF64BE>();
1127   default:
1128     llvm_unreachable("getELFKind");
1129   }
1130 }
1131 
1132 template void ArchiveFile::parse<ELF32LE>();
1133 template void ArchiveFile::parse<ELF32BE>();
1134 template void ArchiveFile::parse<ELF64LE>();
1135 template void ArchiveFile::parse<ELF64BE>();
1136 
1137 template void BitcodeFile::parse<ELF32LE>(DenseSet<CachedHashStringRef> &);
1138 template void BitcodeFile::parse<ELF32BE>(DenseSet<CachedHashStringRef> &);
1139 template void BitcodeFile::parse<ELF64LE>(DenseSet<CachedHashStringRef> &);
1140 template void BitcodeFile::parse<ELF64BE>(DenseSet<CachedHashStringRef> &);
1141 
1142 template void LazyObjFile::parse<ELF32LE>();
1143 template void LazyObjFile::parse<ELF32BE>();
1144 template void LazyObjFile::parse<ELF64LE>();
1145 template void LazyObjFile::parse<ELF64BE>();
1146 
1147 template class elf::ELFFileBase<ELF32LE>;
1148 template class elf::ELFFileBase<ELF32BE>;
1149 template class elf::ELFFileBase<ELF64LE>;
1150 template class elf::ELFFileBase<ELF64BE>;
1151 
1152 template class elf::ObjFile<ELF32LE>;
1153 template class elf::ObjFile<ELF32BE>;
1154 template class elf::ObjFile<ELF64LE>;
1155 template class elf::ObjFile<ELF64BE>;
1156 
1157 template class elf::SharedFile<ELF32LE>;
1158 template class elf::SharedFile<ELF32BE>;
1159 template class elf::SharedFile<ELF64LE>;
1160 template class elf::SharedFile<ELF64BE>;
1161 
1162 template void BinaryFile::parse<ELF32LE>();
1163 template void BinaryFile::parse<ELF32BE>();
1164 template void BinaryFile::parse<ELF64LE>();
1165 template void BinaryFile::parse<ELF64BE>();
1166