1 //===- InputFiles.cpp -----------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "InputFiles.h" 10 #include "Driver.h" 11 #include "InputSection.h" 12 #include "LinkerScript.h" 13 #include "SymbolTable.h" 14 #include "Symbols.h" 15 #include "SyntheticSections.h" 16 #include "lld/Common/DWARF.h" 17 #include "lld/Common/ErrorHandler.h" 18 #include "lld/Common/Memory.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/CodeGen/Analysis.h" 21 #include "llvm/IR/LLVMContext.h" 22 #include "llvm/IR/Module.h" 23 #include "llvm/LTO/LTO.h" 24 #include "llvm/MC/StringTableBuilder.h" 25 #include "llvm/Object/ELFObjectFile.h" 26 #include "llvm/Support/ARMAttributeParser.h" 27 #include "llvm/Support/ARMBuildAttributes.h" 28 #include "llvm/Support/Endian.h" 29 #include "llvm/Support/Path.h" 30 #include "llvm/Support/TarWriter.h" 31 #include "llvm/Support/raw_ostream.h" 32 33 using namespace llvm; 34 using namespace llvm::ELF; 35 using namespace llvm::object; 36 using namespace llvm::sys; 37 using namespace llvm::sys::fs; 38 using namespace llvm::support::endian; 39 40 namespace lld { 41 // Returns "<internal>", "foo.a(bar.o)" or "baz.o". 42 std::string toString(const elf::InputFile *f) { 43 if (!f) 44 return "<internal>"; 45 46 if (f->toStringCache.empty()) { 47 if (f->archiveName.empty()) 48 f->toStringCache = std::string(f->getName()); 49 else 50 f->toStringCache = (f->archiveName + "(" + f->getName() + ")").str(); 51 } 52 return f->toStringCache; 53 } 54 55 namespace elf { 56 bool InputFile::isInGroup; 57 uint32_t InputFile::nextGroupId; 58 std::vector<BinaryFile *> binaryFiles; 59 std::vector<BitcodeFile *> bitcodeFiles; 60 std::vector<LazyObjFile *> lazyObjFiles; 61 std::vector<InputFile *> objectFiles; 62 std::vector<SharedFile *> sharedFiles; 63 64 std::unique_ptr<TarWriter> tar; 65 66 static ELFKind getELFKind(MemoryBufferRef mb, StringRef archiveName) { 67 unsigned char size; 68 unsigned char endian; 69 std::tie(size, endian) = getElfArchType(mb.getBuffer()); 70 71 auto report = [&](StringRef msg) { 72 StringRef filename = mb.getBufferIdentifier(); 73 if (archiveName.empty()) 74 fatal(filename + ": " + msg); 75 else 76 fatal(archiveName + "(" + filename + "): " + msg); 77 }; 78 79 if (!mb.getBuffer().startswith(ElfMagic)) 80 report("not an ELF file"); 81 if (endian != ELFDATA2LSB && endian != ELFDATA2MSB) 82 report("corrupted ELF file: invalid data encoding"); 83 if (size != ELFCLASS32 && size != ELFCLASS64) 84 report("corrupted ELF file: invalid file class"); 85 86 size_t bufSize = mb.getBuffer().size(); 87 if ((size == ELFCLASS32 && bufSize < sizeof(Elf32_Ehdr)) || 88 (size == ELFCLASS64 && bufSize < sizeof(Elf64_Ehdr))) 89 report("corrupted ELF file: file is too short"); 90 91 if (size == ELFCLASS32) 92 return (endian == ELFDATA2LSB) ? ELF32LEKind : ELF32BEKind; 93 return (endian == ELFDATA2LSB) ? ELF64LEKind : ELF64BEKind; 94 } 95 96 InputFile::InputFile(Kind k, MemoryBufferRef m) 97 : mb(m), groupId(nextGroupId), fileKind(k) { 98 // All files within the same --{start,end}-group get the same group ID. 99 // Otherwise, a new file will get a new group ID. 100 if (!isInGroup) 101 ++nextGroupId; 102 } 103 104 Optional<MemoryBufferRef> readFile(StringRef path) { 105 // The --chroot option changes our virtual root directory. 106 // This is useful when you are dealing with files created by --reproduce. 107 if (!config->chroot.empty() && path.startswith("/")) 108 path = saver.save(config->chroot + path); 109 110 log(path); 111 112 auto mbOrErr = MemoryBuffer::getFile(path, -1, false); 113 if (auto ec = mbOrErr.getError()) { 114 error("cannot open " + path + ": " + ec.message()); 115 return None; 116 } 117 118 std::unique_ptr<MemoryBuffer> &mb = *mbOrErr; 119 MemoryBufferRef mbref = mb->getMemBufferRef(); 120 make<std::unique_ptr<MemoryBuffer>>(std::move(mb)); // take MB ownership 121 122 if (tar) 123 tar->append(relativeToRoot(path), mbref.getBuffer()); 124 return mbref; 125 } 126 127 // All input object files must be for the same architecture 128 // (e.g. it does not make sense to link x86 object files with 129 // MIPS object files.) This function checks for that error. 130 static bool isCompatible(InputFile *file) { 131 if (!file->isElf() && !isa<BitcodeFile>(file)) 132 return true; 133 134 if (file->ekind == config->ekind && file->emachine == config->emachine) { 135 if (config->emachine != EM_MIPS) 136 return true; 137 if (isMipsN32Abi(file) == config->mipsN32Abi) 138 return true; 139 } 140 141 StringRef target = 142 !config->bfdname.empty() ? config->bfdname : config->emulation; 143 if (!target.empty()) { 144 error(toString(file) + " is incompatible with " + target); 145 return false; 146 } 147 148 InputFile *existing; 149 if (!objectFiles.empty()) 150 existing = objectFiles[0]; 151 else if (!sharedFiles.empty()) 152 existing = sharedFiles[0]; 153 else if (!bitcodeFiles.empty()) 154 existing = bitcodeFiles[0]; 155 else 156 llvm_unreachable("Must have -m, OUTPUT_FORMAT or existing input file to " 157 "determine target emulation"); 158 159 error(toString(file) + " is incompatible with " + toString(existing)); 160 return false; 161 } 162 163 template <class ELFT> static void doParseFile(InputFile *file) { 164 if (!isCompatible(file)) 165 return; 166 167 // Binary file 168 if (auto *f = dyn_cast<BinaryFile>(file)) { 169 binaryFiles.push_back(f); 170 f->parse(); 171 return; 172 } 173 174 // .a file 175 if (auto *f = dyn_cast<ArchiveFile>(file)) { 176 f->parse(); 177 return; 178 } 179 180 // Lazy object file 181 if (auto *f = dyn_cast<LazyObjFile>(file)) { 182 lazyObjFiles.push_back(f); 183 f->parse<ELFT>(); 184 return; 185 } 186 187 if (config->trace) 188 message(toString(file)); 189 190 // .so file 191 if (auto *f = dyn_cast<SharedFile>(file)) { 192 f->parse<ELFT>(); 193 return; 194 } 195 196 // LLVM bitcode file 197 if (auto *f = dyn_cast<BitcodeFile>(file)) { 198 bitcodeFiles.push_back(f); 199 f->parse<ELFT>(); 200 return; 201 } 202 203 // Regular object file 204 objectFiles.push_back(file); 205 cast<ObjFile<ELFT>>(file)->parse(); 206 } 207 208 // Add symbols in File to the symbol table. 209 void parseFile(InputFile *file) { 210 switch (config->ekind) { 211 case ELF32LEKind: 212 doParseFile<ELF32LE>(file); 213 return; 214 case ELF32BEKind: 215 doParseFile<ELF32BE>(file); 216 return; 217 case ELF64LEKind: 218 doParseFile<ELF64LE>(file); 219 return; 220 case ELF64BEKind: 221 doParseFile<ELF64BE>(file); 222 return; 223 default: 224 llvm_unreachable("unknown ELFT"); 225 } 226 } 227 228 // Concatenates arguments to construct a string representing an error location. 229 static std::string createFileLineMsg(StringRef path, unsigned line) { 230 std::string filename = std::string(path::filename(path)); 231 std::string lineno = ":" + std::to_string(line); 232 if (filename == path) 233 return filename + lineno; 234 return filename + lineno + " (" + path.str() + lineno + ")"; 235 } 236 237 template <class ELFT> 238 static std::string getSrcMsgAux(ObjFile<ELFT> &file, const Symbol &sym, 239 InputSectionBase &sec, uint64_t offset) { 240 // In DWARF, functions and variables are stored to different places. 241 // First, lookup a function for a given offset. 242 if (Optional<DILineInfo> info = file.getDILineInfo(&sec, offset)) 243 return createFileLineMsg(info->FileName, info->Line); 244 245 // If it failed, lookup again as a variable. 246 if (Optional<std::pair<std::string, unsigned>> fileLine = 247 file.getVariableLoc(sym.getName())) 248 return createFileLineMsg(fileLine->first, fileLine->second); 249 250 // File.sourceFile contains STT_FILE symbol, and that is a last resort. 251 return std::string(file.sourceFile); 252 } 253 254 std::string InputFile::getSrcMsg(const Symbol &sym, InputSectionBase &sec, 255 uint64_t offset) { 256 if (kind() != ObjKind) 257 return ""; 258 switch (config->ekind) { 259 default: 260 llvm_unreachable("Invalid kind"); 261 case ELF32LEKind: 262 return getSrcMsgAux(cast<ObjFile<ELF32LE>>(*this), sym, sec, offset); 263 case ELF32BEKind: 264 return getSrcMsgAux(cast<ObjFile<ELF32BE>>(*this), sym, sec, offset); 265 case ELF64LEKind: 266 return getSrcMsgAux(cast<ObjFile<ELF64LE>>(*this), sym, sec, offset); 267 case ELF64BEKind: 268 return getSrcMsgAux(cast<ObjFile<ELF64BE>>(*this), sym, sec, offset); 269 } 270 } 271 272 template <class ELFT> DWARFCache *ObjFile<ELFT>::getDwarf() { 273 llvm::call_once(initDwarf, [this]() { 274 dwarf = std::make_unique<DWARFCache>(std::make_unique<DWARFContext>( 275 std::make_unique<LLDDwarfObj<ELFT>>(this), "", 276 [&](Error err) { warn(getName() + ": " + toString(std::move(err))); }, 277 [&](Error warning) { 278 warn(getName() + ": " + toString(std::move(warning))); 279 })); 280 }); 281 282 return dwarf.get(); 283 } 284 285 // Returns the pair of file name and line number describing location of data 286 // object (variable, array, etc) definition. 287 template <class ELFT> 288 Optional<std::pair<std::string, unsigned>> 289 ObjFile<ELFT>::getVariableLoc(StringRef name) { 290 return getDwarf()->getVariableLoc(name); 291 } 292 293 // Returns source line information for a given offset 294 // using DWARF debug info. 295 template <class ELFT> 296 Optional<DILineInfo> ObjFile<ELFT>::getDILineInfo(InputSectionBase *s, 297 uint64_t offset) { 298 // Detect SectionIndex for specified section. 299 uint64_t sectionIndex = object::SectionedAddress::UndefSection; 300 ArrayRef<InputSectionBase *> sections = s->file->getSections(); 301 for (uint64_t curIndex = 0; curIndex < sections.size(); ++curIndex) { 302 if (s == sections[curIndex]) { 303 sectionIndex = curIndex; 304 break; 305 } 306 } 307 308 return getDwarf()->getDILineInfo(offset, sectionIndex); 309 } 310 311 ELFFileBase::ELFFileBase(Kind k, MemoryBufferRef mb) : InputFile(k, mb) { 312 ekind = getELFKind(mb, ""); 313 314 switch (ekind) { 315 case ELF32LEKind: 316 init<ELF32LE>(); 317 break; 318 case ELF32BEKind: 319 init<ELF32BE>(); 320 break; 321 case ELF64LEKind: 322 init<ELF64LE>(); 323 break; 324 case ELF64BEKind: 325 init<ELF64BE>(); 326 break; 327 default: 328 llvm_unreachable("getELFKind"); 329 } 330 } 331 332 template <typename Elf_Shdr> 333 static const Elf_Shdr *findSection(ArrayRef<Elf_Shdr> sections, uint32_t type) { 334 for (const Elf_Shdr &sec : sections) 335 if (sec.sh_type == type) 336 return &sec; 337 return nullptr; 338 } 339 340 template <class ELFT> void ELFFileBase::init() { 341 using Elf_Shdr = typename ELFT::Shdr; 342 using Elf_Sym = typename ELFT::Sym; 343 344 // Initialize trivial attributes. 345 const ELFFile<ELFT> &obj = getObj<ELFT>(); 346 emachine = obj.getHeader()->e_machine; 347 osabi = obj.getHeader()->e_ident[llvm::ELF::EI_OSABI]; 348 abiVersion = obj.getHeader()->e_ident[llvm::ELF::EI_ABIVERSION]; 349 350 ArrayRef<Elf_Shdr> sections = CHECK(obj.sections(), this); 351 352 // Find a symbol table. 353 bool isDSO = 354 (identify_magic(mb.getBuffer()) == file_magic::elf_shared_object); 355 const Elf_Shdr *symtabSec = 356 findSection(sections, isDSO ? SHT_DYNSYM : SHT_SYMTAB); 357 358 if (!symtabSec) 359 return; 360 361 // Initialize members corresponding to a symbol table. 362 firstGlobal = symtabSec->sh_info; 363 364 ArrayRef<Elf_Sym> eSyms = CHECK(obj.symbols(symtabSec), this); 365 if (firstGlobal == 0 || firstGlobal > eSyms.size()) 366 fatal(toString(this) + ": invalid sh_info in symbol table"); 367 368 elfSyms = reinterpret_cast<const void *>(eSyms.data()); 369 numELFSyms = eSyms.size(); 370 stringTable = CHECK(obj.getStringTableForSymtab(*symtabSec, sections), this); 371 } 372 373 template <class ELFT> 374 uint32_t ObjFile<ELFT>::getSectionIndex(const Elf_Sym &sym) const { 375 return CHECK( 376 this->getObj().getSectionIndex(&sym, getELFSyms<ELFT>(), shndxTable), 377 this); 378 } 379 380 template <class ELFT> ArrayRef<Symbol *> ObjFile<ELFT>::getLocalSymbols() { 381 if (this->symbols.empty()) 382 return {}; 383 return makeArrayRef(this->symbols).slice(1, this->firstGlobal - 1); 384 } 385 386 template <class ELFT> ArrayRef<Symbol *> ObjFile<ELFT>::getGlobalSymbols() { 387 return makeArrayRef(this->symbols).slice(this->firstGlobal); 388 } 389 390 template <class ELFT> void ObjFile<ELFT>::parse(bool ignoreComdats) { 391 // Read a section table. justSymbols is usually false. 392 if (this->justSymbols) 393 initializeJustSymbols(); 394 else 395 initializeSections(ignoreComdats); 396 397 // Read a symbol table. 398 initializeSymbols(); 399 } 400 401 // Sections with SHT_GROUP and comdat bits define comdat section groups. 402 // They are identified and deduplicated by group name. This function 403 // returns a group name. 404 template <class ELFT> 405 StringRef ObjFile<ELFT>::getShtGroupSignature(ArrayRef<Elf_Shdr> sections, 406 const Elf_Shdr &sec) { 407 typename ELFT::SymRange symbols = this->getELFSyms<ELFT>(); 408 if (sec.sh_info >= symbols.size()) 409 fatal(toString(this) + ": invalid symbol index"); 410 const typename ELFT::Sym &sym = symbols[sec.sh_info]; 411 StringRef signature = CHECK(sym.getName(this->stringTable), this); 412 413 // As a special case, if a symbol is a section symbol and has no name, 414 // we use a section name as a signature. 415 // 416 // Such SHT_GROUP sections are invalid from the perspective of the ELF 417 // standard, but GNU gold 1.14 (the newest version as of July 2017) or 418 // older produce such sections as outputs for the -r option, so we need 419 // a bug-compatibility. 420 if (signature.empty() && sym.getType() == STT_SECTION) 421 return getSectionName(sec); 422 return signature; 423 } 424 425 template <class ELFT> 426 bool ObjFile<ELFT>::shouldMerge(const Elf_Shdr &sec, StringRef name) { 427 if (!(sec.sh_flags & SHF_MERGE)) 428 return false; 429 430 // On a regular link we don't merge sections if -O0 (default is -O1). This 431 // sometimes makes the linker significantly faster, although the output will 432 // be bigger. 433 // 434 // Doing the same for -r would create a problem as it would combine sections 435 // with different sh_entsize. One option would be to just copy every SHF_MERGE 436 // section as is to the output. While this would produce a valid ELF file with 437 // usable SHF_MERGE sections, tools like (llvm-)?dwarfdump get confused when 438 // they see two .debug_str. We could have separate logic for combining 439 // SHF_MERGE sections based both on their name and sh_entsize, but that seems 440 // to be more trouble than it is worth. Instead, we just use the regular (-O1) 441 // logic for -r. 442 if (config->optimize == 0 && !config->relocatable) 443 return false; 444 445 // A mergeable section with size 0 is useless because they don't have 446 // any data to merge. A mergeable string section with size 0 can be 447 // argued as invalid because it doesn't end with a null character. 448 // We'll avoid a mess by handling them as if they were non-mergeable. 449 if (sec.sh_size == 0) 450 return false; 451 452 // Check for sh_entsize. The ELF spec is not clear about the zero 453 // sh_entsize. It says that "the member [sh_entsize] contains 0 if 454 // the section does not hold a table of fixed-size entries". We know 455 // that Rust 1.13 produces a string mergeable section with a zero 456 // sh_entsize. Here we just accept it rather than being picky about it. 457 uint64_t entSize = sec.sh_entsize; 458 if (entSize == 0) 459 return false; 460 if (sec.sh_size % entSize) 461 fatal(toString(this) + ":(" + name + "): SHF_MERGE section size (" + 462 Twine(sec.sh_size) + ") must be a multiple of sh_entsize (" + 463 Twine(entSize) + ")"); 464 465 if (sec.sh_flags & SHF_WRITE) 466 fatal(toString(this) + ":(" + name + 467 "): writable SHF_MERGE section is not supported"); 468 469 return true; 470 } 471 472 // This is for --just-symbols. 473 // 474 // --just-symbols is a very minor feature that allows you to link your 475 // output against other existing program, so that if you load both your 476 // program and the other program into memory, your output can refer the 477 // other program's symbols. 478 // 479 // When the option is given, we link "just symbols". The section table is 480 // initialized with null pointers. 481 template <class ELFT> void ObjFile<ELFT>::initializeJustSymbols() { 482 ArrayRef<Elf_Shdr> sections = CHECK(this->getObj().sections(), this); 483 this->sections.resize(sections.size()); 484 } 485 486 // An ELF object file may contain a `.deplibs` section. If it exists, the 487 // section contains a list of library specifiers such as `m` for libm. This 488 // function resolves a given name by finding the first matching library checking 489 // the various ways that a library can be specified to LLD. This ELF extension 490 // is a form of autolinking and is called `dependent libraries`. It is currently 491 // unique to LLVM and lld. 492 static void addDependentLibrary(StringRef specifier, const InputFile *f) { 493 if (!config->dependentLibraries) 494 return; 495 if (fs::exists(specifier)) 496 driver->addFile(specifier, /*withLOption=*/false); 497 else if (Optional<std::string> s = findFromSearchPaths(specifier)) 498 driver->addFile(*s, /*withLOption=*/true); 499 else if (Optional<std::string> s = searchLibraryBaseName(specifier)) 500 driver->addFile(*s, /*withLOption=*/true); 501 else 502 error(toString(f) + 503 ": unable to find library from dependent library specifier: " + 504 specifier); 505 } 506 507 // Record the membership of a section group so that in the garbage collection 508 // pass, section group members are kept or discarded as a unit. 509 template <class ELFT> 510 static void handleSectionGroup(ArrayRef<InputSectionBase *> sections, 511 ArrayRef<typename ELFT::Word> entries) { 512 bool hasAlloc = false; 513 for (uint32_t index : entries.slice(1)) { 514 if (index >= sections.size()) 515 return; 516 if (InputSectionBase *s = sections[index]) 517 if (s != &InputSection::discarded && s->flags & SHF_ALLOC) 518 hasAlloc = true; 519 } 520 521 // If any member has the SHF_ALLOC flag, the whole group is subject to garbage 522 // collection. See the comment in markLive(). This rule retains .debug_types 523 // and .rela.debug_types. 524 if (!hasAlloc) 525 return; 526 527 // Connect the members in a circular doubly-linked list via 528 // nextInSectionGroup. 529 InputSectionBase *head; 530 InputSectionBase *prev = nullptr; 531 for (uint32_t index : entries.slice(1)) { 532 InputSectionBase *s = sections[index]; 533 if (!s || s == &InputSection::discarded) 534 continue; 535 if (prev) 536 prev->nextInSectionGroup = s; 537 else 538 head = s; 539 prev = s; 540 } 541 if (prev) 542 prev->nextInSectionGroup = head; 543 } 544 545 template <class ELFT> 546 void ObjFile<ELFT>::initializeSections(bool ignoreComdats) { 547 const ELFFile<ELFT> &obj = this->getObj(); 548 549 ArrayRef<Elf_Shdr> objSections = CHECK(obj.sections(), this); 550 uint64_t size = objSections.size(); 551 this->sections.resize(size); 552 this->sectionStringTable = 553 CHECK(obj.getSectionStringTable(objSections), this); 554 555 std::vector<ArrayRef<Elf_Word>> selectedGroups; 556 557 for (size_t i = 0, e = objSections.size(); i < e; ++i) { 558 if (this->sections[i] == &InputSection::discarded) 559 continue; 560 const Elf_Shdr &sec = objSections[i]; 561 562 if (sec.sh_type == ELF::SHT_LLVM_CALL_GRAPH_PROFILE) 563 cgProfile = 564 check(obj.template getSectionContentsAsArray<Elf_CGProfile>(&sec)); 565 566 // SHF_EXCLUDE'ed sections are discarded by the linker. However, 567 // if -r is given, we'll let the final link discard such sections. 568 // This is compatible with GNU. 569 if ((sec.sh_flags & SHF_EXCLUDE) && !config->relocatable) { 570 if (sec.sh_type == SHT_LLVM_ADDRSIG) { 571 // We ignore the address-significance table if we know that the object 572 // file was created by objcopy or ld -r. This is because these tools 573 // will reorder the symbols in the symbol table, invalidating the data 574 // in the address-significance table, which refers to symbols by index. 575 if (sec.sh_link != 0) 576 this->addrsigSec = &sec; 577 else if (config->icf == ICFLevel::Safe) 578 warn(toString(this) + ": --icf=safe is incompatible with object " 579 "files created using objcopy or ld -r"); 580 } 581 this->sections[i] = &InputSection::discarded; 582 continue; 583 } 584 585 switch (sec.sh_type) { 586 case SHT_GROUP: { 587 // De-duplicate section groups by their signatures. 588 StringRef signature = getShtGroupSignature(objSections, sec); 589 this->sections[i] = &InputSection::discarded; 590 591 592 ArrayRef<Elf_Word> entries = 593 CHECK(obj.template getSectionContentsAsArray<Elf_Word>(&sec), this); 594 if (entries.empty()) 595 fatal(toString(this) + ": empty SHT_GROUP"); 596 597 // The first word of a SHT_GROUP section contains flags. Currently, 598 // the standard defines only "GRP_COMDAT" flag for the COMDAT group. 599 // An group with the empty flag doesn't define anything; such sections 600 // are just skipped. 601 if (entries[0] == 0) 602 continue; 603 604 if (entries[0] != GRP_COMDAT) 605 fatal(toString(this) + ": unsupported SHT_GROUP format"); 606 607 bool isNew = 608 ignoreComdats || 609 symtab->comdatGroups.try_emplace(CachedHashStringRef(signature), this) 610 .second; 611 if (isNew) { 612 if (config->relocatable) 613 this->sections[i] = createInputSection(sec); 614 selectedGroups.push_back(entries); 615 continue; 616 } 617 618 // Otherwise, discard group members. 619 for (uint32_t secIndex : entries.slice(1)) { 620 if (secIndex >= size) 621 fatal(toString(this) + 622 ": invalid section index in group: " + Twine(secIndex)); 623 this->sections[secIndex] = &InputSection::discarded; 624 } 625 break; 626 } 627 case SHT_SYMTAB_SHNDX: 628 shndxTable = CHECK(obj.getSHNDXTable(sec, objSections), this); 629 break; 630 case SHT_SYMTAB: 631 case SHT_STRTAB: 632 case SHT_NULL: 633 break; 634 default: 635 this->sections[i] = createInputSection(sec); 636 } 637 } 638 639 // This block handles SHF_LINK_ORDER. 640 for (size_t i = 0, e = objSections.size(); i < e; ++i) { 641 if (this->sections[i] == &InputSection::discarded) 642 continue; 643 const Elf_Shdr &sec = objSections[i]; 644 if (!(sec.sh_flags & SHF_LINK_ORDER)) 645 continue; 646 647 // .ARM.exidx sections have a reverse dependency on the InputSection they 648 // have a SHF_LINK_ORDER dependency, this is identified by the sh_link. 649 InputSectionBase *linkSec = nullptr; 650 if (sec.sh_link < this->sections.size()) 651 linkSec = this->sections[sec.sh_link]; 652 if (!linkSec) 653 fatal(toString(this) + ": invalid sh_link index: " + Twine(sec.sh_link)); 654 655 InputSection *isec = cast<InputSection>(this->sections[i]); 656 linkSec->dependentSections.push_back(isec); 657 if (!isa<InputSection>(linkSec)) 658 error("a section " + isec->name + 659 " with SHF_LINK_ORDER should not refer a non-regular section: " + 660 toString(linkSec)); 661 } 662 663 for (ArrayRef<Elf_Word> entries : selectedGroups) 664 handleSectionGroup<ELFT>(this->sections, entries); 665 } 666 667 // For ARM only, to set the EF_ARM_ABI_FLOAT_SOFT or EF_ARM_ABI_FLOAT_HARD 668 // flag in the ELF Header we need to look at Tag_ABI_VFP_args to find out how 669 // the input objects have been compiled. 670 static void updateARMVFPArgs(const ARMAttributeParser &attributes, 671 const InputFile *f) { 672 Optional<unsigned> attr = 673 attributes.getAttributeValue(ARMBuildAttrs::ABI_VFP_args); 674 if (!attr.hasValue()) 675 // If an ABI tag isn't present then it is implicitly given the value of 0 676 // which maps to ARMBuildAttrs::BaseAAPCS. However many assembler files, 677 // including some in glibc that don't use FP args (and should have value 3) 678 // don't have the attribute so we do not consider an implicit value of 0 679 // as a clash. 680 return; 681 682 unsigned vfpArgs = attr.getValue(); 683 ARMVFPArgKind arg; 684 switch (vfpArgs) { 685 case ARMBuildAttrs::BaseAAPCS: 686 arg = ARMVFPArgKind::Base; 687 break; 688 case ARMBuildAttrs::HardFPAAPCS: 689 arg = ARMVFPArgKind::VFP; 690 break; 691 case ARMBuildAttrs::ToolChainFPPCS: 692 // Tool chain specific convention that conforms to neither AAPCS variant. 693 arg = ARMVFPArgKind::ToolChain; 694 break; 695 case ARMBuildAttrs::CompatibleFPAAPCS: 696 // Object compatible with all conventions. 697 return; 698 default: 699 error(toString(f) + ": unknown Tag_ABI_VFP_args value: " + Twine(vfpArgs)); 700 return; 701 } 702 // Follow ld.bfd and error if there is a mix of calling conventions. 703 if (config->armVFPArgs != arg && config->armVFPArgs != ARMVFPArgKind::Default) 704 error(toString(f) + ": incompatible Tag_ABI_VFP_args"); 705 else 706 config->armVFPArgs = arg; 707 } 708 709 // The ARM support in lld makes some use of instructions that are not available 710 // on all ARM architectures. Namely: 711 // - Use of BLX instruction for interworking between ARM and Thumb state. 712 // - Use of the extended Thumb branch encoding in relocation. 713 // - Use of the MOVT/MOVW instructions in Thumb Thunks. 714 // The ARM Attributes section contains information about the architecture chosen 715 // at compile time. We follow the convention that if at least one input object 716 // is compiled with an architecture that supports these features then lld is 717 // permitted to use them. 718 static void updateSupportedARMFeatures(const ARMAttributeParser &attributes) { 719 Optional<unsigned> attr = 720 attributes.getAttributeValue(ARMBuildAttrs::CPU_arch); 721 if (!attr.hasValue()) 722 return; 723 auto arch = attr.getValue(); 724 switch (arch) { 725 case ARMBuildAttrs::Pre_v4: 726 case ARMBuildAttrs::v4: 727 case ARMBuildAttrs::v4T: 728 // Architectures prior to v5 do not support BLX instruction 729 break; 730 case ARMBuildAttrs::v5T: 731 case ARMBuildAttrs::v5TE: 732 case ARMBuildAttrs::v5TEJ: 733 case ARMBuildAttrs::v6: 734 case ARMBuildAttrs::v6KZ: 735 case ARMBuildAttrs::v6K: 736 config->armHasBlx = true; 737 // Architectures used in pre-Cortex processors do not support 738 // The J1 = 1 J2 = 1 Thumb branch range extension, with the exception 739 // of Architecture v6T2 (arm1156t2-s and arm1156t2f-s) that do. 740 break; 741 default: 742 // All other Architectures have BLX and extended branch encoding 743 config->armHasBlx = true; 744 config->armJ1J2BranchEncoding = true; 745 if (arch != ARMBuildAttrs::v6_M && arch != ARMBuildAttrs::v6S_M) 746 // All Architectures used in Cortex processors with the exception 747 // of v6-M and v6S-M have the MOVT and MOVW instructions. 748 config->armHasMovtMovw = true; 749 break; 750 } 751 } 752 753 // If a source file is compiled with x86 hardware-assisted call flow control 754 // enabled, the generated object file contains feature flags indicating that 755 // fact. This function reads the feature flags and returns it. 756 // 757 // Essentially we want to read a single 32-bit value in this function, but this 758 // function is rather complicated because the value is buried deep inside a 759 // .note.gnu.property section. 760 // 761 // The section consists of one or more NOTE records. Each NOTE record consists 762 // of zero or more type-length-value fields. We want to find a field of a 763 // certain type. It seems a bit too much to just store a 32-bit value, perhaps 764 // the ABI is unnecessarily complicated. 765 template <class ELFT> 766 static uint32_t readAndFeatures(ObjFile<ELFT> *obj, ArrayRef<uint8_t> data) { 767 using Elf_Nhdr = typename ELFT::Nhdr; 768 using Elf_Note = typename ELFT::Note; 769 770 uint32_t featuresSet = 0; 771 while (!data.empty()) { 772 // Read one NOTE record. 773 if (data.size() < sizeof(Elf_Nhdr)) 774 fatal(toString(obj) + ": .note.gnu.property: section too short"); 775 776 auto *nhdr = reinterpret_cast<const Elf_Nhdr *>(data.data()); 777 if (data.size() < nhdr->getSize()) 778 fatal(toString(obj) + ": .note.gnu.property: section too short"); 779 780 Elf_Note note(*nhdr); 781 if (nhdr->n_type != NT_GNU_PROPERTY_TYPE_0 || note.getName() != "GNU") { 782 data = data.slice(nhdr->getSize()); 783 continue; 784 } 785 786 uint32_t featureAndType = config->emachine == EM_AARCH64 787 ? GNU_PROPERTY_AARCH64_FEATURE_1_AND 788 : GNU_PROPERTY_X86_FEATURE_1_AND; 789 790 // Read a body of a NOTE record, which consists of type-length-value fields. 791 ArrayRef<uint8_t> desc = note.getDesc(); 792 while (!desc.empty()) { 793 if (desc.size() < 8) 794 fatal(toString(obj) + ": .note.gnu.property: section too short"); 795 796 uint32_t type = read32le(desc.data()); 797 uint32_t size = read32le(desc.data() + 4); 798 799 if (type == featureAndType) { 800 // We found a FEATURE_1_AND field. There may be more than one of these 801 // in a .note.gnu.property section, for a relocatable object we 802 // accumulate the bits set. 803 featuresSet |= read32le(desc.data() + 8); 804 } 805 806 // On 64-bit, a payload may be followed by a 4-byte padding to make its 807 // size a multiple of 8. 808 if (ELFT::Is64Bits) 809 size = alignTo(size, 8); 810 811 desc = desc.slice(size + 8); // +8 for Type and Size 812 } 813 814 // Go to next NOTE record to look for more FEATURE_1_AND descriptions. 815 data = data.slice(nhdr->getSize()); 816 } 817 818 return featuresSet; 819 } 820 821 template <class ELFT> 822 InputSectionBase *ObjFile<ELFT>::getRelocTarget(const Elf_Shdr &sec) { 823 uint32_t idx = sec.sh_info; 824 if (idx >= this->sections.size()) 825 fatal(toString(this) + ": invalid relocated section index: " + Twine(idx)); 826 InputSectionBase *target = this->sections[idx]; 827 828 // Strictly speaking, a relocation section must be included in the 829 // group of the section it relocates. However, LLVM 3.3 and earlier 830 // would fail to do so, so we gracefully handle that case. 831 if (target == &InputSection::discarded) 832 return nullptr; 833 834 if (!target) 835 fatal(toString(this) + ": unsupported relocation reference"); 836 return target; 837 } 838 839 // Create a regular InputSection class that has the same contents 840 // as a given section. 841 static InputSection *toRegularSection(MergeInputSection *sec) { 842 return make<InputSection>(sec->file, sec->flags, sec->type, sec->alignment, 843 sec->data(), sec->name); 844 } 845 846 template <class ELFT> 847 InputSectionBase *ObjFile<ELFT>::createInputSection(const Elf_Shdr &sec) { 848 StringRef name = getSectionName(sec); 849 850 switch (sec.sh_type) { 851 case SHT_ARM_ATTRIBUTES: { 852 if (config->emachine != EM_ARM) 853 break; 854 ARMAttributeParser attributes; 855 ArrayRef<uint8_t> contents = check(this->getObj().getSectionContents(&sec)); 856 if (Error e = attributes.parse(contents, config->ekind == ELF32LEKind 857 ? support::little 858 : support::big)) { 859 auto *isec = make<InputSection>(*this, sec, name); 860 warn(toString(isec) + ": " + llvm::toString(std::move(e))); 861 break; 862 } 863 updateSupportedARMFeatures(attributes); 864 updateARMVFPArgs(attributes, this); 865 866 // FIXME: Retain the first attribute section we see. The eglibc ARM 867 // dynamic loaders require the presence of an attribute section for dlopen 868 // to work. In a full implementation we would merge all attribute sections. 869 if (in.armAttributes == nullptr) { 870 in.armAttributes = make<InputSection>(*this, sec, name); 871 return in.armAttributes; 872 } 873 return &InputSection::discarded; 874 } 875 case SHT_LLVM_DEPENDENT_LIBRARIES: { 876 if (config->relocatable) 877 break; 878 ArrayRef<char> data = 879 CHECK(this->getObj().template getSectionContentsAsArray<char>(&sec), this); 880 if (!data.empty() && data.back() != '\0') { 881 error(toString(this) + 882 ": corrupted dependent libraries section (unterminated string): " + 883 name); 884 return &InputSection::discarded; 885 } 886 for (const char *d = data.begin(), *e = data.end(); d < e;) { 887 StringRef s(d); 888 addDependentLibrary(s, this); 889 d += s.size() + 1; 890 } 891 return &InputSection::discarded; 892 } 893 case SHT_RELA: 894 case SHT_REL: { 895 // Find a relocation target section and associate this section with that. 896 // Target may have been discarded if it is in a different section group 897 // and the group is discarded, even though it's a violation of the 898 // spec. We handle that situation gracefully by discarding dangling 899 // relocation sections. 900 InputSectionBase *target = getRelocTarget(sec); 901 if (!target) 902 return nullptr; 903 904 // ELF spec allows mergeable sections with relocations, but they are 905 // rare, and it is in practice hard to merge such sections by contents, 906 // because applying relocations at end of linking changes section 907 // contents. So, we simply handle such sections as non-mergeable ones. 908 // Degrading like this is acceptable because section merging is optional. 909 if (auto *ms = dyn_cast<MergeInputSection>(target)) { 910 target = toRegularSection(ms); 911 this->sections[sec.sh_info] = target; 912 } 913 914 // This section contains relocation information. 915 // If -r is given, we do not interpret or apply relocation 916 // but just copy relocation sections to output. 917 if (config->relocatable) { 918 InputSection *relocSec = make<InputSection>(*this, sec, name); 919 // We want to add a dependency to target, similar like we do for 920 // -emit-relocs below. This is useful for the case when linker script 921 // contains the "/DISCARD/". It is perhaps uncommon to use a script with 922 // -r, but we faced it in the Linux kernel and have to handle such case 923 // and not to crash. 924 target->dependentSections.push_back(relocSec); 925 return relocSec; 926 } 927 928 if (target->firstRelocation) 929 fatal(toString(this) + 930 ": multiple relocation sections to one section are not supported"); 931 932 if (sec.sh_type == SHT_RELA) { 933 ArrayRef<Elf_Rela> rels = CHECK(getObj().relas(&sec), this); 934 target->firstRelocation = rels.begin(); 935 target->numRelocations = rels.size(); 936 target->areRelocsRela = true; 937 } else { 938 ArrayRef<Elf_Rel> rels = CHECK(getObj().rels(&sec), this); 939 target->firstRelocation = rels.begin(); 940 target->numRelocations = rels.size(); 941 target->areRelocsRela = false; 942 } 943 assert(isUInt<31>(target->numRelocations)); 944 945 // Relocation sections processed by the linker are usually removed 946 // from the output, so returning `nullptr` for the normal case. 947 // However, if -emit-relocs is given, we need to leave them in the output. 948 // (Some post link analysis tools need this information.) 949 if (config->emitRelocs) { 950 InputSection *relocSec = make<InputSection>(*this, sec, name); 951 // We will not emit relocation section if target was discarded. 952 target->dependentSections.push_back(relocSec); 953 return relocSec; 954 } 955 return nullptr; 956 } 957 } 958 959 // The GNU linker uses .note.GNU-stack section as a marker indicating 960 // that the code in the object file does not expect that the stack is 961 // executable (in terms of NX bit). If all input files have the marker, 962 // the GNU linker adds a PT_GNU_STACK segment to tells the loader to 963 // make the stack non-executable. Most object files have this section as 964 // of 2017. 965 // 966 // But making the stack non-executable is a norm today for security 967 // reasons. Failure to do so may result in a serious security issue. 968 // Therefore, we make LLD always add PT_GNU_STACK unless it is 969 // explicitly told to do otherwise (by -z execstack). Because the stack 970 // executable-ness is controlled solely by command line options, 971 // .note.GNU-stack sections are simply ignored. 972 if (name == ".note.GNU-stack") 973 return &InputSection::discarded; 974 975 // Object files that use processor features such as Intel Control-Flow 976 // Enforcement (CET) or AArch64 Branch Target Identification BTI, use a 977 // .note.gnu.property section containing a bitfield of feature bits like the 978 // GNU_PROPERTY_X86_FEATURE_1_IBT flag. Read a bitmap containing the flag. 979 // 980 // Since we merge bitmaps from multiple object files to create a new 981 // .note.gnu.property containing a single AND'ed bitmap, we discard an input 982 // file's .note.gnu.property section. 983 if (name == ".note.gnu.property") { 984 ArrayRef<uint8_t> contents = check(this->getObj().getSectionContents(&sec)); 985 this->andFeatures = readAndFeatures(this, contents); 986 return &InputSection::discarded; 987 } 988 989 // Split stacks is a feature to support a discontiguous stack, 990 // commonly used in the programming language Go. For the details, 991 // see https://gcc.gnu.org/wiki/SplitStacks. An object file compiled 992 // for split stack will include a .note.GNU-split-stack section. 993 if (name == ".note.GNU-split-stack") { 994 if (config->relocatable) { 995 error("cannot mix split-stack and non-split-stack in a relocatable link"); 996 return &InputSection::discarded; 997 } 998 this->splitStack = true; 999 return &InputSection::discarded; 1000 } 1001 1002 // An object file cmpiled for split stack, but where some of the 1003 // functions were compiled with the no_split_stack_attribute will 1004 // include a .note.GNU-no-split-stack section. 1005 if (name == ".note.GNU-no-split-stack") { 1006 this->someNoSplitStack = true; 1007 return &InputSection::discarded; 1008 } 1009 1010 // The linkonce feature is a sort of proto-comdat. Some glibc i386 object 1011 // files contain definitions of symbol "__x86.get_pc_thunk.bx" in linkonce 1012 // sections. Drop those sections to avoid duplicate symbol errors. 1013 // FIXME: This is glibc PR20543, we should remove this hack once that has been 1014 // fixed for a while. 1015 if (name == ".gnu.linkonce.t.__x86.get_pc_thunk.bx" || 1016 name == ".gnu.linkonce.t.__i686.get_pc_thunk.bx") 1017 return &InputSection::discarded; 1018 1019 // If we are creating a new .build-id section, strip existing .build-id 1020 // sections so that the output won't have more than one .build-id. 1021 // This is not usually a problem because input object files normally don't 1022 // have .build-id sections, but you can create such files by 1023 // "ld.{bfd,gold,lld} -r --build-id", and we want to guard against it. 1024 if (name == ".note.gnu.build-id" && config->buildId != BuildIdKind::None) 1025 return &InputSection::discarded; 1026 1027 // The linker merges EH (exception handling) frames and creates a 1028 // .eh_frame_hdr section for runtime. So we handle them with a special 1029 // class. For relocatable outputs, they are just passed through. 1030 if (name == ".eh_frame" && !config->relocatable) 1031 return make<EhInputSection>(*this, sec, name); 1032 1033 if (shouldMerge(sec, name)) 1034 return make<MergeInputSection>(*this, sec, name); 1035 return make<InputSection>(*this, sec, name); 1036 } 1037 1038 template <class ELFT> 1039 StringRef ObjFile<ELFT>::getSectionName(const Elf_Shdr &sec) { 1040 return CHECK(getObj().getSectionName(&sec, sectionStringTable), this); 1041 } 1042 1043 // Initialize this->Symbols. this->Symbols is a parallel array as 1044 // its corresponding ELF symbol table. 1045 template <class ELFT> void ObjFile<ELFT>::initializeSymbols() { 1046 ArrayRef<Elf_Sym> eSyms = this->getELFSyms<ELFT>(); 1047 this->symbols.resize(eSyms.size()); 1048 1049 // Our symbol table may have already been partially initialized 1050 // because of LazyObjFile. 1051 for (size_t i = 0, end = eSyms.size(); i != end; ++i) 1052 if (!this->symbols[i] && eSyms[i].getBinding() != STB_LOCAL) 1053 this->symbols[i] = 1054 symtab->insert(CHECK(eSyms[i].getName(this->stringTable), this)); 1055 1056 // Fill this->Symbols. A symbol is either local or global. 1057 for (size_t i = 0, end = eSyms.size(); i != end; ++i) { 1058 const Elf_Sym &eSym = eSyms[i]; 1059 1060 // Read symbol attributes. 1061 uint32_t secIdx = getSectionIndex(eSym); 1062 if (secIdx >= this->sections.size()) 1063 fatal(toString(this) + ": invalid section index: " + Twine(secIdx)); 1064 1065 InputSectionBase *sec = this->sections[secIdx]; 1066 uint8_t binding = eSym.getBinding(); 1067 uint8_t stOther = eSym.st_other; 1068 uint8_t type = eSym.getType(); 1069 uint64_t value = eSym.st_value; 1070 uint64_t size = eSym.st_size; 1071 StringRefZ name = this->stringTable.data() + eSym.st_name; 1072 1073 // Handle local symbols. Local symbols are not added to the symbol 1074 // table because they are not visible from other object files. We 1075 // allocate symbol instances and add their pointers to Symbols. 1076 if (binding == STB_LOCAL) { 1077 if (eSym.getType() == STT_FILE) 1078 sourceFile = CHECK(eSym.getName(this->stringTable), this); 1079 1080 if (this->stringTable.size() <= eSym.st_name) 1081 fatal(toString(this) + ": invalid symbol name offset"); 1082 1083 if (eSym.st_shndx == SHN_UNDEF) 1084 this->symbols[i] = make<Undefined>(this, name, binding, stOther, type); 1085 else if (sec == &InputSection::discarded) 1086 this->symbols[i] = make<Undefined>(this, name, binding, stOther, type, 1087 /*DiscardedSecIdx=*/secIdx); 1088 else 1089 this->symbols[i] = 1090 make<Defined>(this, name, binding, stOther, type, value, size, sec); 1091 continue; 1092 } 1093 1094 // Handle global undefined symbols. 1095 if (eSym.st_shndx == SHN_UNDEF) { 1096 this->symbols[i]->resolve(Undefined{this, name, binding, stOther, type}); 1097 this->symbols[i]->referenced = true; 1098 continue; 1099 } 1100 1101 // Handle global common symbols. 1102 if (eSym.st_shndx == SHN_COMMON) { 1103 if (value == 0 || value >= UINT32_MAX) 1104 fatal(toString(this) + ": common symbol '" + StringRef(name.data) + 1105 "' has invalid alignment: " + Twine(value)); 1106 this->symbols[i]->resolve( 1107 CommonSymbol{this, name, binding, stOther, type, value, size}); 1108 continue; 1109 } 1110 1111 // If a defined symbol is in a discarded section, handle it as if it 1112 // were an undefined symbol. Such symbol doesn't comply with the 1113 // standard, but in practice, a .eh_frame often directly refer 1114 // COMDAT member sections, and if a comdat group is discarded, some 1115 // defined symbol in a .eh_frame becomes dangling symbols. 1116 if (sec == &InputSection::discarded) { 1117 this->symbols[i]->resolve( 1118 Undefined{this, name, binding, stOther, type, secIdx}); 1119 continue; 1120 } 1121 1122 // Handle global defined symbols. 1123 if (binding == STB_GLOBAL || binding == STB_WEAK || 1124 binding == STB_GNU_UNIQUE) { 1125 this->symbols[i]->resolve( 1126 Defined{this, name, binding, stOther, type, value, size, sec}); 1127 continue; 1128 } 1129 1130 fatal(toString(this) + ": unexpected binding: " + Twine((int)binding)); 1131 } 1132 } 1133 1134 ArchiveFile::ArchiveFile(std::unique_ptr<Archive> &&file) 1135 : InputFile(ArchiveKind, file->getMemoryBufferRef()), 1136 file(std::move(file)) {} 1137 1138 void ArchiveFile::parse() { 1139 for (const Archive::Symbol &sym : file->symbols()) 1140 symtab->addSymbol(LazyArchive{*this, sym}); 1141 } 1142 1143 // Returns a buffer pointing to a member file containing a given symbol. 1144 void ArchiveFile::fetch(const Archive::Symbol &sym) { 1145 Archive::Child c = 1146 CHECK(sym.getMember(), toString(this) + 1147 ": could not get the member for symbol " + 1148 toELFString(sym)); 1149 1150 if (!seen.insert(c.getChildOffset()).second) 1151 return; 1152 1153 MemoryBufferRef mb = 1154 CHECK(c.getMemoryBufferRef(), 1155 toString(this) + 1156 ": could not get the buffer for the member defining symbol " + 1157 toELFString(sym)); 1158 1159 if (tar && c.getParent()->isThin()) 1160 tar->append(relativeToRoot(CHECK(c.getFullName(), this)), mb.getBuffer()); 1161 1162 InputFile *file = createObjectFile( 1163 mb, getName(), c.getParent()->isThin() ? 0 : c.getChildOffset()); 1164 file->groupId = groupId; 1165 parseFile(file); 1166 } 1167 1168 unsigned SharedFile::vernauxNum; 1169 1170 // Parse the version definitions in the object file if present, and return a 1171 // vector whose nth element contains a pointer to the Elf_Verdef for version 1172 // identifier n. Version identifiers that are not definitions map to nullptr. 1173 template <typename ELFT> 1174 static std::vector<const void *> parseVerdefs(const uint8_t *base, 1175 const typename ELFT::Shdr *sec) { 1176 if (!sec) 1177 return {}; 1178 1179 // We cannot determine the largest verdef identifier without inspecting 1180 // every Elf_Verdef, but both bfd and gold assign verdef identifiers 1181 // sequentially starting from 1, so we predict that the largest identifier 1182 // will be verdefCount. 1183 unsigned verdefCount = sec->sh_info; 1184 std::vector<const void *> verdefs(verdefCount + 1); 1185 1186 // Build the Verdefs array by following the chain of Elf_Verdef objects 1187 // from the start of the .gnu.version_d section. 1188 const uint8_t *verdef = base + sec->sh_offset; 1189 for (unsigned i = 0; i != verdefCount; ++i) { 1190 auto *curVerdef = reinterpret_cast<const typename ELFT::Verdef *>(verdef); 1191 verdef += curVerdef->vd_next; 1192 unsigned verdefIndex = curVerdef->vd_ndx; 1193 verdefs.resize(verdefIndex + 1); 1194 verdefs[verdefIndex] = curVerdef; 1195 } 1196 return verdefs; 1197 } 1198 1199 // We do not usually care about alignments of data in shared object 1200 // files because the loader takes care of it. However, if we promote a 1201 // DSO symbol to point to .bss due to copy relocation, we need to keep 1202 // the original alignment requirements. We infer it in this function. 1203 template <typename ELFT> 1204 static uint64_t getAlignment(ArrayRef<typename ELFT::Shdr> sections, 1205 const typename ELFT::Sym &sym) { 1206 uint64_t ret = UINT64_MAX; 1207 if (sym.st_value) 1208 ret = 1ULL << countTrailingZeros((uint64_t)sym.st_value); 1209 if (0 < sym.st_shndx && sym.st_shndx < sections.size()) 1210 ret = std::min<uint64_t>(ret, sections[sym.st_shndx].sh_addralign); 1211 return (ret > UINT32_MAX) ? 0 : ret; 1212 } 1213 1214 // Fully parse the shared object file. 1215 // 1216 // This function parses symbol versions. If a DSO has version information, 1217 // the file has a ".gnu.version_d" section which contains symbol version 1218 // definitions. Each symbol is associated to one version through a table in 1219 // ".gnu.version" section. That table is a parallel array for the symbol 1220 // table, and each table entry contains an index in ".gnu.version_d". 1221 // 1222 // The special index 0 is reserved for VERF_NDX_LOCAL and 1 is for 1223 // VER_NDX_GLOBAL. There's no table entry for these special versions in 1224 // ".gnu.version_d". 1225 // 1226 // The file format for symbol versioning is perhaps a bit more complicated 1227 // than necessary, but you can easily understand the code if you wrap your 1228 // head around the data structure described above. 1229 template <class ELFT> void SharedFile::parse() { 1230 using Elf_Dyn = typename ELFT::Dyn; 1231 using Elf_Shdr = typename ELFT::Shdr; 1232 using Elf_Sym = typename ELFT::Sym; 1233 using Elf_Verdef = typename ELFT::Verdef; 1234 using Elf_Versym = typename ELFT::Versym; 1235 1236 ArrayRef<Elf_Dyn> dynamicTags; 1237 const ELFFile<ELFT> obj = this->getObj<ELFT>(); 1238 ArrayRef<Elf_Shdr> sections = CHECK(obj.sections(), this); 1239 1240 const Elf_Shdr *versymSec = nullptr; 1241 const Elf_Shdr *verdefSec = nullptr; 1242 1243 // Search for .dynsym, .dynamic, .symtab, .gnu.version and .gnu.version_d. 1244 for (const Elf_Shdr &sec : sections) { 1245 switch (sec.sh_type) { 1246 default: 1247 continue; 1248 case SHT_DYNAMIC: 1249 dynamicTags = 1250 CHECK(obj.template getSectionContentsAsArray<Elf_Dyn>(&sec), this); 1251 break; 1252 case SHT_GNU_versym: 1253 versymSec = &sec; 1254 break; 1255 case SHT_GNU_verdef: 1256 verdefSec = &sec; 1257 break; 1258 } 1259 } 1260 1261 if (versymSec && numELFSyms == 0) { 1262 error("SHT_GNU_versym should be associated with symbol table"); 1263 return; 1264 } 1265 1266 // Search for a DT_SONAME tag to initialize this->soName. 1267 for (const Elf_Dyn &dyn : dynamicTags) { 1268 if (dyn.d_tag == DT_NEEDED) { 1269 uint64_t val = dyn.getVal(); 1270 if (val >= this->stringTable.size()) 1271 fatal(toString(this) + ": invalid DT_NEEDED entry"); 1272 dtNeeded.push_back(this->stringTable.data() + val); 1273 } else if (dyn.d_tag == DT_SONAME) { 1274 uint64_t val = dyn.getVal(); 1275 if (val >= this->stringTable.size()) 1276 fatal(toString(this) + ": invalid DT_SONAME entry"); 1277 soName = this->stringTable.data() + val; 1278 } 1279 } 1280 1281 // DSOs are uniquified not by filename but by soname. 1282 DenseMap<StringRef, SharedFile *>::iterator it; 1283 bool wasInserted; 1284 std::tie(it, wasInserted) = symtab->soNames.try_emplace(soName, this); 1285 1286 // If a DSO appears more than once on the command line with and without 1287 // --as-needed, --no-as-needed takes precedence over --as-needed because a 1288 // user can add an extra DSO with --no-as-needed to force it to be added to 1289 // the dependency list. 1290 it->second->isNeeded |= isNeeded; 1291 if (!wasInserted) 1292 return; 1293 1294 sharedFiles.push_back(this); 1295 1296 verdefs = parseVerdefs<ELFT>(obj.base(), verdefSec); 1297 1298 // Parse ".gnu.version" section which is a parallel array for the symbol 1299 // table. If a given file doesn't have a ".gnu.version" section, we use 1300 // VER_NDX_GLOBAL. 1301 size_t size = numELFSyms - firstGlobal; 1302 std::vector<uint32_t> versyms(size, VER_NDX_GLOBAL); 1303 if (versymSec) { 1304 ArrayRef<Elf_Versym> versym = 1305 CHECK(obj.template getSectionContentsAsArray<Elf_Versym>(versymSec), 1306 this) 1307 .slice(firstGlobal); 1308 for (size_t i = 0; i < size; ++i) 1309 versyms[i] = versym[i].vs_index; 1310 } 1311 1312 // System libraries can have a lot of symbols with versions. Using a 1313 // fixed buffer for computing the versions name (foo@ver) can save a 1314 // lot of allocations. 1315 SmallString<0> versionedNameBuffer; 1316 1317 // Add symbols to the symbol table. 1318 ArrayRef<Elf_Sym> syms = this->getGlobalELFSyms<ELFT>(); 1319 for (size_t i = 0; i < syms.size(); ++i) { 1320 const Elf_Sym &sym = syms[i]; 1321 1322 // ELF spec requires that all local symbols precede weak or global 1323 // symbols in each symbol table, and the index of first non-local symbol 1324 // is stored to sh_info. If a local symbol appears after some non-local 1325 // symbol, that's a violation of the spec. 1326 StringRef name = CHECK(sym.getName(this->stringTable), this); 1327 if (sym.getBinding() == STB_LOCAL) { 1328 warn("found local symbol '" + name + 1329 "' in global part of symbol table in file " + toString(this)); 1330 continue; 1331 } 1332 1333 if (sym.isUndefined()) { 1334 Symbol *s = symtab->addSymbol( 1335 Undefined{this, name, sym.getBinding(), sym.st_other, sym.getType()}); 1336 s->exportDynamic = true; 1337 continue; 1338 } 1339 1340 // MIPS BFD linker puts _gp_disp symbol into DSO files and incorrectly 1341 // assigns VER_NDX_LOCAL to this section global symbol. Here is a 1342 // workaround for this bug. 1343 uint32_t idx = versyms[i] & ~VERSYM_HIDDEN; 1344 if (config->emachine == EM_MIPS && idx == VER_NDX_LOCAL && 1345 name == "_gp_disp") 1346 continue; 1347 1348 uint32_t alignment = getAlignment<ELFT>(sections, sym); 1349 if (!(versyms[i] & VERSYM_HIDDEN)) { 1350 symtab->addSymbol(SharedSymbol{*this, name, sym.getBinding(), 1351 sym.st_other, sym.getType(), sym.st_value, 1352 sym.st_size, alignment, idx}); 1353 } 1354 1355 // Also add the symbol with the versioned name to handle undefined symbols 1356 // with explicit versions. 1357 if (idx == VER_NDX_GLOBAL) 1358 continue; 1359 1360 if (idx >= verdefs.size() || idx == VER_NDX_LOCAL) { 1361 error("corrupt input file: version definition index " + Twine(idx) + 1362 " for symbol " + name + " is out of bounds\n>>> defined in " + 1363 toString(this)); 1364 continue; 1365 } 1366 1367 StringRef verName = 1368 this->stringTable.data() + 1369 reinterpret_cast<const Elf_Verdef *>(verdefs[idx])->getAux()->vda_name; 1370 versionedNameBuffer.clear(); 1371 name = (name + "@" + verName).toStringRef(versionedNameBuffer); 1372 symtab->addSymbol(SharedSymbol{*this, saver.save(name), sym.getBinding(), 1373 sym.st_other, sym.getType(), sym.st_value, 1374 sym.st_size, alignment, idx}); 1375 } 1376 } 1377 1378 static ELFKind getBitcodeELFKind(const Triple &t) { 1379 if (t.isLittleEndian()) 1380 return t.isArch64Bit() ? ELF64LEKind : ELF32LEKind; 1381 return t.isArch64Bit() ? ELF64BEKind : ELF32BEKind; 1382 } 1383 1384 static uint8_t getBitcodeMachineKind(StringRef path, const Triple &t) { 1385 switch (t.getArch()) { 1386 case Triple::aarch64: 1387 return EM_AARCH64; 1388 case Triple::amdgcn: 1389 case Triple::r600: 1390 return EM_AMDGPU; 1391 case Triple::arm: 1392 case Triple::thumb: 1393 return EM_ARM; 1394 case Triple::avr: 1395 return EM_AVR; 1396 case Triple::mips: 1397 case Triple::mipsel: 1398 case Triple::mips64: 1399 case Triple::mips64el: 1400 return EM_MIPS; 1401 case Triple::msp430: 1402 return EM_MSP430; 1403 case Triple::ppc: 1404 return EM_PPC; 1405 case Triple::ppc64: 1406 case Triple::ppc64le: 1407 return EM_PPC64; 1408 case Triple::riscv32: 1409 case Triple::riscv64: 1410 return EM_RISCV; 1411 case Triple::x86: 1412 return t.isOSIAMCU() ? EM_IAMCU : EM_386; 1413 case Triple::x86_64: 1414 return EM_X86_64; 1415 default: 1416 error(path + ": could not infer e_machine from bitcode target triple " + 1417 t.str()); 1418 return EM_NONE; 1419 } 1420 } 1421 1422 BitcodeFile::BitcodeFile(MemoryBufferRef mb, StringRef archiveName, 1423 uint64_t offsetInArchive) 1424 : InputFile(BitcodeKind, mb) { 1425 this->archiveName = std::string(archiveName); 1426 1427 std::string path = mb.getBufferIdentifier().str(); 1428 if (config->thinLTOIndexOnly) 1429 path = replaceThinLTOSuffix(mb.getBufferIdentifier()); 1430 1431 // ThinLTO assumes that all MemoryBufferRefs given to it have a unique 1432 // name. If two archives define two members with the same name, this 1433 // causes a collision which result in only one of the objects being taken 1434 // into consideration at LTO time (which very likely causes undefined 1435 // symbols later in the link stage). So we append file offset to make 1436 // filename unique. 1437 StringRef name = 1438 archiveName.empty() 1439 ? saver.save(path) 1440 : saver.save(archiveName + "(" + path::filename(path) + " at " + 1441 utostr(offsetInArchive) + ")"); 1442 MemoryBufferRef mbref(mb.getBuffer(), name); 1443 1444 obj = CHECK(lto::InputFile::create(mbref), this); 1445 1446 Triple t(obj->getTargetTriple()); 1447 ekind = getBitcodeELFKind(t); 1448 emachine = getBitcodeMachineKind(mb.getBufferIdentifier(), t); 1449 } 1450 1451 static uint8_t mapVisibility(GlobalValue::VisibilityTypes gvVisibility) { 1452 switch (gvVisibility) { 1453 case GlobalValue::DefaultVisibility: 1454 return STV_DEFAULT; 1455 case GlobalValue::HiddenVisibility: 1456 return STV_HIDDEN; 1457 case GlobalValue::ProtectedVisibility: 1458 return STV_PROTECTED; 1459 } 1460 llvm_unreachable("unknown visibility"); 1461 } 1462 1463 template <class ELFT> 1464 static Symbol *createBitcodeSymbol(const std::vector<bool> &keptComdats, 1465 const lto::InputFile::Symbol &objSym, 1466 BitcodeFile &f) { 1467 StringRef name = saver.save(objSym.getName()); 1468 uint8_t binding = objSym.isWeak() ? STB_WEAK : STB_GLOBAL; 1469 uint8_t type = objSym.isTLS() ? STT_TLS : STT_NOTYPE; 1470 uint8_t visibility = mapVisibility(objSym.getVisibility()); 1471 bool canOmitFromDynSym = objSym.canBeOmittedFromSymbolTable(); 1472 1473 int c = objSym.getComdatIndex(); 1474 if (objSym.isUndefined() || (c != -1 && !keptComdats[c])) { 1475 Undefined newSym(&f, name, binding, visibility, type); 1476 if (canOmitFromDynSym) 1477 newSym.exportDynamic = false; 1478 Symbol *ret = symtab->addSymbol(newSym); 1479 ret->referenced = true; 1480 return ret; 1481 } 1482 1483 if (objSym.isCommon()) 1484 return symtab->addSymbol( 1485 CommonSymbol{&f, name, binding, visibility, STT_OBJECT, 1486 objSym.getCommonAlignment(), objSym.getCommonSize()}); 1487 1488 Defined newSym(&f, name, binding, visibility, type, 0, 0, nullptr); 1489 if (canOmitFromDynSym) 1490 newSym.exportDynamic = false; 1491 return symtab->addSymbol(newSym); 1492 } 1493 1494 template <class ELFT> void BitcodeFile::parse() { 1495 std::vector<bool> keptComdats; 1496 for (StringRef s : obj->getComdatTable()) 1497 keptComdats.push_back( 1498 symtab->comdatGroups.try_emplace(CachedHashStringRef(s), this).second); 1499 1500 for (const lto::InputFile::Symbol &objSym : obj->symbols()) 1501 symbols.push_back(createBitcodeSymbol<ELFT>(keptComdats, objSym, *this)); 1502 1503 for (auto l : obj->getDependentLibraries()) 1504 addDependentLibrary(l, this); 1505 } 1506 1507 void BinaryFile::parse() { 1508 ArrayRef<uint8_t> data = arrayRefFromStringRef(mb.getBuffer()); 1509 auto *section = make<InputSection>(this, SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, 1510 8, data, ".data"); 1511 sections.push_back(section); 1512 1513 // For each input file foo that is embedded to a result as a binary 1514 // blob, we define _binary_foo_{start,end,size} symbols, so that 1515 // user programs can access blobs by name. Non-alphanumeric 1516 // characters in a filename are replaced with underscore. 1517 std::string s = "_binary_" + mb.getBufferIdentifier().str(); 1518 for (size_t i = 0; i < s.size(); ++i) 1519 if (!isAlnum(s[i])) 1520 s[i] = '_'; 1521 1522 symtab->addSymbol(Defined{nullptr, saver.save(s + "_start"), STB_GLOBAL, 1523 STV_DEFAULT, STT_OBJECT, 0, 0, section}); 1524 symtab->addSymbol(Defined{nullptr, saver.save(s + "_end"), STB_GLOBAL, 1525 STV_DEFAULT, STT_OBJECT, data.size(), 0, section}); 1526 symtab->addSymbol(Defined{nullptr, saver.save(s + "_size"), STB_GLOBAL, 1527 STV_DEFAULT, STT_OBJECT, data.size(), 0, nullptr}); 1528 } 1529 1530 InputFile *createObjectFile(MemoryBufferRef mb, StringRef archiveName, 1531 uint64_t offsetInArchive) { 1532 if (isBitcode(mb)) 1533 return make<BitcodeFile>(mb, archiveName, offsetInArchive); 1534 1535 switch (getELFKind(mb, archiveName)) { 1536 case ELF32LEKind: 1537 return make<ObjFile<ELF32LE>>(mb, archiveName); 1538 case ELF32BEKind: 1539 return make<ObjFile<ELF32BE>>(mb, archiveName); 1540 case ELF64LEKind: 1541 return make<ObjFile<ELF64LE>>(mb, archiveName); 1542 case ELF64BEKind: 1543 return make<ObjFile<ELF64BE>>(mb, archiveName); 1544 default: 1545 llvm_unreachable("getELFKind"); 1546 } 1547 } 1548 1549 void LazyObjFile::fetch() { 1550 if (mb.getBuffer().empty()) 1551 return; 1552 1553 InputFile *file = createObjectFile(mb, archiveName, offsetInArchive); 1554 file->groupId = groupId; 1555 1556 mb = {}; 1557 1558 // Copy symbol vector so that the new InputFile doesn't have to 1559 // insert the same defined symbols to the symbol table again. 1560 file->symbols = std::move(symbols); 1561 1562 parseFile(file); 1563 } 1564 1565 template <class ELFT> void LazyObjFile::parse() { 1566 using Elf_Sym = typename ELFT::Sym; 1567 1568 // A lazy object file wraps either a bitcode file or an ELF file. 1569 if (isBitcode(this->mb)) { 1570 std::unique_ptr<lto::InputFile> obj = 1571 CHECK(lto::InputFile::create(this->mb), this); 1572 for (const lto::InputFile::Symbol &sym : obj->symbols()) { 1573 if (sym.isUndefined()) 1574 continue; 1575 symtab->addSymbol(LazyObject{*this, saver.save(sym.getName())}); 1576 } 1577 return; 1578 } 1579 1580 if (getELFKind(this->mb, archiveName) != config->ekind) { 1581 error("incompatible file: " + this->mb.getBufferIdentifier()); 1582 return; 1583 } 1584 1585 // Find a symbol table. 1586 ELFFile<ELFT> obj = check(ELFFile<ELFT>::create(mb.getBuffer())); 1587 ArrayRef<typename ELFT::Shdr> sections = CHECK(obj.sections(), this); 1588 1589 for (const typename ELFT::Shdr &sec : sections) { 1590 if (sec.sh_type != SHT_SYMTAB) 1591 continue; 1592 1593 // A symbol table is found. 1594 ArrayRef<Elf_Sym> eSyms = CHECK(obj.symbols(&sec), this); 1595 uint32_t firstGlobal = sec.sh_info; 1596 StringRef strtab = CHECK(obj.getStringTableForSymtab(sec, sections), this); 1597 this->symbols.resize(eSyms.size()); 1598 1599 // Get existing symbols or insert placeholder symbols. 1600 for (size_t i = firstGlobal, end = eSyms.size(); i != end; ++i) 1601 if (eSyms[i].st_shndx != SHN_UNDEF) 1602 this->symbols[i] = symtab->insert(CHECK(eSyms[i].getName(strtab), this)); 1603 1604 // Replace existing symbols with LazyObject symbols. 1605 // 1606 // resolve() may trigger this->fetch() if an existing symbol is an 1607 // undefined symbol. If that happens, this LazyObjFile has served 1608 // its purpose, and we can exit from the loop early. 1609 for (Symbol *sym : this->symbols) { 1610 if (!sym) 1611 continue; 1612 sym->resolve(LazyObject{*this, sym->getName()}); 1613 1614 // MemoryBuffer is emptied if this file is instantiated as ObjFile. 1615 if (mb.getBuffer().empty()) 1616 return; 1617 } 1618 return; 1619 } 1620 } 1621 1622 std::string replaceThinLTOSuffix(StringRef path) { 1623 StringRef suffix = config->thinLTOObjectSuffixReplace.first; 1624 StringRef repl = config->thinLTOObjectSuffixReplace.second; 1625 1626 if (path.consume_back(suffix)) 1627 return (path + repl).str(); 1628 return std::string(path); 1629 } 1630 1631 template void BitcodeFile::parse<ELF32LE>(); 1632 template void BitcodeFile::parse<ELF32BE>(); 1633 template void BitcodeFile::parse<ELF64LE>(); 1634 template void BitcodeFile::parse<ELF64BE>(); 1635 1636 template void LazyObjFile::parse<ELF32LE>(); 1637 template void LazyObjFile::parse<ELF32BE>(); 1638 template void LazyObjFile::parse<ELF64LE>(); 1639 template void LazyObjFile::parse<ELF64BE>(); 1640 1641 template class ObjFile<ELF32LE>; 1642 template class ObjFile<ELF32BE>; 1643 template class ObjFile<ELF64LE>; 1644 template class ObjFile<ELF64BE>; 1645 1646 template void SharedFile::parse<ELF32LE>(); 1647 template void SharedFile::parse<ELF32BE>(); 1648 template void SharedFile::parse<ELF64LE>(); 1649 template void SharedFile::parse<ELF64BE>(); 1650 1651 } // namespace elf 1652 } // namespace lld 1653