1 //===- InputFiles.cpp -----------------------------------------------------===// 2 // 3 // The LLVM Linker 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "InputFiles.h" 11 #include "Driver.h" 12 #include "Error.h" 13 #include "InputSection.h" 14 #include "LinkerScript.h" 15 #include "SymbolTable.h" 16 #include "Symbols.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/Bitcode/ReaderWriter.h" 19 #include "llvm/CodeGen/Analysis.h" 20 #include "llvm/IR/LLVMContext.h" 21 #include "llvm/IR/Module.h" 22 #include "llvm/Support/raw_ostream.h" 23 24 using namespace llvm; 25 using namespace llvm::ELF; 26 using namespace llvm::object; 27 using namespace llvm::sys::fs; 28 29 using namespace lld; 30 using namespace lld::elf; 31 32 // Returns "(internal)", "foo.a(bar.o)" or "baz.o". 33 std::string elf::getFilename(const InputFile *F) { 34 if (!F) 35 return "(internal)"; 36 if (!F->ArchiveName.empty()) 37 return (F->ArchiveName + "(" + F->getName() + ")").str(); 38 return F->getName(); 39 } 40 41 template <class ELFT> 42 static ELFFile<ELFT> createELFObj(MemoryBufferRef MB) { 43 std::error_code EC; 44 ELFFile<ELFT> F(MB.getBuffer(), EC); 45 if (EC) 46 error(EC, "failed to read " + MB.getBufferIdentifier()); 47 return F; 48 } 49 50 template <class ELFT> static ELFKind getELFKind() { 51 if (ELFT::TargetEndianness == support::little) 52 return ELFT::Is64Bits ? ELF64LEKind : ELF32LEKind; 53 return ELFT::Is64Bits ? ELF64BEKind : ELF32BEKind; 54 } 55 56 template <class ELFT> 57 ELFFileBase<ELFT>::ELFFileBase(Kind K, MemoryBufferRef MB) 58 : InputFile(K, MB), ELFObj(createELFObj<ELFT>(MB)) { 59 EKind = getELFKind<ELFT>(); 60 EMachine = ELFObj.getHeader()->e_machine; 61 } 62 63 template <class ELFT> 64 typename ELFT::SymRange ELFFileBase<ELFT>::getElfSymbols(bool OnlyGlobals) { 65 if (!Symtab) 66 return Elf_Sym_Range(nullptr, nullptr); 67 Elf_Sym_Range Syms = ELFObj.symbols(Symtab); 68 uint32_t NumSymbols = std::distance(Syms.begin(), Syms.end()); 69 uint32_t FirstNonLocal = Symtab->sh_info; 70 if (FirstNonLocal > NumSymbols) 71 fatal(getFilename(this) + ": invalid sh_info in symbol table"); 72 73 if (OnlyGlobals) 74 return makeArrayRef(Syms.begin() + FirstNonLocal, Syms.end()); 75 return makeArrayRef(Syms.begin(), Syms.end()); 76 } 77 78 template <class ELFT> 79 uint32_t ELFFileBase<ELFT>::getSectionIndex(const Elf_Sym &Sym) const { 80 uint32_t I = Sym.st_shndx; 81 if (I == ELF::SHN_XINDEX) 82 return ELFObj.getExtendedSymbolTableIndex(&Sym, Symtab, SymtabSHNDX); 83 if (I >= ELF::SHN_LORESERVE) 84 return 0; 85 return I; 86 } 87 88 template <class ELFT> void ELFFileBase<ELFT>::initStringTable() { 89 if (!Symtab) 90 return; 91 StringTable = check(ELFObj.getStringTableForSymtab(*Symtab)); 92 } 93 94 template <class ELFT> 95 elf::ObjectFile<ELFT>::ObjectFile(MemoryBufferRef M) 96 : ELFFileBase<ELFT>(Base::ObjectKind, M) {} 97 98 template <class ELFT> 99 ArrayRef<SymbolBody *> elf::ObjectFile<ELFT>::getNonLocalSymbols() { 100 if (!this->Symtab) 101 return this->SymbolBodies; 102 uint32_t FirstNonLocal = this->Symtab->sh_info; 103 return makeArrayRef(this->SymbolBodies).slice(FirstNonLocal); 104 } 105 106 template <class ELFT> 107 ArrayRef<SymbolBody *> elf::ObjectFile<ELFT>::getLocalSymbols() { 108 if (!this->Symtab) 109 return this->SymbolBodies; 110 uint32_t FirstNonLocal = this->Symtab->sh_info; 111 return makeArrayRef(this->SymbolBodies).slice(1, FirstNonLocal - 1); 112 } 113 114 template <class ELFT> 115 ArrayRef<SymbolBody *> elf::ObjectFile<ELFT>::getSymbols() { 116 if (!this->Symtab) 117 return this->SymbolBodies; 118 return makeArrayRef(this->SymbolBodies).slice(1); 119 } 120 121 template <class ELFT> uint32_t elf::ObjectFile<ELFT>::getMipsGp0() const { 122 if (ELFT::Is64Bits && MipsOptions && MipsOptions->Reginfo) 123 return MipsOptions->Reginfo->ri_gp_value; 124 if (!ELFT::Is64Bits && MipsReginfo && MipsReginfo->Reginfo) 125 return MipsReginfo->Reginfo->ri_gp_value; 126 return 0; 127 } 128 129 template <class ELFT> 130 void elf::ObjectFile<ELFT>::parse(DenseSet<StringRef> &ComdatGroups) { 131 // Read section and symbol tables. 132 initializeSections(ComdatGroups); 133 initializeSymbols(); 134 } 135 136 // Sections with SHT_GROUP and comdat bits define comdat section groups. 137 // They are identified and deduplicated by group name. This function 138 // returns a group name. 139 template <class ELFT> 140 StringRef elf::ObjectFile<ELFT>::getShtGroupSignature(const Elf_Shdr &Sec) { 141 const ELFFile<ELFT> &Obj = this->ELFObj; 142 const Elf_Shdr *Symtab = check(Obj.getSection(Sec.sh_link)); 143 const Elf_Sym *Sym = Obj.getSymbol(Symtab, Sec.sh_info); 144 StringRef Strtab = check(Obj.getStringTableForSymtab(*Symtab)); 145 return check(Sym->getName(Strtab)); 146 } 147 148 template <class ELFT> 149 ArrayRef<typename elf::ObjectFile<ELFT>::Elf_Word> 150 elf::ObjectFile<ELFT>::getShtGroupEntries(const Elf_Shdr &Sec) { 151 const ELFFile<ELFT> &Obj = this->ELFObj; 152 ArrayRef<Elf_Word> Entries = 153 check(Obj.template getSectionContentsAsArray<Elf_Word>(&Sec)); 154 if (Entries.empty() || Entries[0] != GRP_COMDAT) 155 fatal(getFilename(this) + ": unsupported SHT_GROUP format"); 156 return Entries.slice(1); 157 } 158 159 template <class ELFT> 160 bool elf::ObjectFile<ELFT>::shouldMerge(const Elf_Shdr &Sec) { 161 // We don't merge sections if -O0 (default is -O1). This makes sometimes 162 // the linker significantly faster, although the output will be bigger. 163 if (Config->Optimize == 0) 164 return false; 165 166 // We don't merge if linker script has SECTIONS command. When script 167 // do layout it can merge several sections with different attributes 168 // into single output sections. We currently do not support adding 169 // mergeable input sections to regular output ones as well as adding 170 // regular input sections to mergeable output. 171 if (ScriptConfig->HasContents) 172 return false; 173 174 // A mergeable section with size 0 is useless because they don't have 175 // any data to merge. A mergeable string section with size 0 can be 176 // argued as invalid because it doesn't end with a null character. 177 // We'll avoid a mess by handling them as if they were non-mergeable. 178 if (Sec.sh_size == 0) 179 return false; 180 181 uintX_t Flags = Sec.sh_flags; 182 if (!(Flags & SHF_MERGE)) 183 return false; 184 if (Flags & SHF_WRITE) 185 fatal(getFilename(this) + ": writable SHF_MERGE section is not supported"); 186 uintX_t EntSize = Sec.sh_entsize; 187 if (!EntSize || Sec.sh_size % EntSize) 188 fatal(getFilename(this) + 189 ": SHF_MERGE section size must be a multiple of sh_entsize"); 190 191 // Don't try to merge if the alignment is larger than the sh_entsize and this 192 // is not SHF_STRINGS. 193 // 194 // Since this is not a SHF_STRINGS, we would need to pad after every entity. 195 // It would be equivalent for the producer of the .o to just set a larger 196 // sh_entsize. 197 if (Flags & SHF_STRINGS) 198 return true; 199 200 return Sec.sh_addralign <= EntSize; 201 } 202 203 template <class ELFT> 204 void elf::ObjectFile<ELFT>::initializeSections( 205 DenseSet<StringRef> &ComdatGroups) { 206 uint64_t Size = this->ELFObj.getNumSections(); 207 Sections.resize(Size); 208 unsigned I = -1; 209 const ELFFile<ELFT> &Obj = this->ELFObj; 210 for (const Elf_Shdr &Sec : Obj.sections()) { 211 ++I; 212 if (Sections[I] == &InputSection<ELFT>::Discarded) 213 continue; 214 215 switch (Sec.sh_type) { 216 case SHT_GROUP: 217 Sections[I] = &InputSection<ELFT>::Discarded; 218 if (ComdatGroups.insert(getShtGroupSignature(Sec)).second) 219 continue; 220 for (uint32_t SecIndex : getShtGroupEntries(Sec)) { 221 if (SecIndex >= Size) 222 fatal(getFilename(this) + ": invalid section index in group: " + 223 Twine(SecIndex)); 224 Sections[SecIndex] = &InputSection<ELFT>::Discarded; 225 } 226 break; 227 case SHT_SYMTAB: 228 this->Symtab = &Sec; 229 break; 230 case SHT_SYMTAB_SHNDX: 231 this->SymtabSHNDX = check(Obj.getSHNDXTable(Sec)); 232 break; 233 case SHT_STRTAB: 234 case SHT_NULL: 235 break; 236 default: 237 Sections[I] = createInputSection(Sec); 238 } 239 } 240 } 241 242 template <class ELFT> 243 InputSectionBase<ELFT> * 244 elf::ObjectFile<ELFT>::getRelocTarget(const Elf_Shdr &Sec) { 245 uint32_t Idx = Sec.sh_info; 246 if (Idx >= Sections.size()) 247 fatal(getFilename(this) + ": invalid relocated section index: " + 248 Twine(Idx)); 249 InputSectionBase<ELFT> *Target = Sections[Idx]; 250 251 // Strictly speaking, a relocation section must be included in the 252 // group of the section it relocates. However, LLVM 3.3 and earlier 253 // would fail to do so, so we gracefully handle that case. 254 if (Target == &InputSection<ELFT>::Discarded) 255 return nullptr; 256 257 if (!Target) 258 fatal(getFilename(this) + ": unsupported relocation reference"); 259 return Target; 260 } 261 262 template <class ELFT> 263 InputSectionBase<ELFT> * 264 elf::ObjectFile<ELFT>::createInputSection(const Elf_Shdr &Sec) { 265 StringRef Name = check(this->ELFObj.getSectionName(&Sec)); 266 267 switch (Sec.sh_type) { 268 case SHT_ARM_ATTRIBUTES: 269 // FIXME: ARM meta-data section. At present attributes are ignored, 270 // they can be used to reason about object compatibility. 271 return &InputSection<ELFT>::Discarded; 272 case SHT_MIPS_REGINFO: 273 MipsReginfo.reset(new MipsReginfoInputSection<ELFT>(this, &Sec, Name)); 274 return MipsReginfo.get(); 275 case SHT_MIPS_OPTIONS: 276 MipsOptions.reset(new MipsOptionsInputSection<ELFT>(this, &Sec, Name)); 277 return MipsOptions.get(); 278 case SHT_MIPS_ABIFLAGS: 279 MipsAbiFlags.reset(new MipsAbiFlagsInputSection<ELFT>(this, &Sec, Name)); 280 return MipsAbiFlags.get(); 281 case SHT_RELA: 282 case SHT_REL: { 283 // This section contains relocation information. 284 // If -r is given, we do not interpret or apply relocation 285 // but just copy relocation sections to output. 286 if (Config->Relocatable) 287 return new (IAlloc.Allocate()) InputSection<ELFT>(this, &Sec, Name); 288 289 // Find the relocation target section and associate this 290 // section with it. 291 InputSectionBase<ELFT> *Target = getRelocTarget(Sec); 292 if (!Target) 293 return nullptr; 294 if (auto *S = dyn_cast<InputSection<ELFT>>(Target)) { 295 S->RelocSections.push_back(&Sec); 296 return nullptr; 297 } 298 if (auto *S = dyn_cast<EhInputSection<ELFT>>(Target)) { 299 if (S->RelocSection) 300 fatal(getFilename(this) + 301 ": multiple relocation sections to .eh_frame are not supported"); 302 S->RelocSection = &Sec; 303 return nullptr; 304 } 305 fatal(getFilename(this) + 306 ": relocations pointing to SHF_MERGE are not supported"); 307 } 308 } 309 310 // .note.GNU-stack is a marker section to control the presence of 311 // PT_GNU_STACK segment in outputs. Since the presence of the segment 312 // is controlled only by the command line option (-z execstack) in LLD, 313 // .note.GNU-stack is ignored. 314 if (Name == ".note.GNU-stack") 315 return &InputSection<ELFT>::Discarded; 316 317 if (Name == ".note.GNU-split-stack") { 318 error("objects using splitstacks are not supported"); 319 return &InputSection<ELFT>::Discarded; 320 } 321 322 if (Config->Strip != StripPolicy::None && Name.startswith(".debug")) 323 return &InputSection<ELFT>::Discarded; 324 325 // The linker merges EH (exception handling) frames and creates a 326 // .eh_frame_hdr section for runtime. So we handle them with a special 327 // class. For relocatable outputs, they are just passed through. 328 if (Name == ".eh_frame" && !Config->Relocatable) 329 return new (EHAlloc.Allocate()) EhInputSection<ELFT>(this, &Sec, Name); 330 331 if (shouldMerge(Sec)) 332 return new (MAlloc.Allocate()) MergeInputSection<ELFT>(this, &Sec, Name); 333 return new (IAlloc.Allocate()) InputSection<ELFT>(this, &Sec, Name); 334 } 335 336 template <class ELFT> void elf::ObjectFile<ELFT>::initializeSymbols() { 337 this->initStringTable(); 338 Elf_Sym_Range Syms = this->getElfSymbols(false); 339 uint32_t NumSymbols = std::distance(Syms.begin(), Syms.end()); 340 SymbolBodies.reserve(NumSymbols); 341 for (const Elf_Sym &Sym : Syms) 342 SymbolBodies.push_back(createSymbolBody(&Sym)); 343 } 344 345 template <class ELFT> 346 InputSectionBase<ELFT> * 347 elf::ObjectFile<ELFT>::getSection(const Elf_Sym &Sym) const { 348 uint32_t Index = this->getSectionIndex(Sym); 349 if (Index == 0) 350 return nullptr; 351 if (Index >= Sections.size()) 352 fatal(getFilename(this) + ": invalid section index: " + Twine(Index)); 353 InputSectionBase<ELFT> *S = Sections[Index]; 354 // We found that GNU assembler 2.17.50 [FreeBSD] 2007-07-03 355 // could generate broken objects. STT_SECTION symbols can be 356 // associated with SHT_REL[A]/SHT_SYMTAB/SHT_STRTAB sections. 357 // In this case it is fine for section to be null here as we 358 // do not allocate sections of these types. 359 if (!S || S == &InputSectionBase<ELFT>::Discarded) 360 return S; 361 return S->Repl; 362 } 363 364 template <class ELFT> 365 SymbolBody *elf::ObjectFile<ELFT>::createSymbolBody(const Elf_Sym *Sym) { 366 int Binding = Sym->getBinding(); 367 InputSectionBase<ELFT> *Sec = getSection(*Sym); 368 if (Binding == STB_LOCAL) { 369 if (Sym->st_shndx == SHN_UNDEF) 370 return new (this->Alloc) 371 Undefined(Sym->st_name, Sym->st_other, Sym->getType(), this); 372 return new (this->Alloc) DefinedRegular<ELFT>(*Sym, Sec); 373 } 374 375 StringRef Name = check(Sym->getName(this->StringTable)); 376 377 switch (Sym->st_shndx) { 378 case SHN_UNDEF: 379 return elf::Symtab<ELFT>::X 380 ->addUndefined(Name, Binding, Sym->st_other, Sym->getType(), 381 /*CanOmitFromDynSym*/ false, /*HasUnnamedAddr*/ false, 382 this) 383 ->body(); 384 case SHN_COMMON: 385 return elf::Symtab<ELFT>::X 386 ->addCommon(Name, Sym->st_size, Sym->st_value, Binding, Sym->st_other, 387 Sym->getType(), /*HasUnnamedAddr*/ false, this) 388 ->body(); 389 } 390 391 switch (Binding) { 392 default: 393 fatal(getFilename(this) + ": unexpected binding: " + Twine(Binding)); 394 case STB_GLOBAL: 395 case STB_WEAK: 396 case STB_GNU_UNIQUE: 397 if (Sec == &InputSection<ELFT>::Discarded) 398 return elf::Symtab<ELFT>::X 399 ->addUndefined(Name, Binding, Sym->st_other, Sym->getType(), 400 /*CanOmitFromDynSym*/ false, 401 /*HasUnnamedAddr*/ false, this) 402 ->body(); 403 return elf::Symtab<ELFT>::X->addRegular(Name, *Sym, Sec)->body(); 404 } 405 } 406 407 template <class ELFT> void ArchiveFile::parse() { 408 File = check(Archive::create(MB), "failed to parse archive"); 409 410 // Read the symbol table to construct Lazy objects. 411 for (const Archive::Symbol &Sym : File->symbols()) 412 Symtab<ELFT>::X->addLazyArchive(this, Sym); 413 } 414 415 // Returns a buffer pointing to a member file containing a given symbol. 416 MemoryBufferRef ArchiveFile::getMember(const Archive::Symbol *Sym) { 417 Archive::Child C = 418 check(Sym->getMember(), 419 "could not get the member for symbol " + Sym->getName()); 420 421 if (!Seen.insert(C.getChildOffset()).second) 422 return MemoryBufferRef(); 423 424 MemoryBufferRef Ret = 425 check(C.getMemoryBufferRef(), 426 "could not get the buffer for the member defining symbol " + 427 Sym->getName()); 428 429 if (C.getParent()->isThin() && Driver->Cpio) 430 Driver->Cpio->append(relativeToRoot(check(C.getFullName())), 431 Ret.getBuffer()); 432 433 return Ret; 434 } 435 436 template <class ELFT> 437 SharedFile<ELFT>::SharedFile(MemoryBufferRef M) 438 : ELFFileBase<ELFT>(Base::SharedKind, M), AsNeeded(Config->AsNeeded) {} 439 440 template <class ELFT> 441 const typename ELFT::Shdr * 442 SharedFile<ELFT>::getSection(const Elf_Sym &Sym) const { 443 uint32_t Index = this->getSectionIndex(Sym); 444 if (Index == 0) 445 return nullptr; 446 return check(this->ELFObj.getSection(Index)); 447 } 448 449 // Partially parse the shared object file so that we can call 450 // getSoName on this object. 451 template <class ELFT> void SharedFile<ELFT>::parseSoName() { 452 typedef typename ELFT::Dyn Elf_Dyn; 453 typedef typename ELFT::uint uintX_t; 454 const Elf_Shdr *DynamicSec = nullptr; 455 456 const ELFFile<ELFT> Obj = this->ELFObj; 457 for (const Elf_Shdr &Sec : Obj.sections()) { 458 switch (Sec.sh_type) { 459 default: 460 continue; 461 case SHT_DYNSYM: 462 this->Symtab = &Sec; 463 break; 464 case SHT_DYNAMIC: 465 DynamicSec = &Sec; 466 break; 467 case SHT_SYMTAB_SHNDX: 468 this->SymtabSHNDX = check(Obj.getSHNDXTable(Sec)); 469 break; 470 case SHT_GNU_versym: 471 this->VersymSec = &Sec; 472 break; 473 case SHT_GNU_verdef: 474 this->VerdefSec = &Sec; 475 break; 476 } 477 } 478 479 this->initStringTable(); 480 SoName = this->getName(); 481 482 if (!DynamicSec) 483 return; 484 auto *Begin = 485 reinterpret_cast<const Elf_Dyn *>(Obj.base() + DynamicSec->sh_offset); 486 const Elf_Dyn *End = Begin + DynamicSec->sh_size / sizeof(Elf_Dyn); 487 488 for (const Elf_Dyn &Dyn : make_range(Begin, End)) { 489 if (Dyn.d_tag == DT_SONAME) { 490 uintX_t Val = Dyn.getVal(); 491 if (Val >= this->StringTable.size()) 492 fatal(getFilename(this) + ": invalid DT_SONAME entry"); 493 SoName = StringRef(this->StringTable.data() + Val); 494 return; 495 } 496 } 497 } 498 499 // Parse the version definitions in the object file if present. Returns a vector 500 // whose nth element contains a pointer to the Elf_Verdef for version identifier 501 // n. Version identifiers that are not definitions map to nullptr. The array 502 // always has at least length 1. 503 template <class ELFT> 504 std::vector<const typename ELFT::Verdef *> 505 SharedFile<ELFT>::parseVerdefs(const Elf_Versym *&Versym) { 506 std::vector<const Elf_Verdef *> Verdefs(1); 507 // We only need to process symbol versions for this DSO if it has both a 508 // versym and a verdef section, which indicates that the DSO contains symbol 509 // version definitions. 510 if (!VersymSec || !VerdefSec) 511 return Verdefs; 512 513 // The location of the first global versym entry. 514 Versym = reinterpret_cast<const Elf_Versym *>(this->ELFObj.base() + 515 VersymSec->sh_offset) + 516 this->Symtab->sh_info; 517 518 // We cannot determine the largest verdef identifier without inspecting 519 // every Elf_Verdef, but both bfd and gold assign verdef identifiers 520 // sequentially starting from 1, so we predict that the largest identifier 521 // will be VerdefCount. 522 unsigned VerdefCount = VerdefSec->sh_info; 523 Verdefs.resize(VerdefCount + 1); 524 525 // Build the Verdefs array by following the chain of Elf_Verdef objects 526 // from the start of the .gnu.version_d section. 527 const uint8_t *Verdef = this->ELFObj.base() + VerdefSec->sh_offset; 528 for (unsigned I = 0; I != VerdefCount; ++I) { 529 auto *CurVerdef = reinterpret_cast<const Elf_Verdef *>(Verdef); 530 Verdef += CurVerdef->vd_next; 531 unsigned VerdefIndex = CurVerdef->vd_ndx; 532 if (Verdefs.size() <= VerdefIndex) 533 Verdefs.resize(VerdefIndex + 1); 534 Verdefs[VerdefIndex] = CurVerdef; 535 } 536 537 return Verdefs; 538 } 539 540 // Fully parse the shared object file. This must be called after parseSoName(). 541 template <class ELFT> void SharedFile<ELFT>::parseRest() { 542 // Create mapping from version identifiers to Elf_Verdef entries. 543 const Elf_Versym *Versym = nullptr; 544 std::vector<const Elf_Verdef *> Verdefs = parseVerdefs(Versym); 545 546 Elf_Sym_Range Syms = this->getElfSymbols(true); 547 for (const Elf_Sym &Sym : Syms) { 548 unsigned VersymIndex = 0; 549 if (Versym) { 550 VersymIndex = Versym->vs_index; 551 ++Versym; 552 } 553 554 StringRef Name = check(Sym.getName(this->StringTable)); 555 if (Sym.isUndefined()) { 556 Undefs.push_back(Name); 557 continue; 558 } 559 560 if (Versym) { 561 // Ignore local symbols and non-default versions. 562 if (VersymIndex == VER_NDX_LOCAL || (VersymIndex & VERSYM_HIDDEN)) 563 continue; 564 } 565 566 const Elf_Verdef *V = 567 VersymIndex == VER_NDX_GLOBAL ? nullptr : Verdefs[VersymIndex]; 568 elf::Symtab<ELFT>::X->addShared(this, Name, Sym, V); 569 } 570 } 571 572 static ELFKind getBitcodeELFKind(MemoryBufferRef MB) { 573 Triple T(getBitcodeTargetTriple(MB, Driver->Context)); 574 if (T.isLittleEndian()) 575 return T.isArch64Bit() ? ELF64LEKind : ELF32LEKind; 576 return T.isArch64Bit() ? ELF64BEKind : ELF32BEKind; 577 } 578 579 static uint8_t getBitcodeMachineKind(MemoryBufferRef MB) { 580 Triple T(getBitcodeTargetTriple(MB, Driver->Context)); 581 switch (T.getArch()) { 582 case Triple::aarch64: 583 return EM_AARCH64; 584 case Triple::arm: 585 return EM_ARM; 586 case Triple::mips: 587 case Triple::mipsel: 588 case Triple::mips64: 589 case Triple::mips64el: 590 return EM_MIPS; 591 case Triple::ppc: 592 return EM_PPC; 593 case Triple::ppc64: 594 return EM_PPC64; 595 case Triple::x86: 596 return T.isOSIAMCU() ? EM_IAMCU : EM_386; 597 case Triple::x86_64: 598 return EM_X86_64; 599 default: 600 fatal(MB.getBufferIdentifier() + 601 ": could not infer e_machine from bitcode target triple " + T.str()); 602 } 603 } 604 605 BitcodeFile::BitcodeFile(MemoryBufferRef MB) : InputFile(BitcodeKind, MB) { 606 EKind = getBitcodeELFKind(MB); 607 EMachine = getBitcodeMachineKind(MB); 608 } 609 610 static uint8_t getGvVisibility(const GlobalValue *GV) { 611 switch (GV->getVisibility()) { 612 case GlobalValue::DefaultVisibility: 613 return STV_DEFAULT; 614 case GlobalValue::HiddenVisibility: 615 return STV_HIDDEN; 616 case GlobalValue::ProtectedVisibility: 617 return STV_PROTECTED; 618 } 619 llvm_unreachable("unknown visibility"); 620 } 621 622 template <class ELFT> 623 Symbol *BitcodeFile::createSymbol(const DenseSet<const Comdat *> &KeptComdats, 624 const IRObjectFile &Obj, 625 const BasicSymbolRef &Sym) { 626 const GlobalValue *GV = Obj.getSymbolGV(Sym.getRawDataRefImpl()); 627 628 SmallString<64> Name; 629 raw_svector_ostream OS(Name); 630 Sym.printName(OS); 631 StringRef NameRef = Saver.save(StringRef(Name)); 632 633 uint32_t Flags = Sym.getFlags(); 634 uint32_t Binding = (Flags & BasicSymbolRef::SF_Weak) ? STB_WEAK : STB_GLOBAL; 635 636 uint8_t Type = STT_NOTYPE; 637 uint8_t Visibility; 638 bool CanOmitFromDynSym = false; 639 bool HasUnnamedAddr = false; 640 641 // FIXME: Expose a thread-local flag for module asm symbols. 642 if (GV) { 643 if (GV->isThreadLocal()) 644 Type = STT_TLS; 645 CanOmitFromDynSym = canBeOmittedFromSymbolTable(GV); 646 Visibility = getGvVisibility(GV); 647 HasUnnamedAddr = 648 GV->getUnnamedAddr() == llvm::GlobalValue::UnnamedAddr::Global; 649 } else { 650 // FIXME: Set SF_Hidden flag correctly for module asm symbols, and expose 651 // protected visibility. 652 Visibility = STV_DEFAULT; 653 } 654 655 if (GV) 656 if (const Comdat *C = GV->getComdat()) 657 if (!KeptComdats.count(C)) 658 return Symtab<ELFT>::X->addUndefined(NameRef, Binding, Visibility, Type, 659 CanOmitFromDynSym, HasUnnamedAddr, 660 this); 661 662 const Module &M = Obj.getModule(); 663 if (Flags & BasicSymbolRef::SF_Undefined) 664 return Symtab<ELFT>::X->addUndefined(NameRef, Binding, Visibility, Type, 665 CanOmitFromDynSym, HasUnnamedAddr, 666 this); 667 if (Flags & BasicSymbolRef::SF_Common) { 668 // FIXME: Set SF_Common flag correctly for module asm symbols, and expose 669 // size and alignment. 670 assert(GV); 671 const DataLayout &DL = M.getDataLayout(); 672 uint64_t Size = DL.getTypeAllocSize(GV->getValueType()); 673 return Symtab<ELFT>::X->addCommon(NameRef, Size, GV->getAlignment(), 674 Binding, Visibility, STT_OBJECT, 675 HasUnnamedAddr, this); 676 } 677 return Symtab<ELFT>::X->addBitcode(NameRef, Binding, Visibility, Type, 678 CanOmitFromDynSym, HasUnnamedAddr, this); 679 } 680 681 bool BitcodeFile::shouldSkip(uint32_t Flags) { 682 return !(Flags & BasicSymbolRef::SF_Global) || 683 (Flags & BasicSymbolRef::SF_FormatSpecific); 684 } 685 686 template <class ELFT> 687 void BitcodeFile::parse(DenseSet<StringRef> &ComdatGroups) { 688 Obj = check(IRObjectFile::create(MB, Driver->Context)); 689 const Module &M = Obj->getModule(); 690 691 DenseSet<const Comdat *> KeptComdats; 692 for (const auto &P : M.getComdatSymbolTable()) { 693 StringRef N = Saver.save(P.first()); 694 if (ComdatGroups.insert(N).second) 695 KeptComdats.insert(&P.second); 696 } 697 698 for (const BasicSymbolRef &Sym : Obj->symbols()) 699 if (!shouldSkip(Sym.getFlags())) 700 Symbols.push_back(createSymbol<ELFT>(KeptComdats, *Obj, Sym)); 701 } 702 703 template <template <class> class T> 704 static std::unique_ptr<InputFile> createELFFile(MemoryBufferRef MB) { 705 unsigned char Size; 706 unsigned char Endian; 707 std::tie(Size, Endian) = getElfArchType(MB.getBuffer()); 708 if (Endian != ELFDATA2LSB && Endian != ELFDATA2MSB) 709 fatal("invalid data encoding: " + MB.getBufferIdentifier()); 710 711 std::unique_ptr<InputFile> Obj; 712 if (Size == ELFCLASS32 && Endian == ELFDATA2LSB) 713 Obj.reset(new T<ELF32LE>(MB)); 714 else if (Size == ELFCLASS32 && Endian == ELFDATA2MSB) 715 Obj.reset(new T<ELF32BE>(MB)); 716 else if (Size == ELFCLASS64 && Endian == ELFDATA2LSB) 717 Obj.reset(new T<ELF64LE>(MB)); 718 else if (Size == ELFCLASS64 && Endian == ELFDATA2MSB) 719 Obj.reset(new T<ELF64BE>(MB)); 720 else 721 fatal("invalid file class: " + MB.getBufferIdentifier()); 722 723 if (!Config->FirstElf) 724 Config->FirstElf = Obj.get(); 725 return Obj; 726 } 727 728 static bool isBitcode(MemoryBufferRef MB) { 729 using namespace sys::fs; 730 return identify_magic(MB.getBuffer()) == file_magic::bitcode; 731 } 732 733 std::unique_ptr<InputFile> elf::createObjectFile(MemoryBufferRef MB, 734 StringRef ArchiveName) { 735 std::unique_ptr<InputFile> F; 736 if (isBitcode(MB)) 737 F.reset(new BitcodeFile(MB)); 738 else 739 F = createELFFile<ObjectFile>(MB); 740 F->ArchiveName = ArchiveName; 741 return F; 742 } 743 744 std::unique_ptr<InputFile> elf::createSharedFile(MemoryBufferRef MB) { 745 return createELFFile<SharedFile>(MB); 746 } 747 748 MemoryBufferRef LazyObjectFile::getBuffer() { 749 if (Seen) 750 return MemoryBufferRef(); 751 Seen = true; 752 return MB; 753 } 754 755 template <class ELFT> 756 void LazyObjectFile::parse() { 757 for (StringRef Sym : getSymbols()) 758 Symtab<ELFT>::X->addLazyObject(Sym, *this); 759 } 760 761 template <class ELFT> std::vector<StringRef> LazyObjectFile::getElfSymbols() { 762 typedef typename ELFT::Shdr Elf_Shdr; 763 typedef typename ELFT::Sym Elf_Sym; 764 typedef typename ELFT::SymRange Elf_Sym_Range; 765 766 const ELFFile<ELFT> Obj = createELFObj<ELFT>(this->MB); 767 for (const Elf_Shdr &Sec : Obj.sections()) { 768 if (Sec.sh_type != SHT_SYMTAB) 769 continue; 770 Elf_Sym_Range Syms = Obj.symbols(&Sec); 771 uint32_t FirstNonLocal = Sec.sh_info; 772 StringRef StringTable = check(Obj.getStringTableForSymtab(Sec)); 773 std::vector<StringRef> V; 774 for (const Elf_Sym &Sym : Syms.slice(FirstNonLocal)) 775 if (Sym.st_shndx != SHN_UNDEF) 776 V.push_back(check(Sym.getName(StringTable))); 777 return V; 778 } 779 return {}; 780 } 781 782 std::vector<StringRef> LazyObjectFile::getBitcodeSymbols() { 783 LLVMContext Context; 784 std::unique_ptr<IRObjectFile> Obj = 785 check(IRObjectFile::create(this->MB, Context)); 786 std::vector<StringRef> V; 787 for (const BasicSymbolRef &Sym : Obj->symbols()) { 788 uint32_t Flags = Sym.getFlags(); 789 if (BitcodeFile::shouldSkip(Flags)) 790 continue; 791 if (Flags & BasicSymbolRef::SF_Undefined) 792 continue; 793 SmallString<64> Name; 794 raw_svector_ostream OS(Name); 795 Sym.printName(OS); 796 V.push_back(Saver.save(StringRef(Name))); 797 } 798 return V; 799 } 800 801 // Returns a vector of globally-visible defined symbol names. 802 std::vector<StringRef> LazyObjectFile::getSymbols() { 803 if (isBitcode(this->MB)) 804 return getBitcodeSymbols(); 805 806 unsigned char Size; 807 unsigned char Endian; 808 std::tie(Size, Endian) = getElfArchType(this->MB.getBuffer()); 809 if (Size == ELFCLASS32) { 810 if (Endian == ELFDATA2LSB) 811 return getElfSymbols<ELF32LE>(); 812 return getElfSymbols<ELF32BE>(); 813 } 814 if (Endian == ELFDATA2LSB) 815 return getElfSymbols<ELF64LE>(); 816 return getElfSymbols<ELF64BE>(); 817 } 818 819 template void ArchiveFile::parse<ELF32LE>(); 820 template void ArchiveFile::parse<ELF32BE>(); 821 template void ArchiveFile::parse<ELF64LE>(); 822 template void ArchiveFile::parse<ELF64BE>(); 823 824 template void BitcodeFile::parse<ELF32LE>(DenseSet<StringRef> &); 825 template void BitcodeFile::parse<ELF32BE>(DenseSet<StringRef> &); 826 template void BitcodeFile::parse<ELF64LE>(DenseSet<StringRef> &); 827 template void BitcodeFile::parse<ELF64BE>(DenseSet<StringRef> &); 828 829 template void LazyObjectFile::parse<ELF32LE>(); 830 template void LazyObjectFile::parse<ELF32BE>(); 831 template void LazyObjectFile::parse<ELF64LE>(); 832 template void LazyObjectFile::parse<ELF64BE>(); 833 834 template class elf::ELFFileBase<ELF32LE>; 835 template class elf::ELFFileBase<ELF32BE>; 836 template class elf::ELFFileBase<ELF64LE>; 837 template class elf::ELFFileBase<ELF64BE>; 838 839 template class elf::ObjectFile<ELF32LE>; 840 template class elf::ObjectFile<ELF32BE>; 841 template class elf::ObjectFile<ELF64LE>; 842 template class elf::ObjectFile<ELF64BE>; 843 844 template class elf::SharedFile<ELF32LE>; 845 template class elf::SharedFile<ELF32BE>; 846 template class elf::SharedFile<ELF64LE>; 847 template class elf::SharedFile<ELF64BE>; 848