1 //===- InputFiles.cpp -----------------------------------------------------===//
2 //
3 //                             The LLVM Linker
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "InputFiles.h"
11 #include "Driver.h"
12 #include "Error.h"
13 #include "InputSection.h"
14 #include "LinkerScript.h"
15 #include "SymbolTable.h"
16 #include "Symbols.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/Bitcode/ReaderWriter.h"
19 #include "llvm/CodeGen/Analysis.h"
20 #include "llvm/IR/LLVMContext.h"
21 #include "llvm/IR/Module.h"
22 #include "llvm/Support/raw_ostream.h"
23 
24 using namespace llvm;
25 using namespace llvm::ELF;
26 using namespace llvm::object;
27 using namespace llvm::sys::fs;
28 
29 using namespace lld;
30 using namespace lld::elf;
31 
32 // Returns "(internal)", "foo.a(bar.o)" or "baz.o".
33 std::string elf::getFilename(const InputFile *F) {
34   if (!F)
35     return "(internal)";
36   if (!F->ArchiveName.empty())
37     return (F->ArchiveName + "(" + F->getName() + ")").str();
38   return F->getName();
39 }
40 
41 template <class ELFT>
42 static ELFFile<ELFT> createELFObj(MemoryBufferRef MB) {
43   std::error_code EC;
44   ELFFile<ELFT> F(MB.getBuffer(), EC);
45   if (EC)
46     error(EC, "failed to read " + MB.getBufferIdentifier());
47   return F;
48 }
49 
50 template <class ELFT> static ELFKind getELFKind() {
51   if (ELFT::TargetEndianness == support::little)
52     return ELFT::Is64Bits ? ELF64LEKind : ELF32LEKind;
53   return ELFT::Is64Bits ? ELF64BEKind : ELF32BEKind;
54 }
55 
56 template <class ELFT>
57 ELFFileBase<ELFT>::ELFFileBase(Kind K, MemoryBufferRef MB)
58     : InputFile(K, MB), ELFObj(createELFObj<ELFT>(MB)) {
59   EKind = getELFKind<ELFT>();
60   EMachine = ELFObj.getHeader()->e_machine;
61 }
62 
63 template <class ELFT>
64 typename ELFT::SymRange ELFFileBase<ELFT>::getElfSymbols(bool OnlyGlobals) {
65   if (!Symtab)
66     return Elf_Sym_Range(nullptr, nullptr);
67   Elf_Sym_Range Syms = ELFObj.symbols(Symtab);
68   uint32_t NumSymbols = std::distance(Syms.begin(), Syms.end());
69   uint32_t FirstNonLocal = Symtab->sh_info;
70   if (FirstNonLocal > NumSymbols)
71     fatal(getFilename(this) + ": invalid sh_info in symbol table");
72 
73   if (OnlyGlobals)
74     return makeArrayRef(Syms.begin() + FirstNonLocal, Syms.end());
75   return makeArrayRef(Syms.begin(), Syms.end());
76 }
77 
78 template <class ELFT>
79 uint32_t ELFFileBase<ELFT>::getSectionIndex(const Elf_Sym &Sym) const {
80   uint32_t I = Sym.st_shndx;
81   if (I == ELF::SHN_XINDEX)
82     return ELFObj.getExtendedSymbolTableIndex(&Sym, Symtab, SymtabSHNDX);
83   if (I >= ELF::SHN_LORESERVE)
84     return 0;
85   return I;
86 }
87 
88 template <class ELFT> void ELFFileBase<ELFT>::initStringTable() {
89   if (!Symtab)
90     return;
91   StringTable = check(ELFObj.getStringTableForSymtab(*Symtab));
92 }
93 
94 template <class ELFT>
95 elf::ObjectFile<ELFT>::ObjectFile(MemoryBufferRef M)
96     : ELFFileBase<ELFT>(Base::ObjectKind, M) {}
97 
98 template <class ELFT>
99 ArrayRef<SymbolBody *> elf::ObjectFile<ELFT>::getNonLocalSymbols() {
100   if (!this->Symtab)
101     return this->SymbolBodies;
102   uint32_t FirstNonLocal = this->Symtab->sh_info;
103   return makeArrayRef(this->SymbolBodies).slice(FirstNonLocal);
104 }
105 
106 template <class ELFT>
107 ArrayRef<SymbolBody *> elf::ObjectFile<ELFT>::getLocalSymbols() {
108   if (!this->Symtab)
109     return this->SymbolBodies;
110   uint32_t FirstNonLocal = this->Symtab->sh_info;
111   return makeArrayRef(this->SymbolBodies).slice(1, FirstNonLocal - 1);
112 }
113 
114 template <class ELFT>
115 ArrayRef<SymbolBody *> elf::ObjectFile<ELFT>::getSymbols() {
116   if (!this->Symtab)
117     return this->SymbolBodies;
118   return makeArrayRef(this->SymbolBodies).slice(1);
119 }
120 
121 template <class ELFT> uint32_t elf::ObjectFile<ELFT>::getMipsGp0() const {
122   if (ELFT::Is64Bits && MipsOptions && MipsOptions->Reginfo)
123     return MipsOptions->Reginfo->ri_gp_value;
124   if (!ELFT::Is64Bits && MipsReginfo && MipsReginfo->Reginfo)
125     return MipsReginfo->Reginfo->ri_gp_value;
126   return 0;
127 }
128 
129 template <class ELFT>
130 void elf::ObjectFile<ELFT>::parse(DenseSet<StringRef> &ComdatGroups) {
131   // Read section and symbol tables.
132   initializeSections(ComdatGroups);
133   initializeSymbols();
134 }
135 
136 // Sections with SHT_GROUP and comdat bits define comdat section groups.
137 // They are identified and deduplicated by group name. This function
138 // returns a group name.
139 template <class ELFT>
140 StringRef elf::ObjectFile<ELFT>::getShtGroupSignature(const Elf_Shdr &Sec) {
141   const ELFFile<ELFT> &Obj = this->ELFObj;
142   const Elf_Shdr *Symtab = check(Obj.getSection(Sec.sh_link));
143   const Elf_Sym *Sym = Obj.getSymbol(Symtab, Sec.sh_info);
144   StringRef Strtab = check(Obj.getStringTableForSymtab(*Symtab));
145   return check(Sym->getName(Strtab));
146 }
147 
148 template <class ELFT>
149 ArrayRef<typename elf::ObjectFile<ELFT>::Elf_Word>
150 elf::ObjectFile<ELFT>::getShtGroupEntries(const Elf_Shdr &Sec) {
151   const ELFFile<ELFT> &Obj = this->ELFObj;
152   ArrayRef<Elf_Word> Entries =
153       check(Obj.template getSectionContentsAsArray<Elf_Word>(&Sec));
154   if (Entries.empty() || Entries[0] != GRP_COMDAT)
155     fatal(getFilename(this) + ": unsupported SHT_GROUP format");
156   return Entries.slice(1);
157 }
158 
159 template <class ELFT>
160 bool elf::ObjectFile<ELFT>::shouldMerge(const Elf_Shdr &Sec) {
161   // We don't merge sections if -O0 (default is -O1). This makes sometimes
162   // the linker significantly faster, although the output will be bigger.
163   if (Config->Optimize == 0)
164     return false;
165 
166   // We don't merge if linker script has SECTIONS command. When script
167   // do layout it can merge several sections with different attributes
168   // into single output sections. We currently do not support adding
169   // mergeable input sections to regular output ones as well as adding
170   // regular input sections to mergeable output.
171   if (ScriptConfig->HasContents)
172     return false;
173 
174   // A mergeable section with size 0 is useless because they don't have
175   // any data to merge. A mergeable string section with size 0 can be
176   // argued as invalid because it doesn't end with a null character.
177   // We'll avoid a mess by handling them as if they were non-mergeable.
178   if (Sec.sh_size == 0)
179     return false;
180 
181   uintX_t Flags = Sec.sh_flags;
182   if (!(Flags & SHF_MERGE))
183     return false;
184   if (Flags & SHF_WRITE)
185     fatal(getFilename(this) + ": writable SHF_MERGE section is not supported");
186   uintX_t EntSize = Sec.sh_entsize;
187   if (!EntSize || Sec.sh_size % EntSize)
188     fatal(getFilename(this) +
189           ": SHF_MERGE section size must be a multiple of sh_entsize");
190 
191   // Don't try to merge if the alignment is larger than the sh_entsize and this
192   // is not SHF_STRINGS.
193   //
194   // Since this is not a SHF_STRINGS, we would need to pad after every entity.
195   // It would be equivalent for the producer of the .o to just set a larger
196   // sh_entsize.
197   if (Flags & SHF_STRINGS)
198     return true;
199 
200   return Sec.sh_addralign <= EntSize;
201 }
202 
203 template <class ELFT>
204 void elf::ObjectFile<ELFT>::initializeSections(
205     DenseSet<StringRef> &ComdatGroups) {
206   uint64_t Size = this->ELFObj.getNumSections();
207   Sections.resize(Size);
208   unsigned I = -1;
209   const ELFFile<ELFT> &Obj = this->ELFObj;
210   for (const Elf_Shdr &Sec : Obj.sections()) {
211     ++I;
212     if (Sections[I] == &InputSection<ELFT>::Discarded)
213       continue;
214 
215     switch (Sec.sh_type) {
216     case SHT_GROUP:
217       Sections[I] = &InputSection<ELFT>::Discarded;
218       if (ComdatGroups.insert(getShtGroupSignature(Sec)).second)
219         continue;
220       for (uint32_t SecIndex : getShtGroupEntries(Sec)) {
221         if (SecIndex >= Size)
222           fatal(getFilename(this) + ": invalid section index in group: " +
223                 Twine(SecIndex));
224         Sections[SecIndex] = &InputSection<ELFT>::Discarded;
225       }
226       break;
227     case SHT_SYMTAB:
228       this->Symtab = &Sec;
229       break;
230     case SHT_SYMTAB_SHNDX:
231       this->SymtabSHNDX = check(Obj.getSHNDXTable(Sec));
232       break;
233     case SHT_STRTAB:
234     case SHT_NULL:
235       break;
236     default:
237       Sections[I] = createInputSection(Sec);
238     }
239   }
240 }
241 
242 template <class ELFT>
243 InputSectionBase<ELFT> *
244 elf::ObjectFile<ELFT>::getRelocTarget(const Elf_Shdr &Sec) {
245   uint32_t Idx = Sec.sh_info;
246   if (Idx >= Sections.size())
247     fatal(getFilename(this) + ": invalid relocated section index: " +
248           Twine(Idx));
249   InputSectionBase<ELFT> *Target = Sections[Idx];
250 
251   // Strictly speaking, a relocation section must be included in the
252   // group of the section it relocates. However, LLVM 3.3 and earlier
253   // would fail to do so, so we gracefully handle that case.
254   if (Target == &InputSection<ELFT>::Discarded)
255     return nullptr;
256 
257   if (!Target)
258     fatal(getFilename(this) + ": unsupported relocation reference");
259   return Target;
260 }
261 
262 template <class ELFT>
263 InputSectionBase<ELFT> *
264 elf::ObjectFile<ELFT>::createInputSection(const Elf_Shdr &Sec) {
265   StringRef Name = check(this->ELFObj.getSectionName(&Sec));
266 
267   switch (Sec.sh_type) {
268   case SHT_ARM_ATTRIBUTES:
269     // FIXME: ARM meta-data section. At present attributes are ignored,
270     // they can be used to reason about object compatibility.
271     return &InputSection<ELFT>::Discarded;
272   case SHT_MIPS_REGINFO:
273     MipsReginfo.reset(new MipsReginfoInputSection<ELFT>(this, &Sec, Name));
274     return MipsReginfo.get();
275   case SHT_MIPS_OPTIONS:
276     MipsOptions.reset(new MipsOptionsInputSection<ELFT>(this, &Sec, Name));
277     return MipsOptions.get();
278   case SHT_MIPS_ABIFLAGS:
279     MipsAbiFlags.reset(new MipsAbiFlagsInputSection<ELFT>(this, &Sec, Name));
280     return MipsAbiFlags.get();
281   case SHT_RELA:
282   case SHT_REL: {
283     // This section contains relocation information.
284     // If -r is given, we do not interpret or apply relocation
285     // but just copy relocation sections to output.
286     if (Config->Relocatable)
287       return new (IAlloc.Allocate()) InputSection<ELFT>(this, &Sec, Name);
288 
289     // Find the relocation target section and associate this
290     // section with it.
291     InputSectionBase<ELFT> *Target = getRelocTarget(Sec);
292     if (!Target)
293       return nullptr;
294     if (auto *S = dyn_cast<InputSection<ELFT>>(Target)) {
295       S->RelocSections.push_back(&Sec);
296       return nullptr;
297     }
298     if (auto *S = dyn_cast<EhInputSection<ELFT>>(Target)) {
299       if (S->RelocSection)
300         fatal(getFilename(this) +
301               ": multiple relocation sections to .eh_frame are not supported");
302       S->RelocSection = &Sec;
303       return nullptr;
304     }
305     fatal(getFilename(this) +
306           ": relocations pointing to SHF_MERGE are not supported");
307   }
308   }
309 
310   // .note.GNU-stack is a marker section to control the presence of
311   // PT_GNU_STACK segment in outputs. Since the presence of the segment
312   // is controlled only by the command line option (-z execstack) in LLD,
313   // .note.GNU-stack is ignored.
314   if (Name == ".note.GNU-stack")
315     return &InputSection<ELFT>::Discarded;
316 
317   if (Name == ".note.GNU-split-stack") {
318     error("objects using splitstacks are not supported");
319     return &InputSection<ELFT>::Discarded;
320   }
321 
322   if (Config->Strip != StripPolicy::None && Name.startswith(".debug"))
323     return &InputSection<ELFT>::Discarded;
324 
325   // The linker merges EH (exception handling) frames and creates a
326   // .eh_frame_hdr section for runtime. So we handle them with a special
327   // class. For relocatable outputs, they are just passed through.
328   if (Name == ".eh_frame" && !Config->Relocatable)
329     return new (EHAlloc.Allocate()) EhInputSection<ELFT>(this, &Sec, Name);
330 
331   if (shouldMerge(Sec))
332     return new (MAlloc.Allocate()) MergeInputSection<ELFT>(this, &Sec, Name);
333   return new (IAlloc.Allocate()) InputSection<ELFT>(this, &Sec, Name);
334 }
335 
336 template <class ELFT> void elf::ObjectFile<ELFT>::initializeSymbols() {
337   this->initStringTable();
338   Elf_Sym_Range Syms = this->getElfSymbols(false);
339   uint32_t NumSymbols = std::distance(Syms.begin(), Syms.end());
340   SymbolBodies.reserve(NumSymbols);
341   for (const Elf_Sym &Sym : Syms)
342     SymbolBodies.push_back(createSymbolBody(&Sym));
343 }
344 
345 template <class ELFT>
346 InputSectionBase<ELFT> *
347 elf::ObjectFile<ELFT>::getSection(const Elf_Sym &Sym) const {
348   uint32_t Index = this->getSectionIndex(Sym);
349   if (Index == 0)
350     return nullptr;
351   if (Index >= Sections.size())
352     fatal(getFilename(this) + ": invalid section index: " + Twine(Index));
353   InputSectionBase<ELFT> *S = Sections[Index];
354   // We found that GNU assembler 2.17.50 [FreeBSD] 2007-07-03
355   // could generate broken objects. STT_SECTION symbols can be
356   // associated with SHT_REL[A]/SHT_SYMTAB/SHT_STRTAB sections.
357   // In this case it is fine for section to be null here as we
358   // do not allocate sections of these types.
359   if (!S || S == &InputSectionBase<ELFT>::Discarded)
360     return S;
361   return S->Repl;
362 }
363 
364 template <class ELFT>
365 SymbolBody *elf::ObjectFile<ELFT>::createSymbolBody(const Elf_Sym *Sym) {
366   int Binding = Sym->getBinding();
367   InputSectionBase<ELFT> *Sec = getSection(*Sym);
368   if (Binding == STB_LOCAL) {
369     if (Sym->st_shndx == SHN_UNDEF)
370       return new (this->Alloc)
371           Undefined(Sym->st_name, Sym->st_other, Sym->getType(), this);
372     return new (this->Alloc) DefinedRegular<ELFT>(*Sym, Sec);
373   }
374 
375   StringRef Name = check(Sym->getName(this->StringTable));
376 
377   switch (Sym->st_shndx) {
378   case SHN_UNDEF:
379     return elf::Symtab<ELFT>::X
380         ->addUndefined(Name, Binding, Sym->st_other, Sym->getType(),
381                        /*CanOmitFromDynSym*/ false, /*HasUnnamedAddr*/ false,
382                        this)
383         ->body();
384   case SHN_COMMON:
385     return elf::Symtab<ELFT>::X
386         ->addCommon(Name, Sym->st_size, Sym->st_value, Binding, Sym->st_other,
387                     Sym->getType(), /*HasUnnamedAddr*/ false, this)
388         ->body();
389   }
390 
391   switch (Binding) {
392   default:
393     fatal(getFilename(this) + ": unexpected binding: " + Twine(Binding));
394   case STB_GLOBAL:
395   case STB_WEAK:
396   case STB_GNU_UNIQUE:
397     if (Sec == &InputSection<ELFT>::Discarded)
398       return elf::Symtab<ELFT>::X
399           ->addUndefined(Name, Binding, Sym->st_other, Sym->getType(),
400                          /*CanOmitFromDynSym*/ false,
401                          /*HasUnnamedAddr*/ false, this)
402           ->body();
403     return elf::Symtab<ELFT>::X->addRegular(Name, *Sym, Sec)->body();
404   }
405 }
406 
407 template <class ELFT> void ArchiveFile::parse() {
408   File = check(Archive::create(MB), "failed to parse archive");
409 
410   // Read the symbol table to construct Lazy objects.
411   for (const Archive::Symbol &Sym : File->symbols())
412     Symtab<ELFT>::X->addLazyArchive(this, Sym);
413 }
414 
415 // Returns a buffer pointing to a member file containing a given symbol.
416 MemoryBufferRef ArchiveFile::getMember(const Archive::Symbol *Sym) {
417   Archive::Child C =
418       check(Sym->getMember(),
419             "could not get the member for symbol " + Sym->getName());
420 
421   if (!Seen.insert(C.getChildOffset()).second)
422     return MemoryBufferRef();
423 
424   MemoryBufferRef Ret =
425       check(C.getMemoryBufferRef(),
426             "could not get the buffer for the member defining symbol " +
427                 Sym->getName());
428 
429   if (C.getParent()->isThin() && Driver->Cpio)
430     Driver->Cpio->append(relativeToRoot(check(C.getFullName())),
431                          Ret.getBuffer());
432 
433   return Ret;
434 }
435 
436 template <class ELFT>
437 SharedFile<ELFT>::SharedFile(MemoryBufferRef M)
438     : ELFFileBase<ELFT>(Base::SharedKind, M), AsNeeded(Config->AsNeeded) {}
439 
440 template <class ELFT>
441 const typename ELFT::Shdr *
442 SharedFile<ELFT>::getSection(const Elf_Sym &Sym) const {
443   uint32_t Index = this->getSectionIndex(Sym);
444   if (Index == 0)
445     return nullptr;
446   return check(this->ELFObj.getSection(Index));
447 }
448 
449 // Partially parse the shared object file so that we can call
450 // getSoName on this object.
451 template <class ELFT> void SharedFile<ELFT>::parseSoName() {
452   typedef typename ELFT::Dyn Elf_Dyn;
453   typedef typename ELFT::uint uintX_t;
454   const Elf_Shdr *DynamicSec = nullptr;
455 
456   const ELFFile<ELFT> Obj = this->ELFObj;
457   for (const Elf_Shdr &Sec : Obj.sections()) {
458     switch (Sec.sh_type) {
459     default:
460       continue;
461     case SHT_DYNSYM:
462       this->Symtab = &Sec;
463       break;
464     case SHT_DYNAMIC:
465       DynamicSec = &Sec;
466       break;
467     case SHT_SYMTAB_SHNDX:
468       this->SymtabSHNDX = check(Obj.getSHNDXTable(Sec));
469       break;
470     case SHT_GNU_versym:
471       this->VersymSec = &Sec;
472       break;
473     case SHT_GNU_verdef:
474       this->VerdefSec = &Sec;
475       break;
476     }
477   }
478 
479   this->initStringTable();
480   SoName = this->getName();
481 
482   if (!DynamicSec)
483     return;
484   auto *Begin =
485       reinterpret_cast<const Elf_Dyn *>(Obj.base() + DynamicSec->sh_offset);
486   const Elf_Dyn *End = Begin + DynamicSec->sh_size / sizeof(Elf_Dyn);
487 
488   for (const Elf_Dyn &Dyn : make_range(Begin, End)) {
489     if (Dyn.d_tag == DT_SONAME) {
490       uintX_t Val = Dyn.getVal();
491       if (Val >= this->StringTable.size())
492         fatal(getFilename(this) + ": invalid DT_SONAME entry");
493       SoName = StringRef(this->StringTable.data() + Val);
494       return;
495     }
496   }
497 }
498 
499 // Parse the version definitions in the object file if present. Returns a vector
500 // whose nth element contains a pointer to the Elf_Verdef for version identifier
501 // n. Version identifiers that are not definitions map to nullptr. The array
502 // always has at least length 1.
503 template <class ELFT>
504 std::vector<const typename ELFT::Verdef *>
505 SharedFile<ELFT>::parseVerdefs(const Elf_Versym *&Versym) {
506   std::vector<const Elf_Verdef *> Verdefs(1);
507   // We only need to process symbol versions for this DSO if it has both a
508   // versym and a verdef section, which indicates that the DSO contains symbol
509   // version definitions.
510   if (!VersymSec || !VerdefSec)
511     return Verdefs;
512 
513   // The location of the first global versym entry.
514   Versym = reinterpret_cast<const Elf_Versym *>(this->ELFObj.base() +
515                                                 VersymSec->sh_offset) +
516            this->Symtab->sh_info;
517 
518   // We cannot determine the largest verdef identifier without inspecting
519   // every Elf_Verdef, but both bfd and gold assign verdef identifiers
520   // sequentially starting from 1, so we predict that the largest identifier
521   // will be VerdefCount.
522   unsigned VerdefCount = VerdefSec->sh_info;
523   Verdefs.resize(VerdefCount + 1);
524 
525   // Build the Verdefs array by following the chain of Elf_Verdef objects
526   // from the start of the .gnu.version_d section.
527   const uint8_t *Verdef = this->ELFObj.base() + VerdefSec->sh_offset;
528   for (unsigned I = 0; I != VerdefCount; ++I) {
529     auto *CurVerdef = reinterpret_cast<const Elf_Verdef *>(Verdef);
530     Verdef += CurVerdef->vd_next;
531     unsigned VerdefIndex = CurVerdef->vd_ndx;
532     if (Verdefs.size() <= VerdefIndex)
533       Verdefs.resize(VerdefIndex + 1);
534     Verdefs[VerdefIndex] = CurVerdef;
535   }
536 
537   return Verdefs;
538 }
539 
540 // Fully parse the shared object file. This must be called after parseSoName().
541 template <class ELFT> void SharedFile<ELFT>::parseRest() {
542   // Create mapping from version identifiers to Elf_Verdef entries.
543   const Elf_Versym *Versym = nullptr;
544   std::vector<const Elf_Verdef *> Verdefs = parseVerdefs(Versym);
545 
546   Elf_Sym_Range Syms = this->getElfSymbols(true);
547   for (const Elf_Sym &Sym : Syms) {
548     unsigned VersymIndex = 0;
549     if (Versym) {
550       VersymIndex = Versym->vs_index;
551       ++Versym;
552     }
553 
554     StringRef Name = check(Sym.getName(this->StringTable));
555     if (Sym.isUndefined()) {
556       Undefs.push_back(Name);
557       continue;
558     }
559 
560     if (Versym) {
561       // Ignore local symbols and non-default versions.
562       if (VersymIndex == VER_NDX_LOCAL || (VersymIndex & VERSYM_HIDDEN))
563         continue;
564     }
565 
566     const Elf_Verdef *V =
567         VersymIndex == VER_NDX_GLOBAL ? nullptr : Verdefs[VersymIndex];
568     elf::Symtab<ELFT>::X->addShared(this, Name, Sym, V);
569   }
570 }
571 
572 static ELFKind getBitcodeELFKind(MemoryBufferRef MB) {
573   Triple T(getBitcodeTargetTriple(MB, Driver->Context));
574   if (T.isLittleEndian())
575     return T.isArch64Bit() ? ELF64LEKind : ELF32LEKind;
576   return T.isArch64Bit() ? ELF64BEKind : ELF32BEKind;
577 }
578 
579 static uint8_t getBitcodeMachineKind(MemoryBufferRef MB) {
580   Triple T(getBitcodeTargetTriple(MB, Driver->Context));
581   switch (T.getArch()) {
582   case Triple::aarch64:
583     return EM_AARCH64;
584   case Triple::arm:
585     return EM_ARM;
586   case Triple::mips:
587   case Triple::mipsel:
588   case Triple::mips64:
589   case Triple::mips64el:
590     return EM_MIPS;
591   case Triple::ppc:
592     return EM_PPC;
593   case Triple::ppc64:
594     return EM_PPC64;
595   case Triple::x86:
596     return T.isOSIAMCU() ? EM_IAMCU : EM_386;
597   case Triple::x86_64:
598     return EM_X86_64;
599   default:
600     fatal(MB.getBufferIdentifier() +
601           ": could not infer e_machine from bitcode target triple " + T.str());
602   }
603 }
604 
605 BitcodeFile::BitcodeFile(MemoryBufferRef MB) : InputFile(BitcodeKind, MB) {
606   EKind = getBitcodeELFKind(MB);
607   EMachine = getBitcodeMachineKind(MB);
608 }
609 
610 static uint8_t getGvVisibility(const GlobalValue *GV) {
611   switch (GV->getVisibility()) {
612   case GlobalValue::DefaultVisibility:
613     return STV_DEFAULT;
614   case GlobalValue::HiddenVisibility:
615     return STV_HIDDEN;
616   case GlobalValue::ProtectedVisibility:
617     return STV_PROTECTED;
618   }
619   llvm_unreachable("unknown visibility");
620 }
621 
622 template <class ELFT>
623 Symbol *BitcodeFile::createSymbol(const DenseSet<const Comdat *> &KeptComdats,
624                                   const IRObjectFile &Obj,
625                                   const BasicSymbolRef &Sym) {
626   const GlobalValue *GV = Obj.getSymbolGV(Sym.getRawDataRefImpl());
627 
628   SmallString<64> Name;
629   raw_svector_ostream OS(Name);
630   Sym.printName(OS);
631   StringRef NameRef = Saver.save(StringRef(Name));
632 
633   uint32_t Flags = Sym.getFlags();
634   uint32_t Binding = (Flags & BasicSymbolRef::SF_Weak) ? STB_WEAK : STB_GLOBAL;
635 
636   uint8_t Type = STT_NOTYPE;
637   uint8_t Visibility;
638   bool CanOmitFromDynSym = false;
639   bool HasUnnamedAddr = false;
640 
641   // FIXME: Expose a thread-local flag for module asm symbols.
642   if (GV) {
643     if (GV->isThreadLocal())
644       Type = STT_TLS;
645     CanOmitFromDynSym = canBeOmittedFromSymbolTable(GV);
646     Visibility = getGvVisibility(GV);
647     HasUnnamedAddr =
648         GV->getUnnamedAddr() == llvm::GlobalValue::UnnamedAddr::Global;
649   } else {
650     // FIXME: Set SF_Hidden flag correctly for module asm symbols, and expose
651     // protected visibility.
652     Visibility = STV_DEFAULT;
653   }
654 
655   if (GV)
656     if (const Comdat *C = GV->getComdat())
657       if (!KeptComdats.count(C))
658         return Symtab<ELFT>::X->addUndefined(NameRef, Binding, Visibility, Type,
659                                              CanOmitFromDynSym, HasUnnamedAddr,
660                                              this);
661 
662   const Module &M = Obj.getModule();
663   if (Flags & BasicSymbolRef::SF_Undefined)
664     return Symtab<ELFT>::X->addUndefined(NameRef, Binding, Visibility, Type,
665                                          CanOmitFromDynSym, HasUnnamedAddr,
666                                          this);
667   if (Flags & BasicSymbolRef::SF_Common) {
668     // FIXME: Set SF_Common flag correctly for module asm symbols, and expose
669     // size and alignment.
670     assert(GV);
671     const DataLayout &DL = M.getDataLayout();
672     uint64_t Size = DL.getTypeAllocSize(GV->getValueType());
673     return Symtab<ELFT>::X->addCommon(NameRef, Size, GV->getAlignment(),
674                                       Binding, Visibility, STT_OBJECT,
675                                       HasUnnamedAddr, this);
676   }
677   return Symtab<ELFT>::X->addBitcode(NameRef, Binding, Visibility, Type,
678                                      CanOmitFromDynSym, HasUnnamedAddr, this);
679 }
680 
681 bool BitcodeFile::shouldSkip(uint32_t Flags) {
682   return !(Flags & BasicSymbolRef::SF_Global) ||
683          (Flags & BasicSymbolRef::SF_FormatSpecific);
684 }
685 
686 template <class ELFT>
687 void BitcodeFile::parse(DenseSet<StringRef> &ComdatGroups) {
688   Obj = check(IRObjectFile::create(MB, Driver->Context));
689   const Module &M = Obj->getModule();
690 
691   DenseSet<const Comdat *> KeptComdats;
692   for (const auto &P : M.getComdatSymbolTable()) {
693     StringRef N = Saver.save(P.first());
694     if (ComdatGroups.insert(N).second)
695       KeptComdats.insert(&P.second);
696   }
697 
698   for (const BasicSymbolRef &Sym : Obj->symbols())
699     if (!shouldSkip(Sym.getFlags()))
700       Symbols.push_back(createSymbol<ELFT>(KeptComdats, *Obj, Sym));
701 }
702 
703 template <template <class> class T>
704 static std::unique_ptr<InputFile> createELFFile(MemoryBufferRef MB) {
705   unsigned char Size;
706   unsigned char Endian;
707   std::tie(Size, Endian) = getElfArchType(MB.getBuffer());
708   if (Endian != ELFDATA2LSB && Endian != ELFDATA2MSB)
709     fatal("invalid data encoding: " + MB.getBufferIdentifier());
710 
711   std::unique_ptr<InputFile> Obj;
712   if (Size == ELFCLASS32 && Endian == ELFDATA2LSB)
713     Obj.reset(new T<ELF32LE>(MB));
714   else if (Size == ELFCLASS32 && Endian == ELFDATA2MSB)
715     Obj.reset(new T<ELF32BE>(MB));
716   else if (Size == ELFCLASS64 && Endian == ELFDATA2LSB)
717     Obj.reset(new T<ELF64LE>(MB));
718   else if (Size == ELFCLASS64 && Endian == ELFDATA2MSB)
719     Obj.reset(new T<ELF64BE>(MB));
720   else
721     fatal("invalid file class: " + MB.getBufferIdentifier());
722 
723   if (!Config->FirstElf)
724     Config->FirstElf = Obj.get();
725   return Obj;
726 }
727 
728 static bool isBitcode(MemoryBufferRef MB) {
729   using namespace sys::fs;
730   return identify_magic(MB.getBuffer()) == file_magic::bitcode;
731 }
732 
733 std::unique_ptr<InputFile> elf::createObjectFile(MemoryBufferRef MB,
734                                                  StringRef ArchiveName) {
735   std::unique_ptr<InputFile> F;
736   if (isBitcode(MB))
737     F.reset(new BitcodeFile(MB));
738   else
739     F = createELFFile<ObjectFile>(MB);
740   F->ArchiveName = ArchiveName;
741   return F;
742 }
743 
744 std::unique_ptr<InputFile> elf::createSharedFile(MemoryBufferRef MB) {
745   return createELFFile<SharedFile>(MB);
746 }
747 
748 MemoryBufferRef LazyObjectFile::getBuffer() {
749   if (Seen)
750     return MemoryBufferRef();
751   Seen = true;
752   return MB;
753 }
754 
755 template <class ELFT>
756 void LazyObjectFile::parse() {
757   for (StringRef Sym : getSymbols())
758     Symtab<ELFT>::X->addLazyObject(Sym, *this);
759 }
760 
761 template <class ELFT> std::vector<StringRef> LazyObjectFile::getElfSymbols() {
762   typedef typename ELFT::Shdr Elf_Shdr;
763   typedef typename ELFT::Sym Elf_Sym;
764   typedef typename ELFT::SymRange Elf_Sym_Range;
765 
766   const ELFFile<ELFT> Obj = createELFObj<ELFT>(this->MB);
767   for (const Elf_Shdr &Sec : Obj.sections()) {
768     if (Sec.sh_type != SHT_SYMTAB)
769       continue;
770     Elf_Sym_Range Syms = Obj.symbols(&Sec);
771     uint32_t FirstNonLocal = Sec.sh_info;
772     StringRef StringTable = check(Obj.getStringTableForSymtab(Sec));
773     std::vector<StringRef> V;
774     for (const Elf_Sym &Sym : Syms.slice(FirstNonLocal))
775       if (Sym.st_shndx != SHN_UNDEF)
776         V.push_back(check(Sym.getName(StringTable)));
777     return V;
778   }
779   return {};
780 }
781 
782 std::vector<StringRef> LazyObjectFile::getBitcodeSymbols() {
783   LLVMContext Context;
784   std::unique_ptr<IRObjectFile> Obj =
785       check(IRObjectFile::create(this->MB, Context));
786   std::vector<StringRef> V;
787   for (const BasicSymbolRef &Sym : Obj->symbols()) {
788     uint32_t Flags = Sym.getFlags();
789     if (BitcodeFile::shouldSkip(Flags))
790       continue;
791     if (Flags & BasicSymbolRef::SF_Undefined)
792       continue;
793     SmallString<64> Name;
794     raw_svector_ostream OS(Name);
795     Sym.printName(OS);
796     V.push_back(Saver.save(StringRef(Name)));
797   }
798   return V;
799 }
800 
801 // Returns a vector of globally-visible defined symbol names.
802 std::vector<StringRef> LazyObjectFile::getSymbols() {
803   if (isBitcode(this->MB))
804     return getBitcodeSymbols();
805 
806   unsigned char Size;
807   unsigned char Endian;
808   std::tie(Size, Endian) = getElfArchType(this->MB.getBuffer());
809   if (Size == ELFCLASS32) {
810     if (Endian == ELFDATA2LSB)
811       return getElfSymbols<ELF32LE>();
812     return getElfSymbols<ELF32BE>();
813   }
814   if (Endian == ELFDATA2LSB)
815     return getElfSymbols<ELF64LE>();
816   return getElfSymbols<ELF64BE>();
817 }
818 
819 template void ArchiveFile::parse<ELF32LE>();
820 template void ArchiveFile::parse<ELF32BE>();
821 template void ArchiveFile::parse<ELF64LE>();
822 template void ArchiveFile::parse<ELF64BE>();
823 
824 template void BitcodeFile::parse<ELF32LE>(DenseSet<StringRef> &);
825 template void BitcodeFile::parse<ELF32BE>(DenseSet<StringRef> &);
826 template void BitcodeFile::parse<ELF64LE>(DenseSet<StringRef> &);
827 template void BitcodeFile::parse<ELF64BE>(DenseSet<StringRef> &);
828 
829 template void LazyObjectFile::parse<ELF32LE>();
830 template void LazyObjectFile::parse<ELF32BE>();
831 template void LazyObjectFile::parse<ELF64LE>();
832 template void LazyObjectFile::parse<ELF64BE>();
833 
834 template class elf::ELFFileBase<ELF32LE>;
835 template class elf::ELFFileBase<ELF32BE>;
836 template class elf::ELFFileBase<ELF64LE>;
837 template class elf::ELFFileBase<ELF64BE>;
838 
839 template class elf::ObjectFile<ELF32LE>;
840 template class elf::ObjectFile<ELF32BE>;
841 template class elf::ObjectFile<ELF64LE>;
842 template class elf::ObjectFile<ELF64BE>;
843 
844 template class elf::SharedFile<ELF32LE>;
845 template class elf::SharedFile<ELF32BE>;
846 template class elf::SharedFile<ELF64LE>;
847 template class elf::SharedFile<ELF64BE>;
848