1 //===- InputFiles.cpp -----------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "InputFiles.h"
10 #include "Driver.h"
11 #include "InputSection.h"
12 #include "LinkerScript.h"
13 #include "SymbolTable.h"
14 #include "Symbols.h"
15 #include "SyntheticSections.h"
16 #include "lld/Common/DWARF.h"
17 #include "lld/Common/ErrorHandler.h"
18 #include "lld/Common/Memory.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/CodeGen/Analysis.h"
21 #include "llvm/IR/LLVMContext.h"
22 #include "llvm/IR/Module.h"
23 #include "llvm/LTO/LTO.h"
24 #include "llvm/MC/StringTableBuilder.h"
25 #include "llvm/Object/ELFObjectFile.h"
26 #include "llvm/Support/ARMAttributeParser.h"
27 #include "llvm/Support/ARMBuildAttributes.h"
28 #include "llvm/Support/Endian.h"
29 #include "llvm/Support/Path.h"
30 #include "llvm/Support/RISCVAttributeParser.h"
31 #include "llvm/Support/TarWriter.h"
32 #include "llvm/Support/raw_ostream.h"
33 
34 using namespace llvm;
35 using namespace llvm::ELF;
36 using namespace llvm::object;
37 using namespace llvm::sys;
38 using namespace llvm::sys::fs;
39 using namespace llvm::support::endian;
40 using namespace lld;
41 using namespace lld::elf;
42 
43 bool InputFile::isInGroup;
44 uint32_t InputFile::nextGroupId;
45 
46 std::vector<ArchiveFile *> elf::archiveFiles;
47 std::vector<BinaryFile *> elf::binaryFiles;
48 std::vector<BitcodeFile *> elf::bitcodeFiles;
49 std::vector<LazyObjFile *> elf::lazyObjFiles;
50 std::vector<InputFile *> elf::objectFiles;
51 std::vector<SharedFile *> elf::sharedFiles;
52 
53 std::unique_ptr<TarWriter> elf::tar;
54 
55 // Returns "<internal>", "foo.a(bar.o)" or "baz.o".
56 std::string lld::toString(const InputFile *f) {
57   if (!f)
58     return "<internal>";
59 
60   if (f->toStringCache.empty()) {
61     if (f->archiveName.empty())
62       f->toStringCache = std::string(f->getName());
63     else
64       f->toStringCache = (f->archiveName + "(" + f->getName() + ")").str();
65   }
66   return f->toStringCache;
67 }
68 
69 static ELFKind getELFKind(MemoryBufferRef mb, StringRef archiveName) {
70   unsigned char size;
71   unsigned char endian;
72   std::tie(size, endian) = getElfArchType(mb.getBuffer());
73 
74   auto report = [&](StringRef msg) {
75     StringRef filename = mb.getBufferIdentifier();
76     if (archiveName.empty())
77       fatal(filename + ": " + msg);
78     else
79       fatal(archiveName + "(" + filename + "): " + msg);
80   };
81 
82   if (!mb.getBuffer().startswith(ElfMagic))
83     report("not an ELF file");
84   if (endian != ELFDATA2LSB && endian != ELFDATA2MSB)
85     report("corrupted ELF file: invalid data encoding");
86   if (size != ELFCLASS32 && size != ELFCLASS64)
87     report("corrupted ELF file: invalid file class");
88 
89   size_t bufSize = mb.getBuffer().size();
90   if ((size == ELFCLASS32 && bufSize < sizeof(Elf32_Ehdr)) ||
91       (size == ELFCLASS64 && bufSize < sizeof(Elf64_Ehdr)))
92     report("corrupted ELF file: file is too short");
93 
94   if (size == ELFCLASS32)
95     return (endian == ELFDATA2LSB) ? ELF32LEKind : ELF32BEKind;
96   return (endian == ELFDATA2LSB) ? ELF64LEKind : ELF64BEKind;
97 }
98 
99 InputFile::InputFile(Kind k, MemoryBufferRef m)
100     : mb(m), groupId(nextGroupId), fileKind(k) {
101   // All files within the same --{start,end}-group get the same group ID.
102   // Otherwise, a new file will get a new group ID.
103   if (!isInGroup)
104     ++nextGroupId;
105 }
106 
107 Optional<MemoryBufferRef> elf::readFile(StringRef path) {
108   llvm::TimeTraceScope timeScope("Load input files", path);
109 
110   // The --chroot option changes our virtual root directory.
111   // This is useful when you are dealing with files created by --reproduce.
112   if (!config->chroot.empty() && path.startswith("/"))
113     path = saver.save(config->chroot + path);
114 
115   log(path);
116   config->dependencyFiles.insert(llvm::CachedHashString(path));
117 
118   auto mbOrErr = MemoryBuffer::getFile(path, /*IsText=*/false,
119                                        /*RequiresNullTerminator=*/false);
120   if (auto ec = mbOrErr.getError()) {
121     error("cannot open " + path + ": " + ec.message());
122     return None;
123   }
124 
125   std::unique_ptr<MemoryBuffer> &mb = *mbOrErr;
126   MemoryBufferRef mbref = mb->getMemBufferRef();
127   make<std::unique_ptr<MemoryBuffer>>(std::move(mb)); // take MB ownership
128 
129   if (tar)
130     tar->append(relativeToRoot(path), mbref.getBuffer());
131   return mbref;
132 }
133 
134 // All input object files must be for the same architecture
135 // (e.g. it does not make sense to link x86 object files with
136 // MIPS object files.) This function checks for that error.
137 static bool isCompatible(InputFile *file) {
138   if (!file->isElf() && !isa<BitcodeFile>(file))
139     return true;
140 
141   if (file->ekind == config->ekind && file->emachine == config->emachine) {
142     if (config->emachine != EM_MIPS)
143       return true;
144     if (isMipsN32Abi(file) == config->mipsN32Abi)
145       return true;
146   }
147 
148   StringRef target =
149       !config->bfdname.empty() ? config->bfdname : config->emulation;
150   if (!target.empty()) {
151     error(toString(file) + " is incompatible with " + target);
152     return false;
153   }
154 
155   InputFile *existing;
156   if (!objectFiles.empty())
157     existing = objectFiles[0];
158   else if (!sharedFiles.empty())
159     existing = sharedFiles[0];
160   else if (!bitcodeFiles.empty())
161     existing = bitcodeFiles[0];
162   else
163     llvm_unreachable("Must have -m, OUTPUT_FORMAT or existing input file to "
164                      "determine target emulation");
165 
166   error(toString(file) + " is incompatible with " + toString(existing));
167   return false;
168 }
169 
170 template <class ELFT> static void doParseFile(InputFile *file) {
171   if (!isCompatible(file))
172     return;
173 
174   // Binary file
175   if (auto *f = dyn_cast<BinaryFile>(file)) {
176     binaryFiles.push_back(f);
177     f->parse();
178     return;
179   }
180 
181   // .a file
182   if (auto *f = dyn_cast<ArchiveFile>(file)) {
183     archiveFiles.push_back(f);
184     f->parse();
185     return;
186   }
187 
188   // Lazy object file
189   if (auto *f = dyn_cast<LazyObjFile>(file)) {
190     lazyObjFiles.push_back(f);
191     f->parse<ELFT>();
192     return;
193   }
194 
195   if (config->trace)
196     message(toString(file));
197 
198   // .so file
199   if (auto *f = dyn_cast<SharedFile>(file)) {
200     f->parse<ELFT>();
201     return;
202   }
203 
204   // LLVM bitcode file
205   if (auto *f = dyn_cast<BitcodeFile>(file)) {
206     bitcodeFiles.push_back(f);
207     f->parse<ELFT>();
208     return;
209   }
210 
211   // Regular object file
212   objectFiles.push_back(file);
213   cast<ObjFile<ELFT>>(file)->parse();
214 }
215 
216 // Add symbols in File to the symbol table.
217 void elf::parseFile(InputFile *file) {
218   switch (config->ekind) {
219   case ELF32LEKind:
220     doParseFile<ELF32LE>(file);
221     return;
222   case ELF32BEKind:
223     doParseFile<ELF32BE>(file);
224     return;
225   case ELF64LEKind:
226     doParseFile<ELF64LE>(file);
227     return;
228   case ELF64BEKind:
229     doParseFile<ELF64BE>(file);
230     return;
231   default:
232     llvm_unreachable("unknown ELFT");
233   }
234 }
235 
236 // Concatenates arguments to construct a string representing an error location.
237 static std::string createFileLineMsg(StringRef path, unsigned line) {
238   std::string filename = std::string(path::filename(path));
239   std::string lineno = ":" + std::to_string(line);
240   if (filename == path)
241     return filename + lineno;
242   return filename + lineno + " (" + path.str() + lineno + ")";
243 }
244 
245 template <class ELFT>
246 static std::string getSrcMsgAux(ObjFile<ELFT> &file, const Symbol &sym,
247                                 InputSectionBase &sec, uint64_t offset) {
248   // In DWARF, functions and variables are stored to different places.
249   // First, lookup a function for a given offset.
250   if (Optional<DILineInfo> info = file.getDILineInfo(&sec, offset))
251     return createFileLineMsg(info->FileName, info->Line);
252 
253   // If it failed, lookup again as a variable.
254   if (Optional<std::pair<std::string, unsigned>> fileLine =
255           file.getVariableLoc(sym.getName()))
256     return createFileLineMsg(fileLine->first, fileLine->second);
257 
258   // File.sourceFile contains STT_FILE symbol, and that is a last resort.
259   return std::string(file.sourceFile);
260 }
261 
262 std::string InputFile::getSrcMsg(const Symbol &sym, InputSectionBase &sec,
263                                  uint64_t offset) {
264   if (kind() != ObjKind)
265     return "";
266   switch (config->ekind) {
267   default:
268     llvm_unreachable("Invalid kind");
269   case ELF32LEKind:
270     return getSrcMsgAux(cast<ObjFile<ELF32LE>>(*this), sym, sec, offset);
271   case ELF32BEKind:
272     return getSrcMsgAux(cast<ObjFile<ELF32BE>>(*this), sym, sec, offset);
273   case ELF64LEKind:
274     return getSrcMsgAux(cast<ObjFile<ELF64LE>>(*this), sym, sec, offset);
275   case ELF64BEKind:
276     return getSrcMsgAux(cast<ObjFile<ELF64BE>>(*this), sym, sec, offset);
277   }
278 }
279 
280 StringRef InputFile::getNameForScript() const {
281   if (archiveName.empty())
282     return getName();
283 
284   if (nameForScriptCache.empty())
285     nameForScriptCache = (archiveName + Twine(':') + getName()).str();
286 
287   return nameForScriptCache;
288 }
289 
290 template <class ELFT> DWARFCache *ObjFile<ELFT>::getDwarf() {
291   llvm::call_once(initDwarf, [this]() {
292     dwarf = std::make_unique<DWARFCache>(std::make_unique<DWARFContext>(
293         std::make_unique<LLDDwarfObj<ELFT>>(this), "",
294         [&](Error err) { warn(getName() + ": " + toString(std::move(err))); },
295         [&](Error warning) {
296           warn(getName() + ": " + toString(std::move(warning)));
297         }));
298   });
299 
300   return dwarf.get();
301 }
302 
303 // Returns the pair of file name and line number describing location of data
304 // object (variable, array, etc) definition.
305 template <class ELFT>
306 Optional<std::pair<std::string, unsigned>>
307 ObjFile<ELFT>::getVariableLoc(StringRef name) {
308   return getDwarf()->getVariableLoc(name);
309 }
310 
311 // Returns source line information for a given offset
312 // using DWARF debug info.
313 template <class ELFT>
314 Optional<DILineInfo> ObjFile<ELFT>::getDILineInfo(InputSectionBase *s,
315                                                   uint64_t offset) {
316   // Detect SectionIndex for specified section.
317   uint64_t sectionIndex = object::SectionedAddress::UndefSection;
318   ArrayRef<InputSectionBase *> sections = s->file->getSections();
319   for (uint64_t curIndex = 0; curIndex < sections.size(); ++curIndex) {
320     if (s == sections[curIndex]) {
321       sectionIndex = curIndex;
322       break;
323     }
324   }
325 
326   return getDwarf()->getDILineInfo(offset, sectionIndex);
327 }
328 
329 ELFFileBase::ELFFileBase(Kind k, MemoryBufferRef mb) : InputFile(k, mb) {
330   ekind = getELFKind(mb, "");
331 
332   switch (ekind) {
333   case ELF32LEKind:
334     init<ELF32LE>();
335     break;
336   case ELF32BEKind:
337     init<ELF32BE>();
338     break;
339   case ELF64LEKind:
340     init<ELF64LE>();
341     break;
342   case ELF64BEKind:
343     init<ELF64BE>();
344     break;
345   default:
346     llvm_unreachable("getELFKind");
347   }
348 }
349 
350 template <typename Elf_Shdr>
351 static const Elf_Shdr *findSection(ArrayRef<Elf_Shdr> sections, uint32_t type) {
352   for (const Elf_Shdr &sec : sections)
353     if (sec.sh_type == type)
354       return &sec;
355   return nullptr;
356 }
357 
358 template <class ELFT> void ELFFileBase::init() {
359   using Elf_Shdr = typename ELFT::Shdr;
360   using Elf_Sym = typename ELFT::Sym;
361 
362   // Initialize trivial attributes.
363   const ELFFile<ELFT> &obj = getObj<ELFT>();
364   emachine = obj.getHeader().e_machine;
365   osabi = obj.getHeader().e_ident[llvm::ELF::EI_OSABI];
366   abiVersion = obj.getHeader().e_ident[llvm::ELF::EI_ABIVERSION];
367 
368   ArrayRef<Elf_Shdr> sections = CHECK(obj.sections(), this);
369 
370   // Find a symbol table.
371   bool isDSO =
372       (identify_magic(mb.getBuffer()) == file_magic::elf_shared_object);
373   const Elf_Shdr *symtabSec =
374       findSection(sections, isDSO ? SHT_DYNSYM : SHT_SYMTAB);
375 
376   if (!symtabSec)
377     return;
378 
379   // Initialize members corresponding to a symbol table.
380   firstGlobal = symtabSec->sh_info;
381 
382   ArrayRef<Elf_Sym> eSyms = CHECK(obj.symbols(symtabSec), this);
383   if (firstGlobal == 0 || firstGlobal > eSyms.size())
384     fatal(toString(this) + ": invalid sh_info in symbol table");
385 
386   elfSyms = reinterpret_cast<const void *>(eSyms.data());
387   numELFSyms = eSyms.size();
388   stringTable = CHECK(obj.getStringTableForSymtab(*symtabSec, sections), this);
389 }
390 
391 template <class ELFT>
392 uint32_t ObjFile<ELFT>::getSectionIndex(const Elf_Sym &sym) const {
393   return CHECK(
394       this->getObj().getSectionIndex(sym, getELFSyms<ELFT>(), shndxTable),
395       this);
396 }
397 
398 template <class ELFT> void ObjFile<ELFT>::parse(bool ignoreComdats) {
399   // Read a section table. justSymbols is usually false.
400   if (this->justSymbols)
401     initializeJustSymbols();
402   else
403     initializeSections(ignoreComdats);
404 
405   // Read a symbol table.
406   initializeSymbols();
407 }
408 
409 // Sections with SHT_GROUP and comdat bits define comdat section groups.
410 // They are identified and deduplicated by group name. This function
411 // returns a group name.
412 template <class ELFT>
413 StringRef ObjFile<ELFT>::getShtGroupSignature(ArrayRef<Elf_Shdr> sections,
414                                               const Elf_Shdr &sec) {
415   typename ELFT::SymRange symbols = this->getELFSyms<ELFT>();
416   if (sec.sh_info >= symbols.size())
417     fatal(toString(this) + ": invalid symbol index");
418   const typename ELFT::Sym &sym = symbols[sec.sh_info];
419   return CHECK(sym.getName(this->stringTable), this);
420 }
421 
422 template <class ELFT>
423 bool ObjFile<ELFT>::shouldMerge(const Elf_Shdr &sec, StringRef name) {
424   if (!(sec.sh_flags & SHF_MERGE))
425     return false;
426 
427   // On a regular link we don't merge sections if -O0 (default is -O1). This
428   // sometimes makes the linker significantly faster, although the output will
429   // be bigger.
430   //
431   // Doing the same for -r would create a problem as it would combine sections
432   // with different sh_entsize. One option would be to just copy every SHF_MERGE
433   // section as is to the output. While this would produce a valid ELF file with
434   // usable SHF_MERGE sections, tools like (llvm-)?dwarfdump get confused when
435   // they see two .debug_str. We could have separate logic for combining
436   // SHF_MERGE sections based both on their name and sh_entsize, but that seems
437   // to be more trouble than it is worth. Instead, we just use the regular (-O1)
438   // logic for -r.
439   if (config->optimize == 0 && !config->relocatable)
440     return false;
441 
442   // A mergeable section with size 0 is useless because they don't have
443   // any data to merge. A mergeable string section with size 0 can be
444   // argued as invalid because it doesn't end with a null character.
445   // We'll avoid a mess by handling them as if they were non-mergeable.
446   if (sec.sh_size == 0)
447     return false;
448 
449   // Check for sh_entsize. The ELF spec is not clear about the zero
450   // sh_entsize. It says that "the member [sh_entsize] contains 0 if
451   // the section does not hold a table of fixed-size entries". We know
452   // that Rust 1.13 produces a string mergeable section with a zero
453   // sh_entsize. Here we just accept it rather than being picky about it.
454   uint64_t entSize = sec.sh_entsize;
455   if (entSize == 0)
456     return false;
457   if (sec.sh_size % entSize)
458     fatal(toString(this) + ":(" + name + "): SHF_MERGE section size (" +
459           Twine(sec.sh_size) + ") must be a multiple of sh_entsize (" +
460           Twine(entSize) + ")");
461 
462   if (sec.sh_flags & SHF_WRITE)
463     fatal(toString(this) + ":(" + name +
464           "): writable SHF_MERGE section is not supported");
465 
466   return true;
467 }
468 
469 // This is for --just-symbols.
470 //
471 // --just-symbols is a very minor feature that allows you to link your
472 // output against other existing program, so that if you load both your
473 // program and the other program into memory, your output can refer the
474 // other program's symbols.
475 //
476 // When the option is given, we link "just symbols". The section table is
477 // initialized with null pointers.
478 template <class ELFT> void ObjFile<ELFT>::initializeJustSymbols() {
479   ArrayRef<Elf_Shdr> sections = CHECK(this->getObj().sections(), this);
480   this->sections.resize(sections.size());
481 }
482 
483 // An ELF object file may contain a `.deplibs` section. If it exists, the
484 // section contains a list of library specifiers such as `m` for libm. This
485 // function resolves a given name by finding the first matching library checking
486 // the various ways that a library can be specified to LLD. This ELF extension
487 // is a form of autolinking and is called `dependent libraries`. It is currently
488 // unique to LLVM and lld.
489 static void addDependentLibrary(StringRef specifier, const InputFile *f) {
490   if (!config->dependentLibraries)
491     return;
492   if (fs::exists(specifier))
493     driver->addFile(specifier, /*withLOption=*/false);
494   else if (Optional<std::string> s = findFromSearchPaths(specifier))
495     driver->addFile(*s, /*withLOption=*/true);
496   else if (Optional<std::string> s = searchLibraryBaseName(specifier))
497     driver->addFile(*s, /*withLOption=*/true);
498   else
499     error(toString(f) +
500           ": unable to find library from dependent library specifier: " +
501           specifier);
502 }
503 
504 // Record the membership of a section group so that in the garbage collection
505 // pass, section group members are kept or discarded as a unit.
506 template <class ELFT>
507 static void handleSectionGroup(ArrayRef<InputSectionBase *> sections,
508                                ArrayRef<typename ELFT::Word> entries) {
509   bool hasAlloc = false;
510   for (uint32_t index : entries.slice(1)) {
511     if (index >= sections.size())
512       return;
513     if (InputSectionBase *s = sections[index])
514       if (s != &InputSection::discarded && s->flags & SHF_ALLOC)
515         hasAlloc = true;
516   }
517 
518   // If any member has the SHF_ALLOC flag, the whole group is subject to garbage
519   // collection. See the comment in markLive(). This rule retains .debug_types
520   // and .rela.debug_types.
521   if (!hasAlloc)
522     return;
523 
524   // Connect the members in a circular doubly-linked list via
525   // nextInSectionGroup.
526   InputSectionBase *head;
527   InputSectionBase *prev = nullptr;
528   for (uint32_t index : entries.slice(1)) {
529     InputSectionBase *s = sections[index];
530     if (!s || s == &InputSection::discarded)
531       continue;
532     if (prev)
533       prev->nextInSectionGroup = s;
534     else
535       head = s;
536     prev = s;
537   }
538   if (prev)
539     prev->nextInSectionGroup = head;
540 }
541 
542 template <class ELFT>
543 void ObjFile<ELFT>::initializeSections(bool ignoreComdats) {
544   const ELFFile<ELFT> &obj = this->getObj();
545 
546   ArrayRef<Elf_Shdr> objSections = CHECK(obj.sections(), this);
547   StringRef shstrtab = CHECK(obj.getSectionStringTable(objSections), this);
548   uint64_t size = objSections.size();
549   this->sections.resize(size);
550 
551   std::vector<ArrayRef<Elf_Word>> selectedGroups;
552 
553   for (size_t i = 0, e = objSections.size(); i < e; ++i) {
554     if (this->sections[i] == &InputSection::discarded)
555       continue;
556     const Elf_Shdr &sec = objSections[i];
557 
558     if (sec.sh_type == ELF::SHT_LLVM_CALL_GRAPH_PROFILE)
559       cgProfileSectionIndex = i;
560 
561     // SHF_EXCLUDE'ed sections are discarded by the linker. However,
562     // if -r is given, we'll let the final link discard such sections.
563     // This is compatible with GNU.
564     if ((sec.sh_flags & SHF_EXCLUDE) && !config->relocatable) {
565       if (sec.sh_type == SHT_LLVM_ADDRSIG) {
566         // We ignore the address-significance table if we know that the object
567         // file was created by objcopy or ld -r. This is because these tools
568         // will reorder the symbols in the symbol table, invalidating the data
569         // in the address-significance table, which refers to symbols by index.
570         if (sec.sh_link != 0)
571           this->addrsigSec = &sec;
572         else if (config->icf == ICFLevel::Safe)
573           warn(toString(this) +
574                ": --icf=safe conservatively ignores "
575                "SHT_LLVM_ADDRSIG [index " +
576                Twine(i) +
577                "] with sh_link=0 "
578                "(likely created using objcopy or ld -r)");
579       }
580       this->sections[i] = &InputSection::discarded;
581       continue;
582     }
583 
584     switch (sec.sh_type) {
585     case SHT_GROUP: {
586       // De-duplicate section groups by their signatures.
587       StringRef signature = getShtGroupSignature(objSections, sec);
588       this->sections[i] = &InputSection::discarded;
589 
590       ArrayRef<Elf_Word> entries =
591           CHECK(obj.template getSectionContentsAsArray<Elf_Word>(sec), this);
592       if (entries.empty())
593         fatal(toString(this) + ": empty SHT_GROUP");
594 
595       Elf_Word flag = entries[0];
596       if (flag && flag != GRP_COMDAT)
597         fatal(toString(this) + ": unsupported SHT_GROUP format");
598 
599       bool keepGroup =
600           (flag & GRP_COMDAT) == 0 || ignoreComdats ||
601           symtab->comdatGroups.try_emplace(CachedHashStringRef(signature), this)
602               .second;
603       if (keepGroup) {
604         if (config->relocatable)
605           this->sections[i] = createInputSection(i, sec, shstrtab);
606         selectedGroups.push_back(entries);
607         continue;
608       }
609 
610       // Otherwise, discard group members.
611       for (uint32_t secIndex : entries.slice(1)) {
612         if (secIndex >= size)
613           fatal(toString(this) +
614                 ": invalid section index in group: " + Twine(secIndex));
615         this->sections[secIndex] = &InputSection::discarded;
616       }
617       break;
618     }
619     case SHT_SYMTAB_SHNDX:
620       shndxTable = CHECK(obj.getSHNDXTable(sec, objSections), this);
621       break;
622     case SHT_SYMTAB:
623     case SHT_STRTAB:
624     case SHT_REL:
625     case SHT_RELA:
626     case SHT_NULL:
627       break;
628     default:
629       this->sections[i] = createInputSection(i, sec, shstrtab);
630     }
631   }
632 
633   // We have a second loop. It is used to:
634   // 1) handle SHF_LINK_ORDER sections.
635   // 2) create SHT_REL[A] sections. In some cases the section header index of a
636   //    relocation section may be smaller than that of the relocated section. In
637   //    such cases, the relocation section would attempt to reference a target
638   //    section that has not yet been created. For simplicity, delay creation of
639   //    relocation sections until now.
640   for (size_t i = 0, e = objSections.size(); i < e; ++i) {
641     if (this->sections[i] == &InputSection::discarded)
642       continue;
643     const Elf_Shdr &sec = objSections[i];
644 
645     if (sec.sh_type == SHT_REL || sec.sh_type == SHT_RELA)
646       this->sections[i] = createInputSection(i, sec, shstrtab);
647 
648     // A SHF_LINK_ORDER section with sh_link=0 is handled as if it did not have
649     // the flag.
650     if (!(sec.sh_flags & SHF_LINK_ORDER) || !sec.sh_link)
651       continue;
652 
653     InputSectionBase *linkSec = nullptr;
654     if (sec.sh_link < this->sections.size())
655       linkSec = this->sections[sec.sh_link];
656     if (!linkSec)
657       fatal(toString(this) + ": invalid sh_link index: " + Twine(sec.sh_link));
658 
659     // A SHF_LINK_ORDER section is discarded if its linked-to section is
660     // discarded.
661     InputSection *isec = cast<InputSection>(this->sections[i]);
662     linkSec->dependentSections.push_back(isec);
663     if (!isa<InputSection>(linkSec))
664       error("a section " + isec->name +
665             " with SHF_LINK_ORDER should not refer a non-regular section: " +
666             toString(linkSec));
667   }
668 
669   for (ArrayRef<Elf_Word> entries : selectedGroups)
670     handleSectionGroup<ELFT>(this->sections, entries);
671 }
672 
673 // For ARM only, to set the EF_ARM_ABI_FLOAT_SOFT or EF_ARM_ABI_FLOAT_HARD
674 // flag in the ELF Header we need to look at Tag_ABI_VFP_args to find out how
675 // the input objects have been compiled.
676 static void updateARMVFPArgs(const ARMAttributeParser &attributes,
677                              const InputFile *f) {
678   Optional<unsigned> attr =
679       attributes.getAttributeValue(ARMBuildAttrs::ABI_VFP_args);
680   if (!attr.hasValue())
681     // If an ABI tag isn't present then it is implicitly given the value of 0
682     // which maps to ARMBuildAttrs::BaseAAPCS. However many assembler files,
683     // including some in glibc that don't use FP args (and should have value 3)
684     // don't have the attribute so we do not consider an implicit value of 0
685     // as a clash.
686     return;
687 
688   unsigned vfpArgs = attr.getValue();
689   ARMVFPArgKind arg;
690   switch (vfpArgs) {
691   case ARMBuildAttrs::BaseAAPCS:
692     arg = ARMVFPArgKind::Base;
693     break;
694   case ARMBuildAttrs::HardFPAAPCS:
695     arg = ARMVFPArgKind::VFP;
696     break;
697   case ARMBuildAttrs::ToolChainFPPCS:
698     // Tool chain specific convention that conforms to neither AAPCS variant.
699     arg = ARMVFPArgKind::ToolChain;
700     break;
701   case ARMBuildAttrs::CompatibleFPAAPCS:
702     // Object compatible with all conventions.
703     return;
704   default:
705     error(toString(f) + ": unknown Tag_ABI_VFP_args value: " + Twine(vfpArgs));
706     return;
707   }
708   // Follow ld.bfd and error if there is a mix of calling conventions.
709   if (config->armVFPArgs != arg && config->armVFPArgs != ARMVFPArgKind::Default)
710     error(toString(f) + ": incompatible Tag_ABI_VFP_args");
711   else
712     config->armVFPArgs = arg;
713 }
714 
715 // The ARM support in lld makes some use of instructions that are not available
716 // on all ARM architectures. Namely:
717 // - Use of BLX instruction for interworking between ARM and Thumb state.
718 // - Use of the extended Thumb branch encoding in relocation.
719 // - Use of the MOVT/MOVW instructions in Thumb Thunks.
720 // The ARM Attributes section contains information about the architecture chosen
721 // at compile time. We follow the convention that if at least one input object
722 // is compiled with an architecture that supports these features then lld is
723 // permitted to use them.
724 static void updateSupportedARMFeatures(const ARMAttributeParser &attributes) {
725   Optional<unsigned> attr =
726       attributes.getAttributeValue(ARMBuildAttrs::CPU_arch);
727   if (!attr.hasValue())
728     return;
729   auto arch = attr.getValue();
730   switch (arch) {
731   case ARMBuildAttrs::Pre_v4:
732   case ARMBuildAttrs::v4:
733   case ARMBuildAttrs::v4T:
734     // Architectures prior to v5 do not support BLX instruction
735     break;
736   case ARMBuildAttrs::v5T:
737   case ARMBuildAttrs::v5TE:
738   case ARMBuildAttrs::v5TEJ:
739   case ARMBuildAttrs::v6:
740   case ARMBuildAttrs::v6KZ:
741   case ARMBuildAttrs::v6K:
742     config->armHasBlx = true;
743     // Architectures used in pre-Cortex processors do not support
744     // The J1 = 1 J2 = 1 Thumb branch range extension, with the exception
745     // of Architecture v6T2 (arm1156t2-s and arm1156t2f-s) that do.
746     break;
747   default:
748     // All other Architectures have BLX and extended branch encoding
749     config->armHasBlx = true;
750     config->armJ1J2BranchEncoding = true;
751     if (arch != ARMBuildAttrs::v6_M && arch != ARMBuildAttrs::v6S_M)
752       // All Architectures used in Cortex processors with the exception
753       // of v6-M and v6S-M have the MOVT and MOVW instructions.
754       config->armHasMovtMovw = true;
755     break;
756   }
757 }
758 
759 // If a source file is compiled with x86 hardware-assisted call flow control
760 // enabled, the generated object file contains feature flags indicating that
761 // fact. This function reads the feature flags and returns it.
762 //
763 // Essentially we want to read a single 32-bit value in this function, but this
764 // function is rather complicated because the value is buried deep inside a
765 // .note.gnu.property section.
766 //
767 // The section consists of one or more NOTE records. Each NOTE record consists
768 // of zero or more type-length-value fields. We want to find a field of a
769 // certain type. It seems a bit too much to just store a 32-bit value, perhaps
770 // the ABI is unnecessarily complicated.
771 template <class ELFT> static uint32_t readAndFeatures(const InputSection &sec) {
772   using Elf_Nhdr = typename ELFT::Nhdr;
773   using Elf_Note = typename ELFT::Note;
774 
775   uint32_t featuresSet = 0;
776   ArrayRef<uint8_t> data = sec.data();
777   auto reportFatal = [&](const uint8_t *place, const char *msg) {
778     fatal(toString(sec.file) + ":(" + sec.name + "+0x" +
779           Twine::utohexstr(place - sec.data().data()) + "): " + msg);
780   };
781   while (!data.empty()) {
782     // Read one NOTE record.
783     auto *nhdr = reinterpret_cast<const Elf_Nhdr *>(data.data());
784     if (data.size() < sizeof(Elf_Nhdr) || data.size() < nhdr->getSize())
785       reportFatal(data.data(), "data is too short");
786 
787     Elf_Note note(*nhdr);
788     if (nhdr->n_type != NT_GNU_PROPERTY_TYPE_0 || note.getName() != "GNU") {
789       data = data.slice(nhdr->getSize());
790       continue;
791     }
792 
793     uint32_t featureAndType = config->emachine == EM_AARCH64
794                                   ? GNU_PROPERTY_AARCH64_FEATURE_1_AND
795                                   : GNU_PROPERTY_X86_FEATURE_1_AND;
796 
797     // Read a body of a NOTE record, which consists of type-length-value fields.
798     ArrayRef<uint8_t> desc = note.getDesc();
799     while (!desc.empty()) {
800       const uint8_t *place = desc.data();
801       if (desc.size() < 8)
802         reportFatal(place, "program property is too short");
803       uint32_t type = read32<ELFT::TargetEndianness>(desc.data());
804       uint32_t size = read32<ELFT::TargetEndianness>(desc.data() + 4);
805       desc = desc.slice(8);
806       if (desc.size() < size)
807         reportFatal(place, "program property is too short");
808 
809       if (type == featureAndType) {
810         // We found a FEATURE_1_AND field. There may be more than one of these
811         // in a .note.gnu.property section, for a relocatable object we
812         // accumulate the bits set.
813         if (size < 4)
814           reportFatal(place, "FEATURE_1_AND entry is too short");
815         featuresSet |= read32<ELFT::TargetEndianness>(desc.data());
816       }
817 
818       // Padding is present in the note descriptor, if necessary.
819       desc = desc.slice(alignTo<(ELFT::Is64Bits ? 8 : 4)>(size));
820     }
821 
822     // Go to next NOTE record to look for more FEATURE_1_AND descriptions.
823     data = data.slice(nhdr->getSize());
824   }
825 
826   return featuresSet;
827 }
828 
829 template <class ELFT>
830 InputSectionBase *ObjFile<ELFT>::getRelocTarget(uint32_t idx, StringRef name,
831                                                 const Elf_Shdr &sec) {
832   uint32_t info = sec.sh_info;
833   if (info < this->sections.size()) {
834     InputSectionBase *target = this->sections[info];
835 
836     // Strictly speaking, a relocation section must be included in the
837     // group of the section it relocates. However, LLVM 3.3 and earlier
838     // would fail to do so, so we gracefully handle that case.
839     if (target == &InputSection::discarded)
840       return nullptr;
841 
842     if (target != nullptr)
843       return target;
844   }
845 
846   error(toString(this) + Twine(": relocation section ") + name + " (index " +
847         Twine(idx) + ") has invalid sh_info (" + Twine(info) + ")");
848   return nullptr;
849 }
850 
851 // Create a regular InputSection class that has the same contents
852 // as a given section.
853 static InputSection *toRegularSection(MergeInputSection *sec) {
854   return make<InputSection>(sec->file, sec->flags, sec->type, sec->alignment,
855                             sec->data(), sec->name);
856 }
857 
858 template <class ELFT>
859 InputSectionBase *ObjFile<ELFT>::createInputSection(uint32_t idx,
860                                                     const Elf_Shdr &sec,
861                                                     StringRef shstrtab) {
862   StringRef name = CHECK(getObj().getSectionName(sec, shstrtab), this);
863 
864   if (config->emachine == EM_ARM && sec.sh_type == SHT_ARM_ATTRIBUTES) {
865     ARMAttributeParser attributes;
866     ArrayRef<uint8_t> contents = check(this->getObj().getSectionContents(sec));
867     if (Error e = attributes.parse(contents, config->ekind == ELF32LEKind
868                                                  ? support::little
869                                                  : support::big)) {
870       auto *isec = make<InputSection>(*this, sec, name);
871       warn(toString(isec) + ": " + llvm::toString(std::move(e)));
872     } else {
873       updateSupportedARMFeatures(attributes);
874       updateARMVFPArgs(attributes, this);
875 
876       // FIXME: Retain the first attribute section we see. The eglibc ARM
877       // dynamic loaders require the presence of an attribute section for dlopen
878       // to work. In a full implementation we would merge all attribute
879       // sections.
880       if (in.attributes == nullptr) {
881         in.attributes = make<InputSection>(*this, sec, name);
882         return in.attributes;
883       }
884       return &InputSection::discarded;
885     }
886   }
887 
888   if (config->emachine == EM_RISCV && sec.sh_type == SHT_RISCV_ATTRIBUTES) {
889     RISCVAttributeParser attributes;
890     ArrayRef<uint8_t> contents = check(this->getObj().getSectionContents(sec));
891     if (Error e = attributes.parse(contents, support::little)) {
892       auto *isec = make<InputSection>(*this, sec, name);
893       warn(toString(isec) + ": " + llvm::toString(std::move(e)));
894     } else {
895       // FIXME: Validate arch tag contains C if and only if EF_RISCV_RVC is
896       // present.
897 
898       // FIXME: Retain the first attribute section we see. Tools such as
899       // llvm-objdump make use of the attribute section to determine which
900       // standard extensions to enable. In a full implementation we would merge
901       // all attribute sections.
902       if (in.attributes == nullptr) {
903         in.attributes = make<InputSection>(*this, sec, name);
904         return in.attributes;
905       }
906       return &InputSection::discarded;
907     }
908   }
909 
910   switch (sec.sh_type) {
911   case SHT_LLVM_DEPENDENT_LIBRARIES: {
912     if (config->relocatable)
913       break;
914     ArrayRef<char> data =
915         CHECK(this->getObj().template getSectionContentsAsArray<char>(sec), this);
916     if (!data.empty() && data.back() != '\0') {
917       error(toString(this) +
918             ": corrupted dependent libraries section (unterminated string): " +
919             name);
920       return &InputSection::discarded;
921     }
922     for (const char *d = data.begin(), *e = data.end(); d < e;) {
923       StringRef s(d);
924       addDependentLibrary(s, this);
925       d += s.size() + 1;
926     }
927     return &InputSection::discarded;
928   }
929   case SHT_RELA:
930   case SHT_REL: {
931     // Find a relocation target section and associate this section with that.
932     // Target may have been discarded if it is in a different section group
933     // and the group is discarded, even though it's a violation of the
934     // spec. We handle that situation gracefully by discarding dangling
935     // relocation sections.
936     InputSectionBase *target = getRelocTarget(idx, name, sec);
937     if (!target)
938       return nullptr;
939 
940     // ELF spec allows mergeable sections with relocations, but they are
941     // rare, and it is in practice hard to merge such sections by contents,
942     // because applying relocations at end of linking changes section
943     // contents. So, we simply handle such sections as non-mergeable ones.
944     // Degrading like this is acceptable because section merging is optional.
945     if (auto *ms = dyn_cast<MergeInputSection>(target)) {
946       target = toRegularSection(ms);
947       this->sections[sec.sh_info] = target;
948     }
949 
950     if (target->relSecIdx != 0)
951       fatal(toString(this) +
952             ": multiple relocation sections to one section are not supported");
953     target->relSecIdx = idx;
954 
955     // Relocation sections are usually removed from the output, so return
956     // `nullptr` for the normal case. However, if -r or --emit-relocs is
957     // specified, we need to copy them to the output. (Some post link analysis
958     // tools specify --emit-relocs to obtain the information.)
959     if (!config->copyRelocs)
960       return nullptr;
961     InputSection *relocSec = make<InputSection>(*this, sec, name);
962     // If the relocated section is discarded (due to /DISCARD/ or
963     // --gc-sections), the relocation section should be discarded as well.
964     target->dependentSections.push_back(relocSec);
965     return relocSec;
966   }
967   }
968 
969   // The GNU linker uses .note.GNU-stack section as a marker indicating
970   // that the code in the object file does not expect that the stack is
971   // executable (in terms of NX bit). If all input files have the marker,
972   // the GNU linker adds a PT_GNU_STACK segment to tells the loader to
973   // make the stack non-executable. Most object files have this section as
974   // of 2017.
975   //
976   // But making the stack non-executable is a norm today for security
977   // reasons. Failure to do so may result in a serious security issue.
978   // Therefore, we make LLD always add PT_GNU_STACK unless it is
979   // explicitly told to do otherwise (by -z execstack). Because the stack
980   // executable-ness is controlled solely by command line options,
981   // .note.GNU-stack sections are simply ignored.
982   if (name == ".note.GNU-stack")
983     return &InputSection::discarded;
984 
985   // Object files that use processor features such as Intel Control-Flow
986   // Enforcement (CET) or AArch64 Branch Target Identification BTI, use a
987   // .note.gnu.property section containing a bitfield of feature bits like the
988   // GNU_PROPERTY_X86_FEATURE_1_IBT flag. Read a bitmap containing the flag.
989   //
990   // Since we merge bitmaps from multiple object files to create a new
991   // .note.gnu.property containing a single AND'ed bitmap, we discard an input
992   // file's .note.gnu.property section.
993   if (name == ".note.gnu.property") {
994     this->andFeatures = readAndFeatures<ELFT>(InputSection(*this, sec, name));
995     return &InputSection::discarded;
996   }
997 
998   // Split stacks is a feature to support a discontiguous stack,
999   // commonly used in the programming language Go. For the details,
1000   // see https://gcc.gnu.org/wiki/SplitStacks. An object file compiled
1001   // for split stack will include a .note.GNU-split-stack section.
1002   if (name == ".note.GNU-split-stack") {
1003     if (config->relocatable) {
1004       error("cannot mix split-stack and non-split-stack in a relocatable link");
1005       return &InputSection::discarded;
1006     }
1007     this->splitStack = true;
1008     return &InputSection::discarded;
1009   }
1010 
1011   // An object file cmpiled for split stack, but where some of the
1012   // functions were compiled with the no_split_stack_attribute will
1013   // include a .note.GNU-no-split-stack section.
1014   if (name == ".note.GNU-no-split-stack") {
1015     this->someNoSplitStack = true;
1016     return &InputSection::discarded;
1017   }
1018 
1019   // The linkonce feature is a sort of proto-comdat. Some glibc i386 object
1020   // files contain definitions of symbol "__x86.get_pc_thunk.bx" in linkonce
1021   // sections. Drop those sections to avoid duplicate symbol errors.
1022   // FIXME: This is glibc PR20543, we should remove this hack once that has been
1023   // fixed for a while.
1024   if (name == ".gnu.linkonce.t.__x86.get_pc_thunk.bx" ||
1025       name == ".gnu.linkonce.t.__i686.get_pc_thunk.bx")
1026     return &InputSection::discarded;
1027 
1028   // If we are creating a new .build-id section, strip existing .build-id
1029   // sections so that the output won't have more than one .build-id.
1030   // This is not usually a problem because input object files normally don't
1031   // have .build-id sections, but you can create such files by
1032   // "ld.{bfd,gold,lld} -r --build-id", and we want to guard against it.
1033   if (name == ".note.gnu.build-id" && config->buildId != BuildIdKind::None)
1034     return &InputSection::discarded;
1035 
1036   // The linker merges EH (exception handling) frames and creates a
1037   // .eh_frame_hdr section for runtime. So we handle them with a special
1038   // class. For relocatable outputs, they are just passed through.
1039   if (name == ".eh_frame" && !config->relocatable)
1040     return make<EhInputSection>(*this, sec, name);
1041 
1042   if (shouldMerge(sec, name))
1043     return make<MergeInputSection>(*this, sec, name);
1044   return make<InputSection>(*this, sec, name);
1045 }
1046 
1047 // Initialize this->Symbols. this->Symbols is a parallel array as
1048 // its corresponding ELF symbol table.
1049 template <class ELFT> void ObjFile<ELFT>::initializeSymbols() {
1050   ArrayRef<Elf_Sym> eSyms = this->getELFSyms<ELFT>();
1051   this->symbols.resize(eSyms.size());
1052 
1053   // Fill in InputFile::symbols. Some entries have been initialized
1054   // because of LazyObjFile.
1055   for (size_t i = 0, end = eSyms.size(); i != end; ++i) {
1056     if (this->symbols[i])
1057       continue;
1058     const Elf_Sym &eSym = eSyms[i];
1059     uint32_t secIdx = getSectionIndex(eSym);
1060     if (secIdx >= this->sections.size())
1061       fatal(toString(this) + ": invalid section index: " + Twine(secIdx));
1062     if (eSym.getBinding() != STB_LOCAL) {
1063       if (i < firstGlobal)
1064         error(toString(this) + ": non-local symbol (" + Twine(i) +
1065               ") found at index < .symtab's sh_info (" + Twine(firstGlobal) +
1066               ")");
1067       this->symbols[i] =
1068           symtab->insert(CHECK(eSyms[i].getName(this->stringTable), this));
1069       continue;
1070     }
1071 
1072     // Handle local symbols. Local symbols are not added to the symbol
1073     // table because they are not visible from other object files. We
1074     // allocate symbol instances and add their pointers to symbols.
1075     if (i >= firstGlobal)
1076       errorOrWarn(toString(this) + ": STB_LOCAL symbol (" + Twine(i) +
1077                   ") found at index >= .symtab's sh_info (" +
1078                   Twine(firstGlobal) + ")");
1079 
1080     InputSectionBase *sec = this->sections[secIdx];
1081     uint8_t type = eSym.getType();
1082     if (type == STT_FILE)
1083       sourceFile = CHECK(eSym.getName(this->stringTable), this);
1084     if (this->stringTable.size() <= eSym.st_name)
1085       fatal(toString(this) + ": invalid symbol name offset");
1086     StringRefZ name = this->stringTable.data() + eSym.st_name;
1087 
1088     if (eSym.st_shndx == SHN_UNDEF)
1089       this->symbols[i] =
1090           make<Undefined>(this, name, STB_LOCAL, eSym.st_other, type);
1091     else if (sec == &InputSection::discarded)
1092       this->symbols[i] =
1093           make<Undefined>(this, name, STB_LOCAL, eSym.st_other, type,
1094                           /*discardedSecIdx=*/secIdx);
1095     else
1096       this->symbols[i] = make<Defined>(this, name, STB_LOCAL, eSym.st_other,
1097                                        type, eSym.st_value, eSym.st_size, sec);
1098   }
1099 
1100   // Symbol resolution of non-local symbols.
1101   SmallVector<unsigned, 32> undefineds;
1102   for (size_t i = firstGlobal, end = eSyms.size(); i != end; ++i) {
1103     const Elf_Sym &eSym = eSyms[i];
1104     uint8_t binding = eSym.getBinding();
1105     if (binding == STB_LOCAL)
1106       continue; // Errored above.
1107 
1108     uint32_t secIdx = getSectionIndex(eSym);
1109     InputSectionBase *sec = this->sections[secIdx];
1110     uint8_t stOther = eSym.st_other;
1111     uint8_t type = eSym.getType();
1112     uint64_t value = eSym.st_value;
1113     uint64_t size = eSym.st_size;
1114     StringRefZ name = this->stringTable.data() + eSym.st_name;
1115 
1116     // Handle global undefined symbols.
1117     if (eSym.st_shndx == SHN_UNDEF) {
1118       undefineds.push_back(i);
1119       continue;
1120     }
1121 
1122     // Handle global common symbols.
1123     if (eSym.st_shndx == SHN_COMMON) {
1124       if (value == 0 || value >= UINT32_MAX)
1125         fatal(toString(this) + ": common symbol '" + StringRef(name.data) +
1126               "' has invalid alignment: " + Twine(value));
1127       this->symbols[i]->resolve(
1128           CommonSymbol{this, name, binding, stOther, type, value, size});
1129       continue;
1130     }
1131 
1132     // If a defined symbol is in a discarded section, handle it as if it
1133     // were an undefined symbol. Such symbol doesn't comply with the
1134     // standard, but in practice, a .eh_frame often directly refer
1135     // COMDAT member sections, and if a comdat group is discarded, some
1136     // defined symbol in a .eh_frame becomes dangling symbols.
1137     if (sec == &InputSection::discarded) {
1138       Undefined und{this, name, binding, stOther, type, secIdx};
1139       Symbol *sym = this->symbols[i];
1140       // !ArchiveFile::parsed or LazyObjFile::extracted means that the file
1141       // containing this object has not finished processing, i.e. this symbol is
1142       // a result of a lazy symbol extract. We should demote the lazy symbol to
1143       // an Undefined so that any relocations outside of the group to it will
1144       // trigger a discarded section error.
1145       if ((sym->symbolKind == Symbol::LazyArchiveKind &&
1146            !cast<ArchiveFile>(sym->file)->parsed) ||
1147           (sym->symbolKind == Symbol::LazyObjectKind &&
1148            cast<LazyObjFile>(sym->file)->extracted))
1149         sym->replace(und);
1150       else
1151         sym->resolve(und);
1152       continue;
1153     }
1154 
1155     // Handle global defined symbols.
1156     if (binding == STB_GLOBAL || binding == STB_WEAK ||
1157         binding == STB_GNU_UNIQUE) {
1158       this->symbols[i]->resolve(
1159           Defined{this, name, binding, stOther, type, value, size, sec});
1160       continue;
1161     }
1162 
1163     fatal(toString(this) + ": unexpected binding: " + Twine((int)binding));
1164   }
1165 
1166   // Undefined symbols (excluding those defined relative to non-prevailing
1167   // sections) can trigger recursive extract. Process defined symbols first so
1168   // that the relative order between a defined symbol and an undefined symbol
1169   // does not change the symbol resolution behavior. In addition, a set of
1170   // interconnected symbols will all be resolved to the same file, instead of
1171   // being resolved to different files.
1172   for (unsigned i : undefineds) {
1173     const Elf_Sym &eSym = eSyms[i];
1174     StringRefZ name = this->stringTable.data() + eSym.st_name;
1175     this->symbols[i]->resolve(Undefined{this, name, eSym.getBinding(),
1176                                         eSym.st_other, eSym.getType()});
1177     this->symbols[i]->referenced = true;
1178   }
1179 }
1180 
1181 ArchiveFile::ArchiveFile(std::unique_ptr<Archive> &&file)
1182     : InputFile(ArchiveKind, file->getMemoryBufferRef()),
1183       file(std::move(file)) {}
1184 
1185 void ArchiveFile::parse() {
1186   for (const Archive::Symbol &sym : file->symbols())
1187     symtab->addSymbol(LazyArchive{*this, sym});
1188 
1189   // Inform a future invocation of ObjFile<ELFT>::initializeSymbols() that this
1190   // archive has been processed.
1191   parsed = true;
1192 }
1193 
1194 // Returns a buffer pointing to a member file containing a given symbol.
1195 void ArchiveFile::extract(const Archive::Symbol &sym) {
1196   Archive::Child c =
1197       CHECK(sym.getMember(), toString(this) +
1198                                  ": could not get the member for symbol " +
1199                                  toELFString(sym));
1200 
1201   if (!seen.insert(c.getChildOffset()).second)
1202     return;
1203 
1204   MemoryBufferRef mb =
1205       CHECK(c.getMemoryBufferRef(),
1206             toString(this) +
1207                 ": could not get the buffer for the member defining symbol " +
1208                 toELFString(sym));
1209 
1210   if (tar && c.getParent()->isThin())
1211     tar->append(relativeToRoot(CHECK(c.getFullName(), this)), mb.getBuffer());
1212 
1213   InputFile *file = createObjectFile(mb, getName(), c.getChildOffset());
1214   file->groupId = groupId;
1215   parseFile(file);
1216 }
1217 
1218 // The handling of tentative definitions (COMMON symbols) in archives is murky.
1219 // A tentative definition will be promoted to a global definition if there are
1220 // no non-tentative definitions to dominate it. When we hold a tentative
1221 // definition to a symbol and are inspecting archive members for inclusion
1222 // there are 2 ways we can proceed:
1223 //
1224 // 1) Consider the tentative definition a 'real' definition (ie promotion from
1225 //    tentative to real definition has already happened) and not inspect
1226 //    archive members for Global/Weak definitions to replace the tentative
1227 //    definition. An archive member would only be included if it satisfies some
1228 //    other undefined symbol. This is the behavior Gold uses.
1229 //
1230 // 2) Consider the tentative definition as still undefined (ie the promotion to
1231 //    a real definition happens only after all symbol resolution is done).
1232 //    The linker searches archive members for STB_GLOBAL definitions to
1233 //    replace the tentative definition with. This is the behavior used by
1234 //    GNU ld.
1235 //
1236 //  The second behavior is inherited from SysVR4, which based it on the FORTRAN
1237 //  COMMON BLOCK model. This behavior is needed for proper initialization in old
1238 //  (pre F90) FORTRAN code that is packaged into an archive.
1239 //
1240 //  The following functions search archive members for definitions to replace
1241 //  tentative definitions (implementing behavior 2).
1242 static bool isBitcodeNonCommonDef(MemoryBufferRef mb, StringRef symName,
1243                                   StringRef archiveName) {
1244   IRSymtabFile symtabFile = check(readIRSymtab(mb));
1245   for (const irsymtab::Reader::SymbolRef &sym :
1246        symtabFile.TheReader.symbols()) {
1247     if (sym.isGlobal() && sym.getName() == symName)
1248       return !sym.isUndefined() && !sym.isWeak() && !sym.isCommon();
1249   }
1250   return false;
1251 }
1252 
1253 template <class ELFT>
1254 static bool isNonCommonDef(MemoryBufferRef mb, StringRef symName,
1255                            StringRef archiveName) {
1256   ObjFile<ELFT> *obj = make<ObjFile<ELFT>>(mb, archiveName);
1257   StringRef stringtable = obj->getStringTable();
1258 
1259   for (auto sym : obj->template getGlobalELFSyms<ELFT>()) {
1260     Expected<StringRef> name = sym.getName(stringtable);
1261     if (name && name.get() == symName)
1262       return sym.isDefined() && sym.getBinding() == STB_GLOBAL &&
1263              !sym.isCommon();
1264   }
1265   return false;
1266 }
1267 
1268 static bool isNonCommonDef(MemoryBufferRef mb, StringRef symName,
1269                            StringRef archiveName) {
1270   switch (getELFKind(mb, archiveName)) {
1271   case ELF32LEKind:
1272     return isNonCommonDef<ELF32LE>(mb, symName, archiveName);
1273   case ELF32BEKind:
1274     return isNonCommonDef<ELF32BE>(mb, symName, archiveName);
1275   case ELF64LEKind:
1276     return isNonCommonDef<ELF64LE>(mb, symName, archiveName);
1277   case ELF64BEKind:
1278     return isNonCommonDef<ELF64BE>(mb, symName, archiveName);
1279   default:
1280     llvm_unreachable("getELFKind");
1281   }
1282 }
1283 
1284 bool ArchiveFile::shouldExtractForCommon(const Archive::Symbol &sym) {
1285   Archive::Child c =
1286       CHECK(sym.getMember(), toString(this) +
1287                                  ": could not get the member for symbol " +
1288                                  toELFString(sym));
1289   MemoryBufferRef mb =
1290       CHECK(c.getMemoryBufferRef(),
1291             toString(this) +
1292                 ": could not get the buffer for the member defining symbol " +
1293                 toELFString(sym));
1294 
1295   if (isBitcode(mb))
1296     return isBitcodeNonCommonDef(mb, sym.getName(), getName());
1297 
1298   return isNonCommonDef(mb, sym.getName(), getName());
1299 }
1300 
1301 size_t ArchiveFile::getMemberCount() const {
1302   size_t count = 0;
1303   Error err = Error::success();
1304   for (const Archive::Child &c : file->children(err)) {
1305     (void)c;
1306     ++count;
1307   }
1308   // This function is used by --print-archive-stats=, where an error does not
1309   // really matter.
1310   consumeError(std::move(err));
1311   return count;
1312 }
1313 
1314 unsigned SharedFile::vernauxNum;
1315 
1316 // Parse the version definitions in the object file if present, and return a
1317 // vector whose nth element contains a pointer to the Elf_Verdef for version
1318 // identifier n. Version identifiers that are not definitions map to nullptr.
1319 template <typename ELFT>
1320 static std::vector<const void *> parseVerdefs(const uint8_t *base,
1321                                               const typename ELFT::Shdr *sec) {
1322   if (!sec)
1323     return {};
1324 
1325   // We cannot determine the largest verdef identifier without inspecting
1326   // every Elf_Verdef, but both bfd and gold assign verdef identifiers
1327   // sequentially starting from 1, so we predict that the largest identifier
1328   // will be verdefCount.
1329   unsigned verdefCount = sec->sh_info;
1330   std::vector<const void *> verdefs(verdefCount + 1);
1331 
1332   // Build the Verdefs array by following the chain of Elf_Verdef objects
1333   // from the start of the .gnu.version_d section.
1334   const uint8_t *verdef = base + sec->sh_offset;
1335   for (unsigned i = 0; i != verdefCount; ++i) {
1336     auto *curVerdef = reinterpret_cast<const typename ELFT::Verdef *>(verdef);
1337     verdef += curVerdef->vd_next;
1338     unsigned verdefIndex = curVerdef->vd_ndx;
1339     verdefs.resize(verdefIndex + 1);
1340     verdefs[verdefIndex] = curVerdef;
1341   }
1342   return verdefs;
1343 }
1344 
1345 // Parse SHT_GNU_verneed to properly set the name of a versioned undefined
1346 // symbol. We detect fatal issues which would cause vulnerabilities, but do not
1347 // implement sophisticated error checking like in llvm-readobj because the value
1348 // of such diagnostics is low.
1349 template <typename ELFT>
1350 std::vector<uint32_t> SharedFile::parseVerneed(const ELFFile<ELFT> &obj,
1351                                                const typename ELFT::Shdr *sec) {
1352   if (!sec)
1353     return {};
1354   std::vector<uint32_t> verneeds;
1355   ArrayRef<uint8_t> data = CHECK(obj.getSectionContents(*sec), this);
1356   const uint8_t *verneedBuf = data.begin();
1357   for (unsigned i = 0; i != sec->sh_info; ++i) {
1358     if (verneedBuf + sizeof(typename ELFT::Verneed) > data.end())
1359       fatal(toString(this) + " has an invalid Verneed");
1360     auto *vn = reinterpret_cast<const typename ELFT::Verneed *>(verneedBuf);
1361     const uint8_t *vernauxBuf = verneedBuf + vn->vn_aux;
1362     for (unsigned j = 0; j != vn->vn_cnt; ++j) {
1363       if (vernauxBuf + sizeof(typename ELFT::Vernaux) > data.end())
1364         fatal(toString(this) + " has an invalid Vernaux");
1365       auto *aux = reinterpret_cast<const typename ELFT::Vernaux *>(vernauxBuf);
1366       if (aux->vna_name >= this->stringTable.size())
1367         fatal(toString(this) + " has a Vernaux with an invalid vna_name");
1368       uint16_t version = aux->vna_other & VERSYM_VERSION;
1369       if (version >= verneeds.size())
1370         verneeds.resize(version + 1);
1371       verneeds[version] = aux->vna_name;
1372       vernauxBuf += aux->vna_next;
1373     }
1374     verneedBuf += vn->vn_next;
1375   }
1376   return verneeds;
1377 }
1378 
1379 // We do not usually care about alignments of data in shared object
1380 // files because the loader takes care of it. However, if we promote a
1381 // DSO symbol to point to .bss due to copy relocation, we need to keep
1382 // the original alignment requirements. We infer it in this function.
1383 template <typename ELFT>
1384 static uint64_t getAlignment(ArrayRef<typename ELFT::Shdr> sections,
1385                              const typename ELFT::Sym &sym) {
1386   uint64_t ret = UINT64_MAX;
1387   if (sym.st_value)
1388     ret = 1ULL << countTrailingZeros((uint64_t)sym.st_value);
1389   if (0 < sym.st_shndx && sym.st_shndx < sections.size())
1390     ret = std::min<uint64_t>(ret, sections[sym.st_shndx].sh_addralign);
1391   return (ret > UINT32_MAX) ? 0 : ret;
1392 }
1393 
1394 // Fully parse the shared object file.
1395 //
1396 // This function parses symbol versions. If a DSO has version information,
1397 // the file has a ".gnu.version_d" section which contains symbol version
1398 // definitions. Each symbol is associated to one version through a table in
1399 // ".gnu.version" section. That table is a parallel array for the symbol
1400 // table, and each table entry contains an index in ".gnu.version_d".
1401 //
1402 // The special index 0 is reserved for VERF_NDX_LOCAL and 1 is for
1403 // VER_NDX_GLOBAL. There's no table entry for these special versions in
1404 // ".gnu.version_d".
1405 //
1406 // The file format for symbol versioning is perhaps a bit more complicated
1407 // than necessary, but you can easily understand the code if you wrap your
1408 // head around the data structure described above.
1409 template <class ELFT> void SharedFile::parse() {
1410   using Elf_Dyn = typename ELFT::Dyn;
1411   using Elf_Shdr = typename ELFT::Shdr;
1412   using Elf_Sym = typename ELFT::Sym;
1413   using Elf_Verdef = typename ELFT::Verdef;
1414   using Elf_Versym = typename ELFT::Versym;
1415 
1416   ArrayRef<Elf_Dyn> dynamicTags;
1417   const ELFFile<ELFT> obj = this->getObj<ELFT>();
1418   ArrayRef<Elf_Shdr> sections = CHECK(obj.sections(), this);
1419 
1420   const Elf_Shdr *versymSec = nullptr;
1421   const Elf_Shdr *verdefSec = nullptr;
1422   const Elf_Shdr *verneedSec = nullptr;
1423 
1424   // Search for .dynsym, .dynamic, .symtab, .gnu.version and .gnu.version_d.
1425   for (const Elf_Shdr &sec : sections) {
1426     switch (sec.sh_type) {
1427     default:
1428       continue;
1429     case SHT_DYNAMIC:
1430       dynamicTags =
1431           CHECK(obj.template getSectionContentsAsArray<Elf_Dyn>(sec), this);
1432       break;
1433     case SHT_GNU_versym:
1434       versymSec = &sec;
1435       break;
1436     case SHT_GNU_verdef:
1437       verdefSec = &sec;
1438       break;
1439     case SHT_GNU_verneed:
1440       verneedSec = &sec;
1441       break;
1442     }
1443   }
1444 
1445   if (versymSec && numELFSyms == 0) {
1446     error("SHT_GNU_versym should be associated with symbol table");
1447     return;
1448   }
1449 
1450   // Search for a DT_SONAME tag to initialize this->soName.
1451   for (const Elf_Dyn &dyn : dynamicTags) {
1452     if (dyn.d_tag == DT_NEEDED) {
1453       uint64_t val = dyn.getVal();
1454       if (val >= this->stringTable.size())
1455         fatal(toString(this) + ": invalid DT_NEEDED entry");
1456       dtNeeded.push_back(this->stringTable.data() + val);
1457     } else if (dyn.d_tag == DT_SONAME) {
1458       uint64_t val = dyn.getVal();
1459       if (val >= this->stringTable.size())
1460         fatal(toString(this) + ": invalid DT_SONAME entry");
1461       soName = this->stringTable.data() + val;
1462     }
1463   }
1464 
1465   // DSOs are uniquified not by filename but by soname.
1466   DenseMap<StringRef, SharedFile *>::iterator it;
1467   bool wasInserted;
1468   std::tie(it, wasInserted) = symtab->soNames.try_emplace(soName, this);
1469 
1470   // If a DSO appears more than once on the command line with and without
1471   // --as-needed, --no-as-needed takes precedence over --as-needed because a
1472   // user can add an extra DSO with --no-as-needed to force it to be added to
1473   // the dependency list.
1474   it->second->isNeeded |= isNeeded;
1475   if (!wasInserted)
1476     return;
1477 
1478   sharedFiles.push_back(this);
1479 
1480   verdefs = parseVerdefs<ELFT>(obj.base(), verdefSec);
1481   std::vector<uint32_t> verneeds = parseVerneed<ELFT>(obj, verneedSec);
1482 
1483   // Parse ".gnu.version" section which is a parallel array for the symbol
1484   // table. If a given file doesn't have a ".gnu.version" section, we use
1485   // VER_NDX_GLOBAL.
1486   size_t size = numELFSyms - firstGlobal;
1487   std::vector<uint16_t> versyms(size, VER_NDX_GLOBAL);
1488   if (versymSec) {
1489     ArrayRef<Elf_Versym> versym =
1490         CHECK(obj.template getSectionContentsAsArray<Elf_Versym>(*versymSec),
1491               this)
1492             .slice(firstGlobal);
1493     for (size_t i = 0; i < size; ++i)
1494       versyms[i] = versym[i].vs_index;
1495   }
1496 
1497   // System libraries can have a lot of symbols with versions. Using a
1498   // fixed buffer for computing the versions name (foo@ver) can save a
1499   // lot of allocations.
1500   SmallString<0> versionedNameBuffer;
1501 
1502   // Add symbols to the symbol table.
1503   ArrayRef<Elf_Sym> syms = this->getGlobalELFSyms<ELFT>();
1504   for (size_t i = 0; i < syms.size(); ++i) {
1505     const Elf_Sym &sym = syms[i];
1506 
1507     // ELF spec requires that all local symbols precede weak or global
1508     // symbols in each symbol table, and the index of first non-local symbol
1509     // is stored to sh_info. If a local symbol appears after some non-local
1510     // symbol, that's a violation of the spec.
1511     StringRef name = CHECK(sym.getName(this->stringTable), this);
1512     if (sym.getBinding() == STB_LOCAL) {
1513       warn("found local symbol '" + name +
1514            "' in global part of symbol table in file " + toString(this));
1515       continue;
1516     }
1517 
1518     uint16_t idx = versyms[i] & ~VERSYM_HIDDEN;
1519     if (sym.isUndefined()) {
1520       // For unversioned undefined symbols, VER_NDX_GLOBAL makes more sense but
1521       // as of binutils 2.34, GNU ld produces VER_NDX_LOCAL.
1522       if (idx != VER_NDX_LOCAL && idx != VER_NDX_GLOBAL) {
1523         if (idx >= verneeds.size()) {
1524           error("corrupt input file: version need index " + Twine(idx) +
1525                 " for symbol " + name + " is out of bounds\n>>> defined in " +
1526                 toString(this));
1527           continue;
1528         }
1529         StringRef verName = this->stringTable.data() + verneeds[idx];
1530         versionedNameBuffer.clear();
1531         name =
1532             saver.save((name + "@" + verName).toStringRef(versionedNameBuffer));
1533       }
1534       Symbol *s = symtab->addSymbol(
1535           Undefined{this, name, sym.getBinding(), sym.st_other, sym.getType()});
1536       s->exportDynamic = true;
1537       if (s->isUndefined() && !s->isWeak() &&
1538           config->unresolvedSymbolsInShlib != UnresolvedPolicy::Ignore)
1539         requiredSymbols.push_back(s);
1540       continue;
1541     }
1542 
1543     // MIPS BFD linker puts _gp_disp symbol into DSO files and incorrectly
1544     // assigns VER_NDX_LOCAL to this section global symbol. Here is a
1545     // workaround for this bug.
1546     if (config->emachine == EM_MIPS && idx == VER_NDX_LOCAL &&
1547         name == "_gp_disp")
1548       continue;
1549 
1550     uint32_t alignment = getAlignment<ELFT>(sections, sym);
1551     if (!(versyms[i] & VERSYM_HIDDEN)) {
1552       symtab->addSymbol(SharedSymbol{*this, name, sym.getBinding(),
1553                                      sym.st_other, sym.getType(), sym.st_value,
1554                                      sym.st_size, alignment, idx});
1555     }
1556 
1557     // Also add the symbol with the versioned name to handle undefined symbols
1558     // with explicit versions.
1559     if (idx == VER_NDX_GLOBAL)
1560       continue;
1561 
1562     if (idx >= verdefs.size() || idx == VER_NDX_LOCAL) {
1563       error("corrupt input file: version definition index " + Twine(idx) +
1564             " for symbol " + name + " is out of bounds\n>>> defined in " +
1565             toString(this));
1566       continue;
1567     }
1568 
1569     StringRef verName =
1570         this->stringTable.data() +
1571         reinterpret_cast<const Elf_Verdef *>(verdefs[idx])->getAux()->vda_name;
1572     versionedNameBuffer.clear();
1573     name = (name + "@" + verName).toStringRef(versionedNameBuffer);
1574     symtab->addSymbol(SharedSymbol{*this, saver.save(name), sym.getBinding(),
1575                                    sym.st_other, sym.getType(), sym.st_value,
1576                                    sym.st_size, alignment, idx});
1577   }
1578 }
1579 
1580 static ELFKind getBitcodeELFKind(const Triple &t) {
1581   if (t.isLittleEndian())
1582     return t.isArch64Bit() ? ELF64LEKind : ELF32LEKind;
1583   return t.isArch64Bit() ? ELF64BEKind : ELF32BEKind;
1584 }
1585 
1586 static uint16_t getBitcodeMachineKind(StringRef path, const Triple &t) {
1587   switch (t.getArch()) {
1588   case Triple::aarch64:
1589   case Triple::aarch64_be:
1590     return EM_AARCH64;
1591   case Triple::amdgcn:
1592   case Triple::r600:
1593     return EM_AMDGPU;
1594   case Triple::arm:
1595   case Triple::thumb:
1596     return EM_ARM;
1597   case Triple::avr:
1598     return EM_AVR;
1599   case Triple::hexagon:
1600     return EM_HEXAGON;
1601   case Triple::mips:
1602   case Triple::mipsel:
1603   case Triple::mips64:
1604   case Triple::mips64el:
1605     return EM_MIPS;
1606   case Triple::msp430:
1607     return EM_MSP430;
1608   case Triple::ppc:
1609   case Triple::ppcle:
1610     return EM_PPC;
1611   case Triple::ppc64:
1612   case Triple::ppc64le:
1613     return EM_PPC64;
1614   case Triple::riscv32:
1615   case Triple::riscv64:
1616     return EM_RISCV;
1617   case Triple::x86:
1618     return t.isOSIAMCU() ? EM_IAMCU : EM_386;
1619   case Triple::x86_64:
1620     return EM_X86_64;
1621   default:
1622     error(path + ": could not infer e_machine from bitcode target triple " +
1623           t.str());
1624     return EM_NONE;
1625   }
1626 }
1627 
1628 static uint8_t getOsAbi(const Triple &t) {
1629   switch (t.getOS()) {
1630   case Triple::AMDHSA:
1631     return ELF::ELFOSABI_AMDGPU_HSA;
1632   case Triple::AMDPAL:
1633     return ELF::ELFOSABI_AMDGPU_PAL;
1634   case Triple::Mesa3D:
1635     return ELF::ELFOSABI_AMDGPU_MESA3D;
1636   default:
1637     return ELF::ELFOSABI_NONE;
1638   }
1639 }
1640 
1641 BitcodeFile::BitcodeFile(MemoryBufferRef mb, StringRef archiveName,
1642                          uint64_t offsetInArchive)
1643     : InputFile(BitcodeKind, mb) {
1644   this->archiveName = std::string(archiveName);
1645 
1646   std::string path = mb.getBufferIdentifier().str();
1647   if (config->thinLTOIndexOnly)
1648     path = replaceThinLTOSuffix(mb.getBufferIdentifier());
1649 
1650   // ThinLTO assumes that all MemoryBufferRefs given to it have a unique
1651   // name. If two archives define two members with the same name, this
1652   // causes a collision which result in only one of the objects being taken
1653   // into consideration at LTO time (which very likely causes undefined
1654   // symbols later in the link stage). So we append file offset to make
1655   // filename unique.
1656   StringRef name =
1657       archiveName.empty()
1658           ? saver.save(path)
1659           : saver.save(archiveName + "(" + path::filename(path) + " at " +
1660                        utostr(offsetInArchive) + ")");
1661   MemoryBufferRef mbref(mb.getBuffer(), name);
1662 
1663   obj = CHECK(lto::InputFile::create(mbref), this);
1664 
1665   Triple t(obj->getTargetTriple());
1666   ekind = getBitcodeELFKind(t);
1667   emachine = getBitcodeMachineKind(mb.getBufferIdentifier(), t);
1668   osabi = getOsAbi(t);
1669 }
1670 
1671 static uint8_t mapVisibility(GlobalValue::VisibilityTypes gvVisibility) {
1672   switch (gvVisibility) {
1673   case GlobalValue::DefaultVisibility:
1674     return STV_DEFAULT;
1675   case GlobalValue::HiddenVisibility:
1676     return STV_HIDDEN;
1677   case GlobalValue::ProtectedVisibility:
1678     return STV_PROTECTED;
1679   }
1680   llvm_unreachable("unknown visibility");
1681 }
1682 
1683 template <class ELFT>
1684 static Symbol *createBitcodeSymbol(const std::vector<bool> &keptComdats,
1685                                    const lto::InputFile::Symbol &objSym,
1686                                    BitcodeFile &f) {
1687   StringRef name = saver.save(objSym.getName());
1688   uint8_t binding = objSym.isWeak() ? STB_WEAK : STB_GLOBAL;
1689   uint8_t type = objSym.isTLS() ? STT_TLS : STT_NOTYPE;
1690   uint8_t visibility = mapVisibility(objSym.getVisibility());
1691   bool canOmitFromDynSym = objSym.canBeOmittedFromSymbolTable();
1692 
1693   int c = objSym.getComdatIndex();
1694   if (objSym.isUndefined() || (c != -1 && !keptComdats[c])) {
1695     Undefined newSym(&f, name, binding, visibility, type);
1696     if (canOmitFromDynSym)
1697       newSym.exportDynamic = false;
1698     Symbol *ret = symtab->addSymbol(newSym);
1699     ret->referenced = true;
1700     return ret;
1701   }
1702 
1703   if (objSym.isCommon())
1704     return symtab->addSymbol(
1705         CommonSymbol{&f, name, binding, visibility, STT_OBJECT,
1706                      objSym.getCommonAlignment(), objSym.getCommonSize()});
1707 
1708   Defined newSym(&f, name, binding, visibility, type, 0, 0, nullptr);
1709   if (canOmitFromDynSym)
1710     newSym.exportDynamic = false;
1711   return symtab->addSymbol(newSym);
1712 }
1713 
1714 template <class ELFT> void BitcodeFile::parse() {
1715   std::vector<bool> keptComdats;
1716   for (std::pair<StringRef, Comdat::SelectionKind> s : obj->getComdatTable()) {
1717     keptComdats.push_back(
1718         s.second == Comdat::NoDeduplicate ||
1719         symtab->comdatGroups.try_emplace(CachedHashStringRef(s.first), this)
1720             .second);
1721   }
1722 
1723   for (const lto::InputFile::Symbol &objSym : obj->symbols())
1724     symbols.push_back(createBitcodeSymbol<ELFT>(keptComdats, objSym, *this));
1725 
1726   for (auto l : obj->getDependentLibraries())
1727     addDependentLibrary(l, this);
1728 }
1729 
1730 void BinaryFile::parse() {
1731   ArrayRef<uint8_t> data = arrayRefFromStringRef(mb.getBuffer());
1732   auto *section = make<InputSection>(this, SHF_ALLOC | SHF_WRITE, SHT_PROGBITS,
1733                                      8, data, ".data");
1734   sections.push_back(section);
1735 
1736   // For each input file foo that is embedded to a result as a binary
1737   // blob, we define _binary_foo_{start,end,size} symbols, so that
1738   // user programs can access blobs by name. Non-alphanumeric
1739   // characters in a filename are replaced with underscore.
1740   std::string s = "_binary_" + mb.getBufferIdentifier().str();
1741   for (size_t i = 0; i < s.size(); ++i)
1742     if (!isAlnum(s[i]))
1743       s[i] = '_';
1744 
1745   symtab->addSymbol(Defined{nullptr, saver.save(s + "_start"), STB_GLOBAL,
1746                             STV_DEFAULT, STT_OBJECT, 0, 0, section});
1747   symtab->addSymbol(Defined{nullptr, saver.save(s + "_end"), STB_GLOBAL,
1748                             STV_DEFAULT, STT_OBJECT, data.size(), 0, section});
1749   symtab->addSymbol(Defined{nullptr, saver.save(s + "_size"), STB_GLOBAL,
1750                             STV_DEFAULT, STT_OBJECT, data.size(), 0, nullptr});
1751 }
1752 
1753 InputFile *elf::createObjectFile(MemoryBufferRef mb, StringRef archiveName,
1754                                  uint64_t offsetInArchive) {
1755   if (isBitcode(mb))
1756     return make<BitcodeFile>(mb, archiveName, offsetInArchive);
1757 
1758   switch (getELFKind(mb, archiveName)) {
1759   case ELF32LEKind:
1760     return make<ObjFile<ELF32LE>>(mb, archiveName);
1761   case ELF32BEKind:
1762     return make<ObjFile<ELF32BE>>(mb, archiveName);
1763   case ELF64LEKind:
1764     return make<ObjFile<ELF64LE>>(mb, archiveName);
1765   case ELF64BEKind:
1766     return make<ObjFile<ELF64BE>>(mb, archiveName);
1767   default:
1768     llvm_unreachable("getELFKind");
1769   }
1770 }
1771 
1772 void LazyObjFile::extract() {
1773   if (extracted)
1774     return;
1775   extracted = true;
1776 
1777   InputFile *file = createObjectFile(mb, archiveName, offsetInArchive);
1778   file->groupId = groupId;
1779 
1780   // Copy symbol vector so that the new InputFile doesn't have to
1781   // insert the same defined symbols to the symbol table again.
1782   file->symbols = std::move(symbols);
1783 
1784   parseFile(file);
1785 }
1786 
1787 template <class ELFT> void LazyObjFile::parse() {
1788   using Elf_Sym = typename ELFT::Sym;
1789 
1790   // A lazy object file wraps either a bitcode file or an ELF file.
1791   if (isBitcode(this->mb)) {
1792     std::unique_ptr<lto::InputFile> obj =
1793         CHECK(lto::InputFile::create(this->mb), this);
1794     for (const lto::InputFile::Symbol &sym : obj->symbols()) {
1795       if (sym.isUndefined())
1796         continue;
1797       symtab->addSymbol(LazyObject{*this, saver.save(sym.getName())});
1798     }
1799     return;
1800   }
1801 
1802   if (getELFKind(this->mb, archiveName) != config->ekind) {
1803     error("incompatible file: " + this->mb.getBufferIdentifier());
1804     return;
1805   }
1806 
1807   // Find a symbol table.
1808   ELFFile<ELFT> obj = check(ELFFile<ELFT>::create(mb.getBuffer()));
1809   ArrayRef<typename ELFT::Shdr> sections = CHECK(obj.sections(), this);
1810 
1811   for (const typename ELFT::Shdr &sec : sections) {
1812     if (sec.sh_type != SHT_SYMTAB)
1813       continue;
1814 
1815     // A symbol table is found.
1816     ArrayRef<Elf_Sym> eSyms = CHECK(obj.symbols(&sec), this);
1817     uint32_t firstGlobal = sec.sh_info;
1818     StringRef strtab = CHECK(obj.getStringTableForSymtab(sec, sections), this);
1819     this->symbols.resize(eSyms.size());
1820 
1821     // Get existing symbols or insert placeholder symbols.
1822     for (size_t i = firstGlobal, end = eSyms.size(); i != end; ++i)
1823       if (eSyms[i].st_shndx != SHN_UNDEF)
1824         this->symbols[i] = symtab->insert(CHECK(eSyms[i].getName(strtab), this));
1825 
1826     // Replace existing symbols with LazyObject symbols.
1827     //
1828     // resolve() may trigger this->extract() if an existing symbol is an
1829     // undefined symbol. If that happens, this LazyObjFile has served
1830     // its purpose, and we can exit from the loop early.
1831     for (Symbol *sym : this->symbols) {
1832       if (!sym)
1833         continue;
1834       sym->resolve(LazyObject{*this, sym->getName()});
1835 
1836       // If extracted, stop iterating because this->symbols has been transferred
1837       // to the instantiated ObjFile.
1838       if (extracted)
1839         return;
1840     }
1841     return;
1842   }
1843 }
1844 
1845 bool LazyObjFile::shouldExtractForCommon(const StringRef &name) {
1846   if (isBitcode(mb))
1847     return isBitcodeNonCommonDef(mb, name, archiveName);
1848 
1849   return isNonCommonDef(mb, name, archiveName);
1850 }
1851 
1852 std::string elf::replaceThinLTOSuffix(StringRef path) {
1853   StringRef suffix = config->thinLTOObjectSuffixReplace.first;
1854   StringRef repl = config->thinLTOObjectSuffixReplace.second;
1855 
1856   if (path.consume_back(suffix))
1857     return (path + repl).str();
1858   return std::string(path);
1859 }
1860 
1861 template void BitcodeFile::parse<ELF32LE>();
1862 template void BitcodeFile::parse<ELF32BE>();
1863 template void BitcodeFile::parse<ELF64LE>();
1864 template void BitcodeFile::parse<ELF64BE>();
1865 
1866 template void LazyObjFile::parse<ELF32LE>();
1867 template void LazyObjFile::parse<ELF32BE>();
1868 template void LazyObjFile::parse<ELF64LE>();
1869 template void LazyObjFile::parse<ELF64BE>();
1870 
1871 template class elf::ObjFile<ELF32LE>;
1872 template class elf::ObjFile<ELF32BE>;
1873 template class elf::ObjFile<ELF64LE>;
1874 template class elf::ObjFile<ELF64BE>;
1875 
1876 template void SharedFile::parse<ELF32LE>();
1877 template void SharedFile::parse<ELF32BE>();
1878 template void SharedFile::parse<ELF64LE>();
1879 template void SharedFile::parse<ELF64BE>();
1880