1 //===- InputFiles.cpp -----------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "InputFiles.h" 10 #include "Driver.h" 11 #include "InputSection.h" 12 #include "LinkerScript.h" 13 #include "SymbolTable.h" 14 #include "Symbols.h" 15 #include "SyntheticSections.h" 16 #include "lld/Common/DWARF.h" 17 #include "lld/Common/ErrorHandler.h" 18 #include "lld/Common/Memory.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/CodeGen/Analysis.h" 21 #include "llvm/IR/LLVMContext.h" 22 #include "llvm/IR/Module.h" 23 #include "llvm/LTO/LTO.h" 24 #include "llvm/MC/StringTableBuilder.h" 25 #include "llvm/Object/ELFObjectFile.h" 26 #include "llvm/Support/ARMAttributeParser.h" 27 #include "llvm/Support/ARMBuildAttributes.h" 28 #include "llvm/Support/Endian.h" 29 #include "llvm/Support/Path.h" 30 #include "llvm/Support/TarWriter.h" 31 #include "llvm/Support/raw_ostream.h" 32 33 using namespace llvm; 34 using namespace llvm::ELF; 35 using namespace llvm::object; 36 using namespace llvm::sys; 37 using namespace llvm::sys::fs; 38 using namespace llvm::support::endian; 39 40 namespace lld { 41 // Returns "<internal>", "foo.a(bar.o)" or "baz.o". 42 std::string toString(const elf::InputFile *f) { 43 if (!f) 44 return "<internal>"; 45 46 if (f->toStringCache.empty()) { 47 if (f->archiveName.empty()) 48 f->toStringCache = std::string(f->getName()); 49 else 50 f->toStringCache = (f->archiveName + "(" + f->getName() + ")").str(); 51 } 52 return f->toStringCache; 53 } 54 55 namespace elf { 56 bool InputFile::isInGroup; 57 uint32_t InputFile::nextGroupId; 58 std::vector<BinaryFile *> binaryFiles; 59 std::vector<BitcodeFile *> bitcodeFiles; 60 std::vector<LazyObjFile *> lazyObjFiles; 61 std::vector<InputFile *> objectFiles; 62 std::vector<SharedFile *> sharedFiles; 63 64 std::unique_ptr<TarWriter> tar; 65 66 static ELFKind getELFKind(MemoryBufferRef mb, StringRef archiveName) { 67 unsigned char size; 68 unsigned char endian; 69 std::tie(size, endian) = getElfArchType(mb.getBuffer()); 70 71 auto report = [&](StringRef msg) { 72 StringRef filename = mb.getBufferIdentifier(); 73 if (archiveName.empty()) 74 fatal(filename + ": " + msg); 75 else 76 fatal(archiveName + "(" + filename + "): " + msg); 77 }; 78 79 if (!mb.getBuffer().startswith(ElfMagic)) 80 report("not an ELF file"); 81 if (endian != ELFDATA2LSB && endian != ELFDATA2MSB) 82 report("corrupted ELF file: invalid data encoding"); 83 if (size != ELFCLASS32 && size != ELFCLASS64) 84 report("corrupted ELF file: invalid file class"); 85 86 size_t bufSize = mb.getBuffer().size(); 87 if ((size == ELFCLASS32 && bufSize < sizeof(Elf32_Ehdr)) || 88 (size == ELFCLASS64 && bufSize < sizeof(Elf64_Ehdr))) 89 report("corrupted ELF file: file is too short"); 90 91 if (size == ELFCLASS32) 92 return (endian == ELFDATA2LSB) ? ELF32LEKind : ELF32BEKind; 93 return (endian == ELFDATA2LSB) ? ELF64LEKind : ELF64BEKind; 94 } 95 96 InputFile::InputFile(Kind k, MemoryBufferRef m) 97 : mb(m), groupId(nextGroupId), fileKind(k) { 98 // All files within the same --{start,end}-group get the same group ID. 99 // Otherwise, a new file will get a new group ID. 100 if (!isInGroup) 101 ++nextGroupId; 102 } 103 104 Optional<MemoryBufferRef> readFile(StringRef path) { 105 // The --chroot option changes our virtual root directory. 106 // This is useful when you are dealing with files created by --reproduce. 107 if (!config->chroot.empty() && path.startswith("/")) 108 path = saver.save(config->chroot + path); 109 110 log(path); 111 112 auto mbOrErr = MemoryBuffer::getFile(path, -1, false); 113 if (auto ec = mbOrErr.getError()) { 114 error("cannot open " + path + ": " + ec.message()); 115 return None; 116 } 117 118 std::unique_ptr<MemoryBuffer> &mb = *mbOrErr; 119 MemoryBufferRef mbref = mb->getMemBufferRef(); 120 make<std::unique_ptr<MemoryBuffer>>(std::move(mb)); // take MB ownership 121 122 if (tar) 123 tar->append(relativeToRoot(path), mbref.getBuffer()); 124 return mbref; 125 } 126 127 // All input object files must be for the same architecture 128 // (e.g. it does not make sense to link x86 object files with 129 // MIPS object files.) This function checks for that error. 130 static bool isCompatible(InputFile *file) { 131 if (!file->isElf() && !isa<BitcodeFile>(file)) 132 return true; 133 134 if (file->ekind == config->ekind && file->emachine == config->emachine) { 135 if (config->emachine != EM_MIPS) 136 return true; 137 if (isMipsN32Abi(file) == config->mipsN32Abi) 138 return true; 139 } 140 141 StringRef target = 142 !config->bfdname.empty() ? config->bfdname : config->emulation; 143 if (!target.empty()) { 144 error(toString(file) + " is incompatible with " + target); 145 return false; 146 } 147 148 InputFile *existing; 149 if (!objectFiles.empty()) 150 existing = objectFiles[0]; 151 else if (!sharedFiles.empty()) 152 existing = sharedFiles[0]; 153 else if (!bitcodeFiles.empty()) 154 existing = bitcodeFiles[0]; 155 else 156 llvm_unreachable("Must have -m, OUTPUT_FORMAT or existing input file to " 157 "determine target emulation"); 158 159 error(toString(file) + " is incompatible with " + toString(existing)); 160 return false; 161 } 162 163 template <class ELFT> static void doParseFile(InputFile *file) { 164 if (!isCompatible(file)) 165 return; 166 167 // Binary file 168 if (auto *f = dyn_cast<BinaryFile>(file)) { 169 binaryFiles.push_back(f); 170 f->parse(); 171 return; 172 } 173 174 // .a file 175 if (auto *f = dyn_cast<ArchiveFile>(file)) { 176 f->parse(); 177 return; 178 } 179 180 // Lazy object file 181 if (auto *f = dyn_cast<LazyObjFile>(file)) { 182 lazyObjFiles.push_back(f); 183 f->parse<ELFT>(); 184 return; 185 } 186 187 if (config->trace) 188 message(toString(file)); 189 190 // .so file 191 if (auto *f = dyn_cast<SharedFile>(file)) { 192 f->parse<ELFT>(); 193 return; 194 } 195 196 // LLVM bitcode file 197 if (auto *f = dyn_cast<BitcodeFile>(file)) { 198 bitcodeFiles.push_back(f); 199 f->parse<ELFT>(); 200 return; 201 } 202 203 // Regular object file 204 objectFiles.push_back(file); 205 cast<ObjFile<ELFT>>(file)->parse(); 206 } 207 208 // Add symbols in File to the symbol table. 209 void parseFile(InputFile *file) { 210 switch (config->ekind) { 211 case ELF32LEKind: 212 doParseFile<ELF32LE>(file); 213 return; 214 case ELF32BEKind: 215 doParseFile<ELF32BE>(file); 216 return; 217 case ELF64LEKind: 218 doParseFile<ELF64LE>(file); 219 return; 220 case ELF64BEKind: 221 doParseFile<ELF64BE>(file); 222 return; 223 default: 224 llvm_unreachable("unknown ELFT"); 225 } 226 } 227 228 // Concatenates arguments to construct a string representing an error location. 229 static std::string createFileLineMsg(StringRef path, unsigned line) { 230 std::string filename = std::string(path::filename(path)); 231 std::string lineno = ":" + std::to_string(line); 232 if (filename == path) 233 return filename + lineno; 234 return filename + lineno + " (" + path.str() + lineno + ")"; 235 } 236 237 template <class ELFT> 238 static std::string getSrcMsgAux(ObjFile<ELFT> &file, const Symbol &sym, 239 InputSectionBase &sec, uint64_t offset) { 240 // In DWARF, functions and variables are stored to different places. 241 // First, lookup a function for a given offset. 242 if (Optional<DILineInfo> info = file.getDILineInfo(&sec, offset)) 243 return createFileLineMsg(info->FileName, info->Line); 244 245 // If it failed, lookup again as a variable. 246 if (Optional<std::pair<std::string, unsigned>> fileLine = 247 file.getVariableLoc(sym.getName())) 248 return createFileLineMsg(fileLine->first, fileLine->second); 249 250 // File.sourceFile contains STT_FILE symbol, and that is a last resort. 251 return std::string(file.sourceFile); 252 } 253 254 std::string InputFile::getSrcMsg(const Symbol &sym, InputSectionBase &sec, 255 uint64_t offset) { 256 if (kind() != ObjKind) 257 return ""; 258 switch (config->ekind) { 259 default: 260 llvm_unreachable("Invalid kind"); 261 case ELF32LEKind: 262 return getSrcMsgAux(cast<ObjFile<ELF32LE>>(*this), sym, sec, offset); 263 case ELF32BEKind: 264 return getSrcMsgAux(cast<ObjFile<ELF32BE>>(*this), sym, sec, offset); 265 case ELF64LEKind: 266 return getSrcMsgAux(cast<ObjFile<ELF64LE>>(*this), sym, sec, offset); 267 case ELF64BEKind: 268 return getSrcMsgAux(cast<ObjFile<ELF64BE>>(*this), sym, sec, offset); 269 } 270 } 271 272 template <class ELFT> DWARFCache *ObjFile<ELFT>::getDwarf() { 273 llvm::call_once(initDwarf, [this]() { 274 dwarf = std::make_unique<DWARFCache>(std::make_unique<DWARFContext>( 275 std::make_unique<LLDDwarfObj<ELFT>>(this), "", 276 [&](Error err) { warn(getName() + ": " + toString(std::move(err))); }, 277 [&](Error warning) { 278 warn(getName() + ": " + toString(std::move(warning))); 279 })); 280 }); 281 282 return dwarf.get(); 283 } 284 285 // Returns the pair of file name and line number describing location of data 286 // object (variable, array, etc) definition. 287 template <class ELFT> 288 Optional<std::pair<std::string, unsigned>> 289 ObjFile<ELFT>::getVariableLoc(StringRef name) { 290 return getDwarf()->getVariableLoc(name); 291 } 292 293 // Returns source line information for a given offset 294 // using DWARF debug info. 295 template <class ELFT> 296 Optional<DILineInfo> ObjFile<ELFT>::getDILineInfo(InputSectionBase *s, 297 uint64_t offset) { 298 // Detect SectionIndex for specified section. 299 uint64_t sectionIndex = object::SectionedAddress::UndefSection; 300 ArrayRef<InputSectionBase *> sections = s->file->getSections(); 301 for (uint64_t curIndex = 0; curIndex < sections.size(); ++curIndex) { 302 if (s == sections[curIndex]) { 303 sectionIndex = curIndex; 304 break; 305 } 306 } 307 308 return getDwarf()->getDILineInfo(offset, sectionIndex); 309 } 310 311 ELFFileBase::ELFFileBase(Kind k, MemoryBufferRef mb) : InputFile(k, mb) { 312 ekind = getELFKind(mb, ""); 313 314 switch (ekind) { 315 case ELF32LEKind: 316 init<ELF32LE>(); 317 break; 318 case ELF32BEKind: 319 init<ELF32BE>(); 320 break; 321 case ELF64LEKind: 322 init<ELF64LE>(); 323 break; 324 case ELF64BEKind: 325 init<ELF64BE>(); 326 break; 327 default: 328 llvm_unreachable("getELFKind"); 329 } 330 } 331 332 template <typename Elf_Shdr> 333 static const Elf_Shdr *findSection(ArrayRef<Elf_Shdr> sections, uint32_t type) { 334 for (const Elf_Shdr &sec : sections) 335 if (sec.sh_type == type) 336 return &sec; 337 return nullptr; 338 } 339 340 template <class ELFT> void ELFFileBase::init() { 341 using Elf_Shdr = typename ELFT::Shdr; 342 using Elf_Sym = typename ELFT::Sym; 343 344 // Initialize trivial attributes. 345 const ELFFile<ELFT> &obj = getObj<ELFT>(); 346 emachine = obj.getHeader()->e_machine; 347 osabi = obj.getHeader()->e_ident[llvm::ELF::EI_OSABI]; 348 abiVersion = obj.getHeader()->e_ident[llvm::ELF::EI_ABIVERSION]; 349 350 ArrayRef<Elf_Shdr> sections = CHECK(obj.sections(), this); 351 352 // Find a symbol table. 353 bool isDSO = 354 (identify_magic(mb.getBuffer()) == file_magic::elf_shared_object); 355 const Elf_Shdr *symtabSec = 356 findSection(sections, isDSO ? SHT_DYNSYM : SHT_SYMTAB); 357 358 if (!symtabSec) 359 return; 360 361 // Initialize members corresponding to a symbol table. 362 firstGlobal = symtabSec->sh_info; 363 364 ArrayRef<Elf_Sym> eSyms = CHECK(obj.symbols(symtabSec), this); 365 if (firstGlobal == 0 || firstGlobal > eSyms.size()) 366 fatal(toString(this) + ": invalid sh_info in symbol table"); 367 368 elfSyms = reinterpret_cast<const void *>(eSyms.data()); 369 numELFSyms = eSyms.size(); 370 stringTable = CHECK(obj.getStringTableForSymtab(*symtabSec, sections), this); 371 } 372 373 template <class ELFT> 374 uint32_t ObjFile<ELFT>::getSectionIndex(const Elf_Sym &sym) const { 375 return CHECK( 376 this->getObj().getSectionIndex(&sym, getELFSyms<ELFT>(), shndxTable), 377 this); 378 } 379 380 template <class ELFT> ArrayRef<Symbol *> ObjFile<ELFT>::getLocalSymbols() { 381 if (this->symbols.empty()) 382 return {}; 383 return makeArrayRef(this->symbols).slice(1, this->firstGlobal - 1); 384 } 385 386 template <class ELFT> ArrayRef<Symbol *> ObjFile<ELFT>::getGlobalSymbols() { 387 return makeArrayRef(this->symbols).slice(this->firstGlobal); 388 } 389 390 template <class ELFT> void ObjFile<ELFT>::parse(bool ignoreComdats) { 391 // Read a section table. justSymbols is usually false. 392 if (this->justSymbols) 393 initializeJustSymbols(); 394 else 395 initializeSections(ignoreComdats); 396 397 // Read a symbol table. 398 initializeSymbols(); 399 } 400 401 // Sections with SHT_GROUP and comdat bits define comdat section groups. 402 // They are identified and deduplicated by group name. This function 403 // returns a group name. 404 template <class ELFT> 405 StringRef ObjFile<ELFT>::getShtGroupSignature(ArrayRef<Elf_Shdr> sections, 406 const Elf_Shdr &sec) { 407 typename ELFT::SymRange symbols = this->getELFSyms<ELFT>(); 408 if (sec.sh_info >= symbols.size()) 409 fatal(toString(this) + ": invalid symbol index"); 410 const typename ELFT::Sym &sym = symbols[sec.sh_info]; 411 StringRef signature = CHECK(sym.getName(this->stringTable), this); 412 413 // As a special case, if a symbol is a section symbol and has no name, 414 // we use a section name as a signature. 415 // 416 // Such SHT_GROUP sections are invalid from the perspective of the ELF 417 // standard, but GNU gold 1.14 (the newest version as of July 2017) or 418 // older produce such sections as outputs for the -r option, so we need 419 // a bug-compatibility. 420 if (signature.empty() && sym.getType() == STT_SECTION) 421 return getSectionName(sec); 422 return signature; 423 } 424 425 template <class ELFT> 426 bool ObjFile<ELFT>::shouldMerge(const Elf_Shdr &sec, StringRef name) { 427 // On a regular link we don't merge sections if -O0 (default is -O1). This 428 // sometimes makes the linker significantly faster, although the output will 429 // be bigger. 430 // 431 // Doing the same for -r would create a problem as it would combine sections 432 // with different sh_entsize. One option would be to just copy every SHF_MERGE 433 // section as is to the output. While this would produce a valid ELF file with 434 // usable SHF_MERGE sections, tools like (llvm-)?dwarfdump get confused when 435 // they see two .debug_str. We could have separate logic for combining 436 // SHF_MERGE sections based both on their name and sh_entsize, but that seems 437 // to be more trouble than it is worth. Instead, we just use the regular (-O1) 438 // logic for -r. 439 if (config->optimize == 0 && !config->relocatable) 440 return false; 441 442 // A mergeable section with size 0 is useless because they don't have 443 // any data to merge. A mergeable string section with size 0 can be 444 // argued as invalid because it doesn't end with a null character. 445 // We'll avoid a mess by handling them as if they were non-mergeable. 446 if (sec.sh_size == 0) 447 return false; 448 449 // Check for sh_entsize. The ELF spec is not clear about the zero 450 // sh_entsize. It says that "the member [sh_entsize] contains 0 if 451 // the section does not hold a table of fixed-size entries". We know 452 // that Rust 1.13 produces a string mergeable section with a zero 453 // sh_entsize. Here we just accept it rather than being picky about it. 454 uint64_t entSize = sec.sh_entsize; 455 if (entSize == 0) 456 return false; 457 if (sec.sh_size % entSize) 458 fatal(toString(this) + ":(" + name + "): SHF_MERGE section size (" + 459 Twine(sec.sh_size) + ") must be a multiple of sh_entsize (" + 460 Twine(entSize) + ")"); 461 462 uint64_t flags = sec.sh_flags; 463 if (!(flags & SHF_MERGE)) 464 return false; 465 if (flags & SHF_WRITE) 466 fatal(toString(this) + ":(" + name + 467 "): writable SHF_MERGE section is not supported"); 468 469 return true; 470 } 471 472 // This is for --just-symbols. 473 // 474 // --just-symbols is a very minor feature that allows you to link your 475 // output against other existing program, so that if you load both your 476 // program and the other program into memory, your output can refer the 477 // other program's symbols. 478 // 479 // When the option is given, we link "just symbols". The section table is 480 // initialized with null pointers. 481 template <class ELFT> void ObjFile<ELFT>::initializeJustSymbols() { 482 ArrayRef<Elf_Shdr> sections = CHECK(this->getObj().sections(), this); 483 this->sections.resize(sections.size()); 484 } 485 486 // An ELF object file may contain a `.deplibs` section. If it exists, the 487 // section contains a list of library specifiers such as `m` for libm. This 488 // function resolves a given name by finding the first matching library checking 489 // the various ways that a library can be specified to LLD. This ELF extension 490 // is a form of autolinking and is called `dependent libraries`. It is currently 491 // unique to LLVM and lld. 492 static void addDependentLibrary(StringRef specifier, const InputFile *f) { 493 if (!config->dependentLibraries) 494 return; 495 if (fs::exists(specifier)) 496 driver->addFile(specifier, /*withLOption=*/false); 497 else if (Optional<std::string> s = findFromSearchPaths(specifier)) 498 driver->addFile(*s, /*withLOption=*/true); 499 else if (Optional<std::string> s = searchLibraryBaseName(specifier)) 500 driver->addFile(*s, /*withLOption=*/true); 501 else 502 error(toString(f) + 503 ": unable to find library from dependent library specifier: " + 504 specifier); 505 } 506 507 // Record the membership of a section group so that in the garbage collection 508 // pass, section group members are kept or discarded as a unit. 509 template <class ELFT> 510 static void handleSectionGroup(ArrayRef<InputSectionBase *> sections, 511 ArrayRef<typename ELFT::Word> entries) { 512 bool hasAlloc = false; 513 for (uint32_t index : entries.slice(1)) { 514 if (index >= sections.size()) 515 return; 516 if (InputSectionBase *s = sections[index]) 517 if (s != &InputSection::discarded && s->flags & SHF_ALLOC) 518 hasAlloc = true; 519 } 520 521 // If any member has the SHF_ALLOC flag, the whole group is subject to garbage 522 // collection. See the comment in markLive(). This rule retains .debug_types 523 // and .rela.debug_types. 524 if (!hasAlloc) 525 return; 526 527 // Connect the members in a circular doubly-linked list via 528 // nextInSectionGroup. 529 InputSectionBase *head; 530 InputSectionBase *prev = nullptr; 531 for (uint32_t index : entries.slice(1)) { 532 InputSectionBase *s = sections[index]; 533 if (!s || s == &InputSection::discarded) 534 continue; 535 if (prev) 536 prev->nextInSectionGroup = s; 537 else 538 head = s; 539 prev = s; 540 } 541 if (prev) 542 prev->nextInSectionGroup = head; 543 } 544 545 template <class ELFT> 546 void ObjFile<ELFT>::initializeSections(bool ignoreComdats) { 547 const ELFFile<ELFT> &obj = this->getObj(); 548 549 ArrayRef<Elf_Shdr> objSections = CHECK(obj.sections(), this); 550 uint64_t size = objSections.size(); 551 this->sections.resize(size); 552 this->sectionStringTable = 553 CHECK(obj.getSectionStringTable(objSections), this); 554 555 std::vector<ArrayRef<Elf_Word>> selectedGroups; 556 557 for (size_t i = 0, e = objSections.size(); i < e; ++i) { 558 if (this->sections[i] == &InputSection::discarded) 559 continue; 560 const Elf_Shdr &sec = objSections[i]; 561 562 if (sec.sh_type == ELF::SHT_LLVM_CALL_GRAPH_PROFILE) 563 cgProfile = 564 check(obj.template getSectionContentsAsArray<Elf_CGProfile>(&sec)); 565 566 // SHF_EXCLUDE'ed sections are discarded by the linker. However, 567 // if -r is given, we'll let the final link discard such sections. 568 // This is compatible with GNU. 569 if ((sec.sh_flags & SHF_EXCLUDE) && !config->relocatable) { 570 if (sec.sh_type == SHT_LLVM_ADDRSIG) { 571 // We ignore the address-significance table if we know that the object 572 // file was created by objcopy or ld -r. This is because these tools 573 // will reorder the symbols in the symbol table, invalidating the data 574 // in the address-significance table, which refers to symbols by index. 575 if (sec.sh_link != 0) 576 this->addrsigSec = &sec; 577 else if (config->icf == ICFLevel::Safe) 578 warn(toString(this) + ": --icf=safe is incompatible with object " 579 "files created using objcopy or ld -r"); 580 } 581 this->sections[i] = &InputSection::discarded; 582 continue; 583 } 584 585 switch (sec.sh_type) { 586 case SHT_GROUP: { 587 // De-duplicate section groups by their signatures. 588 StringRef signature = getShtGroupSignature(objSections, sec); 589 this->sections[i] = &InputSection::discarded; 590 591 592 ArrayRef<Elf_Word> entries = 593 CHECK(obj.template getSectionContentsAsArray<Elf_Word>(&sec), this); 594 if (entries.empty()) 595 fatal(toString(this) + ": empty SHT_GROUP"); 596 597 // The first word of a SHT_GROUP section contains flags. Currently, 598 // the standard defines only "GRP_COMDAT" flag for the COMDAT group. 599 // An group with the empty flag doesn't define anything; such sections 600 // are just skipped. 601 if (entries[0] == 0) 602 continue; 603 604 if (entries[0] != GRP_COMDAT) 605 fatal(toString(this) + ": unsupported SHT_GROUP format"); 606 607 bool isNew = 608 ignoreComdats || 609 symtab->comdatGroups.try_emplace(CachedHashStringRef(signature), this) 610 .second; 611 if (isNew) { 612 if (config->relocatable) 613 this->sections[i] = createInputSection(sec); 614 selectedGroups.push_back(entries); 615 continue; 616 } 617 618 // Otherwise, discard group members. 619 for (uint32_t secIndex : entries.slice(1)) { 620 if (secIndex >= size) 621 fatal(toString(this) + 622 ": invalid section index in group: " + Twine(secIndex)); 623 this->sections[secIndex] = &InputSection::discarded; 624 } 625 break; 626 } 627 case SHT_SYMTAB_SHNDX: 628 shndxTable = CHECK(obj.getSHNDXTable(sec, objSections), this); 629 break; 630 case SHT_SYMTAB: 631 case SHT_STRTAB: 632 case SHT_NULL: 633 break; 634 default: 635 this->sections[i] = createInputSection(sec); 636 } 637 } 638 639 // This block handles SHF_LINK_ORDER. 640 for (size_t i = 0, e = objSections.size(); i < e; ++i) { 641 if (this->sections[i] == &InputSection::discarded) 642 continue; 643 const Elf_Shdr &sec = objSections[i]; 644 if (!(sec.sh_flags & SHF_LINK_ORDER)) 645 continue; 646 647 // .ARM.exidx sections have a reverse dependency on the InputSection they 648 // have a SHF_LINK_ORDER dependency, this is identified by the sh_link. 649 InputSectionBase *linkSec = nullptr; 650 if (sec.sh_link < this->sections.size()) 651 linkSec = this->sections[sec.sh_link]; 652 if (!linkSec) 653 fatal(toString(this) + ": invalid sh_link index: " + Twine(sec.sh_link)); 654 655 InputSection *isec = cast<InputSection>(this->sections[i]); 656 linkSec->dependentSections.push_back(isec); 657 if (!isa<InputSection>(linkSec)) 658 error("a section " + isec->name + 659 " with SHF_LINK_ORDER should not refer a non-regular section: " + 660 toString(linkSec)); 661 } 662 663 for (ArrayRef<Elf_Word> entries : selectedGroups) 664 handleSectionGroup<ELFT>(this->sections, entries); 665 } 666 667 // For ARM only, to set the EF_ARM_ABI_FLOAT_SOFT or EF_ARM_ABI_FLOAT_HARD 668 // flag in the ELF Header we need to look at Tag_ABI_VFP_args to find out how 669 // the input objects have been compiled. 670 static void updateARMVFPArgs(const ARMAttributeParser &attributes, 671 const InputFile *f) { 672 if (!attributes.hasAttribute(ARMBuildAttrs::ABI_VFP_args)) 673 // If an ABI tag isn't present then it is implicitly given the value of 0 674 // which maps to ARMBuildAttrs::BaseAAPCS. However many assembler files, 675 // including some in glibc that don't use FP args (and should have value 3) 676 // don't have the attribute so we do not consider an implicit value of 0 677 // as a clash. 678 return; 679 680 unsigned vfpArgs = attributes.getAttributeValue(ARMBuildAttrs::ABI_VFP_args); 681 ARMVFPArgKind arg; 682 switch (vfpArgs) { 683 case ARMBuildAttrs::BaseAAPCS: 684 arg = ARMVFPArgKind::Base; 685 break; 686 case ARMBuildAttrs::HardFPAAPCS: 687 arg = ARMVFPArgKind::VFP; 688 break; 689 case ARMBuildAttrs::ToolChainFPPCS: 690 // Tool chain specific convention that conforms to neither AAPCS variant. 691 arg = ARMVFPArgKind::ToolChain; 692 break; 693 case ARMBuildAttrs::CompatibleFPAAPCS: 694 // Object compatible with all conventions. 695 return; 696 default: 697 error(toString(f) + ": unknown Tag_ABI_VFP_args value: " + Twine(vfpArgs)); 698 return; 699 } 700 // Follow ld.bfd and error if there is a mix of calling conventions. 701 if (config->armVFPArgs != arg && config->armVFPArgs != ARMVFPArgKind::Default) 702 error(toString(f) + ": incompatible Tag_ABI_VFP_args"); 703 else 704 config->armVFPArgs = arg; 705 } 706 707 // The ARM support in lld makes some use of instructions that are not available 708 // on all ARM architectures. Namely: 709 // - Use of BLX instruction for interworking between ARM and Thumb state. 710 // - Use of the extended Thumb branch encoding in relocation. 711 // - Use of the MOVT/MOVW instructions in Thumb Thunks. 712 // The ARM Attributes section contains information about the architecture chosen 713 // at compile time. We follow the convention that if at least one input object 714 // is compiled with an architecture that supports these features then lld is 715 // permitted to use them. 716 static void updateSupportedARMFeatures(const ARMAttributeParser &attributes) { 717 if (!attributes.hasAttribute(ARMBuildAttrs::CPU_arch)) 718 return; 719 auto arch = attributes.getAttributeValue(ARMBuildAttrs::CPU_arch); 720 switch (arch) { 721 case ARMBuildAttrs::Pre_v4: 722 case ARMBuildAttrs::v4: 723 case ARMBuildAttrs::v4T: 724 // Architectures prior to v5 do not support BLX instruction 725 break; 726 case ARMBuildAttrs::v5T: 727 case ARMBuildAttrs::v5TE: 728 case ARMBuildAttrs::v5TEJ: 729 case ARMBuildAttrs::v6: 730 case ARMBuildAttrs::v6KZ: 731 case ARMBuildAttrs::v6K: 732 config->armHasBlx = true; 733 // Architectures used in pre-Cortex processors do not support 734 // The J1 = 1 J2 = 1 Thumb branch range extension, with the exception 735 // of Architecture v6T2 (arm1156t2-s and arm1156t2f-s) that do. 736 break; 737 default: 738 // All other Architectures have BLX and extended branch encoding 739 config->armHasBlx = true; 740 config->armJ1J2BranchEncoding = true; 741 if (arch != ARMBuildAttrs::v6_M && arch != ARMBuildAttrs::v6S_M) 742 // All Architectures used in Cortex processors with the exception 743 // of v6-M and v6S-M have the MOVT and MOVW instructions. 744 config->armHasMovtMovw = true; 745 break; 746 } 747 } 748 749 // If a source file is compiled with x86 hardware-assisted call flow control 750 // enabled, the generated object file contains feature flags indicating that 751 // fact. This function reads the feature flags and returns it. 752 // 753 // Essentially we want to read a single 32-bit value in this function, but this 754 // function is rather complicated because the value is buried deep inside a 755 // .note.gnu.property section. 756 // 757 // The section consists of one or more NOTE records. Each NOTE record consists 758 // of zero or more type-length-value fields. We want to find a field of a 759 // certain type. It seems a bit too much to just store a 32-bit value, perhaps 760 // the ABI is unnecessarily complicated. 761 template <class ELFT> 762 static uint32_t readAndFeatures(ObjFile<ELFT> *obj, ArrayRef<uint8_t> data) { 763 using Elf_Nhdr = typename ELFT::Nhdr; 764 using Elf_Note = typename ELFT::Note; 765 766 uint32_t featuresSet = 0; 767 while (!data.empty()) { 768 // Read one NOTE record. 769 if (data.size() < sizeof(Elf_Nhdr)) 770 fatal(toString(obj) + ": .note.gnu.property: section too short"); 771 772 auto *nhdr = reinterpret_cast<const Elf_Nhdr *>(data.data()); 773 if (data.size() < nhdr->getSize()) 774 fatal(toString(obj) + ": .note.gnu.property: section too short"); 775 776 Elf_Note note(*nhdr); 777 if (nhdr->n_type != NT_GNU_PROPERTY_TYPE_0 || note.getName() != "GNU") { 778 data = data.slice(nhdr->getSize()); 779 continue; 780 } 781 782 uint32_t featureAndType = config->emachine == EM_AARCH64 783 ? GNU_PROPERTY_AARCH64_FEATURE_1_AND 784 : GNU_PROPERTY_X86_FEATURE_1_AND; 785 786 // Read a body of a NOTE record, which consists of type-length-value fields. 787 ArrayRef<uint8_t> desc = note.getDesc(); 788 while (!desc.empty()) { 789 if (desc.size() < 8) 790 fatal(toString(obj) + ": .note.gnu.property: section too short"); 791 792 uint32_t type = read32le(desc.data()); 793 uint32_t size = read32le(desc.data() + 4); 794 795 if (type == featureAndType) { 796 // We found a FEATURE_1_AND field. There may be more than one of these 797 // in a .note.gnu.property section, for a relocatable object we 798 // accumulate the bits set. 799 featuresSet |= read32le(desc.data() + 8); 800 } 801 802 // On 64-bit, a payload may be followed by a 4-byte padding to make its 803 // size a multiple of 8. 804 if (ELFT::Is64Bits) 805 size = alignTo(size, 8); 806 807 desc = desc.slice(size + 8); // +8 for Type and Size 808 } 809 810 // Go to next NOTE record to look for more FEATURE_1_AND descriptions. 811 data = data.slice(nhdr->getSize()); 812 } 813 814 return featuresSet; 815 } 816 817 template <class ELFT> 818 InputSectionBase *ObjFile<ELFT>::getRelocTarget(const Elf_Shdr &sec) { 819 uint32_t idx = sec.sh_info; 820 if (idx >= this->sections.size()) 821 fatal(toString(this) + ": invalid relocated section index: " + Twine(idx)); 822 InputSectionBase *target = this->sections[idx]; 823 824 // Strictly speaking, a relocation section must be included in the 825 // group of the section it relocates. However, LLVM 3.3 and earlier 826 // would fail to do so, so we gracefully handle that case. 827 if (target == &InputSection::discarded) 828 return nullptr; 829 830 if (!target) 831 fatal(toString(this) + ": unsupported relocation reference"); 832 return target; 833 } 834 835 // Create a regular InputSection class that has the same contents 836 // as a given section. 837 static InputSection *toRegularSection(MergeInputSection *sec) { 838 return make<InputSection>(sec->file, sec->flags, sec->type, sec->alignment, 839 sec->data(), sec->name); 840 } 841 842 template <class ELFT> 843 InputSectionBase *ObjFile<ELFT>::createInputSection(const Elf_Shdr &sec) { 844 StringRef name = getSectionName(sec); 845 846 switch (sec.sh_type) { 847 case SHT_ARM_ATTRIBUTES: { 848 if (config->emachine != EM_ARM) 849 break; 850 ARMAttributeParser attributes; 851 ArrayRef<uint8_t> contents = check(this->getObj().getSectionContents(&sec)); 852 if (Error e = attributes.parse(contents, config->ekind == ELF32LEKind 853 ? support::little 854 : support::big)) { 855 auto *isec = make<InputSection>(*this, sec, name); 856 warn(toString(isec) + ": " + llvm::toString(std::move(e))); 857 break; 858 } 859 updateSupportedARMFeatures(attributes); 860 updateARMVFPArgs(attributes, this); 861 862 // FIXME: Retain the first attribute section we see. The eglibc ARM 863 // dynamic loaders require the presence of an attribute section for dlopen 864 // to work. In a full implementation we would merge all attribute sections. 865 if (in.armAttributes == nullptr) { 866 in.armAttributes = make<InputSection>(*this, sec, name); 867 return in.armAttributes; 868 } 869 return &InputSection::discarded; 870 } 871 case SHT_LLVM_DEPENDENT_LIBRARIES: { 872 if (config->relocatable) 873 break; 874 ArrayRef<char> data = 875 CHECK(this->getObj().template getSectionContentsAsArray<char>(&sec), this); 876 if (!data.empty() && data.back() != '\0') { 877 error(toString(this) + 878 ": corrupted dependent libraries section (unterminated string): " + 879 name); 880 return &InputSection::discarded; 881 } 882 for (const char *d = data.begin(), *e = data.end(); d < e;) { 883 StringRef s(d); 884 addDependentLibrary(s, this); 885 d += s.size() + 1; 886 } 887 return &InputSection::discarded; 888 } 889 case SHT_RELA: 890 case SHT_REL: { 891 // Find a relocation target section and associate this section with that. 892 // Target may have been discarded if it is in a different section group 893 // and the group is discarded, even though it's a violation of the 894 // spec. We handle that situation gracefully by discarding dangling 895 // relocation sections. 896 InputSectionBase *target = getRelocTarget(sec); 897 if (!target) 898 return nullptr; 899 900 // ELF spec allows mergeable sections with relocations, but they are 901 // rare, and it is in practice hard to merge such sections by contents, 902 // because applying relocations at end of linking changes section 903 // contents. So, we simply handle such sections as non-mergeable ones. 904 // Degrading like this is acceptable because section merging is optional. 905 if (auto *ms = dyn_cast<MergeInputSection>(target)) { 906 target = toRegularSection(ms); 907 this->sections[sec.sh_info] = target; 908 } 909 910 // This section contains relocation information. 911 // If -r is given, we do not interpret or apply relocation 912 // but just copy relocation sections to output. 913 if (config->relocatable) { 914 InputSection *relocSec = make<InputSection>(*this, sec, name); 915 // We want to add a dependency to target, similar like we do for 916 // -emit-relocs below. This is useful for the case when linker script 917 // contains the "/DISCARD/". It is perhaps uncommon to use a script with 918 // -r, but we faced it in the Linux kernel and have to handle such case 919 // and not to crash. 920 target->dependentSections.push_back(relocSec); 921 return relocSec; 922 } 923 924 if (target->firstRelocation) 925 fatal(toString(this) + 926 ": multiple relocation sections to one section are not supported"); 927 928 if (sec.sh_type == SHT_RELA) { 929 ArrayRef<Elf_Rela> rels = CHECK(getObj().relas(&sec), this); 930 target->firstRelocation = rels.begin(); 931 target->numRelocations = rels.size(); 932 target->areRelocsRela = true; 933 } else { 934 ArrayRef<Elf_Rel> rels = CHECK(getObj().rels(&sec), this); 935 target->firstRelocation = rels.begin(); 936 target->numRelocations = rels.size(); 937 target->areRelocsRela = false; 938 } 939 assert(isUInt<31>(target->numRelocations)); 940 941 // Relocation sections processed by the linker are usually removed 942 // from the output, so returning `nullptr` for the normal case. 943 // However, if -emit-relocs is given, we need to leave them in the output. 944 // (Some post link analysis tools need this information.) 945 if (config->emitRelocs) { 946 InputSection *relocSec = make<InputSection>(*this, sec, name); 947 // We will not emit relocation section if target was discarded. 948 target->dependentSections.push_back(relocSec); 949 return relocSec; 950 } 951 return nullptr; 952 } 953 } 954 955 // The GNU linker uses .note.GNU-stack section as a marker indicating 956 // that the code in the object file does not expect that the stack is 957 // executable (in terms of NX bit). If all input files have the marker, 958 // the GNU linker adds a PT_GNU_STACK segment to tells the loader to 959 // make the stack non-executable. Most object files have this section as 960 // of 2017. 961 // 962 // But making the stack non-executable is a norm today for security 963 // reasons. Failure to do so may result in a serious security issue. 964 // Therefore, we make LLD always add PT_GNU_STACK unless it is 965 // explicitly told to do otherwise (by -z execstack). Because the stack 966 // executable-ness is controlled solely by command line options, 967 // .note.GNU-stack sections are simply ignored. 968 if (name == ".note.GNU-stack") 969 return &InputSection::discarded; 970 971 // Object files that use processor features such as Intel Control-Flow 972 // Enforcement (CET) or AArch64 Branch Target Identification BTI, use a 973 // .note.gnu.property section containing a bitfield of feature bits like the 974 // GNU_PROPERTY_X86_FEATURE_1_IBT flag. Read a bitmap containing the flag. 975 // 976 // Since we merge bitmaps from multiple object files to create a new 977 // .note.gnu.property containing a single AND'ed bitmap, we discard an input 978 // file's .note.gnu.property section. 979 if (name == ".note.gnu.property") { 980 ArrayRef<uint8_t> contents = check(this->getObj().getSectionContents(&sec)); 981 this->andFeatures = readAndFeatures(this, contents); 982 return &InputSection::discarded; 983 } 984 985 // Split stacks is a feature to support a discontiguous stack, 986 // commonly used in the programming language Go. For the details, 987 // see https://gcc.gnu.org/wiki/SplitStacks. An object file compiled 988 // for split stack will include a .note.GNU-split-stack section. 989 if (name == ".note.GNU-split-stack") { 990 if (config->relocatable) { 991 error("cannot mix split-stack and non-split-stack in a relocatable link"); 992 return &InputSection::discarded; 993 } 994 this->splitStack = true; 995 return &InputSection::discarded; 996 } 997 998 // An object file cmpiled for split stack, but where some of the 999 // functions were compiled with the no_split_stack_attribute will 1000 // include a .note.GNU-no-split-stack section. 1001 if (name == ".note.GNU-no-split-stack") { 1002 this->someNoSplitStack = true; 1003 return &InputSection::discarded; 1004 } 1005 1006 // The linkonce feature is a sort of proto-comdat. Some glibc i386 object 1007 // files contain definitions of symbol "__x86.get_pc_thunk.bx" in linkonce 1008 // sections. Drop those sections to avoid duplicate symbol errors. 1009 // FIXME: This is glibc PR20543, we should remove this hack once that has been 1010 // fixed for a while. 1011 if (name == ".gnu.linkonce.t.__x86.get_pc_thunk.bx" || 1012 name == ".gnu.linkonce.t.__i686.get_pc_thunk.bx") 1013 return &InputSection::discarded; 1014 1015 // If we are creating a new .build-id section, strip existing .build-id 1016 // sections so that the output won't have more than one .build-id. 1017 // This is not usually a problem because input object files normally don't 1018 // have .build-id sections, but you can create such files by 1019 // "ld.{bfd,gold,lld} -r --build-id", and we want to guard against it. 1020 if (name == ".note.gnu.build-id" && config->buildId != BuildIdKind::None) 1021 return &InputSection::discarded; 1022 1023 // The linker merges EH (exception handling) frames and creates a 1024 // .eh_frame_hdr section for runtime. So we handle them with a special 1025 // class. For relocatable outputs, they are just passed through. 1026 if (name == ".eh_frame" && !config->relocatable) 1027 return make<EhInputSection>(*this, sec, name); 1028 1029 if (shouldMerge(sec, name)) 1030 return make<MergeInputSection>(*this, sec, name); 1031 return make<InputSection>(*this, sec, name); 1032 } 1033 1034 template <class ELFT> 1035 StringRef ObjFile<ELFT>::getSectionName(const Elf_Shdr &sec) { 1036 return CHECK(getObj().getSectionName(&sec, sectionStringTable), this); 1037 } 1038 1039 // Initialize this->Symbols. this->Symbols is a parallel array as 1040 // its corresponding ELF symbol table. 1041 template <class ELFT> void ObjFile<ELFT>::initializeSymbols() { 1042 ArrayRef<Elf_Sym> eSyms = this->getELFSyms<ELFT>(); 1043 this->symbols.resize(eSyms.size()); 1044 1045 // Our symbol table may have already been partially initialized 1046 // because of LazyObjFile. 1047 for (size_t i = 0, end = eSyms.size(); i != end; ++i) 1048 if (!this->symbols[i] && eSyms[i].getBinding() != STB_LOCAL) 1049 this->symbols[i] = 1050 symtab->insert(CHECK(eSyms[i].getName(this->stringTable), this)); 1051 1052 // Fill this->Symbols. A symbol is either local or global. 1053 for (size_t i = 0, end = eSyms.size(); i != end; ++i) { 1054 const Elf_Sym &eSym = eSyms[i]; 1055 1056 // Read symbol attributes. 1057 uint32_t secIdx = getSectionIndex(eSym); 1058 if (secIdx >= this->sections.size()) 1059 fatal(toString(this) + ": invalid section index: " + Twine(secIdx)); 1060 1061 InputSectionBase *sec = this->sections[secIdx]; 1062 uint8_t binding = eSym.getBinding(); 1063 uint8_t stOther = eSym.st_other; 1064 uint8_t type = eSym.getType(); 1065 uint64_t value = eSym.st_value; 1066 uint64_t size = eSym.st_size; 1067 StringRefZ name = this->stringTable.data() + eSym.st_name; 1068 1069 // Handle local symbols. Local symbols are not added to the symbol 1070 // table because they are not visible from other object files. We 1071 // allocate symbol instances and add their pointers to Symbols. 1072 if (binding == STB_LOCAL) { 1073 if (eSym.getType() == STT_FILE) 1074 sourceFile = CHECK(eSym.getName(this->stringTable), this); 1075 1076 if (this->stringTable.size() <= eSym.st_name) 1077 fatal(toString(this) + ": invalid symbol name offset"); 1078 1079 if (eSym.st_shndx == SHN_UNDEF) 1080 this->symbols[i] = make<Undefined>(this, name, binding, stOther, type); 1081 else if (sec == &InputSection::discarded) 1082 this->symbols[i] = make<Undefined>(this, name, binding, stOther, type, 1083 /*DiscardedSecIdx=*/secIdx); 1084 else 1085 this->symbols[i] = 1086 make<Defined>(this, name, binding, stOther, type, value, size, sec); 1087 continue; 1088 } 1089 1090 // Handle global undefined symbols. 1091 if (eSym.st_shndx == SHN_UNDEF) { 1092 this->symbols[i]->resolve(Undefined{this, name, binding, stOther, type}); 1093 this->symbols[i]->referenced = true; 1094 continue; 1095 } 1096 1097 // Handle global common symbols. 1098 if (eSym.st_shndx == SHN_COMMON) { 1099 if (value == 0 || value >= UINT32_MAX) 1100 fatal(toString(this) + ": common symbol '" + StringRef(name.data) + 1101 "' has invalid alignment: " + Twine(value)); 1102 this->symbols[i]->resolve( 1103 CommonSymbol{this, name, binding, stOther, type, value, size}); 1104 continue; 1105 } 1106 1107 // If a defined symbol is in a discarded section, handle it as if it 1108 // were an undefined symbol. Such symbol doesn't comply with the 1109 // standard, but in practice, a .eh_frame often directly refer 1110 // COMDAT member sections, and if a comdat group is discarded, some 1111 // defined symbol in a .eh_frame becomes dangling symbols. 1112 if (sec == &InputSection::discarded) { 1113 this->symbols[i]->resolve( 1114 Undefined{this, name, binding, stOther, type, secIdx}); 1115 continue; 1116 } 1117 1118 // Handle global defined symbols. 1119 if (binding == STB_GLOBAL || binding == STB_WEAK || 1120 binding == STB_GNU_UNIQUE) { 1121 this->symbols[i]->resolve( 1122 Defined{this, name, binding, stOther, type, value, size, sec}); 1123 continue; 1124 } 1125 1126 fatal(toString(this) + ": unexpected binding: " + Twine((int)binding)); 1127 } 1128 } 1129 1130 ArchiveFile::ArchiveFile(std::unique_ptr<Archive> &&file) 1131 : InputFile(ArchiveKind, file->getMemoryBufferRef()), 1132 file(std::move(file)) {} 1133 1134 void ArchiveFile::parse() { 1135 for (const Archive::Symbol &sym : file->symbols()) 1136 symtab->addSymbol(LazyArchive{*this, sym}); 1137 } 1138 1139 // Returns a buffer pointing to a member file containing a given symbol. 1140 void ArchiveFile::fetch(const Archive::Symbol &sym) { 1141 Archive::Child c = 1142 CHECK(sym.getMember(), toString(this) + 1143 ": could not get the member for symbol " + 1144 toELFString(sym)); 1145 1146 if (!seen.insert(c.getChildOffset()).second) 1147 return; 1148 1149 MemoryBufferRef mb = 1150 CHECK(c.getMemoryBufferRef(), 1151 toString(this) + 1152 ": could not get the buffer for the member defining symbol " + 1153 toELFString(sym)); 1154 1155 if (tar && c.getParent()->isThin()) 1156 tar->append(relativeToRoot(CHECK(c.getFullName(), this)), mb.getBuffer()); 1157 1158 InputFile *file = createObjectFile( 1159 mb, getName(), c.getParent()->isThin() ? 0 : c.getChildOffset()); 1160 file->groupId = groupId; 1161 parseFile(file); 1162 } 1163 1164 unsigned SharedFile::vernauxNum; 1165 1166 // Parse the version definitions in the object file if present, and return a 1167 // vector whose nth element contains a pointer to the Elf_Verdef for version 1168 // identifier n. Version identifiers that are not definitions map to nullptr. 1169 template <typename ELFT> 1170 static std::vector<const void *> parseVerdefs(const uint8_t *base, 1171 const typename ELFT::Shdr *sec) { 1172 if (!sec) 1173 return {}; 1174 1175 // We cannot determine the largest verdef identifier without inspecting 1176 // every Elf_Verdef, but both bfd and gold assign verdef identifiers 1177 // sequentially starting from 1, so we predict that the largest identifier 1178 // will be verdefCount. 1179 unsigned verdefCount = sec->sh_info; 1180 std::vector<const void *> verdefs(verdefCount + 1); 1181 1182 // Build the Verdefs array by following the chain of Elf_Verdef objects 1183 // from the start of the .gnu.version_d section. 1184 const uint8_t *verdef = base + sec->sh_offset; 1185 for (unsigned i = 0; i != verdefCount; ++i) { 1186 auto *curVerdef = reinterpret_cast<const typename ELFT::Verdef *>(verdef); 1187 verdef += curVerdef->vd_next; 1188 unsigned verdefIndex = curVerdef->vd_ndx; 1189 verdefs.resize(verdefIndex + 1); 1190 verdefs[verdefIndex] = curVerdef; 1191 } 1192 return verdefs; 1193 } 1194 1195 // We do not usually care about alignments of data in shared object 1196 // files because the loader takes care of it. However, if we promote a 1197 // DSO symbol to point to .bss due to copy relocation, we need to keep 1198 // the original alignment requirements. We infer it in this function. 1199 template <typename ELFT> 1200 static uint64_t getAlignment(ArrayRef<typename ELFT::Shdr> sections, 1201 const typename ELFT::Sym &sym) { 1202 uint64_t ret = UINT64_MAX; 1203 if (sym.st_value) 1204 ret = 1ULL << countTrailingZeros((uint64_t)sym.st_value); 1205 if (0 < sym.st_shndx && sym.st_shndx < sections.size()) 1206 ret = std::min<uint64_t>(ret, sections[sym.st_shndx].sh_addralign); 1207 return (ret > UINT32_MAX) ? 0 : ret; 1208 } 1209 1210 // Fully parse the shared object file. 1211 // 1212 // This function parses symbol versions. If a DSO has version information, 1213 // the file has a ".gnu.version_d" section which contains symbol version 1214 // definitions. Each symbol is associated to one version through a table in 1215 // ".gnu.version" section. That table is a parallel array for the symbol 1216 // table, and each table entry contains an index in ".gnu.version_d". 1217 // 1218 // The special index 0 is reserved for VERF_NDX_LOCAL and 1 is for 1219 // VER_NDX_GLOBAL. There's no table entry for these special versions in 1220 // ".gnu.version_d". 1221 // 1222 // The file format for symbol versioning is perhaps a bit more complicated 1223 // than necessary, but you can easily understand the code if you wrap your 1224 // head around the data structure described above. 1225 template <class ELFT> void SharedFile::parse() { 1226 using Elf_Dyn = typename ELFT::Dyn; 1227 using Elf_Shdr = typename ELFT::Shdr; 1228 using Elf_Sym = typename ELFT::Sym; 1229 using Elf_Verdef = typename ELFT::Verdef; 1230 using Elf_Versym = typename ELFT::Versym; 1231 1232 ArrayRef<Elf_Dyn> dynamicTags; 1233 const ELFFile<ELFT> obj = this->getObj<ELFT>(); 1234 ArrayRef<Elf_Shdr> sections = CHECK(obj.sections(), this); 1235 1236 const Elf_Shdr *versymSec = nullptr; 1237 const Elf_Shdr *verdefSec = nullptr; 1238 1239 // Search for .dynsym, .dynamic, .symtab, .gnu.version and .gnu.version_d. 1240 for (const Elf_Shdr &sec : sections) { 1241 switch (sec.sh_type) { 1242 default: 1243 continue; 1244 case SHT_DYNAMIC: 1245 dynamicTags = 1246 CHECK(obj.template getSectionContentsAsArray<Elf_Dyn>(&sec), this); 1247 break; 1248 case SHT_GNU_versym: 1249 versymSec = &sec; 1250 break; 1251 case SHT_GNU_verdef: 1252 verdefSec = &sec; 1253 break; 1254 } 1255 } 1256 1257 if (versymSec && numELFSyms == 0) { 1258 error("SHT_GNU_versym should be associated with symbol table"); 1259 return; 1260 } 1261 1262 // Search for a DT_SONAME tag to initialize this->soName. 1263 for (const Elf_Dyn &dyn : dynamicTags) { 1264 if (dyn.d_tag == DT_NEEDED) { 1265 uint64_t val = dyn.getVal(); 1266 if (val >= this->stringTable.size()) 1267 fatal(toString(this) + ": invalid DT_NEEDED entry"); 1268 dtNeeded.push_back(this->stringTable.data() + val); 1269 } else if (dyn.d_tag == DT_SONAME) { 1270 uint64_t val = dyn.getVal(); 1271 if (val >= this->stringTable.size()) 1272 fatal(toString(this) + ": invalid DT_SONAME entry"); 1273 soName = this->stringTable.data() + val; 1274 } 1275 } 1276 1277 // DSOs are uniquified not by filename but by soname. 1278 DenseMap<StringRef, SharedFile *>::iterator it; 1279 bool wasInserted; 1280 std::tie(it, wasInserted) = symtab->soNames.try_emplace(soName, this); 1281 1282 // If a DSO appears more than once on the command line with and without 1283 // --as-needed, --no-as-needed takes precedence over --as-needed because a 1284 // user can add an extra DSO with --no-as-needed to force it to be added to 1285 // the dependency list. 1286 it->second->isNeeded |= isNeeded; 1287 if (!wasInserted) 1288 return; 1289 1290 sharedFiles.push_back(this); 1291 1292 verdefs = parseVerdefs<ELFT>(obj.base(), verdefSec); 1293 1294 // Parse ".gnu.version" section which is a parallel array for the symbol 1295 // table. If a given file doesn't have a ".gnu.version" section, we use 1296 // VER_NDX_GLOBAL. 1297 size_t size = numELFSyms - firstGlobal; 1298 std::vector<uint32_t> versyms(size, VER_NDX_GLOBAL); 1299 if (versymSec) { 1300 ArrayRef<Elf_Versym> versym = 1301 CHECK(obj.template getSectionContentsAsArray<Elf_Versym>(versymSec), 1302 this) 1303 .slice(firstGlobal); 1304 for (size_t i = 0; i < size; ++i) 1305 versyms[i] = versym[i].vs_index; 1306 } 1307 1308 // System libraries can have a lot of symbols with versions. Using a 1309 // fixed buffer for computing the versions name (foo@ver) can save a 1310 // lot of allocations. 1311 SmallString<0> versionedNameBuffer; 1312 1313 // Add symbols to the symbol table. 1314 ArrayRef<Elf_Sym> syms = this->getGlobalELFSyms<ELFT>(); 1315 for (size_t i = 0; i < syms.size(); ++i) { 1316 const Elf_Sym &sym = syms[i]; 1317 1318 // ELF spec requires that all local symbols precede weak or global 1319 // symbols in each symbol table, and the index of first non-local symbol 1320 // is stored to sh_info. If a local symbol appears after some non-local 1321 // symbol, that's a violation of the spec. 1322 StringRef name = CHECK(sym.getName(this->stringTable), this); 1323 if (sym.getBinding() == STB_LOCAL) { 1324 warn("found local symbol '" + name + 1325 "' in global part of symbol table in file " + toString(this)); 1326 continue; 1327 } 1328 1329 if (sym.isUndefined()) { 1330 Symbol *s = symtab->addSymbol( 1331 Undefined{this, name, sym.getBinding(), sym.st_other, sym.getType()}); 1332 s->exportDynamic = true; 1333 continue; 1334 } 1335 1336 // MIPS BFD linker puts _gp_disp symbol into DSO files and incorrectly 1337 // assigns VER_NDX_LOCAL to this section global symbol. Here is a 1338 // workaround for this bug. 1339 uint32_t idx = versyms[i] & ~VERSYM_HIDDEN; 1340 if (config->emachine == EM_MIPS && idx == VER_NDX_LOCAL && 1341 name == "_gp_disp") 1342 continue; 1343 1344 uint32_t alignment = getAlignment<ELFT>(sections, sym); 1345 if (!(versyms[i] & VERSYM_HIDDEN)) { 1346 symtab->addSymbol(SharedSymbol{*this, name, sym.getBinding(), 1347 sym.st_other, sym.getType(), sym.st_value, 1348 sym.st_size, alignment, idx}); 1349 } 1350 1351 // Also add the symbol with the versioned name to handle undefined symbols 1352 // with explicit versions. 1353 if (idx == VER_NDX_GLOBAL) 1354 continue; 1355 1356 if (idx >= verdefs.size() || idx == VER_NDX_LOCAL) { 1357 error("corrupt input file: version definition index " + Twine(idx) + 1358 " for symbol " + name + " is out of bounds\n>>> defined in " + 1359 toString(this)); 1360 continue; 1361 } 1362 1363 StringRef verName = 1364 this->stringTable.data() + 1365 reinterpret_cast<const Elf_Verdef *>(verdefs[idx])->getAux()->vda_name; 1366 versionedNameBuffer.clear(); 1367 name = (name + "@" + verName).toStringRef(versionedNameBuffer); 1368 symtab->addSymbol(SharedSymbol{*this, saver.save(name), sym.getBinding(), 1369 sym.st_other, sym.getType(), sym.st_value, 1370 sym.st_size, alignment, idx}); 1371 } 1372 } 1373 1374 static ELFKind getBitcodeELFKind(const Triple &t) { 1375 if (t.isLittleEndian()) 1376 return t.isArch64Bit() ? ELF64LEKind : ELF32LEKind; 1377 return t.isArch64Bit() ? ELF64BEKind : ELF32BEKind; 1378 } 1379 1380 static uint8_t getBitcodeMachineKind(StringRef path, const Triple &t) { 1381 switch (t.getArch()) { 1382 case Triple::aarch64: 1383 return EM_AARCH64; 1384 case Triple::amdgcn: 1385 case Triple::r600: 1386 return EM_AMDGPU; 1387 case Triple::arm: 1388 case Triple::thumb: 1389 return EM_ARM; 1390 case Triple::avr: 1391 return EM_AVR; 1392 case Triple::mips: 1393 case Triple::mipsel: 1394 case Triple::mips64: 1395 case Triple::mips64el: 1396 return EM_MIPS; 1397 case Triple::msp430: 1398 return EM_MSP430; 1399 case Triple::ppc: 1400 return EM_PPC; 1401 case Triple::ppc64: 1402 case Triple::ppc64le: 1403 return EM_PPC64; 1404 case Triple::riscv32: 1405 case Triple::riscv64: 1406 return EM_RISCV; 1407 case Triple::x86: 1408 return t.isOSIAMCU() ? EM_IAMCU : EM_386; 1409 case Triple::x86_64: 1410 return EM_X86_64; 1411 default: 1412 error(path + ": could not infer e_machine from bitcode target triple " + 1413 t.str()); 1414 return EM_NONE; 1415 } 1416 } 1417 1418 BitcodeFile::BitcodeFile(MemoryBufferRef mb, StringRef archiveName, 1419 uint64_t offsetInArchive) 1420 : InputFile(BitcodeKind, mb) { 1421 this->archiveName = std::string(archiveName); 1422 1423 std::string path = mb.getBufferIdentifier().str(); 1424 if (config->thinLTOIndexOnly) 1425 path = replaceThinLTOSuffix(mb.getBufferIdentifier()); 1426 1427 // ThinLTO assumes that all MemoryBufferRefs given to it have a unique 1428 // name. If two archives define two members with the same name, this 1429 // causes a collision which result in only one of the objects being taken 1430 // into consideration at LTO time (which very likely causes undefined 1431 // symbols later in the link stage). So we append file offset to make 1432 // filename unique. 1433 StringRef name = 1434 archiveName.empty() 1435 ? saver.save(path) 1436 : saver.save(archiveName + "(" + path::filename(path) + " at " + 1437 utostr(offsetInArchive) + ")"); 1438 MemoryBufferRef mbref(mb.getBuffer(), name); 1439 1440 obj = CHECK(lto::InputFile::create(mbref), this); 1441 1442 Triple t(obj->getTargetTriple()); 1443 ekind = getBitcodeELFKind(t); 1444 emachine = getBitcodeMachineKind(mb.getBufferIdentifier(), t); 1445 } 1446 1447 static uint8_t mapVisibility(GlobalValue::VisibilityTypes gvVisibility) { 1448 switch (gvVisibility) { 1449 case GlobalValue::DefaultVisibility: 1450 return STV_DEFAULT; 1451 case GlobalValue::HiddenVisibility: 1452 return STV_HIDDEN; 1453 case GlobalValue::ProtectedVisibility: 1454 return STV_PROTECTED; 1455 } 1456 llvm_unreachable("unknown visibility"); 1457 } 1458 1459 template <class ELFT> 1460 static Symbol *createBitcodeSymbol(const std::vector<bool> &keptComdats, 1461 const lto::InputFile::Symbol &objSym, 1462 BitcodeFile &f) { 1463 StringRef name = saver.save(objSym.getName()); 1464 uint8_t binding = objSym.isWeak() ? STB_WEAK : STB_GLOBAL; 1465 uint8_t type = objSym.isTLS() ? STT_TLS : STT_NOTYPE; 1466 uint8_t visibility = mapVisibility(objSym.getVisibility()); 1467 bool canOmitFromDynSym = objSym.canBeOmittedFromSymbolTable(); 1468 1469 int c = objSym.getComdatIndex(); 1470 if (objSym.isUndefined() || (c != -1 && !keptComdats[c])) { 1471 Undefined newSym(&f, name, binding, visibility, type); 1472 if (canOmitFromDynSym) 1473 newSym.exportDynamic = false; 1474 Symbol *ret = symtab->addSymbol(newSym); 1475 ret->referenced = true; 1476 return ret; 1477 } 1478 1479 if (objSym.isCommon()) 1480 return symtab->addSymbol( 1481 CommonSymbol{&f, name, binding, visibility, STT_OBJECT, 1482 objSym.getCommonAlignment(), objSym.getCommonSize()}); 1483 1484 Defined newSym(&f, name, binding, visibility, type, 0, 0, nullptr); 1485 if (canOmitFromDynSym) 1486 newSym.exportDynamic = false; 1487 return symtab->addSymbol(newSym); 1488 } 1489 1490 template <class ELFT> void BitcodeFile::parse() { 1491 std::vector<bool> keptComdats; 1492 for (StringRef s : obj->getComdatTable()) 1493 keptComdats.push_back( 1494 symtab->comdatGroups.try_emplace(CachedHashStringRef(s), this).second); 1495 1496 for (const lto::InputFile::Symbol &objSym : obj->symbols()) 1497 symbols.push_back(createBitcodeSymbol<ELFT>(keptComdats, objSym, *this)); 1498 1499 for (auto l : obj->getDependentLibraries()) 1500 addDependentLibrary(l, this); 1501 } 1502 1503 void BinaryFile::parse() { 1504 ArrayRef<uint8_t> data = arrayRefFromStringRef(mb.getBuffer()); 1505 auto *section = make<InputSection>(this, SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, 1506 8, data, ".data"); 1507 sections.push_back(section); 1508 1509 // For each input file foo that is embedded to a result as a binary 1510 // blob, we define _binary_foo_{start,end,size} symbols, so that 1511 // user programs can access blobs by name. Non-alphanumeric 1512 // characters in a filename are replaced with underscore. 1513 std::string s = "_binary_" + mb.getBufferIdentifier().str(); 1514 for (size_t i = 0; i < s.size(); ++i) 1515 if (!isAlnum(s[i])) 1516 s[i] = '_'; 1517 1518 symtab->addSymbol(Defined{nullptr, saver.save(s + "_start"), STB_GLOBAL, 1519 STV_DEFAULT, STT_OBJECT, 0, 0, section}); 1520 symtab->addSymbol(Defined{nullptr, saver.save(s + "_end"), STB_GLOBAL, 1521 STV_DEFAULT, STT_OBJECT, data.size(), 0, section}); 1522 symtab->addSymbol(Defined{nullptr, saver.save(s + "_size"), STB_GLOBAL, 1523 STV_DEFAULT, STT_OBJECT, data.size(), 0, nullptr}); 1524 } 1525 1526 InputFile *createObjectFile(MemoryBufferRef mb, StringRef archiveName, 1527 uint64_t offsetInArchive) { 1528 if (isBitcode(mb)) 1529 return make<BitcodeFile>(mb, archiveName, offsetInArchive); 1530 1531 switch (getELFKind(mb, archiveName)) { 1532 case ELF32LEKind: 1533 return make<ObjFile<ELF32LE>>(mb, archiveName); 1534 case ELF32BEKind: 1535 return make<ObjFile<ELF32BE>>(mb, archiveName); 1536 case ELF64LEKind: 1537 return make<ObjFile<ELF64LE>>(mb, archiveName); 1538 case ELF64BEKind: 1539 return make<ObjFile<ELF64BE>>(mb, archiveName); 1540 default: 1541 llvm_unreachable("getELFKind"); 1542 } 1543 } 1544 1545 void LazyObjFile::fetch() { 1546 if (mb.getBuffer().empty()) 1547 return; 1548 1549 InputFile *file = createObjectFile(mb, archiveName, offsetInArchive); 1550 file->groupId = groupId; 1551 1552 mb = {}; 1553 1554 // Copy symbol vector so that the new InputFile doesn't have to 1555 // insert the same defined symbols to the symbol table again. 1556 file->symbols = std::move(symbols); 1557 1558 parseFile(file); 1559 } 1560 1561 template <class ELFT> void LazyObjFile::parse() { 1562 using Elf_Sym = typename ELFT::Sym; 1563 1564 // A lazy object file wraps either a bitcode file or an ELF file. 1565 if (isBitcode(this->mb)) { 1566 std::unique_ptr<lto::InputFile> obj = 1567 CHECK(lto::InputFile::create(this->mb), this); 1568 for (const lto::InputFile::Symbol &sym : obj->symbols()) { 1569 if (sym.isUndefined()) 1570 continue; 1571 symtab->addSymbol(LazyObject{*this, saver.save(sym.getName())}); 1572 } 1573 return; 1574 } 1575 1576 if (getELFKind(this->mb, archiveName) != config->ekind) { 1577 error("incompatible file: " + this->mb.getBufferIdentifier()); 1578 return; 1579 } 1580 1581 // Find a symbol table. 1582 ELFFile<ELFT> obj = check(ELFFile<ELFT>::create(mb.getBuffer())); 1583 ArrayRef<typename ELFT::Shdr> sections = CHECK(obj.sections(), this); 1584 1585 for (const typename ELFT::Shdr &sec : sections) { 1586 if (sec.sh_type != SHT_SYMTAB) 1587 continue; 1588 1589 // A symbol table is found. 1590 ArrayRef<Elf_Sym> eSyms = CHECK(obj.symbols(&sec), this); 1591 uint32_t firstGlobal = sec.sh_info; 1592 StringRef strtab = CHECK(obj.getStringTableForSymtab(sec, sections), this); 1593 this->symbols.resize(eSyms.size()); 1594 1595 // Get existing symbols or insert placeholder symbols. 1596 for (size_t i = firstGlobal, end = eSyms.size(); i != end; ++i) 1597 if (eSyms[i].st_shndx != SHN_UNDEF) 1598 this->symbols[i] = symtab->insert(CHECK(eSyms[i].getName(strtab), this)); 1599 1600 // Replace existing symbols with LazyObject symbols. 1601 // 1602 // resolve() may trigger this->fetch() if an existing symbol is an 1603 // undefined symbol. If that happens, this LazyObjFile has served 1604 // its purpose, and we can exit from the loop early. 1605 for (Symbol *sym : this->symbols) { 1606 if (!sym) 1607 continue; 1608 sym->resolve(LazyObject{*this, sym->getName()}); 1609 1610 // MemoryBuffer is emptied if this file is instantiated as ObjFile. 1611 if (mb.getBuffer().empty()) 1612 return; 1613 } 1614 return; 1615 } 1616 } 1617 1618 std::string replaceThinLTOSuffix(StringRef path) { 1619 StringRef suffix = config->thinLTOObjectSuffixReplace.first; 1620 StringRef repl = config->thinLTOObjectSuffixReplace.second; 1621 1622 if (path.consume_back(suffix)) 1623 return (path + repl).str(); 1624 return std::string(path); 1625 } 1626 1627 template void BitcodeFile::parse<ELF32LE>(); 1628 template void BitcodeFile::parse<ELF32BE>(); 1629 template void BitcodeFile::parse<ELF64LE>(); 1630 template void BitcodeFile::parse<ELF64BE>(); 1631 1632 template void LazyObjFile::parse<ELF32LE>(); 1633 template void LazyObjFile::parse<ELF32BE>(); 1634 template void LazyObjFile::parse<ELF64LE>(); 1635 template void LazyObjFile::parse<ELF64BE>(); 1636 1637 template class ObjFile<ELF32LE>; 1638 template class ObjFile<ELF32BE>; 1639 template class ObjFile<ELF64LE>; 1640 template class ObjFile<ELF64BE>; 1641 1642 template void SharedFile::parse<ELF32LE>(); 1643 template void SharedFile::parse<ELF32BE>(); 1644 template void SharedFile::parse<ELF64LE>(); 1645 template void SharedFile::parse<ELF64BE>(); 1646 1647 } // namespace elf 1648 } // namespace lld 1649