1 //===- InputFiles.cpp -----------------------------------------------------===//
2 //
3 //                             The LLVM Linker
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "InputFiles.h"
11 #include "Driver.h"
12 #include "Error.h"
13 #include "InputSection.h"
14 #include "LinkerScript.h"
15 #include "Memory.h"
16 #include "SymbolTable.h"
17 #include "Symbols.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/Bitcode/BitcodeReader.h"
20 #include "llvm/CodeGen/Analysis.h"
21 #include "llvm/DebugInfo/DWARF/DWARFContext.h"
22 #include "llvm/IR/LLVMContext.h"
23 #include "llvm/IR/Module.h"
24 #include "llvm/LTO/LTO.h"
25 #include "llvm/MC/StringTableBuilder.h"
26 #include "llvm/Object/ELFObjectFile.h"
27 #include "llvm/Support/Path.h"
28 #include "llvm/Support/raw_ostream.h"
29 
30 using namespace llvm;
31 using namespace llvm::ELF;
32 using namespace llvm::object;
33 using namespace llvm::sys::fs;
34 
35 using namespace lld;
36 using namespace lld::elf;
37 
38 namespace {
39 // In ELF object file all section addresses are zero. If we have multiple
40 // .text sections (when using -ffunction-section or comdat group) then
41 // LLVM DWARF parser will not be able to parse .debug_line correctly, unless
42 // we assign each section some unique address. This callback method assigns
43 // each section an address equal to its offset in ELF object file.
44 class ObjectInfo : public LoadedObjectInfo {
45 public:
46   uint64_t getSectionLoadAddress(const object::SectionRef &Sec) const override {
47     return static_cast<const ELFSectionRef &>(Sec).getOffset();
48   }
49   std::unique_ptr<LoadedObjectInfo> clone() const override {
50     return std::unique_ptr<LoadedObjectInfo>();
51   }
52 };
53 }
54 
55 template <class ELFT> void elf::ObjectFile<ELFT>::initializeDwarfLine() {
56   std::unique_ptr<object::ObjectFile> Obj =
57       check(object::ObjectFile::createObjectFile(this->MB),
58             "createObjectFile failed");
59 
60   ObjectInfo ObjInfo;
61   DWARFContextInMemory Dwarf(*Obj.get(), &ObjInfo);
62   DwarfLine.reset(new DWARFDebugLine(&Dwarf.getLineSection().Relocs));
63   DataExtractor LineData(Dwarf.getLineSection().Data,
64                          ELFT::TargetEndianness == support::little,
65                          ELFT::Is64Bits ? 8 : 4);
66 
67   // The second parameter is offset in .debug_line section
68   // for compilation unit (CU) of interest. We have only one
69   // CU (object file), so offset is always 0.
70   DwarfLine->getOrParseLineTable(LineData, 0);
71 }
72 
73 // Returns source line information for a given offset
74 // using DWARF debug info.
75 template <class ELFT>
76 std::string elf::ObjectFile<ELFT>::getLineInfo(InputSectionBase<ELFT> *S,
77                                                uintX_t Offset) {
78   if (!DwarfLine)
79     initializeDwarfLine();
80 
81   // The offset to CU is 0.
82   const DWARFDebugLine::LineTable *Tbl = DwarfLine->getLineTable(0);
83   if (!Tbl)
84     return "";
85 
86   // Use fake address calcuated by adding section file offset and offset in
87   // section. See comments for ObjectInfo class.
88   DILineInfo Info;
89   DILineInfoSpecifier Spec;
90   Tbl->getFileLineInfoForAddress(S->Offset + Offset, nullptr, Spec.FLIKind,
91                                  Info);
92   if (Info.Line == 0)
93     return "";
94   return Info.FileName + " (" + std::to_string(Info.Line) + ")";
95 }
96 
97 // Returns "(internal)", "foo.a(bar.o)" or "baz.o".
98 std::string elf::getFilename(const InputFile *F) {
99   if (!F)
100     return "(internal)";
101   if (!F->ArchiveName.empty())
102     return (F->ArchiveName + "(" + F->getName() + ")").str();
103   return F->getName();
104 }
105 
106 template <class ELFT> static ELFKind getELFKind() {
107   if (ELFT::TargetEndianness == support::little)
108     return ELFT::Is64Bits ? ELF64LEKind : ELF32LEKind;
109   return ELFT::Is64Bits ? ELF64BEKind : ELF32BEKind;
110 }
111 
112 template <class ELFT>
113 ELFFileBase<ELFT>::ELFFileBase(Kind K, MemoryBufferRef MB) : InputFile(K, MB) {
114   EKind = getELFKind<ELFT>();
115   EMachine = getObj().getHeader()->e_machine;
116   OSABI = getObj().getHeader()->e_ident[llvm::ELF::EI_OSABI];
117 }
118 
119 template <class ELFT>
120 typename ELFT::SymRange ELFFileBase<ELFT>::getGlobalSymbols() {
121   return makeArrayRef(Symbols.begin() + FirstNonLocal, Symbols.end());
122 }
123 
124 template <class ELFT>
125 uint32_t ELFFileBase<ELFT>::getSectionIndex(const Elf_Sym &Sym) const {
126   return check(getObj().getSectionIndex(&Sym, Symbols, SymtabSHNDX));
127 }
128 
129 template <class ELFT>
130 void ELFFileBase<ELFT>::initSymtab(ArrayRef<Elf_Shdr> Sections,
131                                    const Elf_Shdr *Symtab) {
132   FirstNonLocal = Symtab->sh_info;
133   Symbols = check(getObj().symbols(Symtab));
134   if (FirstNonLocal == 0 || FirstNonLocal > Symbols.size())
135     fatal(getFilename(this) + ": invalid sh_info in symbol table");
136 
137   StringTable = check(getObj().getStringTableForSymtab(*Symtab, Sections));
138 }
139 
140 template <class ELFT>
141 elf::ObjectFile<ELFT>::ObjectFile(MemoryBufferRef M)
142     : ELFFileBase<ELFT>(Base::ObjectKind, M) {}
143 
144 template <class ELFT>
145 ArrayRef<SymbolBody *> elf::ObjectFile<ELFT>::getNonLocalSymbols() {
146   return makeArrayRef(this->SymbolBodies).slice(this->FirstNonLocal);
147 }
148 
149 template <class ELFT>
150 ArrayRef<SymbolBody *> elf::ObjectFile<ELFT>::getLocalSymbols() {
151   if (this->SymbolBodies.empty())
152     return this->SymbolBodies;
153   return makeArrayRef(this->SymbolBodies).slice(1, this->FirstNonLocal - 1);
154 }
155 
156 template <class ELFT>
157 ArrayRef<SymbolBody *> elf::ObjectFile<ELFT>::getSymbols() {
158   if (this->SymbolBodies.empty())
159     return this->SymbolBodies;
160   return makeArrayRef(this->SymbolBodies).slice(1);
161 }
162 
163 template <class ELFT>
164 void elf::ObjectFile<ELFT>::parse(DenseSet<CachedHashStringRef> &ComdatGroups) {
165   // Read section and symbol tables.
166   initializeSections(ComdatGroups);
167   initializeSymbols();
168 }
169 
170 // Sections with SHT_GROUP and comdat bits define comdat section groups.
171 // They are identified and deduplicated by group name. This function
172 // returns a group name.
173 template <class ELFT>
174 StringRef
175 elf::ObjectFile<ELFT>::getShtGroupSignature(ArrayRef<Elf_Shdr> Sections,
176                                             const Elf_Shdr &Sec) {
177   if (this->Symbols.empty())
178     this->initSymtab(Sections,
179                      check(object::getSection<ELFT>(Sections, Sec.sh_link)));
180   const Elf_Sym *Sym =
181       check(object::getSymbol<ELFT>(this->Symbols, Sec.sh_info));
182   return check(Sym->getName(this->StringTable));
183 }
184 
185 template <class ELFT>
186 ArrayRef<typename elf::ObjectFile<ELFT>::Elf_Word>
187 elf::ObjectFile<ELFT>::getShtGroupEntries(const Elf_Shdr &Sec) {
188   const ELFFile<ELFT> &Obj = this->getObj();
189   ArrayRef<Elf_Word> Entries =
190       check(Obj.template getSectionContentsAsArray<Elf_Word>(&Sec));
191   if (Entries.empty() || Entries[0] != GRP_COMDAT)
192     fatal(getFilename(this) + ": unsupported SHT_GROUP format");
193   return Entries.slice(1);
194 }
195 
196 template <class ELFT>
197 bool elf::ObjectFile<ELFT>::shouldMerge(const Elf_Shdr &Sec) {
198   // We don't merge sections if -O0 (default is -O1). This makes sometimes
199   // the linker significantly faster, although the output will be bigger.
200   if (Config->Optimize == 0)
201     return false;
202 
203   // Do not merge sections if generating a relocatable object. It makes
204   // the code simpler because we do not need to update relocation addends
205   // to reflect changes introduced by merging. Instead of that we write
206   // such "merge" sections into separate OutputSections and keep SHF_MERGE
207   // / SHF_STRINGS flags and sh_entsize value to be able to perform merging
208   // later during a final linking.
209   if (Config->Relocatable)
210     return false;
211 
212   // A mergeable section with size 0 is useless because they don't have
213   // any data to merge. A mergeable string section with size 0 can be
214   // argued as invalid because it doesn't end with a null character.
215   // We'll avoid a mess by handling them as if they were non-mergeable.
216   if (Sec.sh_size == 0)
217     return false;
218 
219   // Check for sh_entsize. The ELF spec is not clear about the zero
220   // sh_entsize. It says that "the member [sh_entsize] contains 0 if
221   // the section does not hold a table of fixed-size entries". We know
222   // that Rust 1.13 produces a string mergeable section with a zero
223   // sh_entsize. Here we just accept it rather than being picky about it.
224   uintX_t EntSize = Sec.sh_entsize;
225   if (EntSize == 0)
226     return false;
227   if (Sec.sh_size % EntSize)
228     fatal(getFilename(this) +
229           ": SHF_MERGE section size must be a multiple of sh_entsize");
230 
231   uintX_t Flags = Sec.sh_flags;
232   if (!(Flags & SHF_MERGE))
233     return false;
234   if (Flags & SHF_WRITE)
235     fatal(getFilename(this) + ": writable SHF_MERGE section is not supported");
236 
237   // Don't try to merge if the alignment is larger than the sh_entsize and this
238   // is not SHF_STRINGS.
239   //
240   // Since this is not a SHF_STRINGS, we would need to pad after every entity.
241   // It would be equivalent for the producer of the .o to just set a larger
242   // sh_entsize.
243   if (Flags & SHF_STRINGS)
244     return true;
245 
246   return Sec.sh_addralign <= EntSize;
247 }
248 
249 template <class ELFT>
250 void elf::ObjectFile<ELFT>::initializeSections(
251     DenseSet<CachedHashStringRef> &ComdatGroups) {
252   ArrayRef<Elf_Shdr> ObjSections = check(this->getObj().sections());
253   const ELFFile<ELFT> &Obj = this->getObj();
254   uint64_t Size = ObjSections.size();
255   Sections.resize(Size);
256   unsigned I = -1;
257   StringRef SectionStringTable = check(Obj.getSectionStringTable(ObjSections));
258   for (const Elf_Shdr &Sec : ObjSections) {
259     ++I;
260     if (Sections[I] == &InputSection<ELFT>::Discarded)
261       continue;
262 
263     // SHF_EXCLUDE'ed sections are discarded by the linker. However,
264     // if -r is given, we'll let the final link discard such sections.
265     // This is compatible with GNU.
266     if ((Sec.sh_flags & SHF_EXCLUDE) && !Config->Relocatable) {
267       Sections[I] = &InputSection<ELFT>::Discarded;
268       continue;
269     }
270 
271     switch (Sec.sh_type) {
272     case SHT_GROUP:
273       Sections[I] = &InputSection<ELFT>::Discarded;
274       if (ComdatGroups.insert(CachedHashStringRef(
275                                   getShtGroupSignature(ObjSections, Sec)))
276               .second)
277         continue;
278       for (uint32_t SecIndex : getShtGroupEntries(Sec)) {
279         if (SecIndex >= Size)
280           fatal(getFilename(this) + ": invalid section index in group: " +
281                 Twine(SecIndex));
282         Sections[SecIndex] = &InputSection<ELFT>::Discarded;
283       }
284       break;
285     case SHT_SYMTAB:
286       this->initSymtab(ObjSections, &Sec);
287       break;
288     case SHT_SYMTAB_SHNDX:
289       this->SymtabSHNDX = check(Obj.getSHNDXTable(Sec, ObjSections));
290       break;
291     case SHT_STRTAB:
292     case SHT_NULL:
293       break;
294     default:
295       Sections[I] = createInputSection(Sec, SectionStringTable);
296     }
297 
298     // .ARM.exidx sections have a reverse dependency on the InputSection they
299     // have a SHF_LINK_ORDER dependency, this is identified by the sh_link.
300     if (Sec.sh_flags & SHF_LINK_ORDER) {
301       if (Sec.sh_link >= Sections.size())
302         fatal(getFilename(this) + ": invalid sh_link index: " +
303               Twine(Sec.sh_link));
304       auto *IS = cast<InputSection<ELFT>>(Sections[Sec.sh_link]);
305       IS->DependentSection = Sections[I];
306     }
307   }
308 }
309 
310 template <class ELFT>
311 InputSectionBase<ELFT> *
312 elf::ObjectFile<ELFT>::getRelocTarget(const Elf_Shdr &Sec) {
313   uint32_t Idx = Sec.sh_info;
314   if (Idx >= Sections.size())
315     fatal(getFilename(this) + ": invalid relocated section index: " +
316           Twine(Idx));
317   InputSectionBase<ELFT> *Target = Sections[Idx];
318 
319   // Strictly speaking, a relocation section must be included in the
320   // group of the section it relocates. However, LLVM 3.3 and earlier
321   // would fail to do so, so we gracefully handle that case.
322   if (Target == &InputSection<ELFT>::Discarded)
323     return nullptr;
324 
325   if (!Target)
326     fatal(getFilename(this) + ": unsupported relocation reference");
327   return Target;
328 }
329 
330 template <class ELFT>
331 InputSectionBase<ELFT> *
332 elf::ObjectFile<ELFT>::createInputSection(const Elf_Shdr &Sec,
333                                           StringRef SectionStringTable) {
334   StringRef Name =
335       check(this->getObj().getSectionName(&Sec, SectionStringTable));
336 
337   switch (Sec.sh_type) {
338   case SHT_ARM_ATTRIBUTES:
339     // FIXME: ARM meta-data section. At present attributes are ignored,
340     // they can be used to reason about object compatibility.
341     return &InputSection<ELFT>::Discarded;
342   case SHT_RELA:
343   case SHT_REL: {
344     // This section contains relocation information.
345     // If -r is given, we do not interpret or apply relocation
346     // but just copy relocation sections to output.
347     if (Config->Relocatable)
348       return make<InputSection<ELFT>>(this, &Sec, Name);
349 
350     // Find the relocation target section and associate this
351     // section with it.
352     InputSectionBase<ELFT> *Target = getRelocTarget(Sec);
353     if (!Target)
354       return nullptr;
355     if (Target->FirstRelocation)
356       fatal(getFilename(this) +
357             ": multiple relocation sections to one section are not supported");
358     if (!isa<InputSection<ELFT>>(Target) && !isa<EhInputSection<ELFT>>(Target))
359       fatal(getFilename(this) +
360             ": relocations pointing to SHF_MERGE are not supported");
361 
362     size_t NumRelocations;
363     if (Sec.sh_type == SHT_RELA) {
364       ArrayRef<Elf_Rela> Rels = check(this->getObj().relas(&Sec));
365       Target->FirstRelocation = Rels.begin();
366       NumRelocations = Rels.size();
367       Target->AreRelocsRela = true;
368     } else {
369       ArrayRef<Elf_Rel> Rels = check(this->getObj().rels(&Sec));
370       Target->FirstRelocation = Rels.begin();
371       NumRelocations = Rels.size();
372       Target->AreRelocsRela = false;
373     }
374     assert(isUInt<31>(NumRelocations));
375     Target->NumRelocations = NumRelocations;
376     return nullptr;
377   }
378   }
379 
380   // .note.GNU-stack is a marker section to control the presence of
381   // PT_GNU_STACK segment in outputs. Since the presence of the segment
382   // is controlled only by the command line option (-z execstack) in LLD,
383   // .note.GNU-stack is ignored.
384   if (Name == ".note.GNU-stack")
385     return &InputSection<ELFT>::Discarded;
386 
387   if (Name == ".note.GNU-split-stack") {
388     error("objects using splitstacks are not supported");
389     return &InputSection<ELFT>::Discarded;
390   }
391 
392   if (Config->Strip != StripPolicy::None && Name.startswith(".debug"))
393     return &InputSection<ELFT>::Discarded;
394 
395   // The linker merges EH (exception handling) frames and creates a
396   // .eh_frame_hdr section for runtime. So we handle them with a special
397   // class. For relocatable outputs, they are just passed through.
398   if (Name == ".eh_frame" && !Config->Relocatable)
399     return make<EhInputSection<ELFT>>(this, &Sec, Name);
400 
401   if (shouldMerge(Sec))
402     return make<MergeInputSection<ELFT>>(this, &Sec, Name);
403   return make<InputSection<ELFT>>(this, &Sec, Name);
404 }
405 
406 template <class ELFT> void elf::ObjectFile<ELFT>::initializeSymbols() {
407   SymbolBodies.reserve(this->Symbols.size());
408   for (const Elf_Sym &Sym : this->Symbols)
409     SymbolBodies.push_back(createSymbolBody(&Sym));
410 }
411 
412 template <class ELFT>
413 InputSectionBase<ELFT> *
414 elf::ObjectFile<ELFT>::getSection(const Elf_Sym &Sym) const {
415   uint32_t Index = this->getSectionIndex(Sym);
416   if (Index >= Sections.size())
417     fatal(getFilename(this) + ": invalid section index: " + Twine(Index));
418   InputSectionBase<ELFT> *S = Sections[Index];
419 
420   // We found that GNU assembler 2.17.50 [FreeBSD] 2007-07-03 could
421   // generate broken objects. STT_SECTION/STT_NOTYPE symbols can be
422   // associated with SHT_REL[A]/SHT_SYMTAB/SHT_STRTAB sections.
423   // In this case it is fine for section to be null here as we do not
424   // allocate sections of these types.
425   if (!S) {
426     if (Index == 0 || Sym.getType() == STT_SECTION ||
427         Sym.getType() == STT_NOTYPE)
428       return nullptr;
429     fatal(getFilename(this) + ": invalid section index: " + Twine(Index));
430   }
431 
432   if (S == &InputSection<ELFT>::Discarded)
433     return S;
434   return S->Repl;
435 }
436 
437 template <class ELFT>
438 SymbolBody *elf::ObjectFile<ELFT>::createSymbolBody(const Elf_Sym *Sym) {
439   int Binding = Sym->getBinding();
440   InputSectionBase<ELFT> *Sec = getSection(*Sym);
441   if (Binding == STB_LOCAL) {
442     if (Sym->getType() == STT_FILE)
443       SourceFile = check(Sym->getName(this->StringTable));
444     if (Sym->st_shndx == SHN_UNDEF)
445       return new (BAlloc)
446           Undefined(Sym->st_name, Sym->st_other, Sym->getType(), this);
447     return new (BAlloc) DefinedRegular<ELFT>(*Sym, Sec);
448   }
449 
450   StringRef Name = check(Sym->getName(this->StringTable));
451 
452   switch (Sym->st_shndx) {
453   case SHN_UNDEF:
454     return elf::Symtab<ELFT>::X->addUndefined(Name, Binding, Sym->st_other,
455                                               Sym->getType(),
456                                               /*CanOmitFromDynSym*/ false, this)
457         ->body();
458   case SHN_COMMON:
459     if (Sym->st_value == 0 || Sym->st_value >= UINT32_MAX)
460       fatal(getFilename(this) + ": common symbol '" + Name +
461             "' has invalid alignment: " + Twine(Sym->st_value));
462     return elf::Symtab<ELFT>::X->addCommon(Name, Sym->st_size, Sym->st_value,
463                                            Binding, Sym->st_other,
464                                            Sym->getType(), this)
465         ->body();
466   }
467 
468   switch (Binding) {
469   default:
470     fatal(getFilename(this) + ": unexpected binding: " + Twine(Binding));
471   case STB_GLOBAL:
472   case STB_WEAK:
473   case STB_GNU_UNIQUE:
474     if (Sec == &InputSection<ELFT>::Discarded)
475       return elf::Symtab<ELFT>::X->addUndefined(Name, Binding, Sym->st_other,
476                                                 Sym->getType(),
477                                                 /*CanOmitFromDynSym*/ false,
478                                                 this)
479           ->body();
480     return elf::Symtab<ELFT>::X->addRegular(Name, *Sym, Sec, this)->body();
481   }
482 }
483 
484 template <class ELFT> void ArchiveFile::parse() {
485   File = check(Archive::create(MB), "failed to parse archive");
486 
487   // Read the symbol table to construct Lazy objects.
488   for (const Archive::Symbol &Sym : File->symbols())
489     Symtab<ELFT>::X->addLazyArchive(this, Sym);
490 }
491 
492 // Returns a buffer pointing to a member file containing a given symbol.
493 std::pair<MemoryBufferRef, uint64_t>
494 ArchiveFile::getMember(const Archive::Symbol *Sym) {
495   Archive::Child C =
496       check(Sym->getMember(),
497             "could not get the member for symbol " + Sym->getName());
498 
499   if (!Seen.insert(C.getChildOffset()).second)
500     return {MemoryBufferRef(), 0};
501 
502   MemoryBufferRef Ret =
503       check(C.getMemoryBufferRef(),
504             "could not get the buffer for the member defining symbol " +
505                 Sym->getName());
506 
507   if (C.getParent()->isThin() && Driver->Cpio)
508     Driver->Cpio->append(relativeToRoot(check(C.getFullName())),
509                          Ret.getBuffer());
510   if (C.getParent()->isThin())
511     return {Ret, 0};
512   return {Ret, C.getChildOffset()};
513 }
514 
515 template <class ELFT>
516 SharedFile<ELFT>::SharedFile(MemoryBufferRef M)
517     : ELFFileBase<ELFT>(Base::SharedKind, M), AsNeeded(Config->AsNeeded) {}
518 
519 template <class ELFT>
520 const typename ELFT::Shdr *
521 SharedFile<ELFT>::getSection(const Elf_Sym &Sym) const {
522   return check(
523       this->getObj().getSection(&Sym, this->Symbols, this->SymtabSHNDX));
524 }
525 
526 // Partially parse the shared object file so that we can call
527 // getSoName on this object.
528 template <class ELFT> void SharedFile<ELFT>::parseSoName() {
529   typedef typename ELFT::Dyn Elf_Dyn;
530   typedef typename ELFT::uint uintX_t;
531   const Elf_Shdr *DynamicSec = nullptr;
532 
533   const ELFFile<ELFT> Obj = this->getObj();
534   ArrayRef<Elf_Shdr> Sections = check(Obj.sections());
535   for (const Elf_Shdr &Sec : Sections) {
536     switch (Sec.sh_type) {
537     default:
538       continue;
539     case SHT_DYNSYM:
540       this->initSymtab(Sections, &Sec);
541       break;
542     case SHT_DYNAMIC:
543       DynamicSec = &Sec;
544       break;
545     case SHT_SYMTAB_SHNDX:
546       this->SymtabSHNDX = check(Obj.getSHNDXTable(Sec, Sections));
547       break;
548     case SHT_GNU_versym:
549       this->VersymSec = &Sec;
550       break;
551     case SHT_GNU_verdef:
552       this->VerdefSec = &Sec;
553       break;
554     }
555   }
556 
557   if (this->VersymSec && this->Symbols.empty())
558     error("SHT_GNU_versym should be associated with symbol table");
559 
560   // DSOs are identified by soname, and they usually contain
561   // DT_SONAME tag in their header. But if they are missing,
562   // filenames are used as default sonames.
563   SoName = sys::path::filename(this->getName());
564 
565   if (!DynamicSec)
566     return;
567 
568   ArrayRef<Elf_Dyn> Arr =
569       check(Obj.template getSectionContentsAsArray<Elf_Dyn>(DynamicSec),
570             getFilename(this) + ": getSectionContentsAsArray failed");
571   for (const Elf_Dyn &Dyn : Arr) {
572     if (Dyn.d_tag == DT_SONAME) {
573       uintX_t Val = Dyn.getVal();
574       if (Val >= this->StringTable.size())
575         fatal(getFilename(this) + ": invalid DT_SONAME entry");
576       SoName = StringRef(this->StringTable.data() + Val);
577       return;
578     }
579   }
580 }
581 
582 // Parse the version definitions in the object file if present. Returns a vector
583 // whose nth element contains a pointer to the Elf_Verdef for version identifier
584 // n. Version identifiers that are not definitions map to nullptr. The array
585 // always has at least length 1.
586 template <class ELFT>
587 std::vector<const typename ELFT::Verdef *>
588 SharedFile<ELFT>::parseVerdefs(const Elf_Versym *&Versym) {
589   std::vector<const Elf_Verdef *> Verdefs(1);
590   // We only need to process symbol versions for this DSO if it has both a
591   // versym and a verdef section, which indicates that the DSO contains symbol
592   // version definitions.
593   if (!VersymSec || !VerdefSec)
594     return Verdefs;
595 
596   // The location of the first global versym entry.
597   const char *Base = this->MB.getBuffer().data();
598   Versym = reinterpret_cast<const Elf_Versym *>(Base + VersymSec->sh_offset) +
599            this->FirstNonLocal;
600 
601   // We cannot determine the largest verdef identifier without inspecting
602   // every Elf_Verdef, but both bfd and gold assign verdef identifiers
603   // sequentially starting from 1, so we predict that the largest identifier
604   // will be VerdefCount.
605   unsigned VerdefCount = VerdefSec->sh_info;
606   Verdefs.resize(VerdefCount + 1);
607 
608   // Build the Verdefs array by following the chain of Elf_Verdef objects
609   // from the start of the .gnu.version_d section.
610   const char *Verdef = Base + VerdefSec->sh_offset;
611   for (unsigned I = 0; I != VerdefCount; ++I) {
612     auto *CurVerdef = reinterpret_cast<const Elf_Verdef *>(Verdef);
613     Verdef += CurVerdef->vd_next;
614     unsigned VerdefIndex = CurVerdef->vd_ndx;
615     if (Verdefs.size() <= VerdefIndex)
616       Verdefs.resize(VerdefIndex + 1);
617     Verdefs[VerdefIndex] = CurVerdef;
618   }
619 
620   return Verdefs;
621 }
622 
623 // Fully parse the shared object file. This must be called after parseSoName().
624 template <class ELFT> void SharedFile<ELFT>::parseRest() {
625   // Create mapping from version identifiers to Elf_Verdef entries.
626   const Elf_Versym *Versym = nullptr;
627   std::vector<const Elf_Verdef *> Verdefs = parseVerdefs(Versym);
628 
629   Elf_Sym_Range Syms = this->getGlobalSymbols();
630   for (const Elf_Sym &Sym : Syms) {
631     unsigned VersymIndex = 0;
632     if (Versym) {
633       VersymIndex = Versym->vs_index;
634       ++Versym;
635     }
636 
637     StringRef Name = check(Sym.getName(this->StringTable));
638     if (Sym.isUndefined()) {
639       Undefs.push_back(Name);
640       continue;
641     }
642 
643     if (Versym) {
644       // Ignore local symbols and non-default versions.
645       if (VersymIndex == VER_NDX_LOCAL || (VersymIndex & VERSYM_HIDDEN))
646         continue;
647     }
648 
649     const Elf_Verdef *V =
650         VersymIndex == VER_NDX_GLOBAL ? nullptr : Verdefs[VersymIndex];
651     elf::Symtab<ELFT>::X->addShared(this, Name, Sym, V);
652   }
653 }
654 
655 static ELFKind getBitcodeELFKind(MemoryBufferRef MB) {
656   Triple T(check(getBitcodeTargetTriple(MB)));
657   if (T.isLittleEndian())
658     return T.isArch64Bit() ? ELF64LEKind : ELF32LEKind;
659   return T.isArch64Bit() ? ELF64BEKind : ELF32BEKind;
660 }
661 
662 static uint8_t getBitcodeMachineKind(MemoryBufferRef MB) {
663   Triple T(check(getBitcodeTargetTriple(MB)));
664   switch (T.getArch()) {
665   case Triple::aarch64:
666     return EM_AARCH64;
667   case Triple::arm:
668     return EM_ARM;
669   case Triple::mips:
670   case Triple::mipsel:
671   case Triple::mips64:
672   case Triple::mips64el:
673     return EM_MIPS;
674   case Triple::ppc:
675     return EM_PPC;
676   case Triple::ppc64:
677     return EM_PPC64;
678   case Triple::x86:
679     return T.isOSIAMCU() ? EM_IAMCU : EM_386;
680   case Triple::x86_64:
681     return EM_X86_64;
682   default:
683     fatal(MB.getBufferIdentifier() +
684           ": could not infer e_machine from bitcode target triple " + T.str());
685   }
686 }
687 
688 BitcodeFile::BitcodeFile(MemoryBufferRef MB) : InputFile(BitcodeKind, MB) {
689   EKind = getBitcodeELFKind(MB);
690   EMachine = getBitcodeMachineKind(MB);
691 }
692 
693 static uint8_t mapVisibility(GlobalValue::VisibilityTypes GvVisibility) {
694   switch (GvVisibility) {
695   case GlobalValue::DefaultVisibility:
696     return STV_DEFAULT;
697   case GlobalValue::HiddenVisibility:
698     return STV_HIDDEN;
699   case GlobalValue::ProtectedVisibility:
700     return STV_PROTECTED;
701   }
702   llvm_unreachable("unknown visibility");
703 }
704 
705 template <class ELFT>
706 static Symbol *createBitcodeSymbol(const std::vector<bool> &KeptComdats,
707                                    const lto::InputFile::Symbol &ObjSym,
708                                    BitcodeFile *F) {
709   StringRef NameRef = Saver.save(ObjSym.getName());
710   uint32_t Flags = ObjSym.getFlags();
711   uint32_t Binding = (Flags & BasicSymbolRef::SF_Weak) ? STB_WEAK : STB_GLOBAL;
712 
713   uint8_t Type = ObjSym.isTLS() ? STT_TLS : STT_NOTYPE;
714   uint8_t Visibility = mapVisibility(ObjSym.getVisibility());
715   bool CanOmitFromDynSym = ObjSym.canBeOmittedFromSymbolTable();
716 
717   int C = check(ObjSym.getComdatIndex());
718   if (C != -1 && !KeptComdats[C])
719     return Symtab<ELFT>::X->addUndefined(NameRef, Binding, Visibility, Type,
720                                          CanOmitFromDynSym, F);
721 
722   if (Flags & BasicSymbolRef::SF_Undefined)
723     return Symtab<ELFT>::X->addUndefined(NameRef, Binding, Visibility, Type,
724                                          CanOmitFromDynSym, F);
725 
726   if (Flags & BasicSymbolRef::SF_Common)
727     return Symtab<ELFT>::X->addCommon(NameRef, ObjSym.getCommonSize(),
728                                       ObjSym.getCommonAlignment(), Binding,
729                                       Visibility, STT_OBJECT, F);
730 
731   return Symtab<ELFT>::X->addBitcode(NameRef, Binding, Visibility, Type,
732                                      CanOmitFromDynSym, F);
733 }
734 
735 template <class ELFT>
736 void BitcodeFile::parse(DenseSet<CachedHashStringRef> &ComdatGroups) {
737 
738   // Here we pass a new MemoryBufferRef which is identified by ArchiveName
739   // (the fully resolved path of the archive) + member name + offset of the
740   // member in the archive.
741   // ThinLTO uses the MemoryBufferRef identifier to access its internal
742   // data structures and if two archives define two members with the same name,
743   // this causes a collision which result in only one of the objects being
744   // taken into consideration at LTO time (which very likely causes undefined
745   // symbols later in the link stage).
746   Obj = check(lto::InputFile::create(MemoryBufferRef(
747       MB.getBuffer(), Saver.save(ArchiveName + MB.getBufferIdentifier() +
748                                  utostr(OffsetInArchive)))));
749 
750   std::vector<bool> KeptComdats;
751   for (StringRef S : Obj->getComdatTable()) {
752     StringRef N = Saver.save(S);
753     KeptComdats.push_back(ComdatGroups.insert(CachedHashStringRef(N)).second);
754   }
755 
756   for (const lto::InputFile::Symbol &ObjSym : Obj->symbols())
757     Symbols.push_back(createBitcodeSymbol<ELFT>(KeptComdats, ObjSym, this));
758 }
759 
760 template <template <class> class T>
761 static InputFile *createELFFile(MemoryBufferRef MB) {
762   unsigned char Size;
763   unsigned char Endian;
764   std::tie(Size, Endian) = getElfArchType(MB.getBuffer());
765   if (Endian != ELFDATA2LSB && Endian != ELFDATA2MSB)
766     fatal("invalid data encoding: " + MB.getBufferIdentifier());
767 
768   size_t BufSize = MB.getBuffer().size();
769   if ((Size == ELFCLASS32 && BufSize < sizeof(Elf32_Ehdr)) ||
770       (Size == ELFCLASS64 && BufSize < sizeof(Elf64_Ehdr)))
771     fatal("file is too short");
772 
773   InputFile *Obj;
774   if (Size == ELFCLASS32 && Endian == ELFDATA2LSB)
775     Obj = make<T<ELF32LE>>(MB);
776   else if (Size == ELFCLASS32 && Endian == ELFDATA2MSB)
777     Obj = make<T<ELF32BE>>(MB);
778   else if (Size == ELFCLASS64 && Endian == ELFDATA2LSB)
779     Obj = make<T<ELF64LE>>(MB);
780   else if (Size == ELFCLASS64 && Endian == ELFDATA2MSB)
781     Obj = make<T<ELF64BE>>(MB);
782   else
783     fatal("invalid file class: " + MB.getBufferIdentifier());
784 
785   if (!Config->FirstElf)
786     Config->FirstElf = Obj;
787   return Obj;
788 }
789 
790 template <class ELFT> void BinaryFile::parse() {
791   StringRef Buf = MB.getBuffer();
792   ArrayRef<uint8_t> Data =
793       makeArrayRef<uint8_t>((const uint8_t *)Buf.data(), Buf.size());
794 
795   std::string Filename = MB.getBufferIdentifier();
796   std::transform(Filename.begin(), Filename.end(), Filename.begin(),
797                  [](char C) { return isalnum(C) ? C : '_'; });
798   Filename = "_binary_" + Filename;
799   StringRef StartName = Saver.save(Twine(Filename) + "_start");
800   StringRef EndName = Saver.save(Twine(Filename) + "_end");
801   StringRef SizeName = Saver.save(Twine(Filename) + "_size");
802 
803   auto *Section =
804       make<InputSection<ELFT>>(SHF_ALLOC, SHT_PROGBITS, 8, Data, ".data");
805   Sections.push_back(Section);
806 
807   elf::Symtab<ELFT>::X->addRegular(StartName, STV_DEFAULT, STT_OBJECT, 0, 0,
808                                    STB_GLOBAL, Section, nullptr);
809   elf::Symtab<ELFT>::X->addRegular(EndName, STV_DEFAULT, STT_OBJECT,
810                                    Data.size(), 0, STB_GLOBAL, Section,
811                                    nullptr);
812   elf::Symtab<ELFT>::X->addRegular(SizeName, STV_DEFAULT, STT_OBJECT,
813                                    Data.size(), 0, STB_GLOBAL, nullptr,
814                                    nullptr);
815 }
816 
817 static bool isBitcode(MemoryBufferRef MB) {
818   using namespace sys::fs;
819   return identify_magic(MB.getBuffer()) == file_magic::bitcode;
820 }
821 
822 InputFile *elf::createObjectFile(MemoryBufferRef MB, StringRef ArchiveName,
823                                  uint64_t OffsetInArchive) {
824   InputFile *F =
825       isBitcode(MB) ? make<BitcodeFile>(MB) : createELFFile<ObjectFile>(MB);
826   F->ArchiveName = ArchiveName;
827   F->OffsetInArchive = OffsetInArchive;
828   return F;
829 }
830 
831 InputFile *elf::createSharedFile(MemoryBufferRef MB) {
832   return createELFFile<SharedFile>(MB);
833 }
834 
835 MemoryBufferRef LazyObjectFile::getBuffer() {
836   if (Seen)
837     return MemoryBufferRef();
838   Seen = true;
839   return MB;
840 }
841 
842 template <class ELFT> void LazyObjectFile::parse() {
843   for (StringRef Sym : getSymbols())
844     Symtab<ELFT>::X->addLazyObject(Sym, *this);
845 }
846 
847 template <class ELFT> std::vector<StringRef> LazyObjectFile::getElfSymbols() {
848   typedef typename ELFT::Shdr Elf_Shdr;
849   typedef typename ELFT::Sym Elf_Sym;
850   typedef typename ELFT::SymRange Elf_Sym_Range;
851 
852   const ELFFile<ELFT> Obj(this->MB.getBuffer());
853   ArrayRef<Elf_Shdr> Sections = check(Obj.sections());
854   for (const Elf_Shdr &Sec : Sections) {
855     if (Sec.sh_type != SHT_SYMTAB)
856       continue;
857     Elf_Sym_Range Syms = check(Obj.symbols(&Sec));
858     uint32_t FirstNonLocal = Sec.sh_info;
859     StringRef StringTable = check(Obj.getStringTableForSymtab(Sec, Sections));
860     std::vector<StringRef> V;
861     for (const Elf_Sym &Sym : Syms.slice(FirstNonLocal))
862       if (Sym.st_shndx != SHN_UNDEF)
863         V.push_back(check(Sym.getName(StringTable)));
864     return V;
865   }
866   return {};
867 }
868 
869 std::vector<StringRef> LazyObjectFile::getBitcodeSymbols() {
870   std::unique_ptr<lto::InputFile> Obj = check(lto::InputFile::create(this->MB));
871   std::vector<StringRef> V;
872   for (const lto::InputFile::Symbol &Sym : Obj->symbols())
873     if (!(Sym.getFlags() & BasicSymbolRef::SF_Undefined))
874       V.push_back(Saver.save(Sym.getName()));
875   return V;
876 }
877 
878 // Returns a vector of globally-visible defined symbol names.
879 std::vector<StringRef> LazyObjectFile::getSymbols() {
880   if (isBitcode(this->MB))
881     return getBitcodeSymbols();
882 
883   unsigned char Size;
884   unsigned char Endian;
885   std::tie(Size, Endian) = getElfArchType(this->MB.getBuffer());
886   if (Size == ELFCLASS32) {
887     if (Endian == ELFDATA2LSB)
888       return getElfSymbols<ELF32LE>();
889     return getElfSymbols<ELF32BE>();
890   }
891   if (Endian == ELFDATA2LSB)
892     return getElfSymbols<ELF64LE>();
893   return getElfSymbols<ELF64BE>();
894 }
895 
896 template void ArchiveFile::parse<ELF32LE>();
897 template void ArchiveFile::parse<ELF32BE>();
898 template void ArchiveFile::parse<ELF64LE>();
899 template void ArchiveFile::parse<ELF64BE>();
900 
901 template void BitcodeFile::parse<ELF32LE>(DenseSet<CachedHashStringRef> &);
902 template void BitcodeFile::parse<ELF32BE>(DenseSet<CachedHashStringRef> &);
903 template void BitcodeFile::parse<ELF64LE>(DenseSet<CachedHashStringRef> &);
904 template void BitcodeFile::parse<ELF64BE>(DenseSet<CachedHashStringRef> &);
905 
906 template void LazyObjectFile::parse<ELF32LE>();
907 template void LazyObjectFile::parse<ELF32BE>();
908 template void LazyObjectFile::parse<ELF64LE>();
909 template void LazyObjectFile::parse<ELF64BE>();
910 
911 template class elf::ELFFileBase<ELF32LE>;
912 template class elf::ELFFileBase<ELF32BE>;
913 template class elf::ELFFileBase<ELF64LE>;
914 template class elf::ELFFileBase<ELF64BE>;
915 
916 template class elf::ObjectFile<ELF32LE>;
917 template class elf::ObjectFile<ELF32BE>;
918 template class elf::ObjectFile<ELF64LE>;
919 template class elf::ObjectFile<ELF64BE>;
920 
921 template class elf::SharedFile<ELF32LE>;
922 template class elf::SharedFile<ELF32BE>;
923 template class elf::SharedFile<ELF64LE>;
924 template class elf::SharedFile<ELF64BE>;
925 
926 template void BinaryFile::parse<ELF32LE>();
927 template void BinaryFile::parse<ELF32BE>();
928 template void BinaryFile::parse<ELF64LE>();
929 template void BinaryFile::parse<ELF64BE>();
930