1 //===- InputFiles.cpp -----------------------------------------------------===// 2 // 3 // The LLVM Linker 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "InputFiles.h" 11 #include "Driver.h" 12 #include "ELFCreator.h" 13 #include "Error.h" 14 #include "InputSection.h" 15 #include "LinkerScript.h" 16 #include "SymbolTable.h" 17 #include "Symbols.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/Bitcode/ReaderWriter.h" 20 #include "llvm/CodeGen/Analysis.h" 21 #include "llvm/IR/LLVMContext.h" 22 #include "llvm/IR/Module.h" 23 #include "llvm/LTO/LTO.h" 24 #include "llvm/MC/StringTableBuilder.h" 25 #include "llvm/Support/Path.h" 26 #include "llvm/Support/raw_ostream.h" 27 28 using namespace llvm; 29 using namespace llvm::ELF; 30 using namespace llvm::object; 31 using namespace llvm::sys::fs; 32 33 using namespace lld; 34 using namespace lld::elf; 35 36 std::vector<InputFile *> InputFile::Pool; 37 38 // Deletes all InputFile instances created so far. 39 void InputFile::freePool() { 40 // Files are freed in reverse order so that files created 41 // from other files (e.g. object files extracted from archives) 42 // are freed in the proper order. 43 for (int I = Pool.size() - 1; I >= 0; --I) 44 delete Pool[I]; 45 } 46 47 // Returns "(internal)", "foo.a(bar.o)" or "baz.o". 48 std::string elf::getFilename(const InputFile *F) { 49 if (!F) 50 return "(internal)"; 51 if (!F->ArchiveName.empty()) 52 return (F->ArchiveName + "(" + F->getName() + ")").str(); 53 return F->getName(); 54 } 55 56 template <class ELFT> static ELFFile<ELFT> createELFObj(MemoryBufferRef MB) { 57 std::error_code EC; 58 ELFFile<ELFT> F(MB.getBuffer(), EC); 59 if (EC) 60 fatal(EC, "failed to read " + MB.getBufferIdentifier()); 61 return F; 62 } 63 64 template <class ELFT> static ELFKind getELFKind() { 65 if (ELFT::TargetEndianness == support::little) 66 return ELFT::Is64Bits ? ELF64LEKind : ELF32LEKind; 67 return ELFT::Is64Bits ? ELF64BEKind : ELF32BEKind; 68 } 69 70 template <class ELFT> 71 ELFFileBase<ELFT>::ELFFileBase(Kind K, MemoryBufferRef MB) 72 : InputFile(K, MB), ELFObj(createELFObj<ELFT>(MB)) { 73 EKind = getELFKind<ELFT>(); 74 EMachine = ELFObj.getHeader()->e_machine; 75 } 76 77 template <class ELFT> 78 typename ELFT::SymRange ELFFileBase<ELFT>::getElfSymbols(bool OnlyGlobals) { 79 if (!Symtab) 80 return Elf_Sym_Range(nullptr, nullptr); 81 Elf_Sym_Range Syms = ELFObj.symbols(Symtab); 82 uint32_t NumSymbols = std::distance(Syms.begin(), Syms.end()); 83 uint32_t FirstNonLocal = Symtab->sh_info; 84 if (FirstNonLocal == 0 || FirstNonLocal > NumSymbols) 85 fatal(getFilename(this) + ": invalid sh_info in symbol table"); 86 87 if (OnlyGlobals) 88 return makeArrayRef(Syms.begin() + FirstNonLocal, Syms.end()); 89 return makeArrayRef(Syms.begin(), Syms.end()); 90 } 91 92 template <class ELFT> 93 uint32_t ELFFileBase<ELFT>::getSectionIndex(const Elf_Sym &Sym) const { 94 uint32_t I = Sym.st_shndx; 95 if (I == ELF::SHN_XINDEX) 96 return ELFObj.getExtendedSymbolTableIndex(&Sym, Symtab, SymtabSHNDX); 97 if (I >= ELF::SHN_LORESERVE) 98 return 0; 99 return I; 100 } 101 102 template <class ELFT> void ELFFileBase<ELFT>::initStringTable() { 103 if (!Symtab) 104 return; 105 StringTable = check(ELFObj.getStringTableForSymtab(*Symtab)); 106 } 107 108 template <class ELFT> 109 elf::ObjectFile<ELFT>::ObjectFile(MemoryBufferRef M) 110 : ELFFileBase<ELFT>(Base::ObjectKind, M) {} 111 112 template <class ELFT> 113 ArrayRef<SymbolBody *> elf::ObjectFile<ELFT>::getNonLocalSymbols() { 114 if (!this->Symtab) 115 return this->SymbolBodies; 116 uint32_t FirstNonLocal = this->Symtab->sh_info; 117 return makeArrayRef(this->SymbolBodies).slice(FirstNonLocal); 118 } 119 120 template <class ELFT> 121 ArrayRef<SymbolBody *> elf::ObjectFile<ELFT>::getLocalSymbols() { 122 if (!this->Symtab) 123 return this->SymbolBodies; 124 uint32_t FirstNonLocal = this->Symtab->sh_info; 125 return makeArrayRef(this->SymbolBodies).slice(1, FirstNonLocal - 1); 126 } 127 128 template <class ELFT> 129 ArrayRef<SymbolBody *> elf::ObjectFile<ELFT>::getSymbols() { 130 if (!this->Symtab) 131 return this->SymbolBodies; 132 return makeArrayRef(this->SymbolBodies).slice(1); 133 } 134 135 template <class ELFT> uint32_t elf::ObjectFile<ELFT>::getMipsGp0() const { 136 if (ELFT::Is64Bits && MipsOptions && MipsOptions->Reginfo) 137 return MipsOptions->Reginfo->ri_gp_value; 138 if (!ELFT::Is64Bits && MipsReginfo && MipsReginfo->Reginfo) 139 return MipsReginfo->Reginfo->ri_gp_value; 140 return 0; 141 } 142 143 template <class ELFT> 144 void elf::ObjectFile<ELFT>::parse(DenseSet<StringRef> &ComdatGroups) { 145 // Read section and symbol tables. 146 initializeSections(ComdatGroups); 147 initializeSymbols(); 148 if (Config->GcSections && Config->EMachine == EM_ARM) 149 initializeReverseDependencies(); 150 } 151 152 // Sections with SHT_GROUP and comdat bits define comdat section groups. 153 // They are identified and deduplicated by group name. This function 154 // returns a group name. 155 template <class ELFT> 156 StringRef elf::ObjectFile<ELFT>::getShtGroupSignature(const Elf_Shdr &Sec) { 157 const ELFFile<ELFT> &Obj = this->ELFObj; 158 const Elf_Shdr *Symtab = check(Obj.getSection(Sec.sh_link)); 159 const Elf_Sym *Sym = Obj.getSymbol(Symtab, Sec.sh_info); 160 StringRef Strtab = check(Obj.getStringTableForSymtab(*Symtab)); 161 return check(Sym->getName(Strtab)); 162 } 163 164 template <class ELFT> 165 ArrayRef<typename elf::ObjectFile<ELFT>::Elf_Word> 166 elf::ObjectFile<ELFT>::getShtGroupEntries(const Elf_Shdr &Sec) { 167 const ELFFile<ELFT> &Obj = this->ELFObj; 168 ArrayRef<Elf_Word> Entries = 169 check(Obj.template getSectionContentsAsArray<Elf_Word>(&Sec)); 170 if (Entries.empty() || Entries[0] != GRP_COMDAT) 171 fatal(getFilename(this) + ": unsupported SHT_GROUP format"); 172 return Entries.slice(1); 173 } 174 175 template <class ELFT> 176 bool elf::ObjectFile<ELFT>::shouldMerge(const Elf_Shdr &Sec) { 177 // We don't merge sections if -O0 (default is -O1). This makes sometimes 178 // the linker significantly faster, although the output will be bigger. 179 if (Config->Optimize == 0) 180 return false; 181 182 // Do not merge sections if generating a relocatable object. It makes 183 // the code simpler because we do not need to update relocation addends 184 // to reflect changes introduced by merging. Instead of that we write 185 // such "merge" sections into separate OutputSections and keep SHF_MERGE 186 // / SHF_STRINGS flags and sh_entsize value to be able to perform merging 187 // later during a final linking. 188 if (Config->Relocatable) 189 return false; 190 191 // A mergeable section with size 0 is useless because they don't have 192 // any data to merge. A mergeable string section with size 0 can be 193 // argued as invalid because it doesn't end with a null character. 194 // We'll avoid a mess by handling them as if they were non-mergeable. 195 if (Sec.sh_size == 0) 196 return false; 197 198 // Check for sh_entsize. The ELF spec is not clear about the zero 199 // sh_entsize. It says that "the member [sh_entsize] contains 0 if 200 // the section does not hold a table of fixed-size entries". We know 201 // that Rust 1.13 produces a string mergeable section with a zero 202 // sh_entsize. Here we just accept it rather than being picky about it. 203 uintX_t EntSize = Sec.sh_entsize; 204 if (EntSize == 0) 205 return false; 206 if (Sec.sh_size % EntSize) 207 fatal(getFilename(this) + 208 ": SHF_MERGE section size must be a multiple of sh_entsize"); 209 210 uintX_t Flags = Sec.sh_flags; 211 if (!(Flags & SHF_MERGE)) 212 return false; 213 if (Flags & SHF_WRITE) 214 fatal(getFilename(this) + ": writable SHF_MERGE section is not supported"); 215 216 // Don't try to merge if the alignment is larger than the sh_entsize and this 217 // is not SHF_STRINGS. 218 // 219 // Since this is not a SHF_STRINGS, we would need to pad after every entity. 220 // It would be equivalent for the producer of the .o to just set a larger 221 // sh_entsize. 222 if (Flags & SHF_STRINGS) 223 return true; 224 225 return Sec.sh_addralign <= EntSize; 226 } 227 228 template <class ELFT> 229 void elf::ObjectFile<ELFT>::initializeSections( 230 DenseSet<StringRef> &ComdatGroups) { 231 uint64_t Size = this->ELFObj.getNumSections(); 232 Sections.resize(Size); 233 unsigned I = -1; 234 const ELFFile<ELFT> &Obj = this->ELFObj; 235 for (const Elf_Shdr &Sec : Obj.sections()) { 236 ++I; 237 if (Sections[I] == &InputSection<ELFT>::Discarded) 238 continue; 239 240 // SHF_EXCLUDE'ed sections are discarded by the linker. However, 241 // if -r is given, we'll let the final link discard such sections. 242 // This is compatible with GNU. 243 if ((Sec.sh_flags & SHF_EXCLUDE) && !Config->Relocatable) { 244 Sections[I] = &InputSection<ELFT>::Discarded; 245 continue; 246 } 247 248 switch (Sec.sh_type) { 249 case SHT_GROUP: 250 Sections[I] = &InputSection<ELFT>::Discarded; 251 if (ComdatGroups.insert(getShtGroupSignature(Sec)).second) 252 continue; 253 for (uint32_t SecIndex : getShtGroupEntries(Sec)) { 254 if (SecIndex >= Size) 255 fatal(getFilename(this) + ": invalid section index in group: " + 256 Twine(SecIndex)); 257 Sections[SecIndex] = &InputSection<ELFT>::Discarded; 258 } 259 break; 260 case SHT_SYMTAB: 261 this->Symtab = &Sec; 262 break; 263 case SHT_SYMTAB_SHNDX: 264 this->SymtabSHNDX = check(Obj.getSHNDXTable(Sec)); 265 break; 266 case SHT_STRTAB: 267 case SHT_NULL: 268 break; 269 default: 270 Sections[I] = createInputSection(Sec); 271 } 272 } 273 } 274 275 // .ARM.exidx sections have a reverse dependency on the InputSection they 276 // have a SHF_LINK_ORDER dependency, this is identified by the sh_link. 277 template <class ELFT> 278 void elf::ObjectFile<ELFT>::initializeReverseDependencies() { 279 unsigned I = -1; 280 for (const Elf_Shdr &Sec : this->ELFObj.sections()) { 281 ++I; 282 if ((Sections[I] == &InputSection<ELFT>::Discarded) || 283 !(Sec.sh_flags & SHF_LINK_ORDER)) 284 continue; 285 if (Sec.sh_link >= Sections.size()) 286 fatal(getFilename(this) + ": invalid sh_link index: " + 287 Twine(Sec.sh_link)); 288 auto *IS = cast<InputSection<ELFT>>(Sections[Sec.sh_link]); 289 IS->DependentSection = Sections[I]; 290 } 291 } 292 293 template <class ELFT> 294 InputSectionBase<ELFT> * 295 elf::ObjectFile<ELFT>::getRelocTarget(const Elf_Shdr &Sec) { 296 uint32_t Idx = Sec.sh_info; 297 if (Idx >= Sections.size()) 298 fatal(getFilename(this) + ": invalid relocated section index: " + 299 Twine(Idx)); 300 InputSectionBase<ELFT> *Target = Sections[Idx]; 301 302 // Strictly speaking, a relocation section must be included in the 303 // group of the section it relocates. However, LLVM 3.3 and earlier 304 // would fail to do so, so we gracefully handle that case. 305 if (Target == &InputSection<ELFT>::Discarded) 306 return nullptr; 307 308 if (!Target) 309 fatal(getFilename(this) + ": unsupported relocation reference"); 310 return Target; 311 } 312 313 template <class ELFT> 314 InputSectionBase<ELFT> * 315 elf::ObjectFile<ELFT>::createInputSection(const Elf_Shdr &Sec) { 316 StringRef Name = check(this->ELFObj.getSectionName(&Sec)); 317 318 switch (Sec.sh_type) { 319 case SHT_ARM_ATTRIBUTES: 320 // FIXME: ARM meta-data section. At present attributes are ignored, 321 // they can be used to reason about object compatibility. 322 return &InputSection<ELFT>::Discarded; 323 case SHT_MIPS_REGINFO: 324 if (MipsReginfo) 325 fatal(getFilename(this) + 326 ": multiple SHT_MIPS_REGINFO sections are not allowed"); 327 MipsReginfo.reset(new MipsReginfoInputSection<ELFT>(this, &Sec, Name)); 328 return MipsReginfo.get(); 329 case SHT_MIPS_OPTIONS: 330 if (MipsOptions) 331 fatal(getFilename(this) + 332 ": multiple SHT_MIPS_OPTIONS sections are not allowed"); 333 MipsOptions.reset(new MipsOptionsInputSection<ELFT>(this, &Sec, Name)); 334 return MipsOptions.get(); 335 case SHT_MIPS_ABIFLAGS: 336 if (MipsAbiFlags) 337 fatal(getFilename(this) + 338 ": multiple SHT_MIPS_ABIFLAGS sections are not allowed"); 339 MipsAbiFlags.reset(new MipsAbiFlagsInputSection<ELFT>(this, &Sec, Name)); 340 return MipsAbiFlags.get(); 341 case SHT_RELA: 342 case SHT_REL: { 343 // This section contains relocation information. 344 // If -r is given, we do not interpret or apply relocation 345 // but just copy relocation sections to output. 346 if (Config->Relocatable) 347 return new (IAlloc.Allocate()) InputSection<ELFT>(this, &Sec, Name); 348 349 // Find the relocation target section and associate this 350 // section with it. 351 InputSectionBase<ELFT> *Target = getRelocTarget(Sec); 352 if (!Target) 353 return nullptr; 354 if (auto *S = dyn_cast<InputSection<ELFT>>(Target)) { 355 S->RelocSections.push_back(&Sec); 356 return nullptr; 357 } 358 if (auto *S = dyn_cast<EhInputSection<ELFT>>(Target)) { 359 if (S->RelocSection) 360 fatal(getFilename(this) + 361 ": multiple relocation sections to .eh_frame are not supported"); 362 S->RelocSection = &Sec; 363 return nullptr; 364 } 365 fatal(getFilename(this) + 366 ": relocations pointing to SHF_MERGE are not supported"); 367 } 368 } 369 370 // .note.GNU-stack is a marker section to control the presence of 371 // PT_GNU_STACK segment in outputs. Since the presence of the segment 372 // is controlled only by the command line option (-z execstack) in LLD, 373 // .note.GNU-stack is ignored. 374 if (Name == ".note.GNU-stack") 375 return &InputSection<ELFT>::Discarded; 376 377 if (Name == ".note.GNU-split-stack") { 378 error("objects using splitstacks are not supported"); 379 return &InputSection<ELFT>::Discarded; 380 } 381 382 if (Config->Strip != StripPolicy::None && Name.startswith(".debug")) 383 return &InputSection<ELFT>::Discarded; 384 385 // The linker merges EH (exception handling) frames and creates a 386 // .eh_frame_hdr section for runtime. So we handle them with a special 387 // class. For relocatable outputs, they are just passed through. 388 if (Name == ".eh_frame" && !Config->Relocatable) 389 return new (EHAlloc.Allocate()) EhInputSection<ELFT>(this, &Sec, Name); 390 391 if (shouldMerge(Sec)) 392 return new (MAlloc.Allocate()) MergeInputSection<ELFT>(this, &Sec, Name); 393 return new (IAlloc.Allocate()) InputSection<ELFT>(this, &Sec, Name); 394 } 395 396 template <class ELFT> void elf::ObjectFile<ELFT>::initializeSymbols() { 397 this->initStringTable(); 398 Elf_Sym_Range Syms = this->getElfSymbols(false); 399 uint32_t NumSymbols = std::distance(Syms.begin(), Syms.end()); 400 SymbolBodies.reserve(NumSymbols); 401 for (const Elf_Sym &Sym : Syms) 402 SymbolBodies.push_back(createSymbolBody(&Sym)); 403 } 404 405 template <class ELFT> 406 InputSectionBase<ELFT> * 407 elf::ObjectFile<ELFT>::getSection(const Elf_Sym &Sym) const { 408 uint32_t Index = this->getSectionIndex(Sym); 409 if (Index >= Sections.size()) 410 fatal(getFilename(this) + ": invalid section index: " + Twine(Index)); 411 InputSectionBase<ELFT> *S = Sections[Index]; 412 413 // We found that GNU assembler 2.17.50 [FreeBSD] 2007-07-03 414 // could generate broken objects. STT_SECTION symbols can be 415 // associated with SHT_REL[A]/SHT_SYMTAB/SHT_STRTAB sections. 416 // In this case it is fine for section to be null here as we 417 // do not allocate sections of these types. 418 if (!S) { 419 if (Index == 0 || Sym.getType() == STT_SECTION) 420 return nullptr; 421 fatal(getFilename(this) + ": invalid section index: " + Twine(Index)); 422 } 423 424 if (S == &InputSectionBase<ELFT>::Discarded) 425 return S; 426 return S->Repl; 427 } 428 429 template <class ELFT> 430 SymbolBody *elf::ObjectFile<ELFT>::createSymbolBody(const Elf_Sym *Sym) { 431 int Binding = Sym->getBinding(); 432 InputSectionBase<ELFT> *Sec = getSection(*Sym); 433 if (Binding == STB_LOCAL) { 434 if (Sym->st_shndx == SHN_UNDEF) 435 return new (this->Alloc) 436 Undefined(Sym->st_name, Sym->st_other, Sym->getType(), this); 437 return new (this->Alloc) DefinedRegular<ELFT>(*Sym, Sec); 438 } 439 440 StringRef Name = check(Sym->getName(this->StringTable)); 441 442 switch (Sym->st_shndx) { 443 case SHN_UNDEF: 444 return elf::Symtab<ELFT>::X->addUndefined(Name, Binding, Sym->st_other, 445 Sym->getType(), 446 /*CanOmitFromDynSym*/ false, this) 447 ->body(); 448 case SHN_COMMON: 449 if (Sym->st_value == 0 || Sym->st_value >= UINT32_MAX) 450 fatal(getFilename(this) + ": common symbol '" + Name + 451 "' has invalid alignment: " + Twine(Sym->st_value)); 452 return elf::Symtab<ELFT>::X->addCommon(Name, Sym->st_size, Sym->st_value, 453 Binding, Sym->st_other, 454 Sym->getType(), this) 455 ->body(); 456 } 457 458 switch (Binding) { 459 default: 460 fatal(getFilename(this) + ": unexpected binding: " + Twine(Binding)); 461 case STB_GLOBAL: 462 case STB_WEAK: 463 case STB_GNU_UNIQUE: 464 if (Sec == &InputSection<ELFT>::Discarded) 465 return elf::Symtab<ELFT>::X->addUndefined(Name, Binding, Sym->st_other, 466 Sym->getType(), 467 /*CanOmitFromDynSym*/ false, 468 this) 469 ->body(); 470 return elf::Symtab<ELFT>::X->addRegular(Name, *Sym, Sec)->body(); 471 } 472 } 473 474 template <class ELFT> void ArchiveFile::parse() { 475 File = check(Archive::create(MB), "failed to parse archive"); 476 477 // Read the symbol table to construct Lazy objects. 478 for (const Archive::Symbol &Sym : File->symbols()) 479 Symtab<ELFT>::X->addLazyArchive(this, Sym); 480 } 481 482 // Returns a buffer pointing to a member file containing a given symbol. 483 std::pair<MemoryBufferRef, uint64_t> 484 ArchiveFile::getMember(const Archive::Symbol *Sym) { 485 Archive::Child C = 486 check(Sym->getMember(), 487 "could not get the member for symbol " + Sym->getName()); 488 489 if (!Seen.insert(C.getChildOffset()).second) 490 return {MemoryBufferRef(), 0}; 491 492 MemoryBufferRef Ret = 493 check(C.getMemoryBufferRef(), 494 "could not get the buffer for the member defining symbol " + 495 Sym->getName()); 496 497 if (C.getParent()->isThin() && Driver->Cpio) 498 Driver->Cpio->append(relativeToRoot(check(C.getFullName())), 499 Ret.getBuffer()); 500 if (C.getParent()->isThin()) 501 return {Ret, 0}; 502 return {Ret, C.getChildOffset()}; 503 } 504 505 template <class ELFT> 506 SharedFile<ELFT>::SharedFile(MemoryBufferRef M) 507 : ELFFileBase<ELFT>(Base::SharedKind, M), AsNeeded(Config->AsNeeded) {} 508 509 template <class ELFT> 510 const typename ELFT::Shdr * 511 SharedFile<ELFT>::getSection(const Elf_Sym &Sym) const { 512 uint32_t Index = this->getSectionIndex(Sym); 513 if (Index == 0) 514 return nullptr; 515 return check(this->ELFObj.getSection(Index)); 516 } 517 518 // Partially parse the shared object file so that we can call 519 // getSoName on this object. 520 template <class ELFT> void SharedFile<ELFT>::parseSoName() { 521 typedef typename ELFT::Dyn Elf_Dyn; 522 typedef typename ELFT::uint uintX_t; 523 const Elf_Shdr *DynamicSec = nullptr; 524 525 const ELFFile<ELFT> Obj = this->ELFObj; 526 for (const Elf_Shdr &Sec : Obj.sections()) { 527 switch (Sec.sh_type) { 528 default: 529 continue; 530 case SHT_DYNSYM: 531 this->Symtab = &Sec; 532 break; 533 case SHT_DYNAMIC: 534 DynamicSec = &Sec; 535 break; 536 case SHT_SYMTAB_SHNDX: 537 this->SymtabSHNDX = check(Obj.getSHNDXTable(Sec)); 538 break; 539 case SHT_GNU_versym: 540 this->VersymSec = &Sec; 541 break; 542 case SHT_GNU_verdef: 543 this->VerdefSec = &Sec; 544 break; 545 } 546 } 547 548 this->initStringTable(); 549 550 // DSOs are identified by soname, and they usually contain 551 // DT_SONAME tag in their header. But if they are missing, 552 // filenames are used as default sonames. 553 SoName = sys::path::filename(this->getName()); 554 555 if (!DynamicSec) 556 return; 557 558 ArrayRef<Elf_Dyn> Arr = 559 check(Obj.template getSectionContentsAsArray<Elf_Dyn>(DynamicSec), 560 getFilename(this) + ": getSectionContentsAsArray failed"); 561 for (const Elf_Dyn &Dyn : Arr) { 562 if (Dyn.d_tag == DT_SONAME) { 563 uintX_t Val = Dyn.getVal(); 564 if (Val >= this->StringTable.size()) 565 fatal(getFilename(this) + ": invalid DT_SONAME entry"); 566 SoName = StringRef(this->StringTable.data() + Val); 567 return; 568 } 569 } 570 } 571 572 // Parse the version definitions in the object file if present. Returns a vector 573 // whose nth element contains a pointer to the Elf_Verdef for version identifier 574 // n. Version identifiers that are not definitions map to nullptr. The array 575 // always has at least length 1. 576 template <class ELFT> 577 std::vector<const typename ELFT::Verdef *> 578 SharedFile<ELFT>::parseVerdefs(const Elf_Versym *&Versym) { 579 std::vector<const Elf_Verdef *> Verdefs(1); 580 // We only need to process symbol versions for this DSO if it has both a 581 // versym and a verdef section, which indicates that the DSO contains symbol 582 // version definitions. 583 if (!VersymSec || !VerdefSec) 584 return Verdefs; 585 586 // The location of the first global versym entry. 587 Versym = reinterpret_cast<const Elf_Versym *>(this->ELFObj.base() + 588 VersymSec->sh_offset) + 589 this->Symtab->sh_info; 590 591 // We cannot determine the largest verdef identifier without inspecting 592 // every Elf_Verdef, but both bfd and gold assign verdef identifiers 593 // sequentially starting from 1, so we predict that the largest identifier 594 // will be VerdefCount. 595 unsigned VerdefCount = VerdefSec->sh_info; 596 Verdefs.resize(VerdefCount + 1); 597 598 // Build the Verdefs array by following the chain of Elf_Verdef objects 599 // from the start of the .gnu.version_d section. 600 const uint8_t *Verdef = this->ELFObj.base() + VerdefSec->sh_offset; 601 for (unsigned I = 0; I != VerdefCount; ++I) { 602 auto *CurVerdef = reinterpret_cast<const Elf_Verdef *>(Verdef); 603 Verdef += CurVerdef->vd_next; 604 unsigned VerdefIndex = CurVerdef->vd_ndx; 605 if (Verdefs.size() <= VerdefIndex) 606 Verdefs.resize(VerdefIndex + 1); 607 Verdefs[VerdefIndex] = CurVerdef; 608 } 609 610 return Verdefs; 611 } 612 613 // Fully parse the shared object file. This must be called after parseSoName(). 614 template <class ELFT> void SharedFile<ELFT>::parseRest() { 615 // Create mapping from version identifiers to Elf_Verdef entries. 616 const Elf_Versym *Versym = nullptr; 617 std::vector<const Elf_Verdef *> Verdefs = parseVerdefs(Versym); 618 619 Elf_Sym_Range Syms = this->getElfSymbols(true); 620 for (const Elf_Sym &Sym : Syms) { 621 unsigned VersymIndex = 0; 622 if (Versym) { 623 VersymIndex = Versym->vs_index; 624 ++Versym; 625 } 626 627 StringRef Name = check(Sym.getName(this->StringTable)); 628 if (Sym.isUndefined()) { 629 Undefs.push_back(Name); 630 continue; 631 } 632 633 if (Versym) { 634 // Ignore local symbols and non-default versions. 635 if (VersymIndex == VER_NDX_LOCAL || (VersymIndex & VERSYM_HIDDEN)) 636 continue; 637 } 638 639 const Elf_Verdef *V = 640 VersymIndex == VER_NDX_GLOBAL ? nullptr : Verdefs[VersymIndex]; 641 elf::Symtab<ELFT>::X->addShared(this, Name, Sym, V); 642 } 643 } 644 645 static ELFKind getBitcodeELFKind(MemoryBufferRef MB) { 646 Triple T(getBitcodeTargetTriple(MB, Driver->Context)); 647 if (T.isLittleEndian()) 648 return T.isArch64Bit() ? ELF64LEKind : ELF32LEKind; 649 return T.isArch64Bit() ? ELF64BEKind : ELF32BEKind; 650 } 651 652 static uint8_t getBitcodeMachineKind(MemoryBufferRef MB) { 653 Triple T(getBitcodeTargetTriple(MB, Driver->Context)); 654 switch (T.getArch()) { 655 case Triple::aarch64: 656 return EM_AARCH64; 657 case Triple::arm: 658 return EM_ARM; 659 case Triple::mips: 660 case Triple::mipsel: 661 case Triple::mips64: 662 case Triple::mips64el: 663 return EM_MIPS; 664 case Triple::ppc: 665 return EM_PPC; 666 case Triple::ppc64: 667 return EM_PPC64; 668 case Triple::x86: 669 return T.isOSIAMCU() ? EM_IAMCU : EM_386; 670 case Triple::x86_64: 671 return EM_X86_64; 672 default: 673 fatal(MB.getBufferIdentifier() + 674 ": could not infer e_machine from bitcode target triple " + T.str()); 675 } 676 } 677 678 BitcodeFile::BitcodeFile(MemoryBufferRef MB) : InputFile(BitcodeKind, MB) { 679 EKind = getBitcodeELFKind(MB); 680 EMachine = getBitcodeMachineKind(MB); 681 } 682 683 static uint8_t mapVisibility(GlobalValue::VisibilityTypes GvVisibility) { 684 switch (GvVisibility) { 685 case GlobalValue::DefaultVisibility: 686 return STV_DEFAULT; 687 case GlobalValue::HiddenVisibility: 688 return STV_HIDDEN; 689 case GlobalValue::ProtectedVisibility: 690 return STV_PROTECTED; 691 } 692 llvm_unreachable("unknown visibility"); 693 } 694 695 template <class ELFT> 696 static Symbol *createBitcodeSymbol(DenseSet<StringRef> &KeptComdats, 697 DenseSet<StringRef> &ComdatGroups, 698 const lto::InputFile::Symbol &ObjSym, 699 StringSaver &Saver, BitcodeFile *F) { 700 StringRef NameRef = Saver.save(ObjSym.getName()); 701 uint32_t Flags = ObjSym.getFlags(); 702 uint32_t Binding = (Flags & BasicSymbolRef::SF_Weak) ? STB_WEAK : STB_GLOBAL; 703 704 uint8_t Type = ObjSym.isTLS() ? STT_TLS : STT_NOTYPE; 705 uint8_t Visibility = mapVisibility(ObjSym.getVisibility()); 706 bool CanOmitFromDynSym = ObjSym.canBeOmittedFromSymbolTable(); 707 708 StringRef C = check(ObjSym.getComdat()); 709 if (!C.empty()) { 710 bool Keep = KeptComdats.count(C); 711 if (!Keep) { 712 StringRef N = Saver.save(C); 713 if (ComdatGroups.insert(N).second) { 714 Keep = true; 715 KeptComdats.insert(C); 716 } 717 } 718 if (!Keep) 719 return Symtab<ELFT>::X->addUndefined(NameRef, Binding, Visibility, Type, 720 CanOmitFromDynSym, F); 721 } 722 723 if (Flags & BasicSymbolRef::SF_Undefined) 724 return Symtab<ELFT>::X->addUndefined(NameRef, Binding, Visibility, Type, 725 CanOmitFromDynSym, F); 726 727 if (Flags & BasicSymbolRef::SF_Common) 728 return Symtab<ELFT>::X->addCommon(NameRef, ObjSym.getCommonSize(), 729 ObjSym.getCommonAlignment(), Binding, 730 Visibility, STT_OBJECT, F); 731 732 return Symtab<ELFT>::X->addBitcode(NameRef, Binding, Visibility, Type, 733 CanOmitFromDynSym, F); 734 } 735 736 template <class ELFT> 737 void BitcodeFile::parse(DenseSet<StringRef> &ComdatGroups) { 738 739 // Here we pass a new MemoryBufferRef which is identified by ArchiveName 740 // (the fully resolved path of the archive) + member name + offset of the 741 // member in the archive. 742 // ThinLTO uses the MemoryBufferRef identifier to access its internal 743 // data structures and if two archives define two members with the same name, 744 // this causes a collision which result in only one of the objects being 745 // taken into consideration at LTO time (which very likely causes undefined 746 // symbols later in the link stage). 747 Obj = check(lto::InputFile::create(MemoryBufferRef( 748 MB.getBuffer(), Saver.save(ArchiveName + MB.getBufferIdentifier() + 749 utostr(OffsetInArchive))))); 750 DenseSet<StringRef> KeptComdats; 751 for (const lto::InputFile::Symbol &ObjSym : Obj->symbols()) 752 Symbols.push_back(createBitcodeSymbol<ELFT>(KeptComdats, ComdatGroups, 753 ObjSym, Saver, this)); 754 } 755 756 template <template <class> class T> 757 static InputFile *createELFFile(MemoryBufferRef MB) { 758 unsigned char Size; 759 unsigned char Endian; 760 std::tie(Size, Endian) = getElfArchType(MB.getBuffer()); 761 if (Endian != ELFDATA2LSB && Endian != ELFDATA2MSB) 762 fatal("invalid data encoding: " + MB.getBufferIdentifier()); 763 764 InputFile *Obj; 765 if (Size == ELFCLASS32 && Endian == ELFDATA2LSB) 766 Obj = new T<ELF32LE>(MB); 767 else if (Size == ELFCLASS32 && Endian == ELFDATA2MSB) 768 Obj = new T<ELF32BE>(MB); 769 else if (Size == ELFCLASS64 && Endian == ELFDATA2LSB) 770 Obj = new T<ELF64LE>(MB); 771 else if (Size == ELFCLASS64 && Endian == ELFDATA2MSB) 772 Obj = new T<ELF64BE>(MB); 773 else 774 fatal("invalid file class: " + MB.getBufferIdentifier()); 775 776 if (!Config->FirstElf) 777 Config->FirstElf = Obj; 778 return Obj; 779 } 780 781 // Wraps a binary blob with an ELF header and footer 782 // so that we can link it as a regular ELF file. 783 template <class ELFT> InputFile *BinaryFile::createELF() { 784 ArrayRef<uint8_t> Blob((uint8_t *)MB.getBufferStart(), MB.getBufferSize()); 785 StringRef Filename = MB.getBufferIdentifier(); 786 Buffer = wrapBinaryWithElfHeader<ELFT>(Blob, Filename); 787 788 return createELFFile<ObjectFile>( 789 MemoryBufferRef(toStringRef(Buffer), Filename)); 790 } 791 792 static bool isBitcode(MemoryBufferRef MB) { 793 using namespace sys::fs; 794 return identify_magic(MB.getBuffer()) == file_magic::bitcode; 795 } 796 797 InputFile *elf::createObjectFile(MemoryBufferRef MB, StringRef ArchiveName, 798 uint64_t OffsetInArchive) { 799 InputFile *F = 800 isBitcode(MB) ? new BitcodeFile(MB) : createELFFile<ObjectFile>(MB); 801 F->ArchiveName = ArchiveName; 802 F->OffsetInArchive = OffsetInArchive; 803 return F; 804 } 805 806 InputFile *elf::createSharedFile(MemoryBufferRef MB) { 807 return createELFFile<SharedFile>(MB); 808 } 809 810 MemoryBufferRef LazyObjectFile::getBuffer() { 811 if (Seen) 812 return MemoryBufferRef(); 813 Seen = true; 814 return MB; 815 } 816 817 template <class ELFT> void LazyObjectFile::parse() { 818 for (StringRef Sym : getSymbols()) 819 Symtab<ELFT>::X->addLazyObject(Sym, *this); 820 } 821 822 template <class ELFT> std::vector<StringRef> LazyObjectFile::getElfSymbols() { 823 typedef typename ELFT::Shdr Elf_Shdr; 824 typedef typename ELFT::Sym Elf_Sym; 825 typedef typename ELFT::SymRange Elf_Sym_Range; 826 827 const ELFFile<ELFT> Obj = createELFObj<ELFT>(this->MB); 828 for (const Elf_Shdr &Sec : Obj.sections()) { 829 if (Sec.sh_type != SHT_SYMTAB) 830 continue; 831 Elf_Sym_Range Syms = Obj.symbols(&Sec); 832 uint32_t FirstNonLocal = Sec.sh_info; 833 StringRef StringTable = check(Obj.getStringTableForSymtab(Sec)); 834 std::vector<StringRef> V; 835 for (const Elf_Sym &Sym : Syms.slice(FirstNonLocal)) 836 if (Sym.st_shndx != SHN_UNDEF) 837 V.push_back(check(Sym.getName(StringTable))); 838 return V; 839 } 840 return {}; 841 } 842 843 std::vector<StringRef> LazyObjectFile::getBitcodeSymbols() { 844 std::unique_ptr<lto::InputFile> Obj = check(lto::InputFile::create(this->MB)); 845 std::vector<StringRef> V; 846 for (const lto::InputFile::Symbol &Sym : Obj->symbols()) 847 if (!(Sym.getFlags() & BasicSymbolRef::SF_Undefined)) 848 V.push_back(Saver.save(Sym.getName())); 849 return V; 850 } 851 852 // Returns a vector of globally-visible defined symbol names. 853 std::vector<StringRef> LazyObjectFile::getSymbols() { 854 if (isBitcode(this->MB)) 855 return getBitcodeSymbols(); 856 857 unsigned char Size; 858 unsigned char Endian; 859 std::tie(Size, Endian) = getElfArchType(this->MB.getBuffer()); 860 if (Size == ELFCLASS32) { 861 if (Endian == ELFDATA2LSB) 862 return getElfSymbols<ELF32LE>(); 863 return getElfSymbols<ELF32BE>(); 864 } 865 if (Endian == ELFDATA2LSB) 866 return getElfSymbols<ELF64LE>(); 867 return getElfSymbols<ELF64BE>(); 868 } 869 870 template void ArchiveFile::parse<ELF32LE>(); 871 template void ArchiveFile::parse<ELF32BE>(); 872 template void ArchiveFile::parse<ELF64LE>(); 873 template void ArchiveFile::parse<ELF64BE>(); 874 875 template void BitcodeFile::parse<ELF32LE>(DenseSet<StringRef> &); 876 template void BitcodeFile::parse<ELF32BE>(DenseSet<StringRef> &); 877 template void BitcodeFile::parse<ELF64LE>(DenseSet<StringRef> &); 878 template void BitcodeFile::parse<ELF64BE>(DenseSet<StringRef> &); 879 880 template void LazyObjectFile::parse<ELF32LE>(); 881 template void LazyObjectFile::parse<ELF32BE>(); 882 template void LazyObjectFile::parse<ELF64LE>(); 883 template void LazyObjectFile::parse<ELF64BE>(); 884 885 template class elf::ELFFileBase<ELF32LE>; 886 template class elf::ELFFileBase<ELF32BE>; 887 template class elf::ELFFileBase<ELF64LE>; 888 template class elf::ELFFileBase<ELF64BE>; 889 890 template class elf::ObjectFile<ELF32LE>; 891 template class elf::ObjectFile<ELF32BE>; 892 template class elf::ObjectFile<ELF64LE>; 893 template class elf::ObjectFile<ELF64BE>; 894 895 template class elf::SharedFile<ELF32LE>; 896 template class elf::SharedFile<ELF32BE>; 897 template class elf::SharedFile<ELF64LE>; 898 template class elf::SharedFile<ELF64BE>; 899 900 template InputFile *BinaryFile::createELF<ELF32LE>(); 901 template InputFile *BinaryFile::createELF<ELF32BE>(); 902 template InputFile *BinaryFile::createELF<ELF64LE>(); 903 template InputFile *BinaryFile::createELF<ELF64BE>(); 904