1 //===- InputFiles.cpp -----------------------------------------------------===//
2 //
3 //                             The LLVM Linker
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "InputFiles.h"
11 #include "InputSection.h"
12 #include "LinkerScript.h"
13 #include "SymbolTable.h"
14 #include "Symbols.h"
15 #include "SyntheticSections.h"
16 #include "lld/Common/ErrorHandler.h"
17 #include "lld/Common/Memory.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/CodeGen/Analysis.h"
20 #include "llvm/DebugInfo/DWARF/DWARFContext.h"
21 #include "llvm/IR/LLVMContext.h"
22 #include "llvm/IR/Module.h"
23 #include "llvm/LTO/LTO.h"
24 #include "llvm/MC/StringTableBuilder.h"
25 #include "llvm/Object/ELFObjectFile.h"
26 #include "llvm/Support/ARMAttributeParser.h"
27 #include "llvm/Support/ARMBuildAttributes.h"
28 #include "llvm/Support/Path.h"
29 #include "llvm/Support/TarWriter.h"
30 #include "llvm/Support/raw_ostream.h"
31 
32 using namespace llvm;
33 using namespace llvm::ELF;
34 using namespace llvm::object;
35 using namespace llvm::sys;
36 using namespace llvm::sys::fs;
37 
38 using namespace lld;
39 using namespace lld::elf;
40 
41 bool InputFile::IsInGroup;
42 uint32_t InputFile::NextGroupId;
43 std::vector<BinaryFile *> elf::BinaryFiles;
44 std::vector<BitcodeFile *> elf::BitcodeFiles;
45 std::vector<LazyObjFile *> elf::LazyObjFiles;
46 std::vector<InputFile *> elf::ObjectFiles;
47 std::vector<InputFile *> elf::SharedFiles;
48 
49 TarWriter *elf::Tar;
50 
51 InputFile::InputFile(Kind K, MemoryBufferRef M)
52     : MB(M), GroupId(NextGroupId), FileKind(K) {
53   // All files within the same --{start,end}-group get the same group ID.
54   // Otherwise, a new file will get a new group ID.
55   if (!IsInGroup)
56     ++NextGroupId;
57 }
58 
59 Optional<MemoryBufferRef> elf::readFile(StringRef Path) {
60   // The --chroot option changes our virtual root directory.
61   // This is useful when you are dealing with files created by --reproduce.
62   if (!Config->Chroot.empty() && Path.startswith("/"))
63     Path = Saver.save(Config->Chroot + Path);
64 
65   log(Path);
66 
67   auto MBOrErr = MemoryBuffer::getFile(Path, -1, false);
68   if (auto EC = MBOrErr.getError()) {
69     error("cannot open " + Path + ": " + EC.message());
70     return None;
71   }
72 
73   std::unique_ptr<MemoryBuffer> &MB = *MBOrErr;
74   MemoryBufferRef MBRef = MB->getMemBufferRef();
75   make<std::unique_ptr<MemoryBuffer>>(std::move(MB)); // take MB ownership
76 
77   if (Tar)
78     Tar->append(relativeToRoot(Path), MBRef.getBuffer());
79   return MBRef;
80 }
81 
82 // Concatenates arguments to construct a string representing an error location.
83 static std::string createFileLineMsg(StringRef Path, unsigned Line) {
84   std::string Filename = path::filename(Path);
85   std::string Lineno = ":" + std::to_string(Line);
86   if (Filename == Path)
87     return Filename + Lineno;
88   return Filename + Lineno + " (" + Path.str() + Lineno + ")";
89 }
90 
91 template <class ELFT>
92 static std::string getSrcMsgAux(ObjFile<ELFT> &File, const Symbol &Sym,
93                                 InputSectionBase &Sec, uint64_t Offset) {
94   // In DWARF, functions and variables are stored to different places.
95   // First, lookup a function for a given offset.
96   if (Optional<DILineInfo> Info = File.getDILineInfo(&Sec, Offset))
97     return createFileLineMsg(Info->FileName, Info->Line);
98 
99   // If it failed, lookup again as a variable.
100   if (Optional<std::pair<std::string, unsigned>> FileLine =
101           File.getVariableLoc(Sym.getName()))
102     return createFileLineMsg(FileLine->first, FileLine->second);
103 
104   // File.SourceFile contains STT_FILE symbol, and that is a last resort.
105   return File.SourceFile;
106 }
107 
108 std::string InputFile::getSrcMsg(const Symbol &Sym, InputSectionBase &Sec,
109                                  uint64_t Offset) {
110   if (kind() != ObjKind)
111     return "";
112   switch (Config->EKind) {
113   default:
114     llvm_unreachable("Invalid kind");
115   case ELF32LEKind:
116     return getSrcMsgAux(cast<ObjFile<ELF32LE>>(*this), Sym, Sec, Offset);
117   case ELF32BEKind:
118     return getSrcMsgAux(cast<ObjFile<ELF32BE>>(*this), Sym, Sec, Offset);
119   case ELF64LEKind:
120     return getSrcMsgAux(cast<ObjFile<ELF64LE>>(*this), Sym, Sec, Offset);
121   case ELF64BEKind:
122     return getSrcMsgAux(cast<ObjFile<ELF64BE>>(*this), Sym, Sec, Offset);
123   }
124 }
125 
126 template <class ELFT> void ObjFile<ELFT>::initializeDwarf() {
127   Dwarf = llvm::make_unique<DWARFContext>(make_unique<LLDDwarfObj<ELFT>>(this));
128   for (std::unique_ptr<DWARFUnit> &CU : Dwarf->compile_units()) {
129     auto Report = [](Error Err) {
130       handleAllErrors(std::move(Err),
131                       [](ErrorInfoBase &Info) { warn(Info.message()); });
132     };
133     Expected<const DWARFDebugLine::LineTable *> ExpectedLT =
134         Dwarf->getLineTableForUnit(CU.get(), Report);
135     const DWARFDebugLine::LineTable *LT = nullptr;
136     if (ExpectedLT)
137       LT = *ExpectedLT;
138     else
139       Report(ExpectedLT.takeError());
140     if (!LT)
141       continue;
142     LineTables.push_back(LT);
143 
144     // Loop over variable records and insert them to VariableLoc.
145     for (const auto &Entry : CU->dies()) {
146       DWARFDie Die(CU.get(), &Entry);
147       // Skip all tags that are not variables.
148       if (Die.getTag() != dwarf::DW_TAG_variable)
149         continue;
150 
151       // Skip if a local variable because we don't need them for generating
152       // error messages. In general, only non-local symbols can fail to be
153       // linked.
154       if (!dwarf::toUnsigned(Die.find(dwarf::DW_AT_external), 0))
155         continue;
156 
157       // Get the source filename index for the variable.
158       unsigned File = dwarf::toUnsigned(Die.find(dwarf::DW_AT_decl_file), 0);
159       if (!LT->hasFileAtIndex(File))
160         continue;
161 
162       // Get the line number on which the variable is declared.
163       unsigned Line = dwarf::toUnsigned(Die.find(dwarf::DW_AT_decl_line), 0);
164 
165       // Here we want to take the variable name to add it into VariableLoc.
166       // Variable can have regular and linkage name associated. At first, we try
167       // to get linkage name as it can be different, for example when we have
168       // two variables in different namespaces of the same object. Use common
169       // name otherwise, but handle the case when it also absent in case if the
170       // input object file lacks some debug info.
171       StringRef Name =
172           dwarf::toString(Die.find(dwarf::DW_AT_linkage_name),
173                           dwarf::toString(Die.find(dwarf::DW_AT_name), ""));
174       if (!Name.empty())
175         VariableLoc.insert({Name, {LT, File, Line}});
176     }
177   }
178 }
179 
180 // Returns the pair of file name and line number describing location of data
181 // object (variable, array, etc) definition.
182 template <class ELFT>
183 Optional<std::pair<std::string, unsigned>>
184 ObjFile<ELFT>::getVariableLoc(StringRef Name) {
185   llvm::call_once(InitDwarfLine, [this]() { initializeDwarf(); });
186 
187   // Return if we have no debug information about data object.
188   auto It = VariableLoc.find(Name);
189   if (It == VariableLoc.end())
190     return None;
191 
192   // Take file name string from line table.
193   std::string FileName;
194   if (!It->second.LT->getFileNameByIndex(
195           It->second.File, nullptr,
196           DILineInfoSpecifier::FileLineInfoKind::AbsoluteFilePath, FileName))
197     return None;
198 
199   return std::make_pair(FileName, It->second.Line);
200 }
201 
202 // Returns source line information for a given offset
203 // using DWARF debug info.
204 template <class ELFT>
205 Optional<DILineInfo> ObjFile<ELFT>::getDILineInfo(InputSectionBase *S,
206                                                   uint64_t Offset) {
207   llvm::call_once(InitDwarfLine, [this]() { initializeDwarf(); });
208 
209   // Use fake address calcuated by adding section file offset and offset in
210   // section. See comments for ObjectInfo class.
211   DILineInfo Info;
212   for (const llvm::DWARFDebugLine::LineTable *LT : LineTables)
213     if (LT->getFileLineInfoForAddress(
214             S->getOffsetInFile() + Offset, nullptr,
215             DILineInfoSpecifier::FileLineInfoKind::AbsoluteFilePath, Info))
216       return Info;
217   return None;
218 }
219 
220 // Returns "<internal>", "foo.a(bar.o)" or "baz.o".
221 std::string lld::toString(const InputFile *F) {
222   if (!F)
223     return "<internal>";
224 
225   if (F->ToStringCache.empty()) {
226     if (F->ArchiveName.empty())
227       F->ToStringCache = F->getName();
228     else
229       F->ToStringCache = (F->ArchiveName + "(" + F->getName() + ")").str();
230   }
231   return F->ToStringCache;
232 }
233 
234 template <class ELFT>
235 ELFFileBase<ELFT>::ELFFileBase(Kind K, MemoryBufferRef MB) : InputFile(K, MB) {
236   if (ELFT::TargetEndianness == support::little)
237     EKind = ELFT::Is64Bits ? ELF64LEKind : ELF32LEKind;
238   else
239     EKind = ELFT::Is64Bits ? ELF64BEKind : ELF32BEKind;
240 
241   EMachine = getObj().getHeader()->e_machine;
242   OSABI = getObj().getHeader()->e_ident[llvm::ELF::EI_OSABI];
243 }
244 
245 template <class ELFT>
246 typename ELFT::SymRange ELFFileBase<ELFT>::getGlobalELFSyms() {
247   return makeArrayRef(ELFSyms.begin() + FirstGlobal, ELFSyms.end());
248 }
249 
250 template <class ELFT>
251 uint32_t ELFFileBase<ELFT>::getSectionIndex(const Elf_Sym &Sym) const {
252   return CHECK(getObj().getSectionIndex(&Sym, ELFSyms, SymtabSHNDX), this);
253 }
254 
255 template <class ELFT>
256 void ELFFileBase<ELFT>::initSymtab(ArrayRef<Elf_Shdr> Sections,
257                                    const Elf_Shdr *Symtab) {
258   FirstGlobal = Symtab->sh_info;
259   ELFSyms = CHECK(getObj().symbols(Symtab), this);
260   if (FirstGlobal == 0 || FirstGlobal > ELFSyms.size())
261     fatal(toString(this) + ": invalid sh_info in symbol table");
262 
263   StringTable =
264       CHECK(getObj().getStringTableForSymtab(*Symtab, Sections), this);
265 }
266 
267 template <class ELFT>
268 ObjFile<ELFT>::ObjFile(MemoryBufferRef M, StringRef ArchiveName)
269     : ELFFileBase<ELFT>(Base::ObjKind, M) {
270   this->ArchiveName = ArchiveName;
271 }
272 
273 template <class ELFT> ArrayRef<Symbol *> ObjFile<ELFT>::getLocalSymbols() {
274   if (this->Symbols.empty())
275     return {};
276   return makeArrayRef(this->Symbols).slice(1, this->FirstGlobal - 1);
277 }
278 
279 template <class ELFT> ArrayRef<Symbol *> ObjFile<ELFT>::getGlobalSymbols() {
280   return makeArrayRef(this->Symbols).slice(this->FirstGlobal);
281 }
282 
283 template <class ELFT>
284 void ObjFile<ELFT>::parse(DenseSet<CachedHashStringRef> &ComdatGroups) {
285   // Read a section table. JustSymbols is usually false.
286   if (this->JustSymbols)
287     initializeJustSymbols();
288   else
289     initializeSections(ComdatGroups);
290 
291   // Read a symbol table.
292   initializeSymbols();
293 }
294 
295 // Sections with SHT_GROUP and comdat bits define comdat section groups.
296 // They are identified and deduplicated by group name. This function
297 // returns a group name.
298 template <class ELFT>
299 StringRef ObjFile<ELFT>::getShtGroupSignature(ArrayRef<Elf_Shdr> Sections,
300                                               const Elf_Shdr &Sec) {
301   // Group signatures are stored as symbol names in object files.
302   // sh_info contains a symbol index, so we fetch a symbol and read its name.
303   if (this->ELFSyms.empty())
304     this->initSymtab(
305         Sections, CHECK(object::getSection<ELFT>(Sections, Sec.sh_link), this));
306 
307   const Elf_Sym *Sym =
308       CHECK(object::getSymbol<ELFT>(this->ELFSyms, Sec.sh_info), this);
309   StringRef Signature = CHECK(Sym->getName(this->StringTable), this);
310 
311   // As a special case, if a symbol is a section symbol and has no name,
312   // we use a section name as a signature.
313   //
314   // Such SHT_GROUP sections are invalid from the perspective of the ELF
315   // standard, but GNU gold 1.14 (the newest version as of July 2017) or
316   // older produce such sections as outputs for the -r option, so we need
317   // a bug-compatibility.
318   if (Signature.empty() && Sym->getType() == STT_SECTION)
319     return getSectionName(Sec);
320   return Signature;
321 }
322 
323 template <class ELFT>
324 ArrayRef<typename ObjFile<ELFT>::Elf_Word>
325 ObjFile<ELFT>::getShtGroupEntries(const Elf_Shdr &Sec) {
326   const ELFFile<ELFT> &Obj = this->getObj();
327   ArrayRef<Elf_Word> Entries =
328       CHECK(Obj.template getSectionContentsAsArray<Elf_Word>(&Sec), this);
329   if (Entries.empty() || Entries[0] != GRP_COMDAT)
330     fatal(toString(this) + ": unsupported SHT_GROUP format");
331   return Entries.slice(1);
332 }
333 
334 template <class ELFT> bool ObjFile<ELFT>::shouldMerge(const Elf_Shdr &Sec) {
335   // On a regular link we don't merge sections if -O0 (default is -O1). This
336   // sometimes makes the linker significantly faster, although the output will
337   // be bigger.
338   //
339   // Doing the same for -r would create a problem as it would combine sections
340   // with different sh_entsize. One option would be to just copy every SHF_MERGE
341   // section as is to the output. While this would produce a valid ELF file with
342   // usable SHF_MERGE sections, tools like (llvm-)?dwarfdump get confused when
343   // they see two .debug_str. We could have separate logic for combining
344   // SHF_MERGE sections based both on their name and sh_entsize, but that seems
345   // to be more trouble than it is worth. Instead, we just use the regular (-O1)
346   // logic for -r.
347   if (Config->Optimize == 0 && !Config->Relocatable)
348     return false;
349 
350   // A mergeable section with size 0 is useless because they don't have
351   // any data to merge. A mergeable string section with size 0 can be
352   // argued as invalid because it doesn't end with a null character.
353   // We'll avoid a mess by handling them as if they were non-mergeable.
354   if (Sec.sh_size == 0)
355     return false;
356 
357   // Check for sh_entsize. The ELF spec is not clear about the zero
358   // sh_entsize. It says that "the member [sh_entsize] contains 0 if
359   // the section does not hold a table of fixed-size entries". We know
360   // that Rust 1.13 produces a string mergeable section with a zero
361   // sh_entsize. Here we just accept it rather than being picky about it.
362   uint64_t EntSize = Sec.sh_entsize;
363   if (EntSize == 0)
364     return false;
365   if (Sec.sh_size % EntSize)
366     fatal(toString(this) +
367           ": SHF_MERGE section size must be a multiple of sh_entsize");
368 
369   uint64_t Flags = Sec.sh_flags;
370   if (!(Flags & SHF_MERGE))
371     return false;
372   if (Flags & SHF_WRITE)
373     fatal(toString(this) + ": writable SHF_MERGE section is not supported");
374 
375   return true;
376 }
377 
378 // This is for --just-symbols.
379 //
380 // --just-symbols is a very minor feature that allows you to link your
381 // output against other existing program, so that if you load both your
382 // program and the other program into memory, your output can refer the
383 // other program's symbols.
384 //
385 // When the option is given, we link "just symbols". The section table is
386 // initialized with null pointers.
387 template <class ELFT> void ObjFile<ELFT>::initializeJustSymbols() {
388   ArrayRef<Elf_Shdr> ObjSections = CHECK(this->getObj().sections(), this);
389   this->Sections.resize(ObjSections.size());
390 
391   for (const Elf_Shdr &Sec : ObjSections) {
392     if (Sec.sh_type != SHT_SYMTAB)
393       continue;
394     this->initSymtab(ObjSections, &Sec);
395     return;
396   }
397 }
398 
399 template <class ELFT>
400 void ObjFile<ELFT>::initializeSections(
401     DenseSet<CachedHashStringRef> &ComdatGroups) {
402   const ELFFile<ELFT> &Obj = this->getObj();
403 
404   ArrayRef<Elf_Shdr> ObjSections = CHECK(Obj.sections(), this);
405   uint64_t Size = ObjSections.size();
406   this->Sections.resize(Size);
407   this->SectionStringTable =
408       CHECK(Obj.getSectionStringTable(ObjSections), this);
409 
410   for (size_t I = 0, E = ObjSections.size(); I < E; I++) {
411     if (this->Sections[I] == &InputSection::Discarded)
412       continue;
413     const Elf_Shdr &Sec = ObjSections[I];
414 
415     // SHF_EXCLUDE'ed sections are discarded by the linker. However,
416     // if -r is given, we'll let the final link discard such sections.
417     // This is compatible with GNU.
418     if ((Sec.sh_flags & SHF_EXCLUDE) && !Config->Relocatable) {
419       if (Sec.sh_type == SHT_LLVM_ADDRSIG) {
420         // We ignore the address-significance table if we know that the object
421         // file was created by objcopy or ld -r. This is because these tools
422         // will reorder the symbols in the symbol table, invalidating the data
423         // in the address-significance table, which refers to symbols by index.
424         if (Sec.sh_link != 0)
425           this->AddrsigSec = &Sec;
426         else if (Config->ICF == ICFLevel::Safe)
427           warn(toString(this) + ": --icf=safe is incompatible with object "
428                                 "files created using objcopy or ld -r");
429       }
430       this->Sections[I] = &InputSection::Discarded;
431       continue;
432     }
433 
434     switch (Sec.sh_type) {
435     case SHT_GROUP: {
436       // De-duplicate section groups by their signatures.
437       StringRef Signature = getShtGroupSignature(ObjSections, Sec);
438       bool IsNew = ComdatGroups.insert(CachedHashStringRef(Signature)).second;
439       this->Sections[I] = &InputSection::Discarded;
440 
441       // We only support GRP_COMDAT type of group. Get the all entries of the
442       // section here to let getShtGroupEntries to check the type early for us.
443       ArrayRef<Elf_Word> Entries = getShtGroupEntries(Sec);
444 
445       // If it is a new section group, we want to keep group members.
446       // Group leader sections, which contain indices of group members, are
447       // discarded because they are useless beyond this point. The only
448       // exception is the -r option because in order to produce re-linkable
449       // object files, we want to pass through basically everything.
450       if (IsNew) {
451         if (Config->Relocatable)
452           this->Sections[I] = createInputSection(Sec);
453         continue;
454       }
455 
456       // Otherwise, discard group members.
457       for (uint32_t SecIndex : Entries) {
458         if (SecIndex >= Size)
459           fatal(toString(this) +
460                 ": invalid section index in group: " + Twine(SecIndex));
461         this->Sections[SecIndex] = &InputSection::Discarded;
462       }
463       break;
464     }
465     case SHT_SYMTAB:
466       this->initSymtab(ObjSections, &Sec);
467       break;
468     case SHT_SYMTAB_SHNDX:
469       this->SymtabSHNDX = CHECK(Obj.getSHNDXTable(Sec, ObjSections), this);
470       break;
471     case SHT_STRTAB:
472     case SHT_NULL:
473       break;
474     default:
475       this->Sections[I] = createInputSection(Sec);
476     }
477 
478     // .ARM.exidx sections have a reverse dependency on the InputSection they
479     // have a SHF_LINK_ORDER dependency, this is identified by the sh_link.
480     if (Sec.sh_flags & SHF_LINK_ORDER) {
481       InputSectionBase *LinkSec = nullptr;
482       if (Sec.sh_link < this->Sections.size())
483         LinkSec = this->Sections[Sec.sh_link];
484       if (!LinkSec)
485         fatal(toString(this) +
486               ": invalid sh_link index: " + Twine(Sec.sh_link));
487 
488       InputSection *IS = cast<InputSection>(this->Sections[I]);
489       LinkSec->DependentSections.push_back(IS);
490       if (!isa<InputSection>(LinkSec))
491         error("a section " + IS->Name +
492               " with SHF_LINK_ORDER should not refer a non-regular "
493               "section: " +
494               toString(LinkSec));
495     }
496   }
497 }
498 
499 // For ARM only, to set the EF_ARM_ABI_FLOAT_SOFT or EF_ARM_ABI_FLOAT_HARD
500 // flag in the ELF Header we need to look at Tag_ABI_VFP_args to find out how
501 // the input objects have been compiled.
502 static void updateARMVFPArgs(const ARMAttributeParser &Attributes,
503                              const InputFile *F) {
504   if (!Attributes.hasAttribute(ARMBuildAttrs::ABI_VFP_args))
505     // If an ABI tag isn't present then it is implicitly given the value of 0
506     // which maps to ARMBuildAttrs::BaseAAPCS. However many assembler files,
507     // including some in glibc that don't use FP args (and should have value 3)
508     // don't have the attribute so we do not consider an implicit value of 0
509     // as a clash.
510     return;
511 
512   unsigned VFPArgs = Attributes.getAttributeValue(ARMBuildAttrs::ABI_VFP_args);
513   ARMVFPArgKind Arg;
514   switch (VFPArgs) {
515   case ARMBuildAttrs::BaseAAPCS:
516     Arg = ARMVFPArgKind::Base;
517     break;
518   case ARMBuildAttrs::HardFPAAPCS:
519     Arg = ARMVFPArgKind::VFP;
520     break;
521   case ARMBuildAttrs::ToolChainFPPCS:
522     // Tool chain specific convention that conforms to neither AAPCS variant.
523     Arg = ARMVFPArgKind::ToolChain;
524     break;
525   case ARMBuildAttrs::CompatibleFPAAPCS:
526     // Object compatible with all conventions.
527     return;
528   default:
529     error(toString(F) + ": unknown Tag_ABI_VFP_args value: " + Twine(VFPArgs));
530     return;
531   }
532   // Follow ld.bfd and error if there is a mix of calling conventions.
533   if (Config->ARMVFPArgs != Arg && Config->ARMVFPArgs != ARMVFPArgKind::Default)
534     error(toString(F) + ": incompatible Tag_ABI_VFP_args");
535   else
536     Config->ARMVFPArgs = Arg;
537 }
538 
539 // The ARM support in lld makes some use of instructions that are not available
540 // on all ARM architectures. Namely:
541 // - Use of BLX instruction for interworking between ARM and Thumb state.
542 // - Use of the extended Thumb branch encoding in relocation.
543 // - Use of the MOVT/MOVW instructions in Thumb Thunks.
544 // The ARM Attributes section contains information about the architecture chosen
545 // at compile time. We follow the convention that if at least one input object
546 // is compiled with an architecture that supports these features then lld is
547 // permitted to use them.
548 static void updateSupportedARMFeatures(const ARMAttributeParser &Attributes) {
549   if (!Attributes.hasAttribute(ARMBuildAttrs::CPU_arch))
550     return;
551   auto Arch = Attributes.getAttributeValue(ARMBuildAttrs::CPU_arch);
552   switch (Arch) {
553   case ARMBuildAttrs::Pre_v4:
554   case ARMBuildAttrs::v4:
555   case ARMBuildAttrs::v4T:
556     // Architectures prior to v5 do not support BLX instruction
557     break;
558   case ARMBuildAttrs::v5T:
559   case ARMBuildAttrs::v5TE:
560   case ARMBuildAttrs::v5TEJ:
561   case ARMBuildAttrs::v6:
562   case ARMBuildAttrs::v6KZ:
563   case ARMBuildAttrs::v6K:
564     Config->ARMHasBlx = true;
565     // Architectures used in pre-Cortex processors do not support
566     // The J1 = 1 J2 = 1 Thumb branch range extension, with the exception
567     // of Architecture v6T2 (arm1156t2-s and arm1156t2f-s) that do.
568     break;
569   default:
570     // All other Architectures have BLX and extended branch encoding
571     Config->ARMHasBlx = true;
572     Config->ARMJ1J2BranchEncoding = true;
573     if (Arch != ARMBuildAttrs::v6_M && Arch != ARMBuildAttrs::v6S_M)
574       // All Architectures used in Cortex processors with the exception
575       // of v6-M and v6S-M have the MOVT and MOVW instructions.
576       Config->ARMHasMovtMovw = true;
577     break;
578   }
579 }
580 
581 template <class ELFT>
582 InputSectionBase *ObjFile<ELFT>::getRelocTarget(const Elf_Shdr &Sec) {
583   uint32_t Idx = Sec.sh_info;
584   if (Idx >= this->Sections.size())
585     fatal(toString(this) + ": invalid relocated section index: " + Twine(Idx));
586   InputSectionBase *Target = this->Sections[Idx];
587 
588   // Strictly speaking, a relocation section must be included in the
589   // group of the section it relocates. However, LLVM 3.3 and earlier
590   // would fail to do so, so we gracefully handle that case.
591   if (Target == &InputSection::Discarded)
592     return nullptr;
593 
594   if (!Target)
595     fatal(toString(this) + ": unsupported relocation reference");
596   return Target;
597 }
598 
599 // Create a regular InputSection class that has the same contents
600 // as a given section.
601 static InputSection *toRegularSection(MergeInputSection *Sec) {
602   return make<InputSection>(Sec->File, Sec->Flags, Sec->Type, Sec->Alignment,
603                             Sec->Data, Sec->Name);
604 }
605 
606 template <class ELFT>
607 InputSectionBase *ObjFile<ELFT>::createInputSection(const Elf_Shdr &Sec) {
608   StringRef Name = getSectionName(Sec);
609 
610   switch (Sec.sh_type) {
611   case SHT_ARM_ATTRIBUTES: {
612     if (Config->EMachine != EM_ARM)
613       break;
614     ARMAttributeParser Attributes;
615     ArrayRef<uint8_t> Contents = check(this->getObj().getSectionContents(&Sec));
616     Attributes.Parse(Contents, /*isLittle*/ Config->EKind == ELF32LEKind);
617     updateSupportedARMFeatures(Attributes);
618     updateARMVFPArgs(Attributes, this);
619 
620     // FIXME: Retain the first attribute section we see. The eglibc ARM
621     // dynamic loaders require the presence of an attribute section for dlopen
622     // to work. In a full implementation we would merge all attribute sections.
623     if (InX::ARMAttributes == nullptr) {
624       InX::ARMAttributes = make<InputSection>(*this, Sec, Name);
625       return InX::ARMAttributes;
626     }
627     return &InputSection::Discarded;
628   }
629   case SHT_RELA:
630   case SHT_REL: {
631     // Find a relocation target section and associate this section with that.
632     // Target may have been discarded if it is in a different section group
633     // and the group is discarded, even though it's a violation of the
634     // spec. We handle that situation gracefully by discarding dangling
635     // relocation sections.
636     InputSectionBase *Target = getRelocTarget(Sec);
637     if (!Target)
638       return nullptr;
639 
640     // This section contains relocation information.
641     // If -r is given, we do not interpret or apply relocation
642     // but just copy relocation sections to output.
643     if (Config->Relocatable)
644       return make<InputSection>(*this, Sec, Name);
645 
646     if (Target->FirstRelocation)
647       fatal(toString(this) +
648             ": multiple relocation sections to one section are not supported");
649 
650     // ELF spec allows mergeable sections with relocations, but they are
651     // rare, and it is in practice hard to merge such sections by contents,
652     // because applying relocations at end of linking changes section
653     // contents. So, we simply handle such sections as non-mergeable ones.
654     // Degrading like this is acceptable because section merging is optional.
655     if (auto *MS = dyn_cast<MergeInputSection>(Target)) {
656       Target = toRegularSection(MS);
657       this->Sections[Sec.sh_info] = Target;
658     }
659 
660     if (Sec.sh_type == SHT_RELA) {
661       ArrayRef<Elf_Rela> Rels = CHECK(this->getObj().relas(&Sec), this);
662       Target->FirstRelocation = Rels.begin();
663       Target->NumRelocations = Rels.size();
664       Target->AreRelocsRela = true;
665     } else {
666       ArrayRef<Elf_Rel> Rels = CHECK(this->getObj().rels(&Sec), this);
667       Target->FirstRelocation = Rels.begin();
668       Target->NumRelocations = Rels.size();
669       Target->AreRelocsRela = false;
670     }
671     assert(isUInt<31>(Target->NumRelocations));
672 
673     // Relocation sections processed by the linker are usually removed
674     // from the output, so returning `nullptr` for the normal case.
675     // However, if -emit-relocs is given, we need to leave them in the output.
676     // (Some post link analysis tools need this information.)
677     if (Config->EmitRelocs) {
678       InputSection *RelocSec = make<InputSection>(*this, Sec, Name);
679       // We will not emit relocation section if target was discarded.
680       Target->DependentSections.push_back(RelocSec);
681       return RelocSec;
682     }
683     return nullptr;
684   }
685   }
686 
687   // The GNU linker uses .note.GNU-stack section as a marker indicating
688   // that the code in the object file does not expect that the stack is
689   // executable (in terms of NX bit). If all input files have the marker,
690   // the GNU linker adds a PT_GNU_STACK segment to tells the loader to
691   // make the stack non-executable. Most object files have this section as
692   // of 2017.
693   //
694   // But making the stack non-executable is a norm today for security
695   // reasons. Failure to do so may result in a serious security issue.
696   // Therefore, we make LLD always add PT_GNU_STACK unless it is
697   // explicitly told to do otherwise (by -z execstack). Because the stack
698   // executable-ness is controlled solely by command line options,
699   // .note.GNU-stack sections are simply ignored.
700   if (Name == ".note.GNU-stack")
701     return &InputSection::Discarded;
702 
703   // Split stacks is a feature to support a discontiguous stack,
704   // commonly used in the programming language Go. For the details,
705   // see https://gcc.gnu.org/wiki/SplitStacks. An object file compiled
706   // for split stack will include a .note.GNU-split-stack section.
707   if (Name == ".note.GNU-split-stack") {
708     if (Config->Relocatable) {
709       error("Cannot mix split-stack and non-split-stack in a relocatable link");
710       return &InputSection::Discarded;
711     }
712     this->SplitStack = true;
713     return &InputSection::Discarded;
714   }
715 
716   // An object file cmpiled for split stack, but where some of the
717   // functions were compiled with the no_split_stack_attribute will
718   // include a .note.GNU-no-split-stack section.
719   if (Name == ".note.GNU-no-split-stack") {
720     this->SomeNoSplitStack = true;
721     return &InputSection::Discarded;
722   }
723 
724   // The linkonce feature is a sort of proto-comdat. Some glibc i386 object
725   // files contain definitions of symbol "__x86.get_pc_thunk.bx" in linkonce
726   // sections. Drop those sections to avoid duplicate symbol errors.
727   // FIXME: This is glibc PR20543, we should remove this hack once that has been
728   // fixed for a while.
729   if (Name.startswith(".gnu.linkonce."))
730     return &InputSection::Discarded;
731 
732   // If we are creating a new .build-id section, strip existing .build-id
733   // sections so that the output won't have more than one .build-id.
734   // This is not usually a problem because input object files normally don't
735   // have .build-id sections, but you can create such files by
736   // "ld.{bfd,gold,lld} -r --build-id", and we want to guard against it.
737   if (Name == ".note.gnu.build-id" && Config->BuildId != BuildIdKind::None)
738     return &InputSection::Discarded;
739 
740   // The linker merges EH (exception handling) frames and creates a
741   // .eh_frame_hdr section for runtime. So we handle them with a special
742   // class. For relocatable outputs, they are just passed through.
743   if (Name == ".eh_frame" && !Config->Relocatable)
744     return make<EhInputSection>(*this, Sec, Name);
745 
746   if (shouldMerge(Sec))
747     return make<MergeInputSection>(*this, Sec, Name);
748   return make<InputSection>(*this, Sec, Name);
749 }
750 
751 template <class ELFT>
752 StringRef ObjFile<ELFT>::getSectionName(const Elf_Shdr &Sec) {
753   return CHECK(this->getObj().getSectionName(&Sec, SectionStringTable), this);
754 }
755 
756 template <class ELFT> void ObjFile<ELFT>::initializeSymbols() {
757   this->Symbols.reserve(this->ELFSyms.size());
758   for (const Elf_Sym &Sym : this->ELFSyms)
759     this->Symbols.push_back(createSymbol(&Sym));
760 }
761 
762 template <class ELFT> Symbol *ObjFile<ELFT>::createSymbol(const Elf_Sym *Sym) {
763   int Binding = Sym->getBinding();
764 
765   uint32_t SecIdx = this->getSectionIndex(*Sym);
766   if (SecIdx >= this->Sections.size())
767     fatal(toString(this) + ": invalid section index: " + Twine(SecIdx));
768 
769   InputSectionBase *Sec = this->Sections[SecIdx];
770   uint8_t StOther = Sym->st_other;
771   uint8_t Type = Sym->getType();
772   uint64_t Value = Sym->st_value;
773   uint64_t Size = Sym->st_size;
774 
775   if (Binding == STB_LOCAL) {
776     if (Sym->getType() == STT_FILE)
777       SourceFile = CHECK(Sym->getName(this->StringTable), this);
778 
779     if (this->StringTable.size() <= Sym->st_name)
780       fatal(toString(this) + ": invalid symbol name offset");
781 
782     StringRefZ Name = this->StringTable.data() + Sym->st_name;
783     if (Sym->st_shndx == SHN_UNDEF)
784       return make<Undefined>(this, Name, Binding, StOther, Type);
785 
786     return make<Defined>(this, Name, Binding, StOther, Type, Value, Size, Sec);
787   }
788 
789   StringRef Name = CHECK(Sym->getName(this->StringTable), this);
790 
791   switch (Sym->st_shndx) {
792   case SHN_UNDEF:
793     return Symtab->addUndefined<ELFT>(Name, Binding, StOther, Type,
794                                       /*CanOmitFromDynSym=*/false, this);
795   case SHN_COMMON:
796     if (Value == 0 || Value >= UINT32_MAX)
797       fatal(toString(this) + ": common symbol '" + Name +
798             "' has invalid alignment: " + Twine(Value));
799     return Symtab->addCommon(Name, Size, Value, Binding, StOther, Type, *this);
800   }
801 
802   switch (Binding) {
803   default:
804     fatal(toString(this) + ": unexpected binding: " + Twine(Binding));
805   case STB_GLOBAL:
806   case STB_WEAK:
807   case STB_GNU_UNIQUE:
808     if (Sec == &InputSection::Discarded)
809       return Symtab->addUndefined<ELFT>(Name, Binding, StOther, Type,
810                                         /*CanOmitFromDynSym=*/false, this);
811     return Symtab->addRegular(Name, StOther, Type, Value, Size, Binding, Sec,
812                               this);
813   }
814 }
815 
816 ArchiveFile::ArchiveFile(std::unique_ptr<Archive> &&File)
817     : InputFile(ArchiveKind, File->getMemoryBufferRef()),
818       File(std::move(File)) {}
819 
820 template <class ELFT> void ArchiveFile::parse() {
821   for (const Archive::Symbol &Sym : File->symbols())
822     Symtab->addLazyArchive<ELFT>(Sym.getName(), *this, Sym);
823 }
824 
825 // Returns a buffer pointing to a member file containing a given symbol.
826 InputFile *ArchiveFile::fetch(const Archive::Symbol &Sym) {
827   Archive::Child C =
828       CHECK(Sym.getMember(), toString(this) +
829                                  ": could not get the member for symbol " +
830                                  Sym.getName());
831 
832   if (!Seen.insert(C.getChildOffset()).second)
833     return nullptr;
834 
835   MemoryBufferRef MB =
836       CHECK(C.getMemoryBufferRef(),
837             toString(this) +
838                 ": could not get the buffer for the member defining symbol " +
839                 Sym.getName());
840 
841   if (Tar && C.getParent()->isThin())
842     Tar->append(relativeToRoot(CHECK(C.getFullName(), this)), MB.getBuffer());
843 
844   InputFile *File = createObjectFile(
845       MB, getName(), C.getParent()->isThin() ? 0 : C.getChildOffset());
846   File->GroupId = GroupId;
847   return File;
848 }
849 
850 template <class ELFT>
851 SharedFile<ELFT>::SharedFile(MemoryBufferRef M, StringRef DefaultSoName)
852     : ELFFileBase<ELFT>(Base::SharedKind, M), SoName(DefaultSoName),
853       IsNeeded(!Config->AsNeeded) {}
854 
855 // Partially parse the shared object file so that we can call
856 // getSoName on this object.
857 template <class ELFT> void SharedFile<ELFT>::parseSoName() {
858   const Elf_Shdr *DynamicSec = nullptr;
859   const ELFFile<ELFT> Obj = this->getObj();
860   ArrayRef<Elf_Shdr> Sections = CHECK(Obj.sections(), this);
861 
862   // Search for .dynsym, .dynamic, .symtab, .gnu.version and .gnu.version_d.
863   for (const Elf_Shdr &Sec : Sections) {
864     switch (Sec.sh_type) {
865     default:
866       continue;
867     case SHT_DYNSYM:
868       this->initSymtab(Sections, &Sec);
869       break;
870     case SHT_DYNAMIC:
871       DynamicSec = &Sec;
872       break;
873     case SHT_SYMTAB_SHNDX:
874       this->SymtabSHNDX = CHECK(Obj.getSHNDXTable(Sec, Sections), this);
875       break;
876     case SHT_GNU_versym:
877       this->VersymSec = &Sec;
878       break;
879     case SHT_GNU_verdef:
880       this->VerdefSec = &Sec;
881       break;
882     }
883   }
884 
885   if (this->VersymSec && this->ELFSyms.empty())
886     error("SHT_GNU_versym should be associated with symbol table");
887 
888   // Search for a DT_SONAME tag to initialize this->SoName.
889   if (!DynamicSec)
890     return;
891   ArrayRef<Elf_Dyn> Arr =
892       CHECK(Obj.template getSectionContentsAsArray<Elf_Dyn>(DynamicSec), this);
893   for (const Elf_Dyn &Dyn : Arr) {
894     if (Dyn.d_tag == DT_SONAME) {
895       uint64_t Val = Dyn.getVal();
896       if (Val >= this->StringTable.size())
897         fatal(toString(this) + ": invalid DT_SONAME entry");
898       SoName = this->StringTable.data() + Val;
899       return;
900     }
901   }
902 }
903 
904 // Parses ".gnu.version" section which is a parallel array for the symbol table.
905 // If a given file doesn't have ".gnu.version" section, returns VER_NDX_GLOBAL.
906 template <class ELFT> std::vector<uint32_t> SharedFile<ELFT>::parseVersyms() {
907   size_t Size = this->ELFSyms.size() - this->FirstGlobal;
908   if (!VersymSec)
909     return std::vector<uint32_t>(Size, VER_NDX_GLOBAL);
910 
911   const char *Base = this->MB.getBuffer().data();
912   const Elf_Versym *Versym =
913       reinterpret_cast<const Elf_Versym *>(Base + VersymSec->sh_offset) +
914       this->FirstGlobal;
915 
916   std::vector<uint32_t> Ret(Size);
917   for (size_t I = 0; I < Size; ++I)
918     Ret[I] = Versym[I].vs_index;
919   return Ret;
920 }
921 
922 // Parse the version definitions in the object file if present. Returns a vector
923 // whose nth element contains a pointer to the Elf_Verdef for version identifier
924 // n. Version identifiers that are not definitions map to nullptr.
925 template <class ELFT>
926 std::vector<const typename ELFT::Verdef *> SharedFile<ELFT>::parseVerdefs() {
927   if (!VerdefSec)
928     return {};
929 
930   // We cannot determine the largest verdef identifier without inspecting
931   // every Elf_Verdef, but both bfd and gold assign verdef identifiers
932   // sequentially starting from 1, so we predict that the largest identifier
933   // will be VerdefCount.
934   unsigned VerdefCount = VerdefSec->sh_info;
935   std::vector<const Elf_Verdef *> Verdefs(VerdefCount + 1);
936 
937   // Build the Verdefs array by following the chain of Elf_Verdef objects
938   // from the start of the .gnu.version_d section.
939   const char *Base = this->MB.getBuffer().data();
940   const char *Verdef = Base + VerdefSec->sh_offset;
941   for (unsigned I = 0; I != VerdefCount; ++I) {
942     auto *CurVerdef = reinterpret_cast<const Elf_Verdef *>(Verdef);
943     Verdef += CurVerdef->vd_next;
944     unsigned VerdefIndex = CurVerdef->vd_ndx;
945     Verdefs.resize(VerdefIndex + 1);
946     Verdefs[VerdefIndex] = CurVerdef;
947   }
948 
949   return Verdefs;
950 }
951 
952 // We do not usually care about alignments of data in shared object
953 // files because the loader takes care of it. However, if we promote a
954 // DSO symbol to point to .bss due to copy relocation, we need to keep
955 // the original alignment requirements. We infer it in this function.
956 template <class ELFT>
957 uint32_t SharedFile<ELFT>::getAlignment(ArrayRef<Elf_Shdr> Sections,
958                                         const Elf_Sym &Sym) {
959   uint64_t Ret = UINT64_MAX;
960   if (Sym.st_value)
961     Ret = 1ULL << countTrailingZeros((uint64_t)Sym.st_value);
962   if (0 < Sym.st_shndx && Sym.st_shndx < Sections.size())
963     Ret = std::min<uint64_t>(Ret, Sections[Sym.st_shndx].sh_addralign);
964   return (Ret > UINT32_MAX) ? 0 : Ret;
965 }
966 
967 // Fully parse the shared object file. This must be called after parseSoName().
968 //
969 // This function parses symbol versions. If a DSO has version information,
970 // the file has a ".gnu.version_d" section which contains symbol version
971 // definitions. Each symbol is associated to one version through a table in
972 // ".gnu.version" section. That table is a parallel array for the symbol
973 // table, and each table entry contains an index in ".gnu.version_d".
974 //
975 // The special index 0 is reserved for VERF_NDX_LOCAL and 1 is for
976 // VER_NDX_GLOBAL. There's no table entry for these special versions in
977 // ".gnu.version_d".
978 //
979 // The file format for symbol versioning is perhaps a bit more complicated
980 // than necessary, but you can easily understand the code if you wrap your
981 // head around the data structure described above.
982 template <class ELFT> void SharedFile<ELFT>::parseRest() {
983   Verdefs = parseVerdefs();                       // parse .gnu.version_d
984   std::vector<uint32_t> Versyms = parseVersyms(); // parse .gnu.version
985   ArrayRef<Elf_Shdr> Sections = CHECK(this->getObj().sections(), this);
986 
987   // System libraries can have a lot of symbols with versions. Using a
988   // fixed buffer for computing the versions name (foo@ver) can save a
989   // lot of allocations.
990   SmallString<0> VersionedNameBuffer;
991 
992   // Add symbols to the symbol table.
993   ArrayRef<Elf_Sym> Syms = this->getGlobalELFSyms();
994   for (size_t I = 0; I < Syms.size(); ++I) {
995     const Elf_Sym &Sym = Syms[I];
996 
997     StringRef Name = CHECK(Sym.getName(this->StringTable), this);
998     if (Sym.isUndefined()) {
999       Symbol *S = Symtab->addUndefined<ELFT>(Name, Sym.getBinding(),
1000                                              Sym.st_other, Sym.getType(),
1001                                              /*CanOmitFromDynSym=*/false, this);
1002       S->ExportDynamic = true;
1003       continue;
1004     }
1005 
1006     // ELF spec requires that all local symbols precede weak or global
1007     // symbols in each symbol table, and the index of first non-local symbol
1008     // is stored to sh_info. If a local symbol appears after some non-local
1009     // symbol, that's a violation of the spec.
1010     if (Sym.getBinding() == STB_LOCAL) {
1011       warn("found local symbol '" + Name +
1012            "' in global part of symbol table in file " + toString(this));
1013       continue;
1014     }
1015 
1016     // MIPS BFD linker puts _gp_disp symbol into DSO files and incorrectly
1017     // assigns VER_NDX_LOCAL to this section global symbol. Here is a
1018     // workaround for this bug.
1019     uint32_t Idx = Versyms[I] & ~VERSYM_HIDDEN;
1020     if (Config->EMachine == EM_MIPS && Idx == VER_NDX_LOCAL &&
1021         Name == "_gp_disp")
1022       continue;
1023 
1024     uint64_t Alignment = getAlignment(Sections, Sym);
1025     if (!(Versyms[I] & VERSYM_HIDDEN))
1026       Symtab->addShared(Name, *this, Sym, Alignment, Idx);
1027 
1028     // Also add the symbol with the versioned name to handle undefined symbols
1029     // with explicit versions.
1030     if (Idx == VER_NDX_GLOBAL)
1031       continue;
1032 
1033     if (Idx >= Verdefs.size() || Idx == VER_NDX_LOCAL) {
1034       error("corrupt input file: version definition index " + Twine(Idx) +
1035             " for symbol " + Name + " is out of bounds\n>>> defined in " +
1036             toString(this));
1037       continue;
1038     }
1039 
1040     StringRef VerName =
1041         this->StringTable.data() + Verdefs[Idx]->getAux()->vda_name;
1042     VersionedNameBuffer.clear();
1043     Name = (Name + "@" + VerName).toStringRef(VersionedNameBuffer);
1044     Symtab->addShared(Saver.save(Name), *this, Sym, Alignment, Idx);
1045   }
1046 }
1047 
1048 static ELFKind getBitcodeELFKind(const Triple &T) {
1049   if (T.isLittleEndian())
1050     return T.isArch64Bit() ? ELF64LEKind : ELF32LEKind;
1051   return T.isArch64Bit() ? ELF64BEKind : ELF32BEKind;
1052 }
1053 
1054 static uint8_t getBitcodeMachineKind(StringRef Path, const Triple &T) {
1055   switch (T.getArch()) {
1056   case Triple::aarch64:
1057     return EM_AARCH64;
1058   case Triple::amdgcn:
1059   case Triple::r600:
1060     return EM_AMDGPU;
1061   case Triple::arm:
1062   case Triple::thumb:
1063     return EM_ARM;
1064   case Triple::avr:
1065     return EM_AVR;
1066   case Triple::mips:
1067   case Triple::mipsel:
1068   case Triple::mips64:
1069   case Triple::mips64el:
1070     return EM_MIPS;
1071   case Triple::ppc:
1072     return EM_PPC;
1073   case Triple::ppc64:
1074   case Triple::ppc64le:
1075     return EM_PPC64;
1076   case Triple::x86:
1077     return T.isOSIAMCU() ? EM_IAMCU : EM_386;
1078   case Triple::x86_64:
1079     return EM_X86_64;
1080   default:
1081     error(Path + ": could not infer e_machine from bitcode target triple " +
1082           T.str());
1083     return EM_NONE;
1084   }
1085 }
1086 
1087 BitcodeFile::BitcodeFile(MemoryBufferRef MB, StringRef ArchiveName,
1088                          uint64_t OffsetInArchive)
1089     : InputFile(BitcodeKind, MB) {
1090   this->ArchiveName = ArchiveName;
1091 
1092   std::string Path = MB.getBufferIdentifier().str();
1093   if (Config->ThinLTOIndexOnly)
1094     Path = replaceThinLTOSuffix(MB.getBufferIdentifier());
1095 
1096   // ThinLTO assumes that all MemoryBufferRefs given to it have a unique
1097   // name. If two archives define two members with the same name, this
1098   // causes a collision which result in only one of the objects being taken
1099   // into consideration at LTO time (which very likely causes undefined
1100   // symbols later in the link stage). So we append file offset to make
1101   // filename unique.
1102   MemoryBufferRef MBRef(
1103       MB.getBuffer(),
1104       Saver.save(ArchiveName + Path +
1105                  (ArchiveName.empty() ? "" : utostr(OffsetInArchive))));
1106 
1107   Obj = CHECK(lto::InputFile::create(MBRef), this);
1108 
1109   Triple T(Obj->getTargetTriple());
1110   EKind = getBitcodeELFKind(T);
1111   EMachine = getBitcodeMachineKind(MB.getBufferIdentifier(), T);
1112 }
1113 
1114 static uint8_t mapVisibility(GlobalValue::VisibilityTypes GvVisibility) {
1115   switch (GvVisibility) {
1116   case GlobalValue::DefaultVisibility:
1117     return STV_DEFAULT;
1118   case GlobalValue::HiddenVisibility:
1119     return STV_HIDDEN;
1120   case GlobalValue::ProtectedVisibility:
1121     return STV_PROTECTED;
1122   }
1123   llvm_unreachable("unknown visibility");
1124 }
1125 
1126 template <class ELFT>
1127 static Symbol *createBitcodeSymbol(const std::vector<bool> &KeptComdats,
1128                                    const lto::InputFile::Symbol &ObjSym,
1129                                    BitcodeFile &F) {
1130   StringRef Name = Saver.save(ObjSym.getName());
1131   uint32_t Binding = ObjSym.isWeak() ? STB_WEAK : STB_GLOBAL;
1132 
1133   uint8_t Type = ObjSym.isTLS() ? STT_TLS : STT_NOTYPE;
1134   uint8_t Visibility = mapVisibility(ObjSym.getVisibility());
1135   bool CanOmitFromDynSym = ObjSym.canBeOmittedFromSymbolTable();
1136 
1137   int C = ObjSym.getComdatIndex();
1138   if (C != -1 && !KeptComdats[C])
1139     return Symtab->addUndefined<ELFT>(Name, Binding, Visibility, Type,
1140                                       CanOmitFromDynSym, &F);
1141 
1142   if (ObjSym.isUndefined())
1143     return Symtab->addUndefined<ELFT>(Name, Binding, Visibility, Type,
1144                                       CanOmitFromDynSym, &F);
1145 
1146   if (ObjSym.isCommon())
1147     return Symtab->addCommon(Name, ObjSym.getCommonSize(),
1148                              ObjSym.getCommonAlignment(), Binding, Visibility,
1149                              STT_OBJECT, F);
1150 
1151   return Symtab->addBitcode(Name, Binding, Visibility, Type, CanOmitFromDynSym,
1152                             F);
1153 }
1154 
1155 template <class ELFT>
1156 void BitcodeFile::parse(DenseSet<CachedHashStringRef> &ComdatGroups) {
1157   std::vector<bool> KeptComdats;
1158   for (StringRef S : Obj->getComdatTable())
1159     KeptComdats.push_back(ComdatGroups.insert(CachedHashStringRef(S)).second);
1160 
1161   for (const lto::InputFile::Symbol &ObjSym : Obj->symbols())
1162     Symbols.push_back(createBitcodeSymbol<ELFT>(KeptComdats, ObjSym, *this));
1163 }
1164 
1165 static ELFKind getELFKind(MemoryBufferRef MB) {
1166   unsigned char Size;
1167   unsigned char Endian;
1168   std::tie(Size, Endian) = getElfArchType(MB.getBuffer());
1169 
1170   if (Endian != ELFDATA2LSB && Endian != ELFDATA2MSB)
1171     fatal(MB.getBufferIdentifier() + ": invalid data encoding");
1172   if (Size != ELFCLASS32 && Size != ELFCLASS64)
1173     fatal(MB.getBufferIdentifier() + ": invalid file class");
1174 
1175   size_t BufSize = MB.getBuffer().size();
1176   if ((Size == ELFCLASS32 && BufSize < sizeof(Elf32_Ehdr)) ||
1177       (Size == ELFCLASS64 && BufSize < sizeof(Elf64_Ehdr)))
1178     fatal(MB.getBufferIdentifier() + ": file is too short");
1179 
1180   if (Size == ELFCLASS32)
1181     return (Endian == ELFDATA2LSB) ? ELF32LEKind : ELF32BEKind;
1182   return (Endian == ELFDATA2LSB) ? ELF64LEKind : ELF64BEKind;
1183 }
1184 
1185 void BinaryFile::parse() {
1186   ArrayRef<uint8_t> Data = toArrayRef(MB.getBuffer());
1187   auto *Section = make<InputSection>(this, SHF_ALLOC | SHF_WRITE, SHT_PROGBITS,
1188                                      8, Data, ".data");
1189   Sections.push_back(Section);
1190 
1191   // For each input file foo that is embedded to a result as a binary
1192   // blob, we define _binary_foo_{start,end,size} symbols, so that
1193   // user programs can access blobs by name. Non-alphanumeric
1194   // characters in a filename are replaced with underscore.
1195   std::string S = "_binary_" + MB.getBufferIdentifier().str();
1196   for (size_t I = 0; I < S.size(); ++I)
1197     if (!isAlnum(S[I]))
1198       S[I] = '_';
1199 
1200   Symtab->addRegular(Saver.save(S + "_start"), STV_DEFAULT, STT_OBJECT, 0, 0,
1201                      STB_GLOBAL, Section, nullptr);
1202   Symtab->addRegular(Saver.save(S + "_end"), STV_DEFAULT, STT_OBJECT,
1203                      Data.size(), 0, STB_GLOBAL, Section, nullptr);
1204   Symtab->addRegular(Saver.save(S + "_size"), STV_DEFAULT, STT_OBJECT,
1205                      Data.size(), 0, STB_GLOBAL, nullptr, nullptr);
1206 }
1207 
1208 InputFile *elf::createObjectFile(MemoryBufferRef MB, StringRef ArchiveName,
1209                                  uint64_t OffsetInArchive) {
1210   if (isBitcode(MB))
1211     return make<BitcodeFile>(MB, ArchiveName, OffsetInArchive);
1212 
1213   switch (getELFKind(MB)) {
1214   case ELF32LEKind:
1215     return make<ObjFile<ELF32LE>>(MB, ArchiveName);
1216   case ELF32BEKind:
1217     return make<ObjFile<ELF32BE>>(MB, ArchiveName);
1218   case ELF64LEKind:
1219     return make<ObjFile<ELF64LE>>(MB, ArchiveName);
1220   case ELF64BEKind:
1221     return make<ObjFile<ELF64BE>>(MB, ArchiveName);
1222   default:
1223     llvm_unreachable("getELFKind");
1224   }
1225 }
1226 
1227 InputFile *elf::createSharedFile(MemoryBufferRef MB, StringRef DefaultSoName) {
1228   switch (getELFKind(MB)) {
1229   case ELF32LEKind:
1230     return make<SharedFile<ELF32LE>>(MB, DefaultSoName);
1231   case ELF32BEKind:
1232     return make<SharedFile<ELF32BE>>(MB, DefaultSoName);
1233   case ELF64LEKind:
1234     return make<SharedFile<ELF64LE>>(MB, DefaultSoName);
1235   case ELF64BEKind:
1236     return make<SharedFile<ELF64BE>>(MB, DefaultSoName);
1237   default:
1238     llvm_unreachable("getELFKind");
1239   }
1240 }
1241 
1242 MemoryBufferRef LazyObjFile::getBuffer() {
1243   if (AddedToLink)
1244     return MemoryBufferRef();
1245   AddedToLink = true;
1246   return MB;
1247 }
1248 
1249 InputFile *LazyObjFile::fetch() {
1250   MemoryBufferRef MBRef = getBuffer();
1251   if (MBRef.getBuffer().empty())
1252     return nullptr;
1253 
1254   InputFile *File = createObjectFile(MBRef, ArchiveName, OffsetInArchive);
1255   File->GroupId = GroupId;
1256   return File;
1257 }
1258 
1259 template <class ELFT> void LazyObjFile::parse() {
1260   // A lazy object file wraps either a bitcode file or an ELF file.
1261   if (isBitcode(this->MB)) {
1262     std::unique_ptr<lto::InputFile> Obj =
1263         CHECK(lto::InputFile::create(this->MB), this);
1264     for (const lto::InputFile::Symbol &Sym : Obj->symbols())
1265       if (!Sym.isUndefined())
1266         Symtab->addLazyObject<ELFT>(Saver.save(Sym.getName()), *this);
1267     return;
1268   }
1269 
1270   if (getELFKind(this->MB) != Config->EKind) {
1271     error("incompatible file: " + this->MB.getBufferIdentifier());
1272     return;
1273   }
1274 
1275   ELFFile<ELFT> Obj = check(ELFFile<ELFT>::create(MB.getBuffer()));
1276   ArrayRef<typename ELFT::Shdr> Sections = CHECK(Obj.sections(), this);
1277 
1278   for (const typename ELFT::Shdr &Sec : Sections) {
1279     if (Sec.sh_type != SHT_SYMTAB)
1280       continue;
1281 
1282     typename ELFT::SymRange Syms = CHECK(Obj.symbols(&Sec), this);
1283     uint32_t FirstGlobal = Sec.sh_info;
1284     StringRef StringTable =
1285         CHECK(Obj.getStringTableForSymtab(Sec, Sections), this);
1286 
1287     for (const typename ELFT::Sym &Sym : Syms.slice(FirstGlobal))
1288       if (Sym.st_shndx != SHN_UNDEF)
1289         Symtab->addLazyObject<ELFT>(CHECK(Sym.getName(StringTable), this),
1290                                     *this);
1291     return;
1292   }
1293 }
1294 
1295 std::string elf::replaceThinLTOSuffix(StringRef Path) {
1296   StringRef Suffix = Config->ThinLTOObjectSuffixReplace.first;
1297   StringRef Repl = Config->ThinLTOObjectSuffixReplace.second;
1298 
1299   if (Path.consume_back(Suffix))
1300     return (Path + Repl).str();
1301   return Path;
1302 }
1303 
1304 template void ArchiveFile::parse<ELF32LE>();
1305 template void ArchiveFile::parse<ELF32BE>();
1306 template void ArchiveFile::parse<ELF64LE>();
1307 template void ArchiveFile::parse<ELF64BE>();
1308 
1309 template void BitcodeFile::parse<ELF32LE>(DenseSet<CachedHashStringRef> &);
1310 template void BitcodeFile::parse<ELF32BE>(DenseSet<CachedHashStringRef> &);
1311 template void BitcodeFile::parse<ELF64LE>(DenseSet<CachedHashStringRef> &);
1312 template void BitcodeFile::parse<ELF64BE>(DenseSet<CachedHashStringRef> &);
1313 
1314 template void LazyObjFile::parse<ELF32LE>();
1315 template void LazyObjFile::parse<ELF32BE>();
1316 template void LazyObjFile::parse<ELF64LE>();
1317 template void LazyObjFile::parse<ELF64BE>();
1318 
1319 template class elf::ELFFileBase<ELF32LE>;
1320 template class elf::ELFFileBase<ELF32BE>;
1321 template class elf::ELFFileBase<ELF64LE>;
1322 template class elf::ELFFileBase<ELF64BE>;
1323 
1324 template class elf::ObjFile<ELF32LE>;
1325 template class elf::ObjFile<ELF32BE>;
1326 template class elf::ObjFile<ELF64LE>;
1327 template class elf::ObjFile<ELF64BE>;
1328 
1329 template class elf::SharedFile<ELF32LE>;
1330 template class elf::SharedFile<ELF32BE>;
1331 template class elf::SharedFile<ELF64LE>;
1332 template class elf::SharedFile<ELF64BE>;
1333