1 //===- InputFiles.cpp -----------------------------------------------------===// 2 // 3 // The LLVM Linker 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "InputFiles.h" 11 #include "Driver.h" 12 #include "ELFCreator.h" 13 #include "Error.h" 14 #include "InputSection.h" 15 #include "LinkerScript.h" 16 #include "SymbolTable.h" 17 #include "Symbols.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/Bitcode/ReaderWriter.h" 20 #include "llvm/CodeGen/Analysis.h" 21 #include "llvm/IR/LLVMContext.h" 22 #include "llvm/IR/Module.h" 23 #include "llvm/LTO/LTO.h" 24 #include "llvm/MC/StringTableBuilder.h" 25 #include "llvm/Support/Path.h" 26 #include "llvm/Support/raw_ostream.h" 27 28 using namespace llvm; 29 using namespace llvm::ELF; 30 using namespace llvm::object; 31 using namespace llvm::sys::fs; 32 33 using namespace lld; 34 using namespace lld::elf; 35 36 std::vector<InputFile *> InputFile::Pool; 37 38 // Deletes all InputFile instances created so far. 39 void InputFile::freePool() { 40 // Files are freed in reverse order so that files created 41 // from other files (e.g. object files extracted from archives) 42 // are freed in the proper order. 43 for (int I = Pool.size() - 1; I >= 0; --I) 44 delete Pool[I]; 45 } 46 47 // Returns "(internal)", "foo.a(bar.o)" or "baz.o". 48 std::string elf::getFilename(const InputFile *F) { 49 if (!F) 50 return "(internal)"; 51 if (!F->ArchiveName.empty()) 52 return (F->ArchiveName + "(" + F->getName() + ")").str(); 53 return F->getName(); 54 } 55 56 template <class ELFT> static ELFFile<ELFT> createELFObj(MemoryBufferRef MB) { 57 std::error_code EC; 58 ELFFile<ELFT> F(MB.getBuffer(), EC); 59 if (EC) 60 fatal(EC, "failed to read " + MB.getBufferIdentifier()); 61 return F; 62 } 63 64 template <class ELFT> static ELFKind getELFKind() { 65 if (ELFT::TargetEndianness == support::little) 66 return ELFT::Is64Bits ? ELF64LEKind : ELF32LEKind; 67 return ELFT::Is64Bits ? ELF64BEKind : ELF32BEKind; 68 } 69 70 template <class ELFT> 71 ELFFileBase<ELFT>::ELFFileBase(Kind K, MemoryBufferRef MB) 72 : InputFile(K, MB), ELFObj(createELFObj<ELFT>(MB)) { 73 EKind = getELFKind<ELFT>(); 74 EMachine = ELFObj.getHeader()->e_machine; 75 } 76 77 template <class ELFT> 78 typename ELFT::SymRange ELFFileBase<ELFT>::getElfSymbols(bool OnlyGlobals) { 79 if (!Symtab) 80 return Elf_Sym_Range(nullptr, nullptr); 81 Elf_Sym_Range Syms = ELFObj.symbols(Symtab); 82 uint32_t NumSymbols = std::distance(Syms.begin(), Syms.end()); 83 uint32_t FirstNonLocal = Symtab->sh_info; 84 if (FirstNonLocal == 0 || FirstNonLocal > NumSymbols) 85 fatal(getFilename(this) + ": invalid sh_info in symbol table"); 86 87 if (OnlyGlobals) 88 return makeArrayRef(Syms.begin() + FirstNonLocal, Syms.end()); 89 return makeArrayRef(Syms.begin(), Syms.end()); 90 } 91 92 template <class ELFT> 93 uint32_t ELFFileBase<ELFT>::getSectionIndex(const Elf_Sym &Sym) const { 94 uint32_t I = Sym.st_shndx; 95 if (I == ELF::SHN_XINDEX) 96 return ELFObj.getExtendedSymbolTableIndex(&Sym, Symtab, SymtabSHNDX); 97 if (I >= ELF::SHN_LORESERVE) 98 return 0; 99 return I; 100 } 101 102 template <class ELFT> void ELFFileBase<ELFT>::initStringTable() { 103 if (!Symtab) 104 return; 105 StringTable = check(ELFObj.getStringTableForSymtab(*Symtab)); 106 } 107 108 template <class ELFT> 109 elf::ObjectFile<ELFT>::ObjectFile(MemoryBufferRef M) 110 : ELFFileBase<ELFT>(Base::ObjectKind, M) {} 111 112 template <class ELFT> 113 ArrayRef<SymbolBody *> elf::ObjectFile<ELFT>::getNonLocalSymbols() { 114 if (!this->Symtab) 115 return this->SymbolBodies; 116 uint32_t FirstNonLocal = this->Symtab->sh_info; 117 return makeArrayRef(this->SymbolBodies).slice(FirstNonLocal); 118 } 119 120 template <class ELFT> 121 ArrayRef<SymbolBody *> elf::ObjectFile<ELFT>::getLocalSymbols() { 122 if (!this->Symtab) 123 return this->SymbolBodies; 124 uint32_t FirstNonLocal = this->Symtab->sh_info; 125 return makeArrayRef(this->SymbolBodies).slice(1, FirstNonLocal - 1); 126 } 127 128 template <class ELFT> 129 ArrayRef<SymbolBody *> elf::ObjectFile<ELFT>::getSymbols() { 130 if (!this->Symtab) 131 return this->SymbolBodies; 132 return makeArrayRef(this->SymbolBodies).slice(1); 133 } 134 135 template <class ELFT> uint32_t elf::ObjectFile<ELFT>::getMipsGp0() const { 136 if (ELFT::Is64Bits && MipsOptions && MipsOptions->Reginfo) 137 return MipsOptions->Reginfo->ri_gp_value; 138 if (!ELFT::Is64Bits && MipsReginfo && MipsReginfo->Reginfo) 139 return MipsReginfo->Reginfo->ri_gp_value; 140 return 0; 141 } 142 143 template <class ELFT> 144 void elf::ObjectFile<ELFT>::parse(DenseSet<StringRef> &ComdatGroups) { 145 // Read section and symbol tables. 146 initializeSections(ComdatGroups); 147 initializeSymbols(); 148 if (Config->GcSections && Config->EMachine == EM_ARM) 149 initializeReverseDependencies(); 150 } 151 152 // Sections with SHT_GROUP and comdat bits define comdat section groups. 153 // They are identified and deduplicated by group name. This function 154 // returns a group name. 155 template <class ELFT> 156 StringRef elf::ObjectFile<ELFT>::getShtGroupSignature(const Elf_Shdr &Sec) { 157 const ELFFile<ELFT> &Obj = this->ELFObj; 158 const Elf_Shdr *Symtab = check(Obj.getSection(Sec.sh_link)); 159 const Elf_Sym *Sym = Obj.getSymbol(Symtab, Sec.sh_info); 160 StringRef Strtab = check(Obj.getStringTableForSymtab(*Symtab)); 161 return check(Sym->getName(Strtab)); 162 } 163 164 template <class ELFT> 165 ArrayRef<typename elf::ObjectFile<ELFT>::Elf_Word> 166 elf::ObjectFile<ELFT>::getShtGroupEntries(const Elf_Shdr &Sec) { 167 const ELFFile<ELFT> &Obj = this->ELFObj; 168 ArrayRef<Elf_Word> Entries = 169 check(Obj.template getSectionContentsAsArray<Elf_Word>(&Sec)); 170 if (Entries.empty() || Entries[0] != GRP_COMDAT) 171 fatal(getFilename(this) + ": unsupported SHT_GROUP format"); 172 return Entries.slice(1); 173 } 174 175 template <class ELFT> 176 bool elf::ObjectFile<ELFT>::shouldMerge(const Elf_Shdr &Sec) { 177 // We don't merge sections if -O0 (default is -O1). This makes sometimes 178 // the linker significantly faster, although the output will be bigger. 179 if (Config->Optimize == 0) 180 return false; 181 182 // Do not merge sections if generating a relocatable object. It makes 183 // the code simpler because we do not need to update relocation addends 184 // to reflect changes introduced by merging. Instead of that we write 185 // such "merge" sections into separate OutputSections and keep SHF_MERGE 186 // / SHF_STRINGS flags and sh_entsize value to be able to perform merging 187 // later during a final linking. 188 if (Config->Relocatable) 189 return false; 190 191 // A mergeable section with size 0 is useless because they don't have 192 // any data to merge. A mergeable string section with size 0 can be 193 // argued as invalid because it doesn't end with a null character. 194 // We'll avoid a mess by handling them as if they were non-mergeable. 195 if (Sec.sh_size == 0) 196 return false; 197 198 // Check for sh_entsize. The ELF spec is not clear about the zero 199 // sh_entsize. It says that "the member [sh_entsize] contains 0 if 200 // the section does not hold a table of fixed-size entries". We know 201 // that Rust 1.13 produces a string mergeable section with a zero 202 // sh_entsize. Here we just accept it rather than being picky about it. 203 uintX_t EntSize = Sec.sh_entsize; 204 if (EntSize == 0) 205 return false; 206 if (Sec.sh_size % EntSize) 207 fatal(getFilename(this) + 208 ": SHF_MERGE section size must be a multiple of sh_entsize"); 209 210 uintX_t Flags = Sec.sh_flags; 211 if (!(Flags & SHF_MERGE)) 212 return false; 213 if (Flags & SHF_WRITE) 214 fatal(getFilename(this) + ": writable SHF_MERGE section is not supported"); 215 216 // Don't try to merge if the alignment is larger than the sh_entsize and this 217 // is not SHF_STRINGS. 218 // 219 // Since this is not a SHF_STRINGS, we would need to pad after every entity. 220 // It would be equivalent for the producer of the .o to just set a larger 221 // sh_entsize. 222 if (Flags & SHF_STRINGS) 223 return true; 224 225 return Sec.sh_addralign <= EntSize; 226 } 227 228 template <class ELFT> 229 void elf::ObjectFile<ELFT>::initializeSections( 230 DenseSet<StringRef> &ComdatGroups) { 231 uint64_t Size = this->ELFObj.getNumSections(); 232 Sections.resize(Size); 233 unsigned I = -1; 234 const ELFFile<ELFT> &Obj = this->ELFObj; 235 for (const Elf_Shdr &Sec : Obj.sections()) { 236 ++I; 237 if (Sections[I] == &InputSection<ELFT>::Discarded) 238 continue; 239 240 // SHF_EXCLUDE'ed sections are discarded by the linker. However, 241 // if -r is given, we'll let the final link discard such sections. 242 // This is compatible with GNU. 243 if ((Sec.sh_flags & SHF_EXCLUDE) && !Config->Relocatable) { 244 Sections[I] = &InputSection<ELFT>::Discarded; 245 continue; 246 } 247 248 switch (Sec.sh_type) { 249 case SHT_GROUP: 250 Sections[I] = &InputSection<ELFT>::Discarded; 251 if (ComdatGroups.insert(getShtGroupSignature(Sec)).second) 252 continue; 253 for (uint32_t SecIndex : getShtGroupEntries(Sec)) { 254 if (SecIndex >= Size) 255 fatal(getFilename(this) + ": invalid section index in group: " + 256 Twine(SecIndex)); 257 Sections[SecIndex] = &InputSection<ELFT>::Discarded; 258 } 259 break; 260 case SHT_SYMTAB: 261 this->Symtab = &Sec; 262 break; 263 case SHT_SYMTAB_SHNDX: 264 this->SymtabSHNDX = check(Obj.getSHNDXTable(Sec)); 265 break; 266 case SHT_STRTAB: 267 case SHT_NULL: 268 break; 269 default: 270 Sections[I] = createInputSection(Sec); 271 } 272 } 273 } 274 275 // .ARM.exidx sections have a reverse dependency on the InputSection they 276 // have a SHF_LINK_ORDER dependency, this is identified by the sh_link. 277 template <class ELFT> 278 void elf::ObjectFile<ELFT>::initializeReverseDependencies() { 279 unsigned I = -1; 280 for (const Elf_Shdr &Sec : this->ELFObj.sections()) { 281 ++I; 282 if ((Sections[I] == &InputSection<ELFT>::Discarded) || 283 !(Sec.sh_flags & SHF_LINK_ORDER)) 284 continue; 285 if (Sec.sh_link >= Sections.size()) 286 fatal(getFilename(this) + ": invalid sh_link index: " + 287 Twine(Sec.sh_link)); 288 auto *IS = cast<InputSection<ELFT>>(Sections[Sec.sh_link]); 289 IS->DependentSection = Sections[I]; 290 } 291 } 292 293 template <class ELFT> 294 InputSectionBase<ELFT> * 295 elf::ObjectFile<ELFT>::getRelocTarget(const Elf_Shdr &Sec) { 296 uint32_t Idx = Sec.sh_info; 297 if (Idx >= Sections.size()) 298 fatal(getFilename(this) + ": invalid relocated section index: " + 299 Twine(Idx)); 300 InputSectionBase<ELFT> *Target = Sections[Idx]; 301 302 // Strictly speaking, a relocation section must be included in the 303 // group of the section it relocates. However, LLVM 3.3 and earlier 304 // would fail to do so, so we gracefully handle that case. 305 if (Target == &InputSection<ELFT>::Discarded) 306 return nullptr; 307 308 if (!Target) 309 fatal(getFilename(this) + ": unsupported relocation reference"); 310 return Target; 311 } 312 313 template <class ELFT> 314 InputSectionBase<ELFT> * 315 elf::ObjectFile<ELFT>::createInputSection(const Elf_Shdr &Sec) { 316 StringRef Name = check(this->ELFObj.getSectionName(&Sec)); 317 318 switch (Sec.sh_type) { 319 case SHT_ARM_ATTRIBUTES: 320 // FIXME: ARM meta-data section. At present attributes are ignored, 321 // they can be used to reason about object compatibility. 322 return &InputSection<ELFT>::Discarded; 323 case SHT_MIPS_REGINFO: 324 MipsReginfo.reset(new MipsReginfoInputSection<ELFT>(this, &Sec, Name)); 325 return MipsReginfo.get(); 326 case SHT_MIPS_OPTIONS: 327 MipsOptions.reset(new MipsOptionsInputSection<ELFT>(this, &Sec, Name)); 328 return MipsOptions.get(); 329 case SHT_MIPS_ABIFLAGS: 330 MipsAbiFlags.reset(new MipsAbiFlagsInputSection<ELFT>(this, &Sec, Name)); 331 return MipsAbiFlags.get(); 332 case SHT_RELA: 333 case SHT_REL: { 334 // This section contains relocation information. 335 // If -r is given, we do not interpret or apply relocation 336 // but just copy relocation sections to output. 337 if (Config->Relocatable) 338 return new (IAlloc.Allocate()) InputSection<ELFT>(this, &Sec, Name); 339 340 // Find the relocation target section and associate this 341 // section with it. 342 InputSectionBase<ELFT> *Target = getRelocTarget(Sec); 343 if (!Target) 344 return nullptr; 345 if (auto *S = dyn_cast<InputSection<ELFT>>(Target)) { 346 S->RelocSections.push_back(&Sec); 347 return nullptr; 348 } 349 if (auto *S = dyn_cast<EhInputSection<ELFT>>(Target)) { 350 if (S->RelocSection) 351 fatal(getFilename(this) + 352 ": multiple relocation sections to .eh_frame are not supported"); 353 S->RelocSection = &Sec; 354 return nullptr; 355 } 356 fatal(getFilename(this) + 357 ": relocations pointing to SHF_MERGE are not supported"); 358 } 359 } 360 361 // .note.GNU-stack is a marker section to control the presence of 362 // PT_GNU_STACK segment in outputs. Since the presence of the segment 363 // is controlled only by the command line option (-z execstack) in LLD, 364 // .note.GNU-stack is ignored. 365 if (Name == ".note.GNU-stack") 366 return &InputSection<ELFT>::Discarded; 367 368 if (Name == ".note.GNU-split-stack") { 369 error("objects using splitstacks are not supported"); 370 return &InputSection<ELFT>::Discarded; 371 } 372 373 if (Config->Strip != StripPolicy::None && Name.startswith(".debug")) 374 return &InputSection<ELFT>::Discarded; 375 376 // The linker merges EH (exception handling) frames and creates a 377 // .eh_frame_hdr section for runtime. So we handle them with a special 378 // class. For relocatable outputs, they are just passed through. 379 if (Name == ".eh_frame" && !Config->Relocatable) 380 return new (EHAlloc.Allocate()) EhInputSection<ELFT>(this, &Sec, Name); 381 382 if (shouldMerge(Sec)) 383 return new (MAlloc.Allocate()) MergeInputSection<ELFT>(this, &Sec, Name); 384 return new (IAlloc.Allocate()) InputSection<ELFT>(this, &Sec, Name); 385 } 386 387 template <class ELFT> void elf::ObjectFile<ELFT>::initializeSymbols() { 388 this->initStringTable(); 389 Elf_Sym_Range Syms = this->getElfSymbols(false); 390 uint32_t NumSymbols = std::distance(Syms.begin(), Syms.end()); 391 SymbolBodies.reserve(NumSymbols); 392 for (const Elf_Sym &Sym : Syms) 393 SymbolBodies.push_back(createSymbolBody(&Sym)); 394 } 395 396 template <class ELFT> 397 InputSectionBase<ELFT> * 398 elf::ObjectFile<ELFT>::getSection(const Elf_Sym &Sym) const { 399 uint32_t Index = this->getSectionIndex(Sym); 400 if (Index >= Sections.size()) 401 fatal(getFilename(this) + ": invalid section index: " + Twine(Index)); 402 InputSectionBase<ELFT> *S = Sections[Index]; 403 404 // We found that GNU assembler 2.17.50 [FreeBSD] 2007-07-03 405 // could generate broken objects. STT_SECTION symbols can be 406 // associated with SHT_REL[A]/SHT_SYMTAB/SHT_STRTAB sections. 407 // In this case it is fine for section to be null here as we 408 // do not allocate sections of these types. 409 if (!S) { 410 if (Index == 0 || Sym.getType() == STT_SECTION) 411 return nullptr; 412 fatal(getFilename(this) + ": invalid section index: " + Twine(Index)); 413 } 414 415 if (S == &InputSectionBase<ELFT>::Discarded) 416 return S; 417 return S->Repl; 418 } 419 420 template <class ELFT> 421 SymbolBody *elf::ObjectFile<ELFT>::createSymbolBody(const Elf_Sym *Sym) { 422 int Binding = Sym->getBinding(); 423 InputSectionBase<ELFT> *Sec = getSection(*Sym); 424 if (Binding == STB_LOCAL) { 425 if (Sym->st_shndx == SHN_UNDEF) 426 return new (this->Alloc) 427 Undefined(Sym->st_name, Sym->st_other, Sym->getType(), this); 428 return new (this->Alloc) DefinedRegular<ELFT>(*Sym, Sec); 429 } 430 431 StringRef Name = check(Sym->getName(this->StringTable)); 432 433 switch (Sym->st_shndx) { 434 case SHN_UNDEF: 435 return elf::Symtab<ELFT>::X->addUndefined(Name, Binding, Sym->st_other, 436 Sym->getType(), 437 /*CanOmitFromDynSym*/ false, this) 438 ->body(); 439 case SHN_COMMON: 440 if (Sym->st_value == 0 || Sym->st_value >= UINT32_MAX) 441 fatal(getFilename(this) + ": common symbol '" + Name + 442 "' has invalid alignment: " + Twine(Sym->st_value)); 443 return elf::Symtab<ELFT>::X->addCommon(Name, Sym->st_size, Sym->st_value, 444 Binding, Sym->st_other, 445 Sym->getType(), this) 446 ->body(); 447 } 448 449 switch (Binding) { 450 default: 451 fatal(getFilename(this) + ": unexpected binding: " + Twine(Binding)); 452 case STB_GLOBAL: 453 case STB_WEAK: 454 case STB_GNU_UNIQUE: 455 if (Sec == &InputSection<ELFT>::Discarded) 456 return elf::Symtab<ELFT>::X->addUndefined(Name, Binding, Sym->st_other, 457 Sym->getType(), 458 /*CanOmitFromDynSym*/ false, 459 this) 460 ->body(); 461 return elf::Symtab<ELFT>::X->addRegular(Name, *Sym, Sec)->body(); 462 } 463 } 464 465 template <class ELFT> void ArchiveFile::parse() { 466 File = check(Archive::create(MB), "failed to parse archive"); 467 468 // Read the symbol table to construct Lazy objects. 469 for (const Archive::Symbol &Sym : File->symbols()) 470 Symtab<ELFT>::X->addLazyArchive(this, Sym); 471 } 472 473 // Returns a buffer pointing to a member file containing a given symbol. 474 MemoryBufferRef ArchiveFile::getMember(const Archive::Symbol *Sym) { 475 Archive::Child C = 476 check(Sym->getMember(), 477 "could not get the member for symbol " + Sym->getName()); 478 479 if (!Seen.insert(C.getChildOffset()).second) 480 return MemoryBufferRef(); 481 482 MemoryBufferRef Ret = 483 check(C.getMemoryBufferRef(), 484 "could not get the buffer for the member defining symbol " + 485 Sym->getName()); 486 487 if (C.getParent()->isThin() && Driver->Cpio) 488 Driver->Cpio->append(relativeToRoot(check(C.getFullName())), 489 Ret.getBuffer()); 490 491 return Ret; 492 } 493 494 template <class ELFT> 495 SharedFile<ELFT>::SharedFile(MemoryBufferRef M) 496 : ELFFileBase<ELFT>(Base::SharedKind, M), AsNeeded(Config->AsNeeded) {} 497 498 template <class ELFT> 499 const typename ELFT::Shdr * 500 SharedFile<ELFT>::getSection(const Elf_Sym &Sym) const { 501 uint32_t Index = this->getSectionIndex(Sym); 502 if (Index == 0) 503 return nullptr; 504 return check(this->ELFObj.getSection(Index)); 505 } 506 507 // Partially parse the shared object file so that we can call 508 // getSoName on this object. 509 template <class ELFT> void SharedFile<ELFT>::parseSoName() { 510 typedef typename ELFT::Dyn Elf_Dyn; 511 typedef typename ELFT::uint uintX_t; 512 const Elf_Shdr *DynamicSec = nullptr; 513 514 const ELFFile<ELFT> Obj = this->ELFObj; 515 for (const Elf_Shdr &Sec : Obj.sections()) { 516 switch (Sec.sh_type) { 517 default: 518 continue; 519 case SHT_DYNSYM: 520 this->Symtab = &Sec; 521 break; 522 case SHT_DYNAMIC: 523 DynamicSec = &Sec; 524 break; 525 case SHT_SYMTAB_SHNDX: 526 this->SymtabSHNDX = check(Obj.getSHNDXTable(Sec)); 527 break; 528 case SHT_GNU_versym: 529 this->VersymSec = &Sec; 530 break; 531 case SHT_GNU_verdef: 532 this->VerdefSec = &Sec; 533 break; 534 } 535 } 536 537 this->initStringTable(); 538 539 // DSOs are identified by soname, and they usually contain 540 // DT_SONAME tag in their header. But if they are missing, 541 // filenames are used as default sonames. 542 SoName = sys::path::filename(this->getName()); 543 544 if (!DynamicSec) 545 return; 546 547 ArrayRef<Elf_Dyn> Arr = 548 check(Obj.template getSectionContentsAsArray<Elf_Dyn>(DynamicSec), 549 getFilename(this) + ": getSectionContentsAsArray failed"); 550 for (const Elf_Dyn &Dyn : Arr) { 551 if (Dyn.d_tag == DT_SONAME) { 552 uintX_t Val = Dyn.getVal(); 553 if (Val >= this->StringTable.size()) 554 fatal(getFilename(this) + ": invalid DT_SONAME entry"); 555 SoName = StringRef(this->StringTable.data() + Val); 556 return; 557 } 558 } 559 } 560 561 // Parse the version definitions in the object file if present. Returns a vector 562 // whose nth element contains a pointer to the Elf_Verdef for version identifier 563 // n. Version identifiers that are not definitions map to nullptr. The array 564 // always has at least length 1. 565 template <class ELFT> 566 std::vector<const typename ELFT::Verdef *> 567 SharedFile<ELFT>::parseVerdefs(const Elf_Versym *&Versym) { 568 std::vector<const Elf_Verdef *> Verdefs(1); 569 // We only need to process symbol versions for this DSO if it has both a 570 // versym and a verdef section, which indicates that the DSO contains symbol 571 // version definitions. 572 if (!VersymSec || !VerdefSec) 573 return Verdefs; 574 575 // The location of the first global versym entry. 576 Versym = reinterpret_cast<const Elf_Versym *>(this->ELFObj.base() + 577 VersymSec->sh_offset) + 578 this->Symtab->sh_info; 579 580 // We cannot determine the largest verdef identifier without inspecting 581 // every Elf_Verdef, but both bfd and gold assign verdef identifiers 582 // sequentially starting from 1, so we predict that the largest identifier 583 // will be VerdefCount. 584 unsigned VerdefCount = VerdefSec->sh_info; 585 Verdefs.resize(VerdefCount + 1); 586 587 // Build the Verdefs array by following the chain of Elf_Verdef objects 588 // from the start of the .gnu.version_d section. 589 const uint8_t *Verdef = this->ELFObj.base() + VerdefSec->sh_offset; 590 for (unsigned I = 0; I != VerdefCount; ++I) { 591 auto *CurVerdef = reinterpret_cast<const Elf_Verdef *>(Verdef); 592 Verdef += CurVerdef->vd_next; 593 unsigned VerdefIndex = CurVerdef->vd_ndx; 594 if (Verdefs.size() <= VerdefIndex) 595 Verdefs.resize(VerdefIndex + 1); 596 Verdefs[VerdefIndex] = CurVerdef; 597 } 598 599 return Verdefs; 600 } 601 602 // Fully parse the shared object file. This must be called after parseSoName(). 603 template <class ELFT> void SharedFile<ELFT>::parseRest() { 604 // Create mapping from version identifiers to Elf_Verdef entries. 605 const Elf_Versym *Versym = nullptr; 606 std::vector<const Elf_Verdef *> Verdefs = parseVerdefs(Versym); 607 608 Elf_Sym_Range Syms = this->getElfSymbols(true); 609 for (const Elf_Sym &Sym : Syms) { 610 unsigned VersymIndex = 0; 611 if (Versym) { 612 VersymIndex = Versym->vs_index; 613 ++Versym; 614 } 615 616 StringRef Name = check(Sym.getName(this->StringTable)); 617 if (Sym.isUndefined()) { 618 Undefs.push_back(Name); 619 continue; 620 } 621 622 if (Versym) { 623 // Ignore local symbols and non-default versions. 624 if (VersymIndex == VER_NDX_LOCAL || (VersymIndex & VERSYM_HIDDEN)) 625 continue; 626 } 627 628 const Elf_Verdef *V = 629 VersymIndex == VER_NDX_GLOBAL ? nullptr : Verdefs[VersymIndex]; 630 elf::Symtab<ELFT>::X->addShared(this, Name, Sym, V); 631 } 632 } 633 634 static ELFKind getBitcodeELFKind(MemoryBufferRef MB) { 635 Triple T(getBitcodeTargetTriple(MB, Driver->Context)); 636 if (T.isLittleEndian()) 637 return T.isArch64Bit() ? ELF64LEKind : ELF32LEKind; 638 return T.isArch64Bit() ? ELF64BEKind : ELF32BEKind; 639 } 640 641 static uint8_t getBitcodeMachineKind(MemoryBufferRef MB) { 642 Triple T(getBitcodeTargetTriple(MB, Driver->Context)); 643 switch (T.getArch()) { 644 case Triple::aarch64: 645 return EM_AARCH64; 646 case Triple::arm: 647 return EM_ARM; 648 case Triple::mips: 649 case Triple::mipsel: 650 case Triple::mips64: 651 case Triple::mips64el: 652 return EM_MIPS; 653 case Triple::ppc: 654 return EM_PPC; 655 case Triple::ppc64: 656 return EM_PPC64; 657 case Triple::x86: 658 return T.isOSIAMCU() ? EM_IAMCU : EM_386; 659 case Triple::x86_64: 660 return EM_X86_64; 661 default: 662 fatal(MB.getBufferIdentifier() + 663 ": could not infer e_machine from bitcode target triple " + T.str()); 664 } 665 } 666 667 BitcodeFile::BitcodeFile(MemoryBufferRef MB) : InputFile(BitcodeKind, MB) { 668 EKind = getBitcodeELFKind(MB); 669 EMachine = getBitcodeMachineKind(MB); 670 } 671 672 static uint8_t mapVisibility(GlobalValue::VisibilityTypes GvVisibility) { 673 switch (GvVisibility) { 674 case GlobalValue::DefaultVisibility: 675 return STV_DEFAULT; 676 case GlobalValue::HiddenVisibility: 677 return STV_HIDDEN; 678 case GlobalValue::ProtectedVisibility: 679 return STV_PROTECTED; 680 } 681 llvm_unreachable("unknown visibility"); 682 } 683 684 template <class ELFT> 685 static Symbol *createBitcodeSymbol(const DenseSet<const Comdat *> &KeptComdats, 686 const lto::InputFile::Symbol &ObjSym, 687 StringSaver &Saver, BitcodeFile *F) { 688 StringRef NameRef = Saver.save(ObjSym.getName()); 689 uint32_t Flags = ObjSym.getFlags(); 690 uint32_t Binding = (Flags & BasicSymbolRef::SF_Weak) ? STB_WEAK : STB_GLOBAL; 691 692 uint8_t Type = ObjSym.isTLS() ? STT_TLS : STT_NOTYPE; 693 uint8_t Visibility = mapVisibility(ObjSym.getVisibility()); 694 bool CanOmitFromDynSym = ObjSym.canBeOmittedFromSymbolTable(); 695 696 if (const Comdat *C = check(ObjSym.getComdat())) 697 if (!KeptComdats.count(C)) 698 return Symtab<ELFT>::X->addUndefined(NameRef, Binding, Visibility, Type, 699 CanOmitFromDynSym, F); 700 701 if (Flags & BasicSymbolRef::SF_Undefined) 702 return Symtab<ELFT>::X->addUndefined(NameRef, Binding, Visibility, Type, 703 CanOmitFromDynSym, F); 704 705 if (Flags & BasicSymbolRef::SF_Common) 706 return Symtab<ELFT>::X->addCommon(NameRef, ObjSym.getCommonSize(), 707 ObjSym.getCommonAlignment(), Binding, 708 Visibility, STT_OBJECT, F); 709 710 return Symtab<ELFT>::X->addBitcode(NameRef, Binding, Visibility, Type, 711 CanOmitFromDynSym, F); 712 } 713 714 template <class ELFT> 715 void BitcodeFile::parse(DenseSet<StringRef> &ComdatGroups) { 716 Obj = check(lto::InputFile::create(MB)); 717 DenseSet<const Comdat *> KeptComdats; 718 for (const auto &P : Obj->getComdatSymbolTable()) { 719 StringRef N = Saver.save(P.first()); 720 if (ComdatGroups.insert(N).second) 721 KeptComdats.insert(&P.second); 722 } 723 724 for (const lto::InputFile::Symbol &ObjSym : Obj->symbols()) 725 Symbols.push_back( 726 createBitcodeSymbol<ELFT>(KeptComdats, ObjSym, Saver, this)); 727 } 728 729 template <template <class> class T> 730 static InputFile *createELFFile(MemoryBufferRef MB) { 731 unsigned char Size; 732 unsigned char Endian; 733 std::tie(Size, Endian) = getElfArchType(MB.getBuffer()); 734 if (Endian != ELFDATA2LSB && Endian != ELFDATA2MSB) 735 fatal("invalid data encoding: " + MB.getBufferIdentifier()); 736 737 InputFile *Obj; 738 if (Size == ELFCLASS32 && Endian == ELFDATA2LSB) 739 Obj = new T<ELF32LE>(MB); 740 else if (Size == ELFCLASS32 && Endian == ELFDATA2MSB) 741 Obj = new T<ELF32BE>(MB); 742 else if (Size == ELFCLASS64 && Endian == ELFDATA2LSB) 743 Obj = new T<ELF64LE>(MB); 744 else if (Size == ELFCLASS64 && Endian == ELFDATA2MSB) 745 Obj = new T<ELF64BE>(MB); 746 else 747 fatal("invalid file class: " + MB.getBufferIdentifier()); 748 749 if (!Config->FirstElf) 750 Config->FirstElf = Obj; 751 return Obj; 752 } 753 754 // Wraps a binary blob with an ELF header and footer 755 // so that we can link it as a regular ELF file. 756 template <class ELFT> InputFile *BinaryFile::createELF() { 757 // Fill the ELF file header. 758 ELFCreator<ELFT> ELF(ET_REL, Config->EMachine); 759 auto DataSec = ELF.addSection(".data"); 760 DataSec.Header->sh_flags = SHF_ALLOC; 761 DataSec.Header->sh_size = MB.getBufferSize(); 762 DataSec.Header->sh_type = SHT_PROGBITS; 763 DataSec.Header->sh_addralign = 8; 764 765 // Replace non-alphanumeric characters with '_'. 766 std::string Filepath = MB.getBufferIdentifier(); 767 std::transform(Filepath.begin(), Filepath.end(), Filepath.begin(), 768 [](char C) { return isalnum(C) ? C : '_'; }); 769 770 // Add _start, _end and _size symbols. 771 std::string StartSym = "_binary_" + Filepath + "_start"; 772 auto SSym = ELF.addSymbol(StartSym); 773 SSym.Sym->setBindingAndType(STB_GLOBAL, STT_OBJECT); 774 SSym.Sym->st_shndx = DataSec.Index; 775 776 std::string EndSym = "_binary_" + Filepath + "_end"; 777 auto ESym = ELF.addSymbol(EndSym); 778 ESym.Sym->setBindingAndType(STB_GLOBAL, STT_OBJECT); 779 ESym.Sym->st_shndx = DataSec.Index; 780 ESym.Sym->st_value = MB.getBufferSize(); 781 782 std::string SizeSym = "_binary_" + Filepath + "_size"; 783 auto SZSym = ELF.addSymbol(SizeSym); 784 SZSym.Sym->setBindingAndType(STB_GLOBAL, STT_OBJECT); 785 SZSym.Sym->st_shndx = SHN_ABS; 786 SZSym.Sym->st_value = MB.getBufferSize(); 787 788 // Fix the ELF file layout and write it down to ELFData uint8_t vector. 789 std::size_t Size = ELF.layout(); 790 ELFData.resize(Size); 791 ELF.write(ELFData.data()); 792 793 // Fill .data section with actual data. 794 std::copy(MB.getBufferStart(), MB.getBufferEnd(), 795 ELFData.data() + DataSec.Header->sh_offset); 796 797 return createELFFile<ObjectFile>(MemoryBufferRef( 798 StringRef((char *)ELFData.data(), Size), MB.getBufferIdentifier())); 799 } 800 801 static bool isBitcode(MemoryBufferRef MB) { 802 using namespace sys::fs; 803 return identify_magic(MB.getBuffer()) == file_magic::bitcode; 804 } 805 806 InputFile *elf::createObjectFile(MemoryBufferRef MB, StringRef ArchiveName) { 807 InputFile *F = 808 isBitcode(MB) ? new BitcodeFile(MB) : createELFFile<ObjectFile>(MB); 809 F->ArchiveName = ArchiveName; 810 return F; 811 } 812 813 InputFile *elf::createSharedFile(MemoryBufferRef MB) { 814 return createELFFile<SharedFile>(MB); 815 } 816 817 MemoryBufferRef LazyObjectFile::getBuffer() { 818 if (Seen) 819 return MemoryBufferRef(); 820 Seen = true; 821 return MB; 822 } 823 824 template <class ELFT> void LazyObjectFile::parse() { 825 for (StringRef Sym : getSymbols()) 826 Symtab<ELFT>::X->addLazyObject(Sym, *this); 827 } 828 829 template <class ELFT> std::vector<StringRef> LazyObjectFile::getElfSymbols() { 830 typedef typename ELFT::Shdr Elf_Shdr; 831 typedef typename ELFT::Sym Elf_Sym; 832 typedef typename ELFT::SymRange Elf_Sym_Range; 833 834 const ELFFile<ELFT> Obj = createELFObj<ELFT>(this->MB); 835 for (const Elf_Shdr &Sec : Obj.sections()) { 836 if (Sec.sh_type != SHT_SYMTAB) 837 continue; 838 Elf_Sym_Range Syms = Obj.symbols(&Sec); 839 uint32_t FirstNonLocal = Sec.sh_info; 840 StringRef StringTable = check(Obj.getStringTableForSymtab(Sec)); 841 std::vector<StringRef> V; 842 for (const Elf_Sym &Sym : Syms.slice(FirstNonLocal)) 843 if (Sym.st_shndx != SHN_UNDEF) 844 V.push_back(check(Sym.getName(StringTable))); 845 return V; 846 } 847 return {}; 848 } 849 850 std::vector<StringRef> LazyObjectFile::getBitcodeSymbols() { 851 std::unique_ptr<lto::InputFile> Obj = check(lto::InputFile::create(this->MB)); 852 std::vector<StringRef> V; 853 for (const lto::InputFile::Symbol &Sym : Obj->symbols()) 854 if (!(Sym.getFlags() & BasicSymbolRef::SF_Undefined)) 855 V.push_back(Saver.save(Sym.getName())); 856 return V; 857 } 858 859 // Returns a vector of globally-visible defined symbol names. 860 std::vector<StringRef> LazyObjectFile::getSymbols() { 861 if (isBitcode(this->MB)) 862 return getBitcodeSymbols(); 863 864 unsigned char Size; 865 unsigned char Endian; 866 std::tie(Size, Endian) = getElfArchType(this->MB.getBuffer()); 867 if (Size == ELFCLASS32) { 868 if (Endian == ELFDATA2LSB) 869 return getElfSymbols<ELF32LE>(); 870 return getElfSymbols<ELF32BE>(); 871 } 872 if (Endian == ELFDATA2LSB) 873 return getElfSymbols<ELF64LE>(); 874 return getElfSymbols<ELF64BE>(); 875 } 876 877 template void ArchiveFile::parse<ELF32LE>(); 878 template void ArchiveFile::parse<ELF32BE>(); 879 template void ArchiveFile::parse<ELF64LE>(); 880 template void ArchiveFile::parse<ELF64BE>(); 881 882 template void BitcodeFile::parse<ELF32LE>(DenseSet<StringRef> &); 883 template void BitcodeFile::parse<ELF32BE>(DenseSet<StringRef> &); 884 template void BitcodeFile::parse<ELF64LE>(DenseSet<StringRef> &); 885 template void BitcodeFile::parse<ELF64BE>(DenseSet<StringRef> &); 886 887 template void LazyObjectFile::parse<ELF32LE>(); 888 template void LazyObjectFile::parse<ELF32BE>(); 889 template void LazyObjectFile::parse<ELF64LE>(); 890 template void LazyObjectFile::parse<ELF64BE>(); 891 892 template class elf::ELFFileBase<ELF32LE>; 893 template class elf::ELFFileBase<ELF32BE>; 894 template class elf::ELFFileBase<ELF64LE>; 895 template class elf::ELFFileBase<ELF64BE>; 896 897 template class elf::ObjectFile<ELF32LE>; 898 template class elf::ObjectFile<ELF32BE>; 899 template class elf::ObjectFile<ELF64LE>; 900 template class elf::ObjectFile<ELF64BE>; 901 902 template class elf::SharedFile<ELF32LE>; 903 template class elf::SharedFile<ELF32BE>; 904 template class elf::SharedFile<ELF64LE>; 905 template class elf::SharedFile<ELF64BE>; 906 907 template InputFile *BinaryFile::createELF<ELF32LE>(); 908 template InputFile *BinaryFile::createELF<ELF32BE>(); 909 template InputFile *BinaryFile::createELF<ELF64LE>(); 910 template InputFile *BinaryFile::createELF<ELF64BE>(); 911