1 //===- InputFiles.cpp -----------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "InputFiles.h" 10 #include "Driver.h" 11 #include "InputSection.h" 12 #include "LinkerScript.h" 13 #include "SymbolTable.h" 14 #include "Symbols.h" 15 #include "SyntheticSections.h" 16 #include "lld/Common/ErrorHandler.h" 17 #include "lld/Common/Memory.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/CodeGen/Analysis.h" 20 #include "llvm/DebugInfo/DWARF/DWARFContext.h" 21 #include "llvm/IR/LLVMContext.h" 22 #include "llvm/IR/Module.h" 23 #include "llvm/LTO/LTO.h" 24 #include "llvm/MC/StringTableBuilder.h" 25 #include "llvm/Object/ELFObjectFile.h" 26 #include "llvm/Support/ARMAttributeParser.h" 27 #include "llvm/Support/ARMBuildAttributes.h" 28 #include "llvm/Support/Endian.h" 29 #include "llvm/Support/Path.h" 30 #include "llvm/Support/TarWriter.h" 31 #include "llvm/Support/raw_ostream.h" 32 33 using namespace llvm; 34 using namespace llvm::ELF; 35 using namespace llvm::object; 36 using namespace llvm::sys; 37 using namespace llvm::sys::fs; 38 using namespace llvm::support::endian; 39 40 using namespace lld; 41 using namespace lld::elf; 42 43 bool InputFile::isInGroup; 44 uint32_t InputFile::nextGroupId; 45 std::vector<BinaryFile *> elf::binaryFiles; 46 std::vector<BitcodeFile *> elf::bitcodeFiles; 47 std::vector<LazyObjFile *> elf::lazyObjFiles; 48 std::vector<InputFile *> elf::objectFiles; 49 std::vector<SharedFile *> elf::sharedFiles; 50 51 std::unique_ptr<TarWriter> elf::tar; 52 53 static ELFKind getELFKind(MemoryBufferRef mb, StringRef archiveName) { 54 unsigned char size; 55 unsigned char endian; 56 std::tie(size, endian) = getElfArchType(mb.getBuffer()); 57 58 auto report = [&](StringRef msg) { 59 StringRef filename = mb.getBufferIdentifier(); 60 if (archiveName.empty()) 61 fatal(filename + ": " + msg); 62 else 63 fatal(archiveName + "(" + filename + "): " + msg); 64 }; 65 66 if (!mb.getBuffer().startswith(ElfMagic)) 67 report("not an ELF file"); 68 if (endian != ELFDATA2LSB && endian != ELFDATA2MSB) 69 report("corrupted ELF file: invalid data encoding"); 70 if (size != ELFCLASS32 && size != ELFCLASS64) 71 report("corrupted ELF file: invalid file class"); 72 73 size_t bufSize = mb.getBuffer().size(); 74 if ((size == ELFCLASS32 && bufSize < sizeof(Elf32_Ehdr)) || 75 (size == ELFCLASS64 && bufSize < sizeof(Elf64_Ehdr))) 76 report("corrupted ELF file: file is too short"); 77 78 if (size == ELFCLASS32) 79 return (endian == ELFDATA2LSB) ? ELF32LEKind : ELF32BEKind; 80 return (endian == ELFDATA2LSB) ? ELF64LEKind : ELF64BEKind; 81 } 82 83 InputFile::InputFile(Kind k, MemoryBufferRef m) 84 : mb(m), groupId(nextGroupId), fileKind(k) { 85 // All files within the same --{start,end}-group get the same group ID. 86 // Otherwise, a new file will get a new group ID. 87 if (!isInGroup) 88 ++nextGroupId; 89 } 90 91 Optional<MemoryBufferRef> elf::readFile(StringRef path) { 92 // The --chroot option changes our virtual root directory. 93 // This is useful when you are dealing with files created by --reproduce. 94 if (!config->chroot.empty() && path.startswith("/")) 95 path = saver.save(config->chroot + path); 96 97 log(path); 98 99 auto mbOrErr = MemoryBuffer::getFile(path, -1, false); 100 if (auto ec = mbOrErr.getError()) { 101 error("cannot open " + path + ": " + ec.message()); 102 return None; 103 } 104 105 std::unique_ptr<MemoryBuffer> &mb = *mbOrErr; 106 MemoryBufferRef mbref = mb->getMemBufferRef(); 107 make<std::unique_ptr<MemoryBuffer>>(std::move(mb)); // take MB ownership 108 109 if (tar) 110 tar->append(relativeToRoot(path), mbref.getBuffer()); 111 return mbref; 112 } 113 114 // All input object files must be for the same architecture 115 // (e.g. it does not make sense to link x86 object files with 116 // MIPS object files.) This function checks for that error. 117 static bool isCompatible(InputFile *file) { 118 if (!file->isElf() && !isa<BitcodeFile>(file)) 119 return true; 120 121 if (file->ekind == config->ekind && file->emachine == config->emachine) { 122 if (config->emachine != EM_MIPS) 123 return true; 124 if (isMipsN32Abi(file) == config->mipsN32Abi) 125 return true; 126 } 127 128 if (!config->emulation.empty()) { 129 error(toString(file) + " is incompatible with " + config->emulation); 130 return false; 131 } 132 133 InputFile *existing; 134 if (!objectFiles.empty()) 135 existing = objectFiles[0]; 136 else if (!sharedFiles.empty()) 137 existing = sharedFiles[0]; 138 else 139 existing = bitcodeFiles[0]; 140 141 error(toString(file) + " is incompatible with " + toString(existing)); 142 return false; 143 } 144 145 template <class ELFT> static void doParseFile(InputFile *file) { 146 if (!isCompatible(file)) 147 return; 148 149 // Binary file 150 if (auto *f = dyn_cast<BinaryFile>(file)) { 151 binaryFiles.push_back(f); 152 f->parse(); 153 return; 154 } 155 156 // .a file 157 if (auto *f = dyn_cast<ArchiveFile>(file)) { 158 f->parse(); 159 return; 160 } 161 162 // Lazy object file 163 if (auto *f = dyn_cast<LazyObjFile>(file)) { 164 lazyObjFiles.push_back(f); 165 f->parse<ELFT>(); 166 return; 167 } 168 169 if (config->trace) 170 message(toString(file)); 171 172 // .so file 173 if (auto *f = dyn_cast<SharedFile>(file)) { 174 f->parse<ELFT>(); 175 return; 176 } 177 178 // LLVM bitcode file 179 if (auto *f = dyn_cast<BitcodeFile>(file)) { 180 bitcodeFiles.push_back(f); 181 f->parse<ELFT>(); 182 return; 183 } 184 185 // Regular object file 186 objectFiles.push_back(file); 187 cast<ObjFile<ELFT>>(file)->parse(); 188 } 189 190 // Add symbols in File to the symbol table. 191 void elf::parseFile(InputFile *file) { 192 switch (config->ekind) { 193 case ELF32LEKind: 194 doParseFile<ELF32LE>(file); 195 return; 196 case ELF32BEKind: 197 doParseFile<ELF32BE>(file); 198 return; 199 case ELF64LEKind: 200 doParseFile<ELF64LE>(file); 201 return; 202 case ELF64BEKind: 203 doParseFile<ELF64BE>(file); 204 return; 205 default: 206 llvm_unreachable("unknown ELFT"); 207 } 208 } 209 210 // Concatenates arguments to construct a string representing an error location. 211 static std::string createFileLineMsg(StringRef path, unsigned line) { 212 std::string filename = path::filename(path); 213 std::string lineno = ":" + std::to_string(line); 214 if (filename == path) 215 return filename + lineno; 216 return filename + lineno + " (" + path.str() + lineno + ")"; 217 } 218 219 template <class ELFT> 220 static std::string getSrcMsgAux(ObjFile<ELFT> &file, const Symbol &sym, 221 InputSectionBase &sec, uint64_t offset) { 222 // In DWARF, functions and variables are stored to different places. 223 // First, lookup a function for a given offset. 224 if (Optional<DILineInfo> info = file.getDILineInfo(&sec, offset)) 225 return createFileLineMsg(info->FileName, info->Line); 226 227 // If it failed, lookup again as a variable. 228 if (Optional<std::pair<std::string, unsigned>> fileLine = 229 file.getVariableLoc(sym.getName())) 230 return createFileLineMsg(fileLine->first, fileLine->second); 231 232 // File.sourceFile contains STT_FILE symbol, and that is a last resort. 233 return file.sourceFile; 234 } 235 236 std::string InputFile::getSrcMsg(const Symbol &sym, InputSectionBase &sec, 237 uint64_t offset) { 238 if (kind() != ObjKind) 239 return ""; 240 switch (config->ekind) { 241 default: 242 llvm_unreachable("Invalid kind"); 243 case ELF32LEKind: 244 return getSrcMsgAux(cast<ObjFile<ELF32LE>>(*this), sym, sec, offset); 245 case ELF32BEKind: 246 return getSrcMsgAux(cast<ObjFile<ELF32BE>>(*this), sym, sec, offset); 247 case ELF64LEKind: 248 return getSrcMsgAux(cast<ObjFile<ELF64LE>>(*this), sym, sec, offset); 249 case ELF64BEKind: 250 return getSrcMsgAux(cast<ObjFile<ELF64BE>>(*this), sym, sec, offset); 251 } 252 } 253 254 template <class ELFT> void ObjFile<ELFT>::initializeDwarf() { 255 dwarf = llvm::make_unique<DWARFContext>(make_unique<LLDDwarfObj<ELFT>>(this)); 256 for (std::unique_ptr<DWARFUnit> &cu : dwarf->compile_units()) { 257 auto report = [](Error err) { 258 handleAllErrors(std::move(err), 259 [](ErrorInfoBase &info) { warn(info.message()); }); 260 }; 261 Expected<const DWARFDebugLine::LineTable *> expectedLT = 262 dwarf->getLineTableForUnit(cu.get(), report); 263 const DWARFDebugLine::LineTable *lt = nullptr; 264 if (expectedLT) 265 lt = *expectedLT; 266 else 267 report(expectedLT.takeError()); 268 if (!lt) 269 continue; 270 lineTables.push_back(lt); 271 272 // Loop over variable records and insert them to variableLoc. 273 for (const auto &entry : cu->dies()) { 274 DWARFDie die(cu.get(), &entry); 275 // Skip all tags that are not variables. 276 if (die.getTag() != dwarf::DW_TAG_variable) 277 continue; 278 279 // Skip if a local variable because we don't need them for generating 280 // error messages. In general, only non-local symbols can fail to be 281 // linked. 282 if (!dwarf::toUnsigned(die.find(dwarf::DW_AT_external), 0)) 283 continue; 284 285 // Get the source filename index for the variable. 286 unsigned file = dwarf::toUnsigned(die.find(dwarf::DW_AT_decl_file), 0); 287 if (!lt->hasFileAtIndex(file)) 288 continue; 289 290 // Get the line number on which the variable is declared. 291 unsigned line = dwarf::toUnsigned(die.find(dwarf::DW_AT_decl_line), 0); 292 293 // Here we want to take the variable name to add it into variableLoc. 294 // Variable can have regular and linkage name associated. At first, we try 295 // to get linkage name as it can be different, for example when we have 296 // two variables in different namespaces of the same object. Use common 297 // name otherwise, but handle the case when it also absent in case if the 298 // input object file lacks some debug info. 299 StringRef name = 300 dwarf::toString(die.find(dwarf::DW_AT_linkage_name), 301 dwarf::toString(die.find(dwarf::DW_AT_name), "")); 302 if (!name.empty()) 303 variableLoc.insert({name, {lt, file, line}}); 304 } 305 } 306 } 307 308 // Returns the pair of file name and line number describing location of data 309 // object (variable, array, etc) definition. 310 template <class ELFT> 311 Optional<std::pair<std::string, unsigned>> 312 ObjFile<ELFT>::getVariableLoc(StringRef name) { 313 llvm::call_once(initDwarfLine, [this]() { initializeDwarf(); }); 314 315 // Return if we have no debug information about data object. 316 auto it = variableLoc.find(name); 317 if (it == variableLoc.end()) 318 return None; 319 320 // Take file name string from line table. 321 std::string fileName; 322 if (!it->second.lt->getFileNameByIndex( 323 it->second.file, {}, 324 DILineInfoSpecifier::FileLineInfoKind::AbsoluteFilePath, fileName)) 325 return None; 326 327 return std::make_pair(fileName, it->second.line); 328 } 329 330 // Returns source line information for a given offset 331 // using DWARF debug info. 332 template <class ELFT> 333 Optional<DILineInfo> ObjFile<ELFT>::getDILineInfo(InputSectionBase *s, 334 uint64_t offset) { 335 llvm::call_once(initDwarfLine, [this]() { initializeDwarf(); }); 336 337 // Detect SectionIndex for specified section. 338 uint64_t sectionIndex = object::SectionedAddress::UndefSection; 339 ArrayRef<InputSectionBase *> sections = s->file->getSections(); 340 for (uint64_t curIndex = 0; curIndex < sections.size(); ++curIndex) { 341 if (s == sections[curIndex]) { 342 sectionIndex = curIndex; 343 break; 344 } 345 } 346 347 // Use fake address calcuated by adding section file offset and offset in 348 // section. See comments for ObjectInfo class. 349 DILineInfo info; 350 for (const llvm::DWARFDebugLine::LineTable *lt : lineTables) { 351 if (lt->getFileLineInfoForAddress( 352 {s->getOffsetInFile() + offset, sectionIndex}, nullptr, 353 DILineInfoSpecifier::FileLineInfoKind::AbsoluteFilePath, info)) 354 return info; 355 } 356 return None; 357 } 358 359 // Returns "<internal>", "foo.a(bar.o)" or "baz.o". 360 std::string lld::toString(const InputFile *f) { 361 if (!f) 362 return "<internal>"; 363 364 if (f->toStringCache.empty()) { 365 if (f->archiveName.empty()) 366 f->toStringCache = f->getName(); 367 else 368 f->toStringCache = (f->archiveName + "(" + f->getName() + ")").str(); 369 } 370 return f->toStringCache; 371 } 372 373 ELFFileBase::ELFFileBase(Kind k, MemoryBufferRef mb) : InputFile(k, mb) { 374 ekind = getELFKind(mb, ""); 375 376 switch (ekind) { 377 case ELF32LEKind: 378 init<ELF32LE>(); 379 break; 380 case ELF32BEKind: 381 init<ELF32BE>(); 382 break; 383 case ELF64LEKind: 384 init<ELF64LE>(); 385 break; 386 case ELF64BEKind: 387 init<ELF64BE>(); 388 break; 389 default: 390 llvm_unreachable("getELFKind"); 391 } 392 } 393 394 template <typename Elf_Shdr> 395 static const Elf_Shdr *findSection(ArrayRef<Elf_Shdr> sections, uint32_t type) { 396 for (const Elf_Shdr &sec : sections) 397 if (sec.sh_type == type) 398 return &sec; 399 return nullptr; 400 } 401 402 template <class ELFT> void ELFFileBase::init() { 403 using Elf_Shdr = typename ELFT::Shdr; 404 using Elf_Sym = typename ELFT::Sym; 405 406 // Initialize trivial attributes. 407 const ELFFile<ELFT> &obj = getObj<ELFT>(); 408 emachine = obj.getHeader()->e_machine; 409 osabi = obj.getHeader()->e_ident[llvm::ELF::EI_OSABI]; 410 abiVersion = obj.getHeader()->e_ident[llvm::ELF::EI_ABIVERSION]; 411 412 ArrayRef<Elf_Shdr> sections = CHECK(obj.sections(), this); 413 414 // Find a symbol table. 415 bool isDSO = 416 (identify_magic(mb.getBuffer()) == file_magic::elf_shared_object); 417 const Elf_Shdr *symtabSec = 418 findSection(sections, isDSO ? SHT_DYNSYM : SHT_SYMTAB); 419 420 if (!symtabSec) 421 return; 422 423 // Initialize members corresponding to a symbol table. 424 firstGlobal = symtabSec->sh_info; 425 426 ArrayRef<Elf_Sym> eSyms = CHECK(obj.symbols(symtabSec), this); 427 if (firstGlobal == 0 || firstGlobal > eSyms.size()) 428 fatal(toString(this) + ": invalid sh_info in symbol table"); 429 430 elfSyms = reinterpret_cast<const void *>(eSyms.data()); 431 numELFSyms = eSyms.size(); 432 stringTable = CHECK(obj.getStringTableForSymtab(*symtabSec, sections), this); 433 } 434 435 template <class ELFT> 436 uint32_t ObjFile<ELFT>::getSectionIndex(const Elf_Sym &sym) const { 437 return CHECK( 438 this->getObj().getSectionIndex(&sym, getELFSyms<ELFT>(), shndxTable), 439 this); 440 } 441 442 template <class ELFT> ArrayRef<Symbol *> ObjFile<ELFT>::getLocalSymbols() { 443 if (this->symbols.empty()) 444 return {}; 445 return makeArrayRef(this->symbols).slice(1, this->firstGlobal - 1); 446 } 447 448 template <class ELFT> ArrayRef<Symbol *> ObjFile<ELFT>::getGlobalSymbols() { 449 return makeArrayRef(this->symbols).slice(this->firstGlobal); 450 } 451 452 template <class ELFT> void ObjFile<ELFT>::parse(bool ignoreComdats) { 453 // Read a section table. justSymbols is usually false. 454 if (this->justSymbols) 455 initializeJustSymbols(); 456 else 457 initializeSections(ignoreComdats); 458 459 // Read a symbol table. 460 initializeSymbols(); 461 } 462 463 // Sections with SHT_GROUP and comdat bits define comdat section groups. 464 // They are identified and deduplicated by group name. This function 465 // returns a group name. 466 template <class ELFT> 467 StringRef ObjFile<ELFT>::getShtGroupSignature(ArrayRef<Elf_Shdr> sections, 468 const Elf_Shdr &sec) { 469 typename ELFT::SymRange symbols = this->getELFSyms<ELFT>(); 470 if (sec.sh_info >= symbols.size()) 471 fatal(toString(this) + ": invalid symbol index"); 472 const typename ELFT::Sym &sym = symbols[sec.sh_info]; 473 StringRef signature = CHECK(sym.getName(this->stringTable), this); 474 475 // As a special case, if a symbol is a section symbol and has no name, 476 // we use a section name as a signature. 477 // 478 // Such SHT_GROUP sections are invalid from the perspective of the ELF 479 // standard, but GNU gold 1.14 (the newest version as of July 2017) or 480 // older produce such sections as outputs for the -r option, so we need 481 // a bug-compatibility. 482 if (signature.empty() && sym.getType() == STT_SECTION) 483 return getSectionName(sec); 484 return signature; 485 } 486 487 template <class ELFT> bool ObjFile<ELFT>::shouldMerge(const Elf_Shdr &sec) { 488 // On a regular link we don't merge sections if -O0 (default is -O1). This 489 // sometimes makes the linker significantly faster, although the output will 490 // be bigger. 491 // 492 // Doing the same for -r would create a problem as it would combine sections 493 // with different sh_entsize. One option would be to just copy every SHF_MERGE 494 // section as is to the output. While this would produce a valid ELF file with 495 // usable SHF_MERGE sections, tools like (llvm-)?dwarfdump get confused when 496 // they see two .debug_str. We could have separate logic for combining 497 // SHF_MERGE sections based both on their name and sh_entsize, but that seems 498 // to be more trouble than it is worth. Instead, we just use the regular (-O1) 499 // logic for -r. 500 if (config->optimize == 0 && !config->relocatable) 501 return false; 502 503 // A mergeable section with size 0 is useless because they don't have 504 // any data to merge. A mergeable string section with size 0 can be 505 // argued as invalid because it doesn't end with a null character. 506 // We'll avoid a mess by handling them as if they were non-mergeable. 507 if (sec.sh_size == 0) 508 return false; 509 510 // Check for sh_entsize. The ELF spec is not clear about the zero 511 // sh_entsize. It says that "the member [sh_entsize] contains 0 if 512 // the section does not hold a table of fixed-size entries". We know 513 // that Rust 1.13 produces a string mergeable section with a zero 514 // sh_entsize. Here we just accept it rather than being picky about it. 515 uint64_t entSize = sec.sh_entsize; 516 if (entSize == 0) 517 return false; 518 if (sec.sh_size % entSize) 519 fatal(toString(this) + 520 ": SHF_MERGE section size must be a multiple of sh_entsize"); 521 522 uint64_t flags = sec.sh_flags; 523 if (!(flags & SHF_MERGE)) 524 return false; 525 if (flags & SHF_WRITE) 526 fatal(toString(this) + ": writable SHF_MERGE section is not supported"); 527 528 return true; 529 } 530 531 // This is for --just-symbols. 532 // 533 // --just-symbols is a very minor feature that allows you to link your 534 // output against other existing program, so that if you load both your 535 // program and the other program into memory, your output can refer the 536 // other program's symbols. 537 // 538 // When the option is given, we link "just symbols". The section table is 539 // initialized with null pointers. 540 template <class ELFT> void ObjFile<ELFT>::initializeJustSymbols() { 541 ArrayRef<Elf_Shdr> sections = CHECK(this->getObj().sections(), this); 542 this->sections.resize(sections.size()); 543 } 544 545 // An ELF object file may contain a `.deplibs` section. If it exists, the 546 // section contains a list of library specifiers such as `m` for libm. This 547 // function resolves a given name by finding the first matching library checking 548 // the various ways that a library can be specified to LLD. This ELF extension 549 // is a form of autolinking and is called `dependent libraries`. It is currently 550 // unique to LLVM and lld. 551 static void addDependentLibrary(StringRef specifier, const InputFile *f) { 552 if (!config->dependentLibraries) 553 return; 554 if (fs::exists(specifier)) 555 driver->addFile(specifier, /*withLOption=*/false); 556 else if (Optional<std::string> s = findFromSearchPaths(specifier)) 557 driver->addFile(*s, /*withLOption=*/true); 558 else if (Optional<std::string> s = searchLibraryBaseName(specifier)) 559 driver->addFile(*s, /*withLOption=*/true); 560 else 561 error(toString(f) + 562 ": unable to find library from dependent library specifier: " + 563 specifier); 564 } 565 566 template <class ELFT> 567 void ObjFile<ELFT>::initializeSections(bool ignoreComdats) { 568 const ELFFile<ELFT> &obj = this->getObj(); 569 570 ArrayRef<Elf_Shdr> objSections = CHECK(obj.sections(), this); 571 uint64_t size = objSections.size(); 572 this->sections.resize(size); 573 this->sectionStringTable = 574 CHECK(obj.getSectionStringTable(objSections), this); 575 576 for (size_t i = 0, e = objSections.size(); i < e; ++i) { 577 if (this->sections[i] == &InputSection::discarded) 578 continue; 579 const Elf_Shdr &sec = objSections[i]; 580 581 if (sec.sh_type == ELF::SHT_LLVM_CALL_GRAPH_PROFILE) 582 cgProfile = 583 check(obj.template getSectionContentsAsArray<Elf_CGProfile>(&sec)); 584 585 // SHF_EXCLUDE'ed sections are discarded by the linker. However, 586 // if -r is given, we'll let the final link discard such sections. 587 // This is compatible with GNU. 588 if ((sec.sh_flags & SHF_EXCLUDE) && !config->relocatable) { 589 if (sec.sh_type == SHT_LLVM_ADDRSIG) { 590 // We ignore the address-significance table if we know that the object 591 // file was created by objcopy or ld -r. This is because these tools 592 // will reorder the symbols in the symbol table, invalidating the data 593 // in the address-significance table, which refers to symbols by index. 594 if (sec.sh_link != 0) 595 this->addrsigSec = &sec; 596 else if (config->icf == ICFLevel::Safe) 597 warn(toString(this) + ": --icf=safe is incompatible with object " 598 "files created using objcopy or ld -r"); 599 } 600 this->sections[i] = &InputSection::discarded; 601 continue; 602 } 603 604 switch (sec.sh_type) { 605 case SHT_GROUP: { 606 // De-duplicate section groups by their signatures. 607 StringRef signature = getShtGroupSignature(objSections, sec); 608 this->sections[i] = &InputSection::discarded; 609 610 611 ArrayRef<Elf_Word> entries = 612 CHECK(obj.template getSectionContentsAsArray<Elf_Word>(&sec), this); 613 if (entries.empty()) 614 fatal(toString(this) + ": empty SHT_GROUP"); 615 616 // The first word of a SHT_GROUP section contains flags. Currently, 617 // the standard defines only "GRP_COMDAT" flag for the COMDAT group. 618 // An group with the empty flag doesn't define anything; such sections 619 // are just skipped. 620 if (entries[0] == 0) 621 continue; 622 623 if (entries[0] != GRP_COMDAT) 624 fatal(toString(this) + ": unsupported SHT_GROUP format"); 625 626 bool isNew = 627 ignoreComdats || 628 symtab->comdatGroups.try_emplace(CachedHashStringRef(signature), this) 629 .second; 630 if (isNew) { 631 if (config->relocatable) 632 this->sections[i] = createInputSection(sec); 633 continue; 634 } 635 636 // Otherwise, discard group members. 637 for (uint32_t secIndex : entries.slice(1)) { 638 if (secIndex >= size) 639 fatal(toString(this) + 640 ": invalid section index in group: " + Twine(secIndex)); 641 this->sections[secIndex] = &InputSection::discarded; 642 } 643 break; 644 } 645 case SHT_SYMTAB_SHNDX: 646 shndxTable = CHECK(obj.getSHNDXTable(sec, objSections), this); 647 break; 648 case SHT_SYMTAB: 649 case SHT_STRTAB: 650 case SHT_NULL: 651 break; 652 default: 653 this->sections[i] = createInputSection(sec); 654 } 655 } 656 657 for (size_t i = 0, e = objSections.size(); i < e; ++i) { 658 if (this->sections[i] == &InputSection::discarded) 659 continue; 660 const Elf_Shdr &sec = objSections[i]; 661 if (!(sec.sh_flags & SHF_LINK_ORDER)) 662 continue; 663 664 // .ARM.exidx sections have a reverse dependency on the InputSection they 665 // have a SHF_LINK_ORDER dependency, this is identified by the sh_link. 666 InputSectionBase *linkSec = nullptr; 667 if (sec.sh_link < this->sections.size()) 668 linkSec = this->sections[sec.sh_link]; 669 if (!linkSec) 670 fatal(toString(this) + ": invalid sh_link index: " + Twine(sec.sh_link)); 671 672 InputSection *isec = cast<InputSection>(this->sections[i]); 673 linkSec->dependentSections.push_back(isec); 674 if (!isa<InputSection>(linkSec)) 675 error("a section " + isec->name + 676 " with SHF_LINK_ORDER should not refer a non-regular section: " + 677 toString(linkSec)); 678 } 679 } 680 681 // For ARM only, to set the EF_ARM_ABI_FLOAT_SOFT or EF_ARM_ABI_FLOAT_HARD 682 // flag in the ELF Header we need to look at Tag_ABI_VFP_args to find out how 683 // the input objects have been compiled. 684 static void updateARMVFPArgs(const ARMAttributeParser &attributes, 685 const InputFile *f) { 686 if (!attributes.hasAttribute(ARMBuildAttrs::ABI_VFP_args)) 687 // If an ABI tag isn't present then it is implicitly given the value of 0 688 // which maps to ARMBuildAttrs::BaseAAPCS. However many assembler files, 689 // including some in glibc that don't use FP args (and should have value 3) 690 // don't have the attribute so we do not consider an implicit value of 0 691 // as a clash. 692 return; 693 694 unsigned vfpArgs = attributes.getAttributeValue(ARMBuildAttrs::ABI_VFP_args); 695 ARMVFPArgKind arg; 696 switch (vfpArgs) { 697 case ARMBuildAttrs::BaseAAPCS: 698 arg = ARMVFPArgKind::Base; 699 break; 700 case ARMBuildAttrs::HardFPAAPCS: 701 arg = ARMVFPArgKind::VFP; 702 break; 703 case ARMBuildAttrs::ToolChainFPPCS: 704 // Tool chain specific convention that conforms to neither AAPCS variant. 705 arg = ARMVFPArgKind::ToolChain; 706 break; 707 case ARMBuildAttrs::CompatibleFPAAPCS: 708 // Object compatible with all conventions. 709 return; 710 default: 711 error(toString(f) + ": unknown Tag_ABI_VFP_args value: " + Twine(vfpArgs)); 712 return; 713 } 714 // Follow ld.bfd and error if there is a mix of calling conventions. 715 if (config->armVFPArgs != arg && config->armVFPArgs != ARMVFPArgKind::Default) 716 error(toString(f) + ": incompatible Tag_ABI_VFP_args"); 717 else 718 config->armVFPArgs = arg; 719 } 720 721 // The ARM support in lld makes some use of instructions that are not available 722 // on all ARM architectures. Namely: 723 // - Use of BLX instruction for interworking between ARM and Thumb state. 724 // - Use of the extended Thumb branch encoding in relocation. 725 // - Use of the MOVT/MOVW instructions in Thumb Thunks. 726 // The ARM Attributes section contains information about the architecture chosen 727 // at compile time. We follow the convention that if at least one input object 728 // is compiled with an architecture that supports these features then lld is 729 // permitted to use them. 730 static void updateSupportedARMFeatures(const ARMAttributeParser &attributes) { 731 if (!attributes.hasAttribute(ARMBuildAttrs::CPU_arch)) 732 return; 733 auto arch = attributes.getAttributeValue(ARMBuildAttrs::CPU_arch); 734 switch (arch) { 735 case ARMBuildAttrs::Pre_v4: 736 case ARMBuildAttrs::v4: 737 case ARMBuildAttrs::v4T: 738 // Architectures prior to v5 do not support BLX instruction 739 break; 740 case ARMBuildAttrs::v5T: 741 case ARMBuildAttrs::v5TE: 742 case ARMBuildAttrs::v5TEJ: 743 case ARMBuildAttrs::v6: 744 case ARMBuildAttrs::v6KZ: 745 case ARMBuildAttrs::v6K: 746 config->armHasBlx = true; 747 // Architectures used in pre-Cortex processors do not support 748 // The J1 = 1 J2 = 1 Thumb branch range extension, with the exception 749 // of Architecture v6T2 (arm1156t2-s and arm1156t2f-s) that do. 750 break; 751 default: 752 // All other Architectures have BLX and extended branch encoding 753 config->armHasBlx = true; 754 config->armJ1J2BranchEncoding = true; 755 if (arch != ARMBuildAttrs::v6_M && arch != ARMBuildAttrs::v6S_M) 756 // All Architectures used in Cortex processors with the exception 757 // of v6-M and v6S-M have the MOVT and MOVW instructions. 758 config->armHasMovtMovw = true; 759 break; 760 } 761 } 762 763 // If a source file is compiled with x86 hardware-assisted call flow control 764 // enabled, the generated object file contains feature flags indicating that 765 // fact. This function reads the feature flags and returns it. 766 // 767 // Essentially we want to read a single 32-bit value in this function, but this 768 // function is rather complicated because the value is buried deep inside a 769 // .note.gnu.property section. 770 // 771 // The section consists of one or more NOTE records. Each NOTE record consists 772 // of zero or more type-length-value fields. We want to find a field of a 773 // certain type. It seems a bit too much to just store a 32-bit value, perhaps 774 // the ABI is unnecessarily complicated. 775 template <class ELFT> 776 static uint32_t readAndFeatures(ObjFile<ELFT> *obj, ArrayRef<uint8_t> data) { 777 using Elf_Nhdr = typename ELFT::Nhdr; 778 using Elf_Note = typename ELFT::Note; 779 780 uint32_t featuresSet = 0; 781 while (!data.empty()) { 782 // Read one NOTE record. 783 if (data.size() < sizeof(Elf_Nhdr)) 784 fatal(toString(obj) + ": .note.gnu.property: section too short"); 785 786 auto *nhdr = reinterpret_cast<const Elf_Nhdr *>(data.data()); 787 if (data.size() < nhdr->getSize()) 788 fatal(toString(obj) + ": .note.gnu.property: section too short"); 789 790 Elf_Note note(*nhdr); 791 if (nhdr->n_type != NT_GNU_PROPERTY_TYPE_0 || note.getName() != "GNU") { 792 data = data.slice(nhdr->getSize()); 793 continue; 794 } 795 796 uint32_t featureAndType = config->emachine == EM_AARCH64 797 ? GNU_PROPERTY_AARCH64_FEATURE_1_AND 798 : GNU_PROPERTY_X86_FEATURE_1_AND; 799 800 // Read a body of a NOTE record, which consists of type-length-value fields. 801 ArrayRef<uint8_t> desc = note.getDesc(); 802 while (!desc.empty()) { 803 if (desc.size() < 8) 804 fatal(toString(obj) + ": .note.gnu.property: section too short"); 805 806 uint32_t type = read32le(desc.data()); 807 uint32_t size = read32le(desc.data() + 4); 808 809 if (type == featureAndType) { 810 // We found a FEATURE_1_AND field. There may be more than one of these 811 // in a .note.gnu.propery section, for a relocatable object we 812 // accumulate the bits set. 813 featuresSet |= read32le(desc.data() + 8); 814 } 815 816 // On 64-bit, a payload may be followed by a 4-byte padding to make its 817 // size a multiple of 8. 818 if (ELFT::Is64Bits) 819 size = alignTo(size, 8); 820 821 desc = desc.slice(size + 8); // +8 for Type and Size 822 } 823 824 // Go to next NOTE record to look for more FEATURE_1_AND descriptions. 825 data = data.slice(nhdr->getSize()); 826 } 827 828 return featuresSet; 829 } 830 831 template <class ELFT> 832 InputSectionBase *ObjFile<ELFT>::getRelocTarget(const Elf_Shdr &sec) { 833 uint32_t idx = sec.sh_info; 834 if (idx >= this->sections.size()) 835 fatal(toString(this) + ": invalid relocated section index: " + Twine(idx)); 836 InputSectionBase *target = this->sections[idx]; 837 838 // Strictly speaking, a relocation section must be included in the 839 // group of the section it relocates. However, LLVM 3.3 and earlier 840 // would fail to do so, so we gracefully handle that case. 841 if (target == &InputSection::discarded) 842 return nullptr; 843 844 if (!target) 845 fatal(toString(this) + ": unsupported relocation reference"); 846 return target; 847 } 848 849 // Create a regular InputSection class that has the same contents 850 // as a given section. 851 static InputSection *toRegularSection(MergeInputSection *sec) { 852 return make<InputSection>(sec->file, sec->flags, sec->type, sec->alignment, 853 sec->data(), sec->name); 854 } 855 856 template <class ELFT> 857 InputSectionBase *ObjFile<ELFT>::createInputSection(const Elf_Shdr &sec) { 858 StringRef name = getSectionName(sec); 859 860 switch (sec.sh_type) { 861 case SHT_ARM_ATTRIBUTES: { 862 if (config->emachine != EM_ARM) 863 break; 864 ARMAttributeParser attributes; 865 ArrayRef<uint8_t> contents = check(this->getObj().getSectionContents(&sec)); 866 attributes.Parse(contents, /*isLittle*/ config->ekind == ELF32LEKind); 867 updateSupportedARMFeatures(attributes); 868 updateARMVFPArgs(attributes, this); 869 870 // FIXME: Retain the first attribute section we see. The eglibc ARM 871 // dynamic loaders require the presence of an attribute section for dlopen 872 // to work. In a full implementation we would merge all attribute sections. 873 if (in.armAttributes == nullptr) { 874 in.armAttributes = make<InputSection>(*this, sec, name); 875 return in.armAttributes; 876 } 877 return &InputSection::discarded; 878 } 879 case SHT_LLVM_DEPENDENT_LIBRARIES: { 880 if (config->relocatable) 881 break; 882 ArrayRef<char> data = 883 CHECK(this->getObj().template getSectionContentsAsArray<char>(&sec), this); 884 if (!data.empty() && data.back() != '\0') { 885 error(toString(this) + 886 ": corrupted dependent libraries section (unterminated string): " + 887 name); 888 return &InputSection::discarded; 889 } 890 for (const char *d = data.begin(), *e = data.end(); d < e;) { 891 StringRef s(d); 892 addDependentLibrary(s, this); 893 d += s.size() + 1; 894 } 895 return &InputSection::discarded; 896 } 897 case SHT_RELA: 898 case SHT_REL: { 899 // Find a relocation target section and associate this section with that. 900 // Target may have been discarded if it is in a different section group 901 // and the group is discarded, even though it's a violation of the 902 // spec. We handle that situation gracefully by discarding dangling 903 // relocation sections. 904 InputSectionBase *target = getRelocTarget(sec); 905 if (!target) 906 return nullptr; 907 908 // This section contains relocation information. 909 // If -r is given, we do not interpret or apply relocation 910 // but just copy relocation sections to output. 911 if (config->relocatable) { 912 InputSection *relocSec = make<InputSection>(*this, sec, name); 913 // We want to add a dependency to target, similar like we do for 914 // -emit-relocs below. This is useful for the case when linker script 915 // contains the "/DISCARD/". It is perhaps uncommon to use a script with 916 // -r, but we faced it in the Linux kernel and have to handle such case 917 // and not to crash. 918 target->dependentSections.push_back(relocSec); 919 return relocSec; 920 } 921 922 if (target->firstRelocation) 923 fatal(toString(this) + 924 ": multiple relocation sections to one section are not supported"); 925 926 // ELF spec allows mergeable sections with relocations, but they are 927 // rare, and it is in practice hard to merge such sections by contents, 928 // because applying relocations at end of linking changes section 929 // contents. So, we simply handle such sections as non-mergeable ones. 930 // Degrading like this is acceptable because section merging is optional. 931 if (auto *ms = dyn_cast<MergeInputSection>(target)) { 932 target = toRegularSection(ms); 933 this->sections[sec.sh_info] = target; 934 } 935 936 if (sec.sh_type == SHT_RELA) { 937 ArrayRef<Elf_Rela> rels = CHECK(getObj().relas(&sec), this); 938 target->firstRelocation = rels.begin(); 939 target->numRelocations = rels.size(); 940 target->areRelocsRela = true; 941 } else { 942 ArrayRef<Elf_Rel> rels = CHECK(getObj().rels(&sec), this); 943 target->firstRelocation = rels.begin(); 944 target->numRelocations = rels.size(); 945 target->areRelocsRela = false; 946 } 947 assert(isUInt<31>(target->numRelocations)); 948 949 // Relocation sections processed by the linker are usually removed 950 // from the output, so returning `nullptr` for the normal case. 951 // However, if -emit-relocs is given, we need to leave them in the output. 952 // (Some post link analysis tools need this information.) 953 if (config->emitRelocs) { 954 InputSection *relocSec = make<InputSection>(*this, sec, name); 955 // We will not emit relocation section if target was discarded. 956 target->dependentSections.push_back(relocSec); 957 return relocSec; 958 } 959 return nullptr; 960 } 961 } 962 963 // The GNU linker uses .note.GNU-stack section as a marker indicating 964 // that the code in the object file does not expect that the stack is 965 // executable (in terms of NX bit). If all input files have the marker, 966 // the GNU linker adds a PT_GNU_STACK segment to tells the loader to 967 // make the stack non-executable. Most object files have this section as 968 // of 2017. 969 // 970 // But making the stack non-executable is a norm today for security 971 // reasons. Failure to do so may result in a serious security issue. 972 // Therefore, we make LLD always add PT_GNU_STACK unless it is 973 // explicitly told to do otherwise (by -z execstack). Because the stack 974 // executable-ness is controlled solely by command line options, 975 // .note.GNU-stack sections are simply ignored. 976 if (name == ".note.GNU-stack") 977 return &InputSection::discarded; 978 979 // Object files that use processor features such as Intel Control-Flow 980 // Enforcement (CET) or AArch64 Branch Target Identification BTI, use a 981 // .note.gnu.property section containing a bitfield of feature bits like the 982 // GNU_PROPERTY_X86_FEATURE_1_IBT flag. Read a bitmap containing the flag. 983 // 984 // Since we merge bitmaps from multiple object files to create a new 985 // .note.gnu.property containing a single AND'ed bitmap, we discard an input 986 // file's .note.gnu.property section. 987 if (name == ".note.gnu.property") { 988 ArrayRef<uint8_t> contents = check(this->getObj().getSectionContents(&sec)); 989 this->andFeatures = readAndFeatures(this, contents); 990 return &InputSection::discarded; 991 } 992 993 // Split stacks is a feature to support a discontiguous stack, 994 // commonly used in the programming language Go. For the details, 995 // see https://gcc.gnu.org/wiki/SplitStacks. An object file compiled 996 // for split stack will include a .note.GNU-split-stack section. 997 if (name == ".note.GNU-split-stack") { 998 if (config->relocatable) { 999 error("cannot mix split-stack and non-split-stack in a relocatable link"); 1000 return &InputSection::discarded; 1001 } 1002 this->splitStack = true; 1003 return &InputSection::discarded; 1004 } 1005 1006 // An object file cmpiled for split stack, but where some of the 1007 // functions were compiled with the no_split_stack_attribute will 1008 // include a .note.GNU-no-split-stack section. 1009 if (name == ".note.GNU-no-split-stack") { 1010 this->someNoSplitStack = true; 1011 return &InputSection::discarded; 1012 } 1013 1014 // The linkonce feature is a sort of proto-comdat. Some glibc i386 object 1015 // files contain definitions of symbol "__x86.get_pc_thunk.bx" in linkonce 1016 // sections. Drop those sections to avoid duplicate symbol errors. 1017 // FIXME: This is glibc PR20543, we should remove this hack once that has been 1018 // fixed for a while. 1019 if (name == ".gnu.linkonce.t.__x86.get_pc_thunk.bx" || 1020 name == ".gnu.linkonce.t.__i686.get_pc_thunk.bx") 1021 return &InputSection::discarded; 1022 1023 // If we are creating a new .build-id section, strip existing .build-id 1024 // sections so that the output won't have more than one .build-id. 1025 // This is not usually a problem because input object files normally don't 1026 // have .build-id sections, but you can create such files by 1027 // "ld.{bfd,gold,lld} -r --build-id", and we want to guard against it. 1028 if (name == ".note.gnu.build-id" && config->buildId != BuildIdKind::None) 1029 return &InputSection::discarded; 1030 1031 // The linker merges EH (exception handling) frames and creates a 1032 // .eh_frame_hdr section for runtime. So we handle them with a special 1033 // class. For relocatable outputs, they are just passed through. 1034 if (name == ".eh_frame" && !config->relocatable) 1035 return make<EhInputSection>(*this, sec, name); 1036 1037 if (shouldMerge(sec)) 1038 return make<MergeInputSection>(*this, sec, name); 1039 return make<InputSection>(*this, sec, name); 1040 } 1041 1042 template <class ELFT> 1043 StringRef ObjFile<ELFT>::getSectionName(const Elf_Shdr &sec) { 1044 return CHECK(getObj().getSectionName(&sec, sectionStringTable), this); 1045 } 1046 1047 // Initialize this->Symbols. this->Symbols is a parallel array as 1048 // its corresponding ELF symbol table. 1049 template <class ELFT> void ObjFile<ELFT>::initializeSymbols() { 1050 ArrayRef<Elf_Sym> eSyms = this->getELFSyms<ELFT>(); 1051 this->symbols.resize(eSyms.size()); 1052 1053 // Our symbol table may have already been partially initialized 1054 // because of LazyObjFile. 1055 for (size_t i = 0, end = eSyms.size(); i != end; ++i) 1056 if (!this->symbols[i] && eSyms[i].getBinding() != STB_LOCAL) 1057 this->symbols[i] = 1058 symtab->insert(CHECK(eSyms[i].getName(this->stringTable), this)); 1059 1060 // Fill this->Symbols. A symbol is either local or global. 1061 for (size_t i = 0, end = eSyms.size(); i != end; ++i) { 1062 const Elf_Sym &eSym = eSyms[i]; 1063 1064 // Read symbol attributes. 1065 uint32_t secIdx = getSectionIndex(eSym); 1066 if (secIdx >= this->sections.size()) 1067 fatal(toString(this) + ": invalid section index: " + Twine(secIdx)); 1068 1069 InputSectionBase *sec = this->sections[secIdx]; 1070 uint8_t binding = eSym.getBinding(); 1071 uint8_t stOther = eSym.st_other; 1072 uint8_t type = eSym.getType(); 1073 uint64_t value = eSym.st_value; 1074 uint64_t size = eSym.st_size; 1075 StringRefZ name = this->stringTable.data() + eSym.st_name; 1076 1077 // Handle local symbols. Local symbols are not added to the symbol 1078 // table because they are not visible from other object files. We 1079 // allocate symbol instances and add their pointers to Symbols. 1080 if (binding == STB_LOCAL) { 1081 if (eSym.getType() == STT_FILE) 1082 sourceFile = CHECK(eSym.getName(this->stringTable), this); 1083 1084 if (this->stringTable.size() <= eSym.st_name) 1085 fatal(toString(this) + ": invalid symbol name offset"); 1086 1087 if (eSym.st_shndx == SHN_UNDEF) 1088 this->symbols[i] = make<Undefined>(this, name, binding, stOther, type); 1089 else if (sec == &InputSection::discarded) 1090 this->symbols[i] = make<Undefined>(this, name, binding, stOther, type, 1091 /*DiscardedSecIdx=*/secIdx); 1092 else 1093 this->symbols[i] = 1094 make<Defined>(this, name, binding, stOther, type, value, size, sec); 1095 continue; 1096 } 1097 1098 // Handle global undefined symbols. 1099 if (eSym.st_shndx == SHN_UNDEF) { 1100 this->symbols[i]->resolve(Undefined{this, name, binding, stOther, type}); 1101 continue; 1102 } 1103 1104 // Handle global common symbols. 1105 if (eSym.st_shndx == SHN_COMMON) { 1106 if (value == 0 || value >= UINT32_MAX) 1107 fatal(toString(this) + ": common symbol '" + StringRef(name.data) + 1108 "' has invalid alignment: " + Twine(value)); 1109 this->symbols[i]->resolve( 1110 CommonSymbol{this, name, binding, stOther, type, value, size}); 1111 continue; 1112 } 1113 1114 // If a defined symbol is in a discarded section, handle it as if it 1115 // were an undefined symbol. Such symbol doesn't comply with the 1116 // standard, but in practice, a .eh_frame often directly refer 1117 // COMDAT member sections, and if a comdat group is discarded, some 1118 // defined symbol in a .eh_frame becomes dangling symbols. 1119 if (sec == &InputSection::discarded) { 1120 this->symbols[i]->resolve( 1121 Undefined{this, name, binding, stOther, type, secIdx}); 1122 continue; 1123 } 1124 1125 // Handle global defined symbols. 1126 if (binding == STB_GLOBAL || binding == STB_WEAK || 1127 binding == STB_GNU_UNIQUE) { 1128 this->symbols[i]->resolve( 1129 Defined{this, name, binding, stOther, type, value, size, sec}); 1130 continue; 1131 } 1132 1133 fatal(toString(this) + ": unexpected binding: " + Twine((int)binding)); 1134 } 1135 } 1136 1137 ArchiveFile::ArchiveFile(std::unique_ptr<Archive> &&file) 1138 : InputFile(ArchiveKind, file->getMemoryBufferRef()), 1139 file(std::move(file)) {} 1140 1141 void ArchiveFile::parse() { 1142 for (const Archive::Symbol &sym : file->symbols()) 1143 symtab->addSymbol(LazyArchive{*this, sym}); 1144 } 1145 1146 // Returns a buffer pointing to a member file containing a given symbol. 1147 void ArchiveFile::fetch(const Archive::Symbol &sym) { 1148 Archive::Child c = 1149 CHECK(sym.getMember(), toString(this) + 1150 ": could not get the member for symbol " + 1151 toELFString(sym)); 1152 1153 if (!seen.insert(c.getChildOffset()).second) 1154 return; 1155 1156 MemoryBufferRef mb = 1157 CHECK(c.getMemoryBufferRef(), 1158 toString(this) + 1159 ": could not get the buffer for the member defining symbol " + 1160 toELFString(sym)); 1161 1162 if (tar && c.getParent()->isThin()) 1163 tar->append(relativeToRoot(CHECK(c.getFullName(), this)), mb.getBuffer()); 1164 1165 InputFile *file = createObjectFile( 1166 mb, getName(), c.getParent()->isThin() ? 0 : c.getChildOffset()); 1167 file->groupId = groupId; 1168 parseFile(file); 1169 } 1170 1171 unsigned SharedFile::vernauxNum; 1172 1173 // Parse the version definitions in the object file if present, and return a 1174 // vector whose nth element contains a pointer to the Elf_Verdef for version 1175 // identifier n. Version identifiers that are not definitions map to nullptr. 1176 template <typename ELFT> 1177 static std::vector<const void *> parseVerdefs(const uint8_t *base, 1178 const typename ELFT::Shdr *sec) { 1179 if (!sec) 1180 return {}; 1181 1182 // We cannot determine the largest verdef identifier without inspecting 1183 // every Elf_Verdef, but both bfd and gold assign verdef identifiers 1184 // sequentially starting from 1, so we predict that the largest identifier 1185 // will be verdefCount. 1186 unsigned verdefCount = sec->sh_info; 1187 std::vector<const void *> verdefs(verdefCount + 1); 1188 1189 // Build the Verdefs array by following the chain of Elf_Verdef objects 1190 // from the start of the .gnu.version_d section. 1191 const uint8_t *verdef = base + sec->sh_offset; 1192 for (unsigned i = 0; i != verdefCount; ++i) { 1193 auto *curVerdef = reinterpret_cast<const typename ELFT::Verdef *>(verdef); 1194 verdef += curVerdef->vd_next; 1195 unsigned verdefIndex = curVerdef->vd_ndx; 1196 verdefs.resize(verdefIndex + 1); 1197 verdefs[verdefIndex] = curVerdef; 1198 } 1199 return verdefs; 1200 } 1201 1202 // We do not usually care about alignments of data in shared object 1203 // files because the loader takes care of it. However, if we promote a 1204 // DSO symbol to point to .bss due to copy relocation, we need to keep 1205 // the original alignment requirements. We infer it in this function. 1206 template <typename ELFT> 1207 static uint64_t getAlignment(ArrayRef<typename ELFT::Shdr> sections, 1208 const typename ELFT::Sym &sym) { 1209 uint64_t ret = UINT64_MAX; 1210 if (sym.st_value) 1211 ret = 1ULL << countTrailingZeros((uint64_t)sym.st_value); 1212 if (0 < sym.st_shndx && sym.st_shndx < sections.size()) 1213 ret = std::min<uint64_t>(ret, sections[sym.st_shndx].sh_addralign); 1214 return (ret > UINT32_MAX) ? 0 : ret; 1215 } 1216 1217 // Fully parse the shared object file. 1218 // 1219 // This function parses symbol versions. If a DSO has version information, 1220 // the file has a ".gnu.version_d" section which contains symbol version 1221 // definitions. Each symbol is associated to one version through a table in 1222 // ".gnu.version" section. That table is a parallel array for the symbol 1223 // table, and each table entry contains an index in ".gnu.version_d". 1224 // 1225 // The special index 0 is reserved for VERF_NDX_LOCAL and 1 is for 1226 // VER_NDX_GLOBAL. There's no table entry for these special versions in 1227 // ".gnu.version_d". 1228 // 1229 // The file format for symbol versioning is perhaps a bit more complicated 1230 // than necessary, but you can easily understand the code if you wrap your 1231 // head around the data structure described above. 1232 template <class ELFT> void SharedFile::parse() { 1233 using Elf_Dyn = typename ELFT::Dyn; 1234 using Elf_Shdr = typename ELFT::Shdr; 1235 using Elf_Sym = typename ELFT::Sym; 1236 using Elf_Verdef = typename ELFT::Verdef; 1237 using Elf_Versym = typename ELFT::Versym; 1238 1239 ArrayRef<Elf_Dyn> dynamicTags; 1240 const ELFFile<ELFT> obj = this->getObj<ELFT>(); 1241 ArrayRef<Elf_Shdr> sections = CHECK(obj.sections(), this); 1242 1243 const Elf_Shdr *versymSec = nullptr; 1244 const Elf_Shdr *verdefSec = nullptr; 1245 1246 // Search for .dynsym, .dynamic, .symtab, .gnu.version and .gnu.version_d. 1247 for (const Elf_Shdr &sec : sections) { 1248 switch (sec.sh_type) { 1249 default: 1250 continue; 1251 case SHT_DYNAMIC: 1252 dynamicTags = 1253 CHECK(obj.template getSectionContentsAsArray<Elf_Dyn>(&sec), this); 1254 break; 1255 case SHT_GNU_versym: 1256 versymSec = &sec; 1257 break; 1258 case SHT_GNU_verdef: 1259 verdefSec = &sec; 1260 break; 1261 } 1262 } 1263 1264 if (versymSec && numELFSyms == 0) { 1265 error("SHT_GNU_versym should be associated with symbol table"); 1266 return; 1267 } 1268 1269 // Search for a DT_SONAME tag to initialize this->soName. 1270 for (const Elf_Dyn &dyn : dynamicTags) { 1271 if (dyn.d_tag == DT_NEEDED) { 1272 uint64_t val = dyn.getVal(); 1273 if (val >= this->stringTable.size()) 1274 fatal(toString(this) + ": invalid DT_NEEDED entry"); 1275 dtNeeded.push_back(this->stringTable.data() + val); 1276 } else if (dyn.d_tag == DT_SONAME) { 1277 uint64_t val = dyn.getVal(); 1278 if (val >= this->stringTable.size()) 1279 fatal(toString(this) + ": invalid DT_SONAME entry"); 1280 soName = this->stringTable.data() + val; 1281 } 1282 } 1283 1284 // DSOs are uniquified not by filename but by soname. 1285 DenseMap<StringRef, SharedFile *>::iterator it; 1286 bool wasInserted; 1287 std::tie(it, wasInserted) = symtab->soNames.try_emplace(soName, this); 1288 1289 // If a DSO appears more than once on the command line with and without 1290 // --as-needed, --no-as-needed takes precedence over --as-needed because a 1291 // user can add an extra DSO with --no-as-needed to force it to be added to 1292 // the dependency list. 1293 it->second->isNeeded |= isNeeded; 1294 if (!wasInserted) 1295 return; 1296 1297 sharedFiles.push_back(this); 1298 1299 verdefs = parseVerdefs<ELFT>(obj.base(), verdefSec); 1300 1301 // Parse ".gnu.version" section which is a parallel array for the symbol 1302 // table. If a given file doesn't have a ".gnu.version" section, we use 1303 // VER_NDX_GLOBAL. 1304 size_t size = numELFSyms - firstGlobal; 1305 std::vector<uint32_t> versyms(size, VER_NDX_GLOBAL); 1306 if (versymSec) { 1307 ArrayRef<Elf_Versym> versym = 1308 CHECK(obj.template getSectionContentsAsArray<Elf_Versym>(versymSec), 1309 this) 1310 .slice(firstGlobal); 1311 for (size_t i = 0; i < size; ++i) 1312 versyms[i] = versym[i].vs_index; 1313 } 1314 1315 // System libraries can have a lot of symbols with versions. Using a 1316 // fixed buffer for computing the versions name (foo@ver) can save a 1317 // lot of allocations. 1318 SmallString<0> versionedNameBuffer; 1319 1320 // Add symbols to the symbol table. 1321 ArrayRef<Elf_Sym> syms = this->getGlobalELFSyms<ELFT>(); 1322 for (size_t i = 0; i < syms.size(); ++i) { 1323 const Elf_Sym &sym = syms[i]; 1324 1325 // ELF spec requires that all local symbols precede weak or global 1326 // symbols in each symbol table, and the index of first non-local symbol 1327 // is stored to sh_info. If a local symbol appears after some non-local 1328 // symbol, that's a violation of the spec. 1329 StringRef name = CHECK(sym.getName(this->stringTable), this); 1330 if (sym.getBinding() == STB_LOCAL) { 1331 warn("found local symbol '" + name + 1332 "' in global part of symbol table in file " + toString(this)); 1333 continue; 1334 } 1335 1336 if (sym.isUndefined()) { 1337 Symbol *s = symtab->addSymbol( 1338 Undefined{this, name, sym.getBinding(), sym.st_other, sym.getType()}); 1339 s->exportDynamic = true; 1340 continue; 1341 } 1342 1343 // MIPS BFD linker puts _gp_disp symbol into DSO files and incorrectly 1344 // assigns VER_NDX_LOCAL to this section global symbol. Here is a 1345 // workaround for this bug. 1346 uint32_t idx = versyms[i] & ~VERSYM_HIDDEN; 1347 if (config->emachine == EM_MIPS && idx == VER_NDX_LOCAL && 1348 name == "_gp_disp") 1349 continue; 1350 1351 uint32_t alignment = getAlignment<ELFT>(sections, sym); 1352 if (!(versyms[i] & VERSYM_HIDDEN)) { 1353 symtab->addSymbol(SharedSymbol{*this, name, sym.getBinding(), 1354 sym.st_other, sym.getType(), sym.st_value, 1355 sym.st_size, alignment, idx}); 1356 } 1357 1358 // Also add the symbol with the versioned name to handle undefined symbols 1359 // with explicit versions. 1360 if (idx == VER_NDX_GLOBAL) 1361 continue; 1362 1363 if (idx >= verdefs.size() || idx == VER_NDX_LOCAL) { 1364 error("corrupt input file: version definition index " + Twine(idx) + 1365 " for symbol " + name + " is out of bounds\n>>> defined in " + 1366 toString(this)); 1367 continue; 1368 } 1369 1370 StringRef verName = 1371 this->stringTable.data() + 1372 reinterpret_cast<const Elf_Verdef *>(verdefs[idx])->getAux()->vda_name; 1373 versionedNameBuffer.clear(); 1374 name = (name + "@" + verName).toStringRef(versionedNameBuffer); 1375 symtab->addSymbol(SharedSymbol{*this, saver.save(name), sym.getBinding(), 1376 sym.st_other, sym.getType(), sym.st_value, 1377 sym.st_size, alignment, idx}); 1378 } 1379 } 1380 1381 static ELFKind getBitcodeELFKind(const Triple &t) { 1382 if (t.isLittleEndian()) 1383 return t.isArch64Bit() ? ELF64LEKind : ELF32LEKind; 1384 return t.isArch64Bit() ? ELF64BEKind : ELF32BEKind; 1385 } 1386 1387 static uint8_t getBitcodeMachineKind(StringRef path, const Triple &t) { 1388 switch (t.getArch()) { 1389 case Triple::aarch64: 1390 return EM_AARCH64; 1391 case Triple::amdgcn: 1392 case Triple::r600: 1393 return EM_AMDGPU; 1394 case Triple::arm: 1395 case Triple::thumb: 1396 return EM_ARM; 1397 case Triple::avr: 1398 return EM_AVR; 1399 case Triple::mips: 1400 case Triple::mipsel: 1401 case Triple::mips64: 1402 case Triple::mips64el: 1403 return EM_MIPS; 1404 case Triple::msp430: 1405 return EM_MSP430; 1406 case Triple::ppc: 1407 return EM_PPC; 1408 case Triple::ppc64: 1409 case Triple::ppc64le: 1410 return EM_PPC64; 1411 case Triple::riscv32: 1412 case Triple::riscv64: 1413 return EM_RISCV; 1414 case Triple::x86: 1415 return t.isOSIAMCU() ? EM_IAMCU : EM_386; 1416 case Triple::x86_64: 1417 return EM_X86_64; 1418 default: 1419 error(path + ": could not infer e_machine from bitcode target triple " + 1420 t.str()); 1421 return EM_NONE; 1422 } 1423 } 1424 1425 BitcodeFile::BitcodeFile(MemoryBufferRef mb, StringRef archiveName, 1426 uint64_t offsetInArchive) 1427 : InputFile(BitcodeKind, mb) { 1428 this->archiveName = archiveName; 1429 1430 std::string path = mb.getBufferIdentifier().str(); 1431 if (config->thinLTOIndexOnly) 1432 path = replaceThinLTOSuffix(mb.getBufferIdentifier()); 1433 1434 // ThinLTO assumes that all MemoryBufferRefs given to it have a unique 1435 // name. If two archives define two members with the same name, this 1436 // causes a collision which result in only one of the objects being taken 1437 // into consideration at LTO time (which very likely causes undefined 1438 // symbols later in the link stage). So we append file offset to make 1439 // filename unique. 1440 StringRef name = archiveName.empty() 1441 ? saver.save(path) 1442 : saver.save(archiveName + "(" + path + " at " + 1443 utostr(offsetInArchive) + ")"); 1444 MemoryBufferRef mbref(mb.getBuffer(), name); 1445 1446 obj = CHECK(lto::InputFile::create(mbref), this); 1447 1448 Triple t(obj->getTargetTriple()); 1449 ekind = getBitcodeELFKind(t); 1450 emachine = getBitcodeMachineKind(mb.getBufferIdentifier(), t); 1451 } 1452 1453 static uint8_t mapVisibility(GlobalValue::VisibilityTypes gvVisibility) { 1454 switch (gvVisibility) { 1455 case GlobalValue::DefaultVisibility: 1456 return STV_DEFAULT; 1457 case GlobalValue::HiddenVisibility: 1458 return STV_HIDDEN; 1459 case GlobalValue::ProtectedVisibility: 1460 return STV_PROTECTED; 1461 } 1462 llvm_unreachable("unknown visibility"); 1463 } 1464 1465 template <class ELFT> 1466 static Symbol *createBitcodeSymbol(const std::vector<bool> &keptComdats, 1467 const lto::InputFile::Symbol &objSym, 1468 BitcodeFile &f) { 1469 StringRef name = saver.save(objSym.getName()); 1470 uint8_t binding = objSym.isWeak() ? STB_WEAK : STB_GLOBAL; 1471 uint8_t type = objSym.isTLS() ? STT_TLS : STT_NOTYPE; 1472 uint8_t visibility = mapVisibility(objSym.getVisibility()); 1473 bool canOmitFromDynSym = objSym.canBeOmittedFromSymbolTable(); 1474 1475 int c = objSym.getComdatIndex(); 1476 if (objSym.isUndefined() || (c != -1 && !keptComdats[c])) { 1477 Undefined New(&f, name, binding, visibility, type); 1478 if (canOmitFromDynSym) 1479 New.exportDynamic = false; 1480 return symtab->addSymbol(New); 1481 } 1482 1483 if (objSym.isCommon()) 1484 return symtab->addSymbol( 1485 CommonSymbol{&f, name, binding, visibility, STT_OBJECT, 1486 objSym.getCommonAlignment(), objSym.getCommonSize()}); 1487 1488 Defined New(&f, name, binding, visibility, type, 0, 0, nullptr); 1489 if (canOmitFromDynSym) 1490 New.exportDynamic = false; 1491 return symtab->addSymbol(New); 1492 } 1493 1494 template <class ELFT> void BitcodeFile::parse() { 1495 std::vector<bool> keptComdats; 1496 for (StringRef s : obj->getComdatTable()) 1497 keptComdats.push_back( 1498 symtab->comdatGroups.try_emplace(CachedHashStringRef(s), this).second); 1499 1500 for (const lto::InputFile::Symbol &objSym : obj->symbols()) 1501 symbols.push_back(createBitcodeSymbol<ELFT>(keptComdats, objSym, *this)); 1502 1503 for (auto l : obj->getDependentLibraries()) 1504 addDependentLibrary(l, this); 1505 } 1506 1507 void BinaryFile::parse() { 1508 ArrayRef<uint8_t> data = arrayRefFromStringRef(mb.getBuffer()); 1509 auto *section = make<InputSection>(this, SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, 1510 8, data, ".data"); 1511 sections.push_back(section); 1512 1513 // For each input file foo that is embedded to a result as a binary 1514 // blob, we define _binary_foo_{start,end,size} symbols, so that 1515 // user programs can access blobs by name. Non-alphanumeric 1516 // characters in a filename are replaced with underscore. 1517 std::string s = "_binary_" + mb.getBufferIdentifier().str(); 1518 for (size_t i = 0; i < s.size(); ++i) 1519 if (!isAlnum(s[i])) 1520 s[i] = '_'; 1521 1522 symtab->addSymbol(Defined{nullptr, saver.save(s + "_start"), STB_GLOBAL, 1523 STV_DEFAULT, STT_OBJECT, 0, 0, section}); 1524 symtab->addSymbol(Defined{nullptr, saver.save(s + "_end"), STB_GLOBAL, 1525 STV_DEFAULT, STT_OBJECT, data.size(), 0, section}); 1526 symtab->addSymbol(Defined{nullptr, saver.save(s + "_size"), STB_GLOBAL, 1527 STV_DEFAULT, STT_OBJECT, data.size(), 0, nullptr}); 1528 } 1529 1530 InputFile *elf::createObjectFile(MemoryBufferRef mb, StringRef archiveName, 1531 uint64_t offsetInArchive) { 1532 if (isBitcode(mb)) 1533 return make<BitcodeFile>(mb, archiveName, offsetInArchive); 1534 1535 switch (getELFKind(mb, archiveName)) { 1536 case ELF32LEKind: 1537 return make<ObjFile<ELF32LE>>(mb, archiveName); 1538 case ELF32BEKind: 1539 return make<ObjFile<ELF32BE>>(mb, archiveName); 1540 case ELF64LEKind: 1541 return make<ObjFile<ELF64LE>>(mb, archiveName); 1542 case ELF64BEKind: 1543 return make<ObjFile<ELF64BE>>(mb, archiveName); 1544 default: 1545 llvm_unreachable("getELFKind"); 1546 } 1547 } 1548 1549 void LazyObjFile::fetch() { 1550 if (mb.getBuffer().empty()) 1551 return; 1552 1553 InputFile *file = createObjectFile(mb, archiveName, offsetInArchive); 1554 file->groupId = groupId; 1555 1556 mb = {}; 1557 1558 // Copy symbol vector so that the new InputFile doesn't have to 1559 // insert the same defined symbols to the symbol table again. 1560 file->symbols = std::move(symbols); 1561 1562 parseFile(file); 1563 } 1564 1565 template <class ELFT> void LazyObjFile::parse() { 1566 using Elf_Sym = typename ELFT::Sym; 1567 1568 // A lazy object file wraps either a bitcode file or an ELF file. 1569 if (isBitcode(this->mb)) { 1570 std::unique_ptr<lto::InputFile> obj = 1571 CHECK(lto::InputFile::create(this->mb), this); 1572 for (const lto::InputFile::Symbol &sym : obj->symbols()) { 1573 if (sym.isUndefined()) 1574 continue; 1575 symtab->addSymbol(LazyObject{*this, saver.save(sym.getName())}); 1576 } 1577 return; 1578 } 1579 1580 if (getELFKind(this->mb, archiveName) != config->ekind) { 1581 error("incompatible file: " + this->mb.getBufferIdentifier()); 1582 return; 1583 } 1584 1585 // Find a symbol table. 1586 ELFFile<ELFT> obj = check(ELFFile<ELFT>::create(mb.getBuffer())); 1587 ArrayRef<typename ELFT::Shdr> sections = CHECK(obj.sections(), this); 1588 1589 for (const typename ELFT::Shdr &sec : sections) { 1590 if (sec.sh_type != SHT_SYMTAB) 1591 continue; 1592 1593 // A symbol table is found. 1594 ArrayRef<Elf_Sym> eSyms = CHECK(obj.symbols(&sec), this); 1595 uint32_t firstGlobal = sec.sh_info; 1596 StringRef strtab = CHECK(obj.getStringTableForSymtab(sec, sections), this); 1597 this->symbols.resize(eSyms.size()); 1598 1599 // Get existing symbols or insert placeholder symbols. 1600 for (size_t i = firstGlobal, end = eSyms.size(); i != end; ++i) 1601 if (eSyms[i].st_shndx != SHN_UNDEF) 1602 this->symbols[i] = symtab->insert(CHECK(eSyms[i].getName(strtab), this)); 1603 1604 // Replace existing symbols with LazyObject symbols. 1605 // 1606 // resolve() may trigger this->fetch() if an existing symbol is an 1607 // undefined symbol. If that happens, this LazyObjFile has served 1608 // its purpose, and we can exit from the loop early. 1609 for (Symbol *sym : this->symbols) { 1610 if (!sym) 1611 continue; 1612 sym->resolve(LazyObject{*this, sym->getName()}); 1613 1614 // MemoryBuffer is emptied if this file is instantiated as ObjFile. 1615 if (mb.getBuffer().empty()) 1616 return; 1617 } 1618 return; 1619 } 1620 } 1621 1622 std::string elf::replaceThinLTOSuffix(StringRef path) { 1623 StringRef suffix = config->thinLTOObjectSuffixReplace.first; 1624 StringRef repl = config->thinLTOObjectSuffixReplace.second; 1625 1626 if (path.consume_back(suffix)) 1627 return (path + repl).str(); 1628 return path; 1629 } 1630 1631 template void BitcodeFile::parse<ELF32LE>(); 1632 template void BitcodeFile::parse<ELF32BE>(); 1633 template void BitcodeFile::parse<ELF64LE>(); 1634 template void BitcodeFile::parse<ELF64BE>(); 1635 1636 template void LazyObjFile::parse<ELF32LE>(); 1637 template void LazyObjFile::parse<ELF32BE>(); 1638 template void LazyObjFile::parse<ELF64LE>(); 1639 template void LazyObjFile::parse<ELF64BE>(); 1640 1641 template class elf::ObjFile<ELF32LE>; 1642 template class elf::ObjFile<ELF32BE>; 1643 template class elf::ObjFile<ELF64LE>; 1644 template class elf::ObjFile<ELF64BE>; 1645 1646 template void SharedFile::parse<ELF32LE>(); 1647 template void SharedFile::parse<ELF32BE>(); 1648 template void SharedFile::parse<ELF64LE>(); 1649 template void SharedFile::parse<ELF64BE>(); 1650