1 //===- InputFiles.cpp -----------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "InputFiles.h" 10 #include "Driver.h" 11 #include "InputSection.h" 12 #include "LinkerScript.h" 13 #include "SymbolTable.h" 14 #include "Symbols.h" 15 #include "SyntheticSections.h" 16 #include "lld/Common/DWARF.h" 17 #include "lld/Common/ErrorHandler.h" 18 #include "lld/Common/Memory.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/CodeGen/Analysis.h" 21 #include "llvm/IR/LLVMContext.h" 22 #include "llvm/IR/Module.h" 23 #include "llvm/LTO/LTO.h" 24 #include "llvm/MC/StringTableBuilder.h" 25 #include "llvm/Object/ELFObjectFile.h" 26 #include "llvm/Support/ARMAttributeParser.h" 27 #include "llvm/Support/ARMBuildAttributes.h" 28 #include "llvm/Support/Endian.h" 29 #include "llvm/Support/Path.h" 30 #include "llvm/Support/TarWriter.h" 31 #include "llvm/Support/raw_ostream.h" 32 33 using namespace llvm; 34 using namespace llvm::ELF; 35 using namespace llvm::object; 36 using namespace llvm::sys; 37 using namespace llvm::sys::fs; 38 using namespace llvm::support::endian; 39 40 namespace lld { 41 // Returns "<internal>", "foo.a(bar.o)" or "baz.o". 42 std::string toString(const elf::InputFile *f) { 43 if (!f) 44 return "<internal>"; 45 46 if (f->toStringCache.empty()) { 47 if (f->archiveName.empty()) 48 f->toStringCache = f->getName(); 49 else 50 f->toStringCache = (f->archiveName + "(" + f->getName() + ")").str(); 51 } 52 return f->toStringCache; 53 } 54 55 namespace elf { 56 bool InputFile::isInGroup; 57 uint32_t InputFile::nextGroupId; 58 std::vector<BinaryFile *> binaryFiles; 59 std::vector<BitcodeFile *> bitcodeFiles; 60 std::vector<LazyObjFile *> lazyObjFiles; 61 std::vector<InputFile *> objectFiles; 62 std::vector<SharedFile *> sharedFiles; 63 64 std::unique_ptr<TarWriter> tar; 65 66 static ELFKind getELFKind(MemoryBufferRef mb, StringRef archiveName) { 67 unsigned char size; 68 unsigned char endian; 69 std::tie(size, endian) = getElfArchType(mb.getBuffer()); 70 71 auto report = [&](StringRef msg) { 72 StringRef filename = mb.getBufferIdentifier(); 73 if (archiveName.empty()) 74 fatal(filename + ": " + msg); 75 else 76 fatal(archiveName + "(" + filename + "): " + msg); 77 }; 78 79 if (!mb.getBuffer().startswith(ElfMagic)) 80 report("not an ELF file"); 81 if (endian != ELFDATA2LSB && endian != ELFDATA2MSB) 82 report("corrupted ELF file: invalid data encoding"); 83 if (size != ELFCLASS32 && size != ELFCLASS64) 84 report("corrupted ELF file: invalid file class"); 85 86 size_t bufSize = mb.getBuffer().size(); 87 if ((size == ELFCLASS32 && bufSize < sizeof(Elf32_Ehdr)) || 88 (size == ELFCLASS64 && bufSize < sizeof(Elf64_Ehdr))) 89 report("corrupted ELF file: file is too short"); 90 91 if (size == ELFCLASS32) 92 return (endian == ELFDATA2LSB) ? ELF32LEKind : ELF32BEKind; 93 return (endian == ELFDATA2LSB) ? ELF64LEKind : ELF64BEKind; 94 } 95 96 InputFile::InputFile(Kind k, MemoryBufferRef m) 97 : mb(m), groupId(nextGroupId), fileKind(k) { 98 // All files within the same --{start,end}-group get the same group ID. 99 // Otherwise, a new file will get a new group ID. 100 if (!isInGroup) 101 ++nextGroupId; 102 } 103 104 Optional<MemoryBufferRef> readFile(StringRef path) { 105 // The --chroot option changes our virtual root directory. 106 // This is useful when you are dealing with files created by --reproduce. 107 if (!config->chroot.empty() && path.startswith("/")) 108 path = saver.save(config->chroot + path); 109 110 log(path); 111 112 auto mbOrErr = MemoryBuffer::getFile(path, -1, false); 113 if (auto ec = mbOrErr.getError()) { 114 error("cannot open " + path + ": " + ec.message()); 115 return None; 116 } 117 118 std::unique_ptr<MemoryBuffer> &mb = *mbOrErr; 119 MemoryBufferRef mbref = mb->getMemBufferRef(); 120 make<std::unique_ptr<MemoryBuffer>>(std::move(mb)); // take MB ownership 121 122 if (tar) 123 tar->append(relativeToRoot(path), mbref.getBuffer()); 124 return mbref; 125 } 126 127 // All input object files must be for the same architecture 128 // (e.g. it does not make sense to link x86 object files with 129 // MIPS object files.) This function checks for that error. 130 static bool isCompatible(InputFile *file) { 131 if (!file->isElf() && !isa<BitcodeFile>(file)) 132 return true; 133 134 if (file->ekind == config->ekind && file->emachine == config->emachine) { 135 if (config->emachine != EM_MIPS) 136 return true; 137 if (isMipsN32Abi(file) == config->mipsN32Abi) 138 return true; 139 } 140 141 if (!config->emulation.empty()) { 142 error(toString(file) + " is incompatible with " + config->emulation); 143 return false; 144 } 145 146 InputFile *existing; 147 if (!objectFiles.empty()) 148 existing = objectFiles[0]; 149 else if (!sharedFiles.empty()) 150 existing = sharedFiles[0]; 151 else 152 existing = bitcodeFiles[0]; 153 154 error(toString(file) + " is incompatible with " + toString(existing)); 155 return false; 156 } 157 158 template <class ELFT> static void doParseFile(InputFile *file) { 159 if (!isCompatible(file)) 160 return; 161 162 // Binary file 163 if (auto *f = dyn_cast<BinaryFile>(file)) { 164 binaryFiles.push_back(f); 165 f->parse(); 166 return; 167 } 168 169 // .a file 170 if (auto *f = dyn_cast<ArchiveFile>(file)) { 171 f->parse(); 172 return; 173 } 174 175 // Lazy object file 176 if (auto *f = dyn_cast<LazyObjFile>(file)) { 177 lazyObjFiles.push_back(f); 178 f->parse<ELFT>(); 179 return; 180 } 181 182 if (config->trace) 183 message(toString(file)); 184 185 // .so file 186 if (auto *f = dyn_cast<SharedFile>(file)) { 187 f->parse<ELFT>(); 188 return; 189 } 190 191 // LLVM bitcode file 192 if (auto *f = dyn_cast<BitcodeFile>(file)) { 193 bitcodeFiles.push_back(f); 194 f->parse<ELFT>(); 195 return; 196 } 197 198 // Regular object file 199 objectFiles.push_back(file); 200 cast<ObjFile<ELFT>>(file)->parse(); 201 } 202 203 // Add symbols in File to the symbol table. 204 void parseFile(InputFile *file) { 205 switch (config->ekind) { 206 case ELF32LEKind: 207 doParseFile<ELF32LE>(file); 208 return; 209 case ELF32BEKind: 210 doParseFile<ELF32BE>(file); 211 return; 212 case ELF64LEKind: 213 doParseFile<ELF64LE>(file); 214 return; 215 case ELF64BEKind: 216 doParseFile<ELF64BE>(file); 217 return; 218 default: 219 llvm_unreachable("unknown ELFT"); 220 } 221 } 222 223 // Concatenates arguments to construct a string representing an error location. 224 static std::string createFileLineMsg(StringRef path, unsigned line) { 225 std::string filename = path::filename(path); 226 std::string lineno = ":" + std::to_string(line); 227 if (filename == path) 228 return filename + lineno; 229 return filename + lineno + " (" + path.str() + lineno + ")"; 230 } 231 232 template <class ELFT> 233 static std::string getSrcMsgAux(ObjFile<ELFT> &file, const Symbol &sym, 234 InputSectionBase &sec, uint64_t offset) { 235 // In DWARF, functions and variables are stored to different places. 236 // First, lookup a function for a given offset. 237 if (Optional<DILineInfo> info = file.getDILineInfo(&sec, offset)) 238 return createFileLineMsg(info->FileName, info->Line); 239 240 // If it failed, lookup again as a variable. 241 if (Optional<std::pair<std::string, unsigned>> fileLine = 242 file.getVariableLoc(sym.getName())) 243 return createFileLineMsg(fileLine->first, fileLine->second); 244 245 // File.sourceFile contains STT_FILE symbol, and that is a last resort. 246 return file.sourceFile; 247 } 248 249 std::string InputFile::getSrcMsg(const Symbol &sym, InputSectionBase &sec, 250 uint64_t offset) { 251 if (kind() != ObjKind) 252 return ""; 253 switch (config->ekind) { 254 default: 255 llvm_unreachable("Invalid kind"); 256 case ELF32LEKind: 257 return getSrcMsgAux(cast<ObjFile<ELF32LE>>(*this), sym, sec, offset); 258 case ELF32BEKind: 259 return getSrcMsgAux(cast<ObjFile<ELF32BE>>(*this), sym, sec, offset); 260 case ELF64LEKind: 261 return getSrcMsgAux(cast<ObjFile<ELF64LE>>(*this), sym, sec, offset); 262 case ELF64BEKind: 263 return getSrcMsgAux(cast<ObjFile<ELF64BE>>(*this), sym, sec, offset); 264 } 265 } 266 267 template <class ELFT> void ObjFile<ELFT>::initializeDwarf() { 268 dwarf = make<DWARFCache>(std::make_unique<DWARFContext>( 269 std::make_unique<LLDDwarfObj<ELFT>>(this))); 270 } 271 272 // Returns the pair of file name and line number describing location of data 273 // object (variable, array, etc) definition. 274 template <class ELFT> 275 Optional<std::pair<std::string, unsigned>> 276 ObjFile<ELFT>::getVariableLoc(StringRef name) { 277 llvm::call_once(initDwarfLine, [this]() { initializeDwarf(); }); 278 279 return dwarf->getVariableLoc(name); 280 } 281 282 // Returns source line information for a given offset 283 // using DWARF debug info. 284 template <class ELFT> 285 Optional<DILineInfo> ObjFile<ELFT>::getDILineInfo(InputSectionBase *s, 286 uint64_t offset) { 287 llvm::call_once(initDwarfLine, [this]() { initializeDwarf(); }); 288 289 // Detect SectionIndex for specified section. 290 uint64_t sectionIndex = object::SectionedAddress::UndefSection; 291 ArrayRef<InputSectionBase *> sections = s->file->getSections(); 292 for (uint64_t curIndex = 0; curIndex < sections.size(); ++curIndex) { 293 if (s == sections[curIndex]) { 294 sectionIndex = curIndex; 295 break; 296 } 297 } 298 299 // Use fake address calcuated by adding section file offset and offset in 300 // section. See comments for ObjectInfo class. 301 return dwarf->getDILineInfo(s->getOffsetInFile() + offset, sectionIndex); 302 } 303 304 ELFFileBase::ELFFileBase(Kind k, MemoryBufferRef mb) : InputFile(k, mb) { 305 ekind = getELFKind(mb, ""); 306 307 switch (ekind) { 308 case ELF32LEKind: 309 init<ELF32LE>(); 310 break; 311 case ELF32BEKind: 312 init<ELF32BE>(); 313 break; 314 case ELF64LEKind: 315 init<ELF64LE>(); 316 break; 317 case ELF64BEKind: 318 init<ELF64BE>(); 319 break; 320 default: 321 llvm_unreachable("getELFKind"); 322 } 323 } 324 325 template <typename Elf_Shdr> 326 static const Elf_Shdr *findSection(ArrayRef<Elf_Shdr> sections, uint32_t type) { 327 for (const Elf_Shdr &sec : sections) 328 if (sec.sh_type == type) 329 return &sec; 330 return nullptr; 331 } 332 333 template <class ELFT> void ELFFileBase::init() { 334 using Elf_Shdr = typename ELFT::Shdr; 335 using Elf_Sym = typename ELFT::Sym; 336 337 // Initialize trivial attributes. 338 const ELFFile<ELFT> &obj = getObj<ELFT>(); 339 emachine = obj.getHeader()->e_machine; 340 osabi = obj.getHeader()->e_ident[llvm::ELF::EI_OSABI]; 341 abiVersion = obj.getHeader()->e_ident[llvm::ELF::EI_ABIVERSION]; 342 343 ArrayRef<Elf_Shdr> sections = CHECK(obj.sections(), this); 344 345 // Find a symbol table. 346 bool isDSO = 347 (identify_magic(mb.getBuffer()) == file_magic::elf_shared_object); 348 const Elf_Shdr *symtabSec = 349 findSection(sections, isDSO ? SHT_DYNSYM : SHT_SYMTAB); 350 351 if (!symtabSec) 352 return; 353 354 // Initialize members corresponding to a symbol table. 355 firstGlobal = symtabSec->sh_info; 356 357 ArrayRef<Elf_Sym> eSyms = CHECK(obj.symbols(symtabSec), this); 358 if (firstGlobal == 0 || firstGlobal > eSyms.size()) 359 fatal(toString(this) + ": invalid sh_info in symbol table"); 360 361 elfSyms = reinterpret_cast<const void *>(eSyms.data()); 362 numELFSyms = eSyms.size(); 363 stringTable = CHECK(obj.getStringTableForSymtab(*symtabSec, sections), this); 364 } 365 366 template <class ELFT> 367 uint32_t ObjFile<ELFT>::getSectionIndex(const Elf_Sym &sym) const { 368 return CHECK( 369 this->getObj().getSectionIndex(&sym, getELFSyms<ELFT>(), shndxTable), 370 this); 371 } 372 373 template <class ELFT> ArrayRef<Symbol *> ObjFile<ELFT>::getLocalSymbols() { 374 if (this->symbols.empty()) 375 return {}; 376 return makeArrayRef(this->symbols).slice(1, this->firstGlobal - 1); 377 } 378 379 template <class ELFT> ArrayRef<Symbol *> ObjFile<ELFT>::getGlobalSymbols() { 380 return makeArrayRef(this->symbols).slice(this->firstGlobal); 381 } 382 383 template <class ELFT> void ObjFile<ELFT>::parse(bool ignoreComdats) { 384 // Read a section table. justSymbols is usually false. 385 if (this->justSymbols) 386 initializeJustSymbols(); 387 else 388 initializeSections(ignoreComdats); 389 390 // Read a symbol table. 391 initializeSymbols(); 392 } 393 394 // Sections with SHT_GROUP and comdat bits define comdat section groups. 395 // They are identified and deduplicated by group name. This function 396 // returns a group name. 397 template <class ELFT> 398 StringRef ObjFile<ELFT>::getShtGroupSignature(ArrayRef<Elf_Shdr> sections, 399 const Elf_Shdr &sec) { 400 typename ELFT::SymRange symbols = this->getELFSyms<ELFT>(); 401 if (sec.sh_info >= symbols.size()) 402 fatal(toString(this) + ": invalid symbol index"); 403 const typename ELFT::Sym &sym = symbols[sec.sh_info]; 404 StringRef signature = CHECK(sym.getName(this->stringTable), this); 405 406 // As a special case, if a symbol is a section symbol and has no name, 407 // we use a section name as a signature. 408 // 409 // Such SHT_GROUP sections are invalid from the perspective of the ELF 410 // standard, but GNU gold 1.14 (the newest version as of July 2017) or 411 // older produce such sections as outputs for the -r option, so we need 412 // a bug-compatibility. 413 if (signature.empty() && sym.getType() == STT_SECTION) 414 return getSectionName(sec); 415 return signature; 416 } 417 418 template <class ELFT> 419 bool ObjFile<ELFT>::shouldMerge(const Elf_Shdr &sec, StringRef name) { 420 // On a regular link we don't merge sections if -O0 (default is -O1). This 421 // sometimes makes the linker significantly faster, although the output will 422 // be bigger. 423 // 424 // Doing the same for -r would create a problem as it would combine sections 425 // with different sh_entsize. One option would be to just copy every SHF_MERGE 426 // section as is to the output. While this would produce a valid ELF file with 427 // usable SHF_MERGE sections, tools like (llvm-)?dwarfdump get confused when 428 // they see two .debug_str. We could have separate logic for combining 429 // SHF_MERGE sections based both on their name and sh_entsize, but that seems 430 // to be more trouble than it is worth. Instead, we just use the regular (-O1) 431 // logic for -r. 432 if (config->optimize == 0 && !config->relocatable) 433 return false; 434 435 // A mergeable section with size 0 is useless because they don't have 436 // any data to merge. A mergeable string section with size 0 can be 437 // argued as invalid because it doesn't end with a null character. 438 // We'll avoid a mess by handling them as if they were non-mergeable. 439 if (sec.sh_size == 0) 440 return false; 441 442 // Check for sh_entsize. The ELF spec is not clear about the zero 443 // sh_entsize. It says that "the member [sh_entsize] contains 0 if 444 // the section does not hold a table of fixed-size entries". We know 445 // that Rust 1.13 produces a string mergeable section with a zero 446 // sh_entsize. Here we just accept it rather than being picky about it. 447 uint64_t entSize = sec.sh_entsize; 448 if (entSize == 0) 449 return false; 450 if (sec.sh_size % entSize) 451 fatal(toString(this) + ":(" + name + "): SHF_MERGE section size (" + 452 Twine(sec.sh_size) + ") must be a multiple of sh_entsize (" + 453 Twine(entSize) + ")"); 454 455 uint64_t flags = sec.sh_flags; 456 if (!(flags & SHF_MERGE)) 457 return false; 458 if (flags & SHF_WRITE) 459 fatal(toString(this) + ":(" + name + 460 "): writable SHF_MERGE section is not supported"); 461 462 return true; 463 } 464 465 // This is for --just-symbols. 466 // 467 // --just-symbols is a very minor feature that allows you to link your 468 // output against other existing program, so that if you load both your 469 // program and the other program into memory, your output can refer the 470 // other program's symbols. 471 // 472 // When the option is given, we link "just symbols". The section table is 473 // initialized with null pointers. 474 template <class ELFT> void ObjFile<ELFT>::initializeJustSymbols() { 475 ArrayRef<Elf_Shdr> sections = CHECK(this->getObj().sections(), this); 476 this->sections.resize(sections.size()); 477 } 478 479 // An ELF object file may contain a `.deplibs` section. If it exists, the 480 // section contains a list of library specifiers such as `m` for libm. This 481 // function resolves a given name by finding the first matching library checking 482 // the various ways that a library can be specified to LLD. This ELF extension 483 // is a form of autolinking and is called `dependent libraries`. It is currently 484 // unique to LLVM and lld. 485 static void addDependentLibrary(StringRef specifier, const InputFile *f) { 486 if (!config->dependentLibraries) 487 return; 488 if (fs::exists(specifier)) 489 driver->addFile(specifier, /*withLOption=*/false); 490 else if (Optional<std::string> s = findFromSearchPaths(specifier)) 491 driver->addFile(*s, /*withLOption=*/true); 492 else if (Optional<std::string> s = searchLibraryBaseName(specifier)) 493 driver->addFile(*s, /*withLOption=*/true); 494 else 495 error(toString(f) + 496 ": unable to find library from dependent library specifier: " + 497 specifier); 498 } 499 500 template <class ELFT> 501 static void handleSectionGroup(ArrayRef<InputSectionBase *> sections, 502 ArrayRef<typename ELFT::Word> entries) { 503 bool hasAlloc = false; 504 for (uint32_t index : entries.slice(1)) { 505 if (index >= sections.size()) 506 return; 507 if (InputSectionBase *s = sections[index]) 508 if (s != &InputSection::discarded && s->flags & SHF_ALLOC) 509 hasAlloc = true; 510 } 511 512 // If any member has the SHF_ALLOC flag, the whole group is subject to garbage 513 // collection. See the comment in markLive(). This rule retains .debug_types 514 // and .rela.debug_types. 515 if (!hasAlloc) 516 return; 517 518 // Connect the members in a circular doubly-linked list via 519 // nextInSectionGroup. 520 InputSectionBase *head; 521 InputSectionBase *prev = nullptr; 522 for (uint32_t index : entries.slice(1)) { 523 InputSectionBase *s = sections[index]; 524 if (!s || s == &InputSection::discarded) 525 continue; 526 if (prev) 527 prev->nextInSectionGroup = s; 528 else 529 head = s; 530 prev = s; 531 } 532 if (prev) 533 prev->nextInSectionGroup = head; 534 } 535 536 template <class ELFT> 537 void ObjFile<ELFT>::initializeSections(bool ignoreComdats) { 538 const ELFFile<ELFT> &obj = this->getObj(); 539 540 ArrayRef<Elf_Shdr> objSections = CHECK(obj.sections(), this); 541 uint64_t size = objSections.size(); 542 this->sections.resize(size); 543 this->sectionStringTable = 544 CHECK(obj.getSectionStringTable(objSections), this); 545 546 std::vector<ArrayRef<Elf_Word>> selectedGroups; 547 548 for (size_t i = 0, e = objSections.size(); i < e; ++i) { 549 if (this->sections[i] == &InputSection::discarded) 550 continue; 551 const Elf_Shdr &sec = objSections[i]; 552 553 if (sec.sh_type == ELF::SHT_LLVM_CALL_GRAPH_PROFILE) 554 cgProfile = 555 check(obj.template getSectionContentsAsArray<Elf_CGProfile>(&sec)); 556 557 // SHF_EXCLUDE'ed sections are discarded by the linker. However, 558 // if -r is given, we'll let the final link discard such sections. 559 // This is compatible with GNU. 560 if ((sec.sh_flags & SHF_EXCLUDE) && !config->relocatable) { 561 if (sec.sh_type == SHT_LLVM_ADDRSIG) { 562 // We ignore the address-significance table if we know that the object 563 // file was created by objcopy or ld -r. This is because these tools 564 // will reorder the symbols in the symbol table, invalidating the data 565 // in the address-significance table, which refers to symbols by index. 566 if (sec.sh_link != 0) 567 this->addrsigSec = &sec; 568 else if (config->icf == ICFLevel::Safe) 569 warn(toString(this) + ": --icf=safe is incompatible with object " 570 "files created using objcopy or ld -r"); 571 } 572 this->sections[i] = &InputSection::discarded; 573 continue; 574 } 575 576 switch (sec.sh_type) { 577 case SHT_GROUP: { 578 // De-duplicate section groups by their signatures. 579 StringRef signature = getShtGroupSignature(objSections, sec); 580 this->sections[i] = &InputSection::discarded; 581 582 583 ArrayRef<Elf_Word> entries = 584 CHECK(obj.template getSectionContentsAsArray<Elf_Word>(&sec), this); 585 if (entries.empty()) 586 fatal(toString(this) + ": empty SHT_GROUP"); 587 588 // The first word of a SHT_GROUP section contains flags. Currently, 589 // the standard defines only "GRP_COMDAT" flag for the COMDAT group. 590 // An group with the empty flag doesn't define anything; such sections 591 // are just skipped. 592 if (entries[0] == 0) 593 continue; 594 595 if (entries[0] != GRP_COMDAT) 596 fatal(toString(this) + ": unsupported SHT_GROUP format"); 597 598 bool isNew = 599 ignoreComdats || 600 symtab->comdatGroups.try_emplace(CachedHashStringRef(signature), this) 601 .second; 602 if (isNew) { 603 if (config->relocatable) 604 this->sections[i] = createInputSection(sec); 605 selectedGroups.push_back(entries); 606 continue; 607 } 608 609 // Otherwise, discard group members. 610 for (uint32_t secIndex : entries.slice(1)) { 611 if (secIndex >= size) 612 fatal(toString(this) + 613 ": invalid section index in group: " + Twine(secIndex)); 614 this->sections[secIndex] = &InputSection::discarded; 615 } 616 break; 617 } 618 case SHT_SYMTAB_SHNDX: 619 shndxTable = CHECK(obj.getSHNDXTable(sec, objSections), this); 620 break; 621 case SHT_SYMTAB: 622 case SHT_STRTAB: 623 case SHT_NULL: 624 break; 625 default: 626 this->sections[i] = createInputSection(sec); 627 } 628 } 629 630 // This block handles SHF_LINK_ORDER. 631 for (size_t i = 0, e = objSections.size(); i < e; ++i) { 632 if (this->sections[i] == &InputSection::discarded) 633 continue; 634 const Elf_Shdr &sec = objSections[i]; 635 if (!(sec.sh_flags & SHF_LINK_ORDER)) 636 continue; 637 638 // .ARM.exidx sections have a reverse dependency on the InputSection they 639 // have a SHF_LINK_ORDER dependency, this is identified by the sh_link. 640 InputSectionBase *linkSec = nullptr; 641 if (sec.sh_link < this->sections.size()) 642 linkSec = this->sections[sec.sh_link]; 643 if (!linkSec) 644 fatal(toString(this) + ": invalid sh_link index: " + Twine(sec.sh_link)); 645 646 InputSection *isec = cast<InputSection>(this->sections[i]); 647 linkSec->dependentSections.push_back(isec); 648 if (!isa<InputSection>(linkSec)) 649 error("a section " + isec->name + 650 " with SHF_LINK_ORDER should not refer a non-regular section: " + 651 toString(linkSec)); 652 } 653 654 for (ArrayRef<Elf_Word> entries : selectedGroups) 655 handleSectionGroup<ELFT>(this->sections, entries); 656 } 657 658 // For ARM only, to set the EF_ARM_ABI_FLOAT_SOFT or EF_ARM_ABI_FLOAT_HARD 659 // flag in the ELF Header we need to look at Tag_ABI_VFP_args to find out how 660 // the input objects have been compiled. 661 static void updateARMVFPArgs(const ARMAttributeParser &attributes, 662 const InputFile *f) { 663 if (!attributes.hasAttribute(ARMBuildAttrs::ABI_VFP_args)) 664 // If an ABI tag isn't present then it is implicitly given the value of 0 665 // which maps to ARMBuildAttrs::BaseAAPCS. However many assembler files, 666 // including some in glibc that don't use FP args (and should have value 3) 667 // don't have the attribute so we do not consider an implicit value of 0 668 // as a clash. 669 return; 670 671 unsigned vfpArgs = attributes.getAttributeValue(ARMBuildAttrs::ABI_VFP_args); 672 ARMVFPArgKind arg; 673 switch (vfpArgs) { 674 case ARMBuildAttrs::BaseAAPCS: 675 arg = ARMVFPArgKind::Base; 676 break; 677 case ARMBuildAttrs::HardFPAAPCS: 678 arg = ARMVFPArgKind::VFP; 679 break; 680 case ARMBuildAttrs::ToolChainFPPCS: 681 // Tool chain specific convention that conforms to neither AAPCS variant. 682 arg = ARMVFPArgKind::ToolChain; 683 break; 684 case ARMBuildAttrs::CompatibleFPAAPCS: 685 // Object compatible with all conventions. 686 return; 687 default: 688 error(toString(f) + ": unknown Tag_ABI_VFP_args value: " + Twine(vfpArgs)); 689 return; 690 } 691 // Follow ld.bfd and error if there is a mix of calling conventions. 692 if (config->armVFPArgs != arg && config->armVFPArgs != ARMVFPArgKind::Default) 693 error(toString(f) + ": incompatible Tag_ABI_VFP_args"); 694 else 695 config->armVFPArgs = arg; 696 } 697 698 // The ARM support in lld makes some use of instructions that are not available 699 // on all ARM architectures. Namely: 700 // - Use of BLX instruction for interworking between ARM and Thumb state. 701 // - Use of the extended Thumb branch encoding in relocation. 702 // - Use of the MOVT/MOVW instructions in Thumb Thunks. 703 // The ARM Attributes section contains information about the architecture chosen 704 // at compile time. We follow the convention that if at least one input object 705 // is compiled with an architecture that supports these features then lld is 706 // permitted to use them. 707 static void updateSupportedARMFeatures(const ARMAttributeParser &attributes) { 708 if (!attributes.hasAttribute(ARMBuildAttrs::CPU_arch)) 709 return; 710 auto arch = attributes.getAttributeValue(ARMBuildAttrs::CPU_arch); 711 switch (arch) { 712 case ARMBuildAttrs::Pre_v4: 713 case ARMBuildAttrs::v4: 714 case ARMBuildAttrs::v4T: 715 // Architectures prior to v5 do not support BLX instruction 716 break; 717 case ARMBuildAttrs::v5T: 718 case ARMBuildAttrs::v5TE: 719 case ARMBuildAttrs::v5TEJ: 720 case ARMBuildAttrs::v6: 721 case ARMBuildAttrs::v6KZ: 722 case ARMBuildAttrs::v6K: 723 config->armHasBlx = true; 724 // Architectures used in pre-Cortex processors do not support 725 // The J1 = 1 J2 = 1 Thumb branch range extension, with the exception 726 // of Architecture v6T2 (arm1156t2-s and arm1156t2f-s) that do. 727 break; 728 default: 729 // All other Architectures have BLX and extended branch encoding 730 config->armHasBlx = true; 731 config->armJ1J2BranchEncoding = true; 732 if (arch != ARMBuildAttrs::v6_M && arch != ARMBuildAttrs::v6S_M) 733 // All Architectures used in Cortex processors with the exception 734 // of v6-M and v6S-M have the MOVT and MOVW instructions. 735 config->armHasMovtMovw = true; 736 break; 737 } 738 } 739 740 // If a source file is compiled with x86 hardware-assisted call flow control 741 // enabled, the generated object file contains feature flags indicating that 742 // fact. This function reads the feature flags and returns it. 743 // 744 // Essentially we want to read a single 32-bit value in this function, but this 745 // function is rather complicated because the value is buried deep inside a 746 // .note.gnu.property section. 747 // 748 // The section consists of one or more NOTE records. Each NOTE record consists 749 // of zero or more type-length-value fields. We want to find a field of a 750 // certain type. It seems a bit too much to just store a 32-bit value, perhaps 751 // the ABI is unnecessarily complicated. 752 template <class ELFT> 753 static uint32_t readAndFeatures(ObjFile<ELFT> *obj, ArrayRef<uint8_t> data) { 754 using Elf_Nhdr = typename ELFT::Nhdr; 755 using Elf_Note = typename ELFT::Note; 756 757 uint32_t featuresSet = 0; 758 while (!data.empty()) { 759 // Read one NOTE record. 760 if (data.size() < sizeof(Elf_Nhdr)) 761 fatal(toString(obj) + ": .note.gnu.property: section too short"); 762 763 auto *nhdr = reinterpret_cast<const Elf_Nhdr *>(data.data()); 764 if (data.size() < nhdr->getSize()) 765 fatal(toString(obj) + ": .note.gnu.property: section too short"); 766 767 Elf_Note note(*nhdr); 768 if (nhdr->n_type != NT_GNU_PROPERTY_TYPE_0 || note.getName() != "GNU") { 769 data = data.slice(nhdr->getSize()); 770 continue; 771 } 772 773 uint32_t featureAndType = config->emachine == EM_AARCH64 774 ? GNU_PROPERTY_AARCH64_FEATURE_1_AND 775 : GNU_PROPERTY_X86_FEATURE_1_AND; 776 777 // Read a body of a NOTE record, which consists of type-length-value fields. 778 ArrayRef<uint8_t> desc = note.getDesc(); 779 while (!desc.empty()) { 780 if (desc.size() < 8) 781 fatal(toString(obj) + ": .note.gnu.property: section too short"); 782 783 uint32_t type = read32le(desc.data()); 784 uint32_t size = read32le(desc.data() + 4); 785 786 if (type == featureAndType) { 787 // We found a FEATURE_1_AND field. There may be more than one of these 788 // in a .note.gnu.property section, for a relocatable object we 789 // accumulate the bits set. 790 featuresSet |= read32le(desc.data() + 8); 791 } 792 793 // On 64-bit, a payload may be followed by a 4-byte padding to make its 794 // size a multiple of 8. 795 if (ELFT::Is64Bits) 796 size = alignTo(size, 8); 797 798 desc = desc.slice(size + 8); // +8 for Type and Size 799 } 800 801 // Go to next NOTE record to look for more FEATURE_1_AND descriptions. 802 data = data.slice(nhdr->getSize()); 803 } 804 805 return featuresSet; 806 } 807 808 template <class ELFT> 809 InputSectionBase *ObjFile<ELFT>::getRelocTarget(const Elf_Shdr &sec) { 810 uint32_t idx = sec.sh_info; 811 if (idx >= this->sections.size()) 812 fatal(toString(this) + ": invalid relocated section index: " + Twine(idx)); 813 InputSectionBase *target = this->sections[idx]; 814 815 // Strictly speaking, a relocation section must be included in the 816 // group of the section it relocates. However, LLVM 3.3 and earlier 817 // would fail to do so, so we gracefully handle that case. 818 if (target == &InputSection::discarded) 819 return nullptr; 820 821 if (!target) 822 fatal(toString(this) + ": unsupported relocation reference"); 823 return target; 824 } 825 826 // Create a regular InputSection class that has the same contents 827 // as a given section. 828 static InputSection *toRegularSection(MergeInputSection *sec) { 829 return make<InputSection>(sec->file, sec->flags, sec->type, sec->alignment, 830 sec->data(), sec->name); 831 } 832 833 template <class ELFT> 834 InputSectionBase *ObjFile<ELFT>::createInputSection(const Elf_Shdr &sec) { 835 StringRef name = getSectionName(sec); 836 837 switch (sec.sh_type) { 838 case SHT_ARM_ATTRIBUTES: { 839 if (config->emachine != EM_ARM) 840 break; 841 ARMAttributeParser attributes; 842 ArrayRef<uint8_t> contents = check(this->getObj().getSectionContents(&sec)); 843 attributes.Parse(contents, /*isLittle*/ config->ekind == ELF32LEKind); 844 updateSupportedARMFeatures(attributes); 845 updateARMVFPArgs(attributes, this); 846 847 // FIXME: Retain the first attribute section we see. The eglibc ARM 848 // dynamic loaders require the presence of an attribute section for dlopen 849 // to work. In a full implementation we would merge all attribute sections. 850 if (in.armAttributes == nullptr) { 851 in.armAttributes = make<InputSection>(*this, sec, name); 852 return in.armAttributes; 853 } 854 return &InputSection::discarded; 855 } 856 case SHT_LLVM_DEPENDENT_LIBRARIES: { 857 if (config->relocatable) 858 break; 859 ArrayRef<char> data = 860 CHECK(this->getObj().template getSectionContentsAsArray<char>(&sec), this); 861 if (!data.empty() && data.back() != '\0') { 862 error(toString(this) + 863 ": corrupted dependent libraries section (unterminated string): " + 864 name); 865 return &InputSection::discarded; 866 } 867 for (const char *d = data.begin(), *e = data.end(); d < e;) { 868 StringRef s(d); 869 addDependentLibrary(s, this); 870 d += s.size() + 1; 871 } 872 return &InputSection::discarded; 873 } 874 case SHT_RELA: 875 case SHT_REL: { 876 // Find a relocation target section and associate this section with that. 877 // Target may have been discarded if it is in a different section group 878 // and the group is discarded, even though it's a violation of the 879 // spec. We handle that situation gracefully by discarding dangling 880 // relocation sections. 881 InputSectionBase *target = getRelocTarget(sec); 882 if (!target) 883 return nullptr; 884 885 // ELF spec allows mergeable sections with relocations, but they are 886 // rare, and it is in practice hard to merge such sections by contents, 887 // because applying relocations at end of linking changes section 888 // contents. So, we simply handle such sections as non-mergeable ones. 889 // Degrading like this is acceptable because section merging is optional. 890 if (auto *ms = dyn_cast<MergeInputSection>(target)) { 891 target = toRegularSection(ms); 892 this->sections[sec.sh_info] = target; 893 } 894 895 // This section contains relocation information. 896 // If -r is given, we do not interpret or apply relocation 897 // but just copy relocation sections to output. 898 if (config->relocatable) { 899 InputSection *relocSec = make<InputSection>(*this, sec, name); 900 // We want to add a dependency to target, similar like we do for 901 // -emit-relocs below. This is useful for the case when linker script 902 // contains the "/DISCARD/". It is perhaps uncommon to use a script with 903 // -r, but we faced it in the Linux kernel and have to handle such case 904 // and not to crash. 905 target->dependentSections.push_back(relocSec); 906 return relocSec; 907 } 908 909 if (target->firstRelocation) 910 fatal(toString(this) + 911 ": multiple relocation sections to one section are not supported"); 912 913 if (sec.sh_type == SHT_RELA) { 914 ArrayRef<Elf_Rela> rels = CHECK(getObj().relas(&sec), this); 915 target->firstRelocation = rels.begin(); 916 target->numRelocations = rels.size(); 917 target->areRelocsRela = true; 918 } else { 919 ArrayRef<Elf_Rel> rels = CHECK(getObj().rels(&sec), this); 920 target->firstRelocation = rels.begin(); 921 target->numRelocations = rels.size(); 922 target->areRelocsRela = false; 923 } 924 assert(isUInt<31>(target->numRelocations)); 925 926 // Relocation sections processed by the linker are usually removed 927 // from the output, so returning `nullptr` for the normal case. 928 // However, if -emit-relocs is given, we need to leave them in the output. 929 // (Some post link analysis tools need this information.) 930 if (config->emitRelocs) { 931 InputSection *relocSec = make<InputSection>(*this, sec, name); 932 // We will not emit relocation section if target was discarded. 933 target->dependentSections.push_back(relocSec); 934 return relocSec; 935 } 936 return nullptr; 937 } 938 } 939 940 // The GNU linker uses .note.GNU-stack section as a marker indicating 941 // that the code in the object file does not expect that the stack is 942 // executable (in terms of NX bit). If all input files have the marker, 943 // the GNU linker adds a PT_GNU_STACK segment to tells the loader to 944 // make the stack non-executable. Most object files have this section as 945 // of 2017. 946 // 947 // But making the stack non-executable is a norm today for security 948 // reasons. Failure to do so may result in a serious security issue. 949 // Therefore, we make LLD always add PT_GNU_STACK unless it is 950 // explicitly told to do otherwise (by -z execstack). Because the stack 951 // executable-ness is controlled solely by command line options, 952 // .note.GNU-stack sections are simply ignored. 953 if (name == ".note.GNU-stack") 954 return &InputSection::discarded; 955 956 // Object files that use processor features such as Intel Control-Flow 957 // Enforcement (CET) or AArch64 Branch Target Identification BTI, use a 958 // .note.gnu.property section containing a bitfield of feature bits like the 959 // GNU_PROPERTY_X86_FEATURE_1_IBT flag. Read a bitmap containing the flag. 960 // 961 // Since we merge bitmaps from multiple object files to create a new 962 // .note.gnu.property containing a single AND'ed bitmap, we discard an input 963 // file's .note.gnu.property section. 964 if (name == ".note.gnu.property") { 965 ArrayRef<uint8_t> contents = check(this->getObj().getSectionContents(&sec)); 966 this->andFeatures = readAndFeatures(this, contents); 967 return &InputSection::discarded; 968 } 969 970 // Split stacks is a feature to support a discontiguous stack, 971 // commonly used in the programming language Go. For the details, 972 // see https://gcc.gnu.org/wiki/SplitStacks. An object file compiled 973 // for split stack will include a .note.GNU-split-stack section. 974 if (name == ".note.GNU-split-stack") { 975 if (config->relocatable) { 976 error("cannot mix split-stack and non-split-stack in a relocatable link"); 977 return &InputSection::discarded; 978 } 979 this->splitStack = true; 980 return &InputSection::discarded; 981 } 982 983 // An object file cmpiled for split stack, but where some of the 984 // functions were compiled with the no_split_stack_attribute will 985 // include a .note.GNU-no-split-stack section. 986 if (name == ".note.GNU-no-split-stack") { 987 this->someNoSplitStack = true; 988 return &InputSection::discarded; 989 } 990 991 // The linkonce feature is a sort of proto-comdat. Some glibc i386 object 992 // files contain definitions of symbol "__x86.get_pc_thunk.bx" in linkonce 993 // sections. Drop those sections to avoid duplicate symbol errors. 994 // FIXME: This is glibc PR20543, we should remove this hack once that has been 995 // fixed for a while. 996 if (name == ".gnu.linkonce.t.__x86.get_pc_thunk.bx" || 997 name == ".gnu.linkonce.t.__i686.get_pc_thunk.bx") 998 return &InputSection::discarded; 999 1000 // If we are creating a new .build-id section, strip existing .build-id 1001 // sections so that the output won't have more than one .build-id. 1002 // This is not usually a problem because input object files normally don't 1003 // have .build-id sections, but you can create such files by 1004 // "ld.{bfd,gold,lld} -r --build-id", and we want to guard against it. 1005 if (name == ".note.gnu.build-id" && config->buildId != BuildIdKind::None) 1006 return &InputSection::discarded; 1007 1008 // The linker merges EH (exception handling) frames and creates a 1009 // .eh_frame_hdr section for runtime. So we handle them with a special 1010 // class. For relocatable outputs, they are just passed through. 1011 if (name == ".eh_frame" && !config->relocatable) 1012 return make<EhInputSection>(*this, sec, name); 1013 1014 if (shouldMerge(sec, name)) 1015 return make<MergeInputSection>(*this, sec, name); 1016 return make<InputSection>(*this, sec, name); 1017 } 1018 1019 template <class ELFT> 1020 StringRef ObjFile<ELFT>::getSectionName(const Elf_Shdr &sec) { 1021 return CHECK(getObj().getSectionName(&sec, sectionStringTable), this); 1022 } 1023 1024 // Initialize this->Symbols. this->Symbols is a parallel array as 1025 // its corresponding ELF symbol table. 1026 template <class ELFT> void ObjFile<ELFT>::initializeSymbols() { 1027 ArrayRef<Elf_Sym> eSyms = this->getELFSyms<ELFT>(); 1028 this->symbols.resize(eSyms.size()); 1029 1030 // Our symbol table may have already been partially initialized 1031 // because of LazyObjFile. 1032 for (size_t i = 0, end = eSyms.size(); i != end; ++i) 1033 if (!this->symbols[i] && eSyms[i].getBinding() != STB_LOCAL) 1034 this->symbols[i] = 1035 symtab->insert(CHECK(eSyms[i].getName(this->stringTable), this)); 1036 1037 // Fill this->Symbols. A symbol is either local or global. 1038 for (size_t i = 0, end = eSyms.size(); i != end; ++i) { 1039 const Elf_Sym &eSym = eSyms[i]; 1040 1041 // Read symbol attributes. 1042 uint32_t secIdx = getSectionIndex(eSym); 1043 if (secIdx >= this->sections.size()) 1044 fatal(toString(this) + ": invalid section index: " + Twine(secIdx)); 1045 1046 InputSectionBase *sec = this->sections[secIdx]; 1047 uint8_t binding = eSym.getBinding(); 1048 uint8_t stOther = eSym.st_other; 1049 uint8_t type = eSym.getType(); 1050 uint64_t value = eSym.st_value; 1051 uint64_t size = eSym.st_size; 1052 StringRefZ name = this->stringTable.data() + eSym.st_name; 1053 1054 // Handle local symbols. Local symbols are not added to the symbol 1055 // table because they are not visible from other object files. We 1056 // allocate symbol instances and add their pointers to Symbols. 1057 if (binding == STB_LOCAL) { 1058 if (eSym.getType() == STT_FILE) 1059 sourceFile = CHECK(eSym.getName(this->stringTable), this); 1060 1061 if (this->stringTable.size() <= eSym.st_name) 1062 fatal(toString(this) + ": invalid symbol name offset"); 1063 1064 if (eSym.st_shndx == SHN_UNDEF) 1065 this->symbols[i] = make<Undefined>(this, name, binding, stOther, type); 1066 else if (sec == &InputSection::discarded) 1067 this->symbols[i] = make<Undefined>(this, name, binding, stOther, type, 1068 /*DiscardedSecIdx=*/secIdx); 1069 else 1070 this->symbols[i] = 1071 make<Defined>(this, name, binding, stOther, type, value, size, sec); 1072 continue; 1073 } 1074 1075 // Handle global undefined symbols. 1076 if (eSym.st_shndx == SHN_UNDEF) { 1077 this->symbols[i]->resolve(Undefined{this, name, binding, stOther, type}); 1078 this->symbols[i]->referenced = true; 1079 continue; 1080 } 1081 1082 // Handle global common symbols. 1083 if (eSym.st_shndx == SHN_COMMON) { 1084 if (value == 0 || value >= UINT32_MAX) 1085 fatal(toString(this) + ": common symbol '" + StringRef(name.data) + 1086 "' has invalid alignment: " + Twine(value)); 1087 this->symbols[i]->resolve( 1088 CommonSymbol{this, name, binding, stOther, type, value, size}); 1089 continue; 1090 } 1091 1092 // If a defined symbol is in a discarded section, handle it as if it 1093 // were an undefined symbol. Such symbol doesn't comply with the 1094 // standard, but in practice, a .eh_frame often directly refer 1095 // COMDAT member sections, and if a comdat group is discarded, some 1096 // defined symbol in a .eh_frame becomes dangling symbols. 1097 if (sec == &InputSection::discarded) { 1098 this->symbols[i]->resolve( 1099 Undefined{this, name, binding, stOther, type, secIdx}); 1100 continue; 1101 } 1102 1103 // Handle global defined symbols. 1104 if (binding == STB_GLOBAL || binding == STB_WEAK || 1105 binding == STB_GNU_UNIQUE) { 1106 this->symbols[i]->resolve( 1107 Defined{this, name, binding, stOther, type, value, size, sec}); 1108 continue; 1109 } 1110 1111 fatal(toString(this) + ": unexpected binding: " + Twine((int)binding)); 1112 } 1113 } 1114 1115 ArchiveFile::ArchiveFile(std::unique_ptr<Archive> &&file) 1116 : InputFile(ArchiveKind, file->getMemoryBufferRef()), 1117 file(std::move(file)) {} 1118 1119 void ArchiveFile::parse() { 1120 for (const Archive::Symbol &sym : file->symbols()) 1121 symtab->addSymbol(LazyArchive{*this, sym}); 1122 } 1123 1124 // Returns a buffer pointing to a member file containing a given symbol. 1125 void ArchiveFile::fetch(const Archive::Symbol &sym) { 1126 Archive::Child c = 1127 CHECK(sym.getMember(), toString(this) + 1128 ": could not get the member for symbol " + 1129 toELFString(sym)); 1130 1131 if (!seen.insert(c.getChildOffset()).second) 1132 return; 1133 1134 MemoryBufferRef mb = 1135 CHECK(c.getMemoryBufferRef(), 1136 toString(this) + 1137 ": could not get the buffer for the member defining symbol " + 1138 toELFString(sym)); 1139 1140 if (tar && c.getParent()->isThin()) 1141 tar->append(relativeToRoot(CHECK(c.getFullName(), this)), mb.getBuffer()); 1142 1143 InputFile *file = createObjectFile( 1144 mb, getName(), c.getParent()->isThin() ? 0 : c.getChildOffset()); 1145 file->groupId = groupId; 1146 parseFile(file); 1147 } 1148 1149 unsigned SharedFile::vernauxNum; 1150 1151 // Parse the version definitions in the object file if present, and return a 1152 // vector whose nth element contains a pointer to the Elf_Verdef for version 1153 // identifier n. Version identifiers that are not definitions map to nullptr. 1154 template <typename ELFT> 1155 static std::vector<const void *> parseVerdefs(const uint8_t *base, 1156 const typename ELFT::Shdr *sec) { 1157 if (!sec) 1158 return {}; 1159 1160 // We cannot determine the largest verdef identifier without inspecting 1161 // every Elf_Verdef, but both bfd and gold assign verdef identifiers 1162 // sequentially starting from 1, so we predict that the largest identifier 1163 // will be verdefCount. 1164 unsigned verdefCount = sec->sh_info; 1165 std::vector<const void *> verdefs(verdefCount + 1); 1166 1167 // Build the Verdefs array by following the chain of Elf_Verdef objects 1168 // from the start of the .gnu.version_d section. 1169 const uint8_t *verdef = base + sec->sh_offset; 1170 for (unsigned i = 0; i != verdefCount; ++i) { 1171 auto *curVerdef = reinterpret_cast<const typename ELFT::Verdef *>(verdef); 1172 verdef += curVerdef->vd_next; 1173 unsigned verdefIndex = curVerdef->vd_ndx; 1174 verdefs.resize(verdefIndex + 1); 1175 verdefs[verdefIndex] = curVerdef; 1176 } 1177 return verdefs; 1178 } 1179 1180 // We do not usually care about alignments of data in shared object 1181 // files because the loader takes care of it. However, if we promote a 1182 // DSO symbol to point to .bss due to copy relocation, we need to keep 1183 // the original alignment requirements. We infer it in this function. 1184 template <typename ELFT> 1185 static uint64_t getAlignment(ArrayRef<typename ELFT::Shdr> sections, 1186 const typename ELFT::Sym &sym) { 1187 uint64_t ret = UINT64_MAX; 1188 if (sym.st_value) 1189 ret = 1ULL << countTrailingZeros((uint64_t)sym.st_value); 1190 if (0 < sym.st_shndx && sym.st_shndx < sections.size()) 1191 ret = std::min<uint64_t>(ret, sections[sym.st_shndx].sh_addralign); 1192 return (ret > UINT32_MAX) ? 0 : ret; 1193 } 1194 1195 // Fully parse the shared object file. 1196 // 1197 // This function parses symbol versions. If a DSO has version information, 1198 // the file has a ".gnu.version_d" section which contains symbol version 1199 // definitions. Each symbol is associated to one version through a table in 1200 // ".gnu.version" section. That table is a parallel array for the symbol 1201 // table, and each table entry contains an index in ".gnu.version_d". 1202 // 1203 // The special index 0 is reserved for VERF_NDX_LOCAL and 1 is for 1204 // VER_NDX_GLOBAL. There's no table entry for these special versions in 1205 // ".gnu.version_d". 1206 // 1207 // The file format for symbol versioning is perhaps a bit more complicated 1208 // than necessary, but you can easily understand the code if you wrap your 1209 // head around the data structure described above. 1210 template <class ELFT> void SharedFile::parse() { 1211 using Elf_Dyn = typename ELFT::Dyn; 1212 using Elf_Shdr = typename ELFT::Shdr; 1213 using Elf_Sym = typename ELFT::Sym; 1214 using Elf_Verdef = typename ELFT::Verdef; 1215 using Elf_Versym = typename ELFT::Versym; 1216 1217 ArrayRef<Elf_Dyn> dynamicTags; 1218 const ELFFile<ELFT> obj = this->getObj<ELFT>(); 1219 ArrayRef<Elf_Shdr> sections = CHECK(obj.sections(), this); 1220 1221 const Elf_Shdr *versymSec = nullptr; 1222 const Elf_Shdr *verdefSec = nullptr; 1223 1224 // Search for .dynsym, .dynamic, .symtab, .gnu.version and .gnu.version_d. 1225 for (const Elf_Shdr &sec : sections) { 1226 switch (sec.sh_type) { 1227 default: 1228 continue; 1229 case SHT_DYNAMIC: 1230 dynamicTags = 1231 CHECK(obj.template getSectionContentsAsArray<Elf_Dyn>(&sec), this); 1232 break; 1233 case SHT_GNU_versym: 1234 versymSec = &sec; 1235 break; 1236 case SHT_GNU_verdef: 1237 verdefSec = &sec; 1238 break; 1239 } 1240 } 1241 1242 if (versymSec && numELFSyms == 0) { 1243 error("SHT_GNU_versym should be associated with symbol table"); 1244 return; 1245 } 1246 1247 // Search for a DT_SONAME tag to initialize this->soName. 1248 for (const Elf_Dyn &dyn : dynamicTags) { 1249 if (dyn.d_tag == DT_NEEDED) { 1250 uint64_t val = dyn.getVal(); 1251 if (val >= this->stringTable.size()) 1252 fatal(toString(this) + ": invalid DT_NEEDED entry"); 1253 dtNeeded.push_back(this->stringTable.data() + val); 1254 } else if (dyn.d_tag == DT_SONAME) { 1255 uint64_t val = dyn.getVal(); 1256 if (val >= this->stringTable.size()) 1257 fatal(toString(this) + ": invalid DT_SONAME entry"); 1258 soName = this->stringTable.data() + val; 1259 } 1260 } 1261 1262 // DSOs are uniquified not by filename but by soname. 1263 DenseMap<StringRef, SharedFile *>::iterator it; 1264 bool wasInserted; 1265 std::tie(it, wasInserted) = symtab->soNames.try_emplace(soName, this); 1266 1267 // If a DSO appears more than once on the command line with and without 1268 // --as-needed, --no-as-needed takes precedence over --as-needed because a 1269 // user can add an extra DSO with --no-as-needed to force it to be added to 1270 // the dependency list. 1271 it->second->isNeeded |= isNeeded; 1272 if (!wasInserted) 1273 return; 1274 1275 sharedFiles.push_back(this); 1276 1277 verdefs = parseVerdefs<ELFT>(obj.base(), verdefSec); 1278 1279 // Parse ".gnu.version" section which is a parallel array for the symbol 1280 // table. If a given file doesn't have a ".gnu.version" section, we use 1281 // VER_NDX_GLOBAL. 1282 size_t size = numELFSyms - firstGlobal; 1283 std::vector<uint32_t> versyms(size, VER_NDX_GLOBAL); 1284 if (versymSec) { 1285 ArrayRef<Elf_Versym> versym = 1286 CHECK(obj.template getSectionContentsAsArray<Elf_Versym>(versymSec), 1287 this) 1288 .slice(firstGlobal); 1289 for (size_t i = 0; i < size; ++i) 1290 versyms[i] = versym[i].vs_index; 1291 } 1292 1293 // System libraries can have a lot of symbols with versions. Using a 1294 // fixed buffer for computing the versions name (foo@ver) can save a 1295 // lot of allocations. 1296 SmallString<0> versionedNameBuffer; 1297 1298 // Add symbols to the symbol table. 1299 ArrayRef<Elf_Sym> syms = this->getGlobalELFSyms<ELFT>(); 1300 for (size_t i = 0; i < syms.size(); ++i) { 1301 const Elf_Sym &sym = syms[i]; 1302 1303 // ELF spec requires that all local symbols precede weak or global 1304 // symbols in each symbol table, and the index of first non-local symbol 1305 // is stored to sh_info. If a local symbol appears after some non-local 1306 // symbol, that's a violation of the spec. 1307 StringRef name = CHECK(sym.getName(this->stringTable), this); 1308 if (sym.getBinding() == STB_LOCAL) { 1309 warn("found local symbol '" + name + 1310 "' in global part of symbol table in file " + toString(this)); 1311 continue; 1312 } 1313 1314 if (sym.isUndefined()) { 1315 Symbol *s = symtab->addSymbol( 1316 Undefined{this, name, sym.getBinding(), sym.st_other, sym.getType()}); 1317 s->exportDynamic = true; 1318 continue; 1319 } 1320 1321 // MIPS BFD linker puts _gp_disp symbol into DSO files and incorrectly 1322 // assigns VER_NDX_LOCAL to this section global symbol. Here is a 1323 // workaround for this bug. 1324 uint32_t idx = versyms[i] & ~VERSYM_HIDDEN; 1325 if (config->emachine == EM_MIPS && idx == VER_NDX_LOCAL && 1326 name == "_gp_disp") 1327 continue; 1328 1329 uint32_t alignment = getAlignment<ELFT>(sections, sym); 1330 if (!(versyms[i] & VERSYM_HIDDEN)) { 1331 symtab->addSymbol(SharedSymbol{*this, name, sym.getBinding(), 1332 sym.st_other, sym.getType(), sym.st_value, 1333 sym.st_size, alignment, idx}); 1334 } 1335 1336 // Also add the symbol with the versioned name to handle undefined symbols 1337 // with explicit versions. 1338 if (idx == VER_NDX_GLOBAL) 1339 continue; 1340 1341 if (idx >= verdefs.size() || idx == VER_NDX_LOCAL) { 1342 error("corrupt input file: version definition index " + Twine(idx) + 1343 " for symbol " + name + " is out of bounds\n>>> defined in " + 1344 toString(this)); 1345 continue; 1346 } 1347 1348 StringRef verName = 1349 this->stringTable.data() + 1350 reinterpret_cast<const Elf_Verdef *>(verdefs[idx])->getAux()->vda_name; 1351 versionedNameBuffer.clear(); 1352 name = (name + "@" + verName).toStringRef(versionedNameBuffer); 1353 symtab->addSymbol(SharedSymbol{*this, saver.save(name), sym.getBinding(), 1354 sym.st_other, sym.getType(), sym.st_value, 1355 sym.st_size, alignment, idx}); 1356 } 1357 } 1358 1359 static ELFKind getBitcodeELFKind(const Triple &t) { 1360 if (t.isLittleEndian()) 1361 return t.isArch64Bit() ? ELF64LEKind : ELF32LEKind; 1362 return t.isArch64Bit() ? ELF64BEKind : ELF32BEKind; 1363 } 1364 1365 static uint8_t getBitcodeMachineKind(StringRef path, const Triple &t) { 1366 switch (t.getArch()) { 1367 case Triple::aarch64: 1368 return EM_AARCH64; 1369 case Triple::amdgcn: 1370 case Triple::r600: 1371 return EM_AMDGPU; 1372 case Triple::arm: 1373 case Triple::thumb: 1374 return EM_ARM; 1375 case Triple::avr: 1376 return EM_AVR; 1377 case Triple::mips: 1378 case Triple::mipsel: 1379 case Triple::mips64: 1380 case Triple::mips64el: 1381 return EM_MIPS; 1382 case Triple::msp430: 1383 return EM_MSP430; 1384 case Triple::ppc: 1385 return EM_PPC; 1386 case Triple::ppc64: 1387 case Triple::ppc64le: 1388 return EM_PPC64; 1389 case Triple::riscv32: 1390 case Triple::riscv64: 1391 return EM_RISCV; 1392 case Triple::x86: 1393 return t.isOSIAMCU() ? EM_IAMCU : EM_386; 1394 case Triple::x86_64: 1395 return EM_X86_64; 1396 default: 1397 error(path + ": could not infer e_machine from bitcode target triple " + 1398 t.str()); 1399 return EM_NONE; 1400 } 1401 } 1402 1403 BitcodeFile::BitcodeFile(MemoryBufferRef mb, StringRef archiveName, 1404 uint64_t offsetInArchive) 1405 : InputFile(BitcodeKind, mb) { 1406 this->archiveName = archiveName; 1407 1408 std::string path = mb.getBufferIdentifier().str(); 1409 if (config->thinLTOIndexOnly) 1410 path = replaceThinLTOSuffix(mb.getBufferIdentifier()); 1411 1412 // ThinLTO assumes that all MemoryBufferRefs given to it have a unique 1413 // name. If two archives define two members with the same name, this 1414 // causes a collision which result in only one of the objects being taken 1415 // into consideration at LTO time (which very likely causes undefined 1416 // symbols later in the link stage). So we append file offset to make 1417 // filename unique. 1418 StringRef name = archiveName.empty() 1419 ? saver.save(path) 1420 : saver.save(archiveName + "(" + path + " at " + 1421 utostr(offsetInArchive) + ")"); 1422 MemoryBufferRef mbref(mb.getBuffer(), name); 1423 1424 obj = CHECK(lto::InputFile::create(mbref), this); 1425 1426 Triple t(obj->getTargetTriple()); 1427 ekind = getBitcodeELFKind(t); 1428 emachine = getBitcodeMachineKind(mb.getBufferIdentifier(), t); 1429 } 1430 1431 static uint8_t mapVisibility(GlobalValue::VisibilityTypes gvVisibility) { 1432 switch (gvVisibility) { 1433 case GlobalValue::DefaultVisibility: 1434 return STV_DEFAULT; 1435 case GlobalValue::HiddenVisibility: 1436 return STV_HIDDEN; 1437 case GlobalValue::ProtectedVisibility: 1438 return STV_PROTECTED; 1439 } 1440 llvm_unreachable("unknown visibility"); 1441 } 1442 1443 template <class ELFT> 1444 static Symbol *createBitcodeSymbol(const std::vector<bool> &keptComdats, 1445 const lto::InputFile::Symbol &objSym, 1446 BitcodeFile &f) { 1447 StringRef name = saver.save(objSym.getName()); 1448 uint8_t binding = objSym.isWeak() ? STB_WEAK : STB_GLOBAL; 1449 uint8_t type = objSym.isTLS() ? STT_TLS : STT_NOTYPE; 1450 uint8_t visibility = mapVisibility(objSym.getVisibility()); 1451 bool canOmitFromDynSym = objSym.canBeOmittedFromSymbolTable(); 1452 1453 int c = objSym.getComdatIndex(); 1454 if (objSym.isUndefined() || (c != -1 && !keptComdats[c])) { 1455 Undefined newSym(&f, name, binding, visibility, type); 1456 if (canOmitFromDynSym) 1457 newSym.exportDynamic = false; 1458 Symbol *ret = symtab->addSymbol(newSym); 1459 ret->referenced = true; 1460 return ret; 1461 } 1462 1463 if (objSym.isCommon()) 1464 return symtab->addSymbol( 1465 CommonSymbol{&f, name, binding, visibility, STT_OBJECT, 1466 objSym.getCommonAlignment(), objSym.getCommonSize()}); 1467 1468 Defined newSym(&f, name, binding, visibility, type, 0, 0, nullptr); 1469 if (canOmitFromDynSym) 1470 newSym.exportDynamic = false; 1471 return symtab->addSymbol(newSym); 1472 } 1473 1474 template <class ELFT> void BitcodeFile::parse() { 1475 std::vector<bool> keptComdats; 1476 for (StringRef s : obj->getComdatTable()) 1477 keptComdats.push_back( 1478 symtab->comdatGroups.try_emplace(CachedHashStringRef(s), this).second); 1479 1480 for (const lto::InputFile::Symbol &objSym : obj->symbols()) 1481 symbols.push_back(createBitcodeSymbol<ELFT>(keptComdats, objSym, *this)); 1482 1483 for (auto l : obj->getDependentLibraries()) 1484 addDependentLibrary(l, this); 1485 } 1486 1487 void BinaryFile::parse() { 1488 ArrayRef<uint8_t> data = arrayRefFromStringRef(mb.getBuffer()); 1489 auto *section = make<InputSection>(this, SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, 1490 8, data, ".data"); 1491 sections.push_back(section); 1492 1493 // For each input file foo that is embedded to a result as a binary 1494 // blob, we define _binary_foo_{start,end,size} symbols, so that 1495 // user programs can access blobs by name. Non-alphanumeric 1496 // characters in a filename are replaced with underscore. 1497 std::string s = "_binary_" + mb.getBufferIdentifier().str(); 1498 for (size_t i = 0; i < s.size(); ++i) 1499 if (!isAlnum(s[i])) 1500 s[i] = '_'; 1501 1502 symtab->addSymbol(Defined{nullptr, saver.save(s + "_start"), STB_GLOBAL, 1503 STV_DEFAULT, STT_OBJECT, 0, 0, section}); 1504 symtab->addSymbol(Defined{nullptr, saver.save(s + "_end"), STB_GLOBAL, 1505 STV_DEFAULT, STT_OBJECT, data.size(), 0, section}); 1506 symtab->addSymbol(Defined{nullptr, saver.save(s + "_size"), STB_GLOBAL, 1507 STV_DEFAULT, STT_OBJECT, data.size(), 0, nullptr}); 1508 } 1509 1510 InputFile *createObjectFile(MemoryBufferRef mb, StringRef archiveName, 1511 uint64_t offsetInArchive) { 1512 if (isBitcode(mb)) 1513 return make<BitcodeFile>(mb, archiveName, offsetInArchive); 1514 1515 switch (getELFKind(mb, archiveName)) { 1516 case ELF32LEKind: 1517 return make<ObjFile<ELF32LE>>(mb, archiveName); 1518 case ELF32BEKind: 1519 return make<ObjFile<ELF32BE>>(mb, archiveName); 1520 case ELF64LEKind: 1521 return make<ObjFile<ELF64LE>>(mb, archiveName); 1522 case ELF64BEKind: 1523 return make<ObjFile<ELF64BE>>(mb, archiveName); 1524 default: 1525 llvm_unreachable("getELFKind"); 1526 } 1527 } 1528 1529 void LazyObjFile::fetch() { 1530 if (mb.getBuffer().empty()) 1531 return; 1532 1533 InputFile *file = createObjectFile(mb, archiveName, offsetInArchive); 1534 file->groupId = groupId; 1535 1536 mb = {}; 1537 1538 // Copy symbol vector so that the new InputFile doesn't have to 1539 // insert the same defined symbols to the symbol table again. 1540 file->symbols = std::move(symbols); 1541 1542 parseFile(file); 1543 } 1544 1545 template <class ELFT> void LazyObjFile::parse() { 1546 using Elf_Sym = typename ELFT::Sym; 1547 1548 // A lazy object file wraps either a bitcode file or an ELF file. 1549 if (isBitcode(this->mb)) { 1550 std::unique_ptr<lto::InputFile> obj = 1551 CHECK(lto::InputFile::create(this->mb), this); 1552 for (const lto::InputFile::Symbol &sym : obj->symbols()) { 1553 if (sym.isUndefined()) 1554 continue; 1555 symtab->addSymbol(LazyObject{*this, saver.save(sym.getName())}); 1556 } 1557 return; 1558 } 1559 1560 if (getELFKind(this->mb, archiveName) != config->ekind) { 1561 error("incompatible file: " + this->mb.getBufferIdentifier()); 1562 return; 1563 } 1564 1565 // Find a symbol table. 1566 ELFFile<ELFT> obj = check(ELFFile<ELFT>::create(mb.getBuffer())); 1567 ArrayRef<typename ELFT::Shdr> sections = CHECK(obj.sections(), this); 1568 1569 for (const typename ELFT::Shdr &sec : sections) { 1570 if (sec.sh_type != SHT_SYMTAB) 1571 continue; 1572 1573 // A symbol table is found. 1574 ArrayRef<Elf_Sym> eSyms = CHECK(obj.symbols(&sec), this); 1575 uint32_t firstGlobal = sec.sh_info; 1576 StringRef strtab = CHECK(obj.getStringTableForSymtab(sec, sections), this); 1577 this->symbols.resize(eSyms.size()); 1578 1579 // Get existing symbols or insert placeholder symbols. 1580 for (size_t i = firstGlobal, end = eSyms.size(); i != end; ++i) 1581 if (eSyms[i].st_shndx != SHN_UNDEF) 1582 this->symbols[i] = symtab->insert(CHECK(eSyms[i].getName(strtab), this)); 1583 1584 // Replace existing symbols with LazyObject symbols. 1585 // 1586 // resolve() may trigger this->fetch() if an existing symbol is an 1587 // undefined symbol. If that happens, this LazyObjFile has served 1588 // its purpose, and we can exit from the loop early. 1589 for (Symbol *sym : this->symbols) { 1590 if (!sym) 1591 continue; 1592 sym->resolve(LazyObject{*this, sym->getName()}); 1593 1594 // MemoryBuffer is emptied if this file is instantiated as ObjFile. 1595 if (mb.getBuffer().empty()) 1596 return; 1597 } 1598 return; 1599 } 1600 } 1601 1602 std::string replaceThinLTOSuffix(StringRef path) { 1603 StringRef suffix = config->thinLTOObjectSuffixReplace.first; 1604 StringRef repl = config->thinLTOObjectSuffixReplace.second; 1605 1606 if (path.consume_back(suffix)) 1607 return (path + repl).str(); 1608 return path; 1609 } 1610 1611 template void BitcodeFile::parse<ELF32LE>(); 1612 template void BitcodeFile::parse<ELF32BE>(); 1613 template void BitcodeFile::parse<ELF64LE>(); 1614 template void BitcodeFile::parse<ELF64BE>(); 1615 1616 template void LazyObjFile::parse<ELF32LE>(); 1617 template void LazyObjFile::parse<ELF32BE>(); 1618 template void LazyObjFile::parse<ELF64LE>(); 1619 template void LazyObjFile::parse<ELF64BE>(); 1620 1621 template class ObjFile<ELF32LE>; 1622 template class ObjFile<ELF32BE>; 1623 template class ObjFile<ELF64LE>; 1624 template class ObjFile<ELF64BE>; 1625 1626 template void SharedFile::parse<ELF32LE>(); 1627 template void SharedFile::parse<ELF32BE>(); 1628 template void SharedFile::parse<ELF64LE>(); 1629 template void SharedFile::parse<ELF64BE>(); 1630 1631 } // namespace elf 1632 } // namespace lld 1633