1 //===- InputFiles.cpp -----------------------------------------------------===//
2 //
3 //                             The LLVM Linker
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "InputFiles.h"
11 #include "Driver.h"
12 #include "Error.h"
13 #include "InputSection.h"
14 #include "SymbolTable.h"
15 #include "Symbols.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/Bitcode/ReaderWriter.h"
18 #include "llvm/CodeGen/Analysis.h"
19 #include "llvm/IR/LLVMContext.h"
20 #include "llvm/IR/Module.h"
21 #include "llvm/Support/raw_ostream.h"
22 
23 using namespace llvm;
24 using namespace llvm::ELF;
25 using namespace llvm::object;
26 using namespace llvm::sys::fs;
27 
28 using namespace lld;
29 using namespace lld::elf;
30 
31 // Returns "(internal)", "foo.a(bar.o)" or "baz.o".
32 std::string elf::getFilename(InputFile *F) {
33   if (!F)
34     return "(internal)";
35   if (!F->ArchiveName.empty())
36     return (F->ArchiveName + "(" + F->getName() + ")").str();
37   return F->getName();
38 }
39 
40 template <class ELFT>
41 static ELFFile<ELFT> createELFObj(MemoryBufferRef MB) {
42   std::error_code EC;
43   ELFFile<ELFT> F(MB.getBuffer(), EC);
44   check(EC);
45   return F;
46 }
47 
48 template <class ELFT> static ELFKind getELFKind() {
49   if (ELFT::TargetEndianness == support::little)
50     return ELFT::Is64Bits ? ELF64LEKind : ELF32LEKind;
51   return ELFT::Is64Bits ? ELF64BEKind : ELF32BEKind;
52 }
53 
54 template <class ELFT>
55 ELFFileBase<ELFT>::ELFFileBase(Kind K, MemoryBufferRef MB)
56     : InputFile(K, MB), ELFObj(createELFObj<ELFT>(MB)) {
57   EKind = getELFKind<ELFT>();
58   EMachine = ELFObj.getHeader()->e_machine;
59 }
60 
61 template <class ELFT>
62 typename ELFT::SymRange ELFFileBase<ELFT>::getElfSymbols(bool OnlyGlobals) {
63   if (!Symtab)
64     return Elf_Sym_Range(nullptr, nullptr);
65   Elf_Sym_Range Syms = ELFObj.symbols(Symtab);
66   uint32_t NumSymbols = std::distance(Syms.begin(), Syms.end());
67   uint32_t FirstNonLocal = Symtab->sh_info;
68   if (FirstNonLocal > NumSymbols)
69     fatal("invalid sh_info in symbol table");
70 
71   if (OnlyGlobals)
72     return makeArrayRef(Syms.begin() + FirstNonLocal, Syms.end());
73   return makeArrayRef(Syms.begin(), Syms.end());
74 }
75 
76 template <class ELFT>
77 uint32_t ELFFileBase<ELFT>::getSectionIndex(const Elf_Sym &Sym) const {
78   uint32_t I = Sym.st_shndx;
79   if (I == ELF::SHN_XINDEX)
80     return ELFObj.getExtendedSymbolTableIndex(&Sym, Symtab, SymtabSHNDX);
81   if (I >= ELF::SHN_LORESERVE)
82     return 0;
83   return I;
84 }
85 
86 template <class ELFT> void ELFFileBase<ELFT>::initStringTable() {
87   if (!Symtab)
88     return;
89   StringTable = check(ELFObj.getStringTableForSymtab(*Symtab));
90 }
91 
92 template <class ELFT>
93 elf::ObjectFile<ELFT>::ObjectFile(MemoryBufferRef M)
94     : ELFFileBase<ELFT>(Base::ObjectKind, M) {}
95 
96 template <class ELFT>
97 ArrayRef<SymbolBody *> elf::ObjectFile<ELFT>::getNonLocalSymbols() {
98   if (!this->Symtab)
99     return this->SymbolBodies;
100   uint32_t FirstNonLocal = this->Symtab->sh_info;
101   return makeArrayRef(this->SymbolBodies).slice(FirstNonLocal);
102 }
103 
104 template <class ELFT>
105 ArrayRef<SymbolBody *> elf::ObjectFile<ELFT>::getLocalSymbols() {
106   if (!this->Symtab)
107     return this->SymbolBodies;
108   uint32_t FirstNonLocal = this->Symtab->sh_info;
109   return makeArrayRef(this->SymbolBodies).slice(1, FirstNonLocal - 1);
110 }
111 
112 template <class ELFT>
113 ArrayRef<SymbolBody *> elf::ObjectFile<ELFT>::getSymbols() {
114   if (!this->Symtab)
115     return this->SymbolBodies;
116   return makeArrayRef(this->SymbolBodies).slice(1);
117 }
118 
119 template <class ELFT> uint32_t elf::ObjectFile<ELFT>::getMipsGp0() const {
120   if (ELFT::Is64Bits && MipsOptions && MipsOptions->Reginfo)
121     return MipsOptions->Reginfo->ri_gp_value;
122   if (!ELFT::Is64Bits && MipsReginfo && MipsReginfo->Reginfo)
123     return MipsReginfo->Reginfo->ri_gp_value;
124   return 0;
125 }
126 
127 template <class ELFT>
128 void elf::ObjectFile<ELFT>::parse(DenseSet<StringRef> &ComdatGroups) {
129   // Read section and symbol tables.
130   initializeSections(ComdatGroups);
131   initializeSymbols();
132 }
133 
134 // Sections with SHT_GROUP and comdat bits define comdat section groups.
135 // They are identified and deduplicated by group name. This function
136 // returns a group name.
137 template <class ELFT>
138 StringRef elf::ObjectFile<ELFT>::getShtGroupSignature(const Elf_Shdr &Sec) {
139   const ELFFile<ELFT> &Obj = this->ELFObj;
140   uint32_t SymtabdSectionIndex = Sec.sh_link;
141   const Elf_Shdr *SymtabSec = check(Obj.getSection(SymtabdSectionIndex));
142   uint32_t SymIndex = Sec.sh_info;
143   const Elf_Sym *Sym = Obj.getSymbol(SymtabSec, SymIndex);
144   StringRef StringTable = check(Obj.getStringTableForSymtab(*SymtabSec));
145   return check(Sym->getName(StringTable));
146 }
147 
148 template <class ELFT>
149 ArrayRef<typename elf::ObjectFile<ELFT>::Elf_Word>
150 elf::ObjectFile<ELFT>::getShtGroupEntries(const Elf_Shdr &Sec) {
151   const ELFFile<ELFT> &Obj = this->ELFObj;
152   ArrayRef<Elf_Word> Entries =
153       check(Obj.template getSectionContentsAsArray<Elf_Word>(&Sec));
154   if (Entries.empty() || Entries[0] != GRP_COMDAT)
155     fatal("unsupported SHT_GROUP format");
156   return Entries.slice(1);
157 }
158 
159 template <class ELFT> static bool shouldMerge(const typename ELFT::Shdr &Sec) {
160   typedef typename ELFT::uint uintX_t;
161 
162   // We don't merge sections if -O0 (default is -O1). This makes sometimes
163   // the linker significantly faster, although the output will be bigger.
164   if (Config->Optimize == 0)
165     return false;
166 
167   uintX_t Flags = Sec.sh_flags;
168   if (!(Flags & SHF_MERGE))
169     return false;
170   if (Flags & SHF_WRITE)
171     fatal("writable SHF_MERGE sections are not supported");
172   uintX_t EntSize = Sec.sh_entsize;
173   if (!EntSize || Sec.sh_size % EntSize)
174     fatal("SHF_MERGE section size must be a multiple of sh_entsize");
175 
176   // Don't try to merge if the alignment is larger than the sh_entsize and this
177   // is not SHF_STRINGS.
178   //
179   // Since this is not a SHF_STRINGS, we would need to pad after every entity.
180   // It would be equivalent for the producer of the .o to just set a larger
181   // sh_entsize.
182   if (Flags & SHF_STRINGS)
183     return true;
184 
185   return Sec.sh_addralign <= EntSize;
186 }
187 
188 template <class ELFT>
189 void elf::ObjectFile<ELFT>::initializeSections(
190     DenseSet<StringRef> &ComdatGroups) {
191   uint64_t Size = this->ELFObj.getNumSections();
192   Sections.resize(Size);
193   unsigned I = -1;
194   const ELFFile<ELFT> &Obj = this->ELFObj;
195   for (const Elf_Shdr &Sec : Obj.sections()) {
196     ++I;
197     if (Sections[I] == &InputSection<ELFT>::Discarded)
198       continue;
199 
200     switch (Sec.sh_type) {
201     case SHT_GROUP:
202       Sections[I] = &InputSection<ELFT>::Discarded;
203       if (ComdatGroups.insert(getShtGroupSignature(Sec)).second)
204         continue;
205       for (uint32_t SecIndex : getShtGroupEntries(Sec)) {
206         if (SecIndex >= Size)
207           fatal("invalid section index in group");
208         Sections[SecIndex] = &InputSection<ELFT>::Discarded;
209       }
210       break;
211     case SHT_SYMTAB:
212       this->Symtab = &Sec;
213       break;
214     case SHT_SYMTAB_SHNDX:
215       this->SymtabSHNDX = check(Obj.getSHNDXTable(Sec));
216       break;
217     case SHT_STRTAB:
218     case SHT_NULL:
219       break;
220     case SHT_RELA:
221     case SHT_REL: {
222       // This section contains relocation information.
223       // If -r is given, we do not interpret or apply relocation
224       // but just copy relocation sections to output.
225       if (Config->Relocatable) {
226         Sections[I] = new (IAlloc.Allocate()) InputSection<ELFT>(this, &Sec);
227         break;
228       }
229 
230       // Find the relocation target section and associate this
231       // section with it.
232       InputSectionBase<ELFT> *Target = getRelocTarget(Sec);
233       if (!Target)
234         break;
235       if (auto *S = dyn_cast<InputSection<ELFT>>(Target)) {
236         S->RelocSections.push_back(&Sec);
237         break;
238       }
239       if (auto *S = dyn_cast<EhInputSection<ELFT>>(Target)) {
240         if (S->RelocSection)
241           fatal("multiple relocation sections to .eh_frame are not supported");
242         S->RelocSection = &Sec;
243         break;
244       }
245       fatal("relocations pointing to SHF_MERGE are not supported");
246     }
247     case SHT_ARM_ATTRIBUTES:
248       // FIXME: ARM meta-data section. At present attributes are ignored,
249       // they can be used to reason about object compatibility.
250       Sections[I] = &InputSection<ELFT>::Discarded;
251       break;
252     default:
253       Sections[I] = createInputSection(Sec);
254     }
255   }
256 }
257 
258 template <class ELFT>
259 InputSectionBase<ELFT> *
260 elf::ObjectFile<ELFT>::getRelocTarget(const Elf_Shdr &Sec) {
261   uint32_t Idx = Sec.sh_info;
262   if (Idx >= Sections.size())
263     fatal("invalid relocated section index");
264   InputSectionBase<ELFT> *Target = Sections[Idx];
265 
266   // Strictly speaking, a relocation section must be included in the
267   // group of the section it relocates. However, LLVM 3.3 and earlier
268   // would fail to do so, so we gracefully handle that case.
269   if (Target == &InputSection<ELFT>::Discarded)
270     return nullptr;
271 
272   if (!Target)
273     fatal("unsupported relocation reference");
274   return Target;
275 }
276 
277 template <class ELFT>
278 InputSectionBase<ELFT> *
279 elf::ObjectFile<ELFT>::createInputSection(const Elf_Shdr &Sec) {
280   StringRef Name = check(this->ELFObj.getSectionName(&Sec));
281 
282   // .note.GNU-stack is a marker section to control the presence of
283   // PT_GNU_STACK segment in outputs. Since the presence of the segment
284   // is controlled only by the command line option (-z execstack) in LLD,
285   // .note.GNU-stack is ignored.
286   if (Name == ".note.GNU-stack")
287     return &InputSection<ELFT>::Discarded;
288 
289   if (Name == ".note.GNU-split-stack") {
290     error("objects using splitstacks are not supported");
291     return &InputSection<ELFT>::Discarded;
292   }
293 
294   if (Config->StripDebug && Name.startswith(".debug"))
295     return &InputSection<ELFT>::Discarded;
296 
297   // A MIPS object file has a special sections that contain register
298   // usage info, which need to be handled by the linker specially.
299   if (Config->EMachine == EM_MIPS) {
300     if (Name == ".reginfo") {
301       MipsReginfo.reset(new MipsReginfoInputSection<ELFT>(this, &Sec));
302       return MipsReginfo.get();
303     }
304     if (Name == ".MIPS.options") {
305       MipsOptions.reset(new MipsOptionsInputSection<ELFT>(this, &Sec));
306       return MipsOptions.get();
307     }
308   }
309 
310   // We dont need special handling of .eh_frame sections if relocatable
311   // output was choosen. Proccess them as usual input sections.
312   if (!Config->Relocatable && Name == ".eh_frame")
313     return new (EHAlloc.Allocate()) EhInputSection<ELFT>(this, &Sec);
314   if (shouldMerge<ELFT>(Sec))
315     return new (MAlloc.Allocate()) MergeInputSection<ELFT>(this, &Sec);
316   return new (IAlloc.Allocate()) InputSection<ELFT>(this, &Sec);
317 }
318 
319 // Print the module names which reference the notified
320 // symbols provided through -y or --trace-symbol option.
321 template <class ELFT>
322 void elf::ObjectFile<ELFT>::traceUndefined(StringRef Name) {
323   if (!Config->TraceSymbol.empty() && Config->TraceSymbol.count(Name))
324     outs() << getFilename(this) << ": reference to " << Name << "\n";
325 }
326 
327 template <class ELFT> void elf::ObjectFile<ELFT>::initializeSymbols() {
328   this->initStringTable();
329   Elf_Sym_Range Syms = this->getElfSymbols(false);
330   uint32_t NumSymbols = std::distance(Syms.begin(), Syms.end());
331   SymbolBodies.reserve(NumSymbols);
332   for (const Elf_Sym &Sym : Syms)
333     SymbolBodies.push_back(createSymbolBody(&Sym));
334 }
335 
336 template <class ELFT>
337 InputSectionBase<ELFT> *
338 elf::ObjectFile<ELFT>::getSection(const Elf_Sym &Sym) const {
339   uint32_t Index = this->getSectionIndex(Sym);
340   if (Index == 0)
341     return nullptr;
342   if (Index >= Sections.size() || !Sections[Index])
343     fatal("invalid section index");
344   InputSectionBase<ELFT> *S = Sections[Index];
345   if (S == &InputSectionBase<ELFT>::Discarded)
346     return S;
347   return S->Repl;
348 }
349 
350 template <class ELFT>
351 SymbolBody *elf::ObjectFile<ELFT>::createSymbolBody(const Elf_Sym *Sym) {
352   unsigned char Binding = Sym->getBinding();
353   InputSectionBase<ELFT> *Sec = getSection(*Sym);
354   if (Binding == STB_LOCAL) {
355     if (Sym->st_shndx == SHN_UNDEF)
356       return new (Alloc) Undefined(Sym->st_name, Sym->st_other, Sym->getType());
357     return new (Alloc) DefinedRegular<ELFT>(*Sym, Sec);
358   }
359 
360   StringRef Name = check(Sym->getName(this->StringTable));
361 
362   switch (Sym->st_shndx) {
363   case SHN_UNDEF:
364     traceUndefined(Name);
365     return elf::Symtab<ELFT>::X
366         ->addUndefined(Name, Binding, Sym->st_other, Sym->getType(),
367                        /*CanOmitFromDynSym*/ false, this)
368         ->body();
369   case SHN_COMMON:
370     return elf::Symtab<ELFT>::X
371         ->addCommon(Name, Sym->st_size, Sym->st_value, Binding, Sym->st_other,
372                     Sym->getType(), this)
373         ->body();
374   }
375 
376   switch (Binding) {
377   default:
378     fatal("unexpected binding");
379   case STB_GLOBAL:
380   case STB_WEAK:
381   case STB_GNU_UNIQUE:
382     if (Sec == &InputSection<ELFT>::Discarded)
383       return elf::Symtab<ELFT>::X
384           ->addUndefined(Name, Binding, Sym->st_other, Sym->getType(),
385                          /*CanOmitFromDynSym*/ false, this)
386           ->body();
387     return elf::Symtab<ELFT>::X->addRegular(Name, *Sym, Sec)->body();
388   }
389 }
390 
391 template <class ELFT> void ArchiveFile::parse() {
392   File = check(Archive::create(MB), "failed to parse archive");
393 
394   // Read the symbol table to construct Lazy objects.
395   for (const Archive::Symbol &Sym : File->symbols())
396     Symtab<ELFT>::X->addLazyArchive(this, Sym);
397 }
398 
399 // Returns a buffer pointing to a member file containing a given symbol.
400 MemoryBufferRef ArchiveFile::getMember(const Archive::Symbol *Sym) {
401   Archive::Child C =
402       check(Sym->getMember(),
403             "could not get the member for symbol " + Sym->getName());
404 
405   if (!Seen.insert(C.getChildOffset()).second)
406     return MemoryBufferRef();
407 
408   MemoryBufferRef Ret =
409       check(C.getMemoryBufferRef(),
410             "could not get the buffer for the member defining symbol " +
411                 Sym->getName());
412 
413   if (C.getParent()->isThin() && Driver->Cpio)
414     Driver->Cpio->append(relativeToRoot(check(C.getFullName())),
415                          Ret.getBuffer());
416 
417   return Ret;
418 }
419 
420 template <class ELFT>
421 SharedFile<ELFT>::SharedFile(MemoryBufferRef M)
422     : ELFFileBase<ELFT>(Base::SharedKind, M), AsNeeded(Config->AsNeeded) {}
423 
424 template <class ELFT>
425 const typename ELFT::Shdr *
426 SharedFile<ELFT>::getSection(const Elf_Sym &Sym) const {
427   uint32_t Index = this->getSectionIndex(Sym);
428   if (Index == 0)
429     return nullptr;
430   return check(this->ELFObj.getSection(Index));
431 }
432 
433 // Partially parse the shared object file so that we can call
434 // getSoName on this object.
435 template <class ELFT> void SharedFile<ELFT>::parseSoName() {
436   typedef typename ELFT::Dyn Elf_Dyn;
437   typedef typename ELFT::uint uintX_t;
438   const Elf_Shdr *DynamicSec = nullptr;
439 
440   const ELFFile<ELFT> Obj = this->ELFObj;
441   for (const Elf_Shdr &Sec : Obj.sections()) {
442     switch (Sec.sh_type) {
443     default:
444       continue;
445     case SHT_DYNSYM:
446       this->Symtab = &Sec;
447       break;
448     case SHT_DYNAMIC:
449       DynamicSec = &Sec;
450       break;
451     case SHT_SYMTAB_SHNDX:
452       this->SymtabSHNDX = check(Obj.getSHNDXTable(Sec));
453       break;
454     case SHT_GNU_versym:
455       this->VersymSec = &Sec;
456       break;
457     case SHT_GNU_verdef:
458       this->VerdefSec = &Sec;
459       break;
460     }
461   }
462 
463   this->initStringTable();
464   SoName = this->getName();
465 
466   if (!DynamicSec)
467     return;
468   auto *Begin =
469       reinterpret_cast<const Elf_Dyn *>(Obj.base() + DynamicSec->sh_offset);
470   const Elf_Dyn *End = Begin + DynamicSec->sh_size / sizeof(Elf_Dyn);
471 
472   for (const Elf_Dyn &Dyn : make_range(Begin, End)) {
473     if (Dyn.d_tag == DT_SONAME) {
474       uintX_t Val = Dyn.getVal();
475       if (Val >= this->StringTable.size())
476         fatal("invalid DT_SONAME entry");
477       SoName = StringRef(this->StringTable.data() + Val);
478       return;
479     }
480   }
481 }
482 
483 // Parse the version definitions in the object file if present. Returns a vector
484 // whose nth element contains a pointer to the Elf_Verdef for version identifier
485 // n. Version identifiers that are not definitions map to nullptr. The array
486 // always has at least length 1.
487 template <class ELFT>
488 std::vector<const typename ELFT::Verdef *>
489 SharedFile<ELFT>::parseVerdefs(const Elf_Versym *&Versym) {
490   std::vector<const Elf_Verdef *> Verdefs(1);
491   // We only need to process symbol versions for this DSO if it has both a
492   // versym and a verdef section, which indicates that the DSO contains symbol
493   // version definitions.
494   if (!VersymSec || !VerdefSec)
495     return Verdefs;
496 
497   // The location of the first global versym entry.
498   Versym = reinterpret_cast<const Elf_Versym *>(this->ELFObj.base() +
499                                                 VersymSec->sh_offset) +
500            this->Symtab->sh_info;
501 
502   // We cannot determine the largest verdef identifier without inspecting
503   // every Elf_Verdef, but both bfd and gold assign verdef identifiers
504   // sequentially starting from 1, so we predict that the largest identifier
505   // will be VerdefCount.
506   unsigned VerdefCount = VerdefSec->sh_info;
507   Verdefs.resize(VerdefCount + 1);
508 
509   // Build the Verdefs array by following the chain of Elf_Verdef objects
510   // from the start of the .gnu.version_d section.
511   const uint8_t *Verdef = this->ELFObj.base() + VerdefSec->sh_offset;
512   for (unsigned I = 0; I != VerdefCount; ++I) {
513     auto *CurVerdef = reinterpret_cast<const Elf_Verdef *>(Verdef);
514     Verdef += CurVerdef->vd_next;
515     unsigned VerdefIndex = CurVerdef->vd_ndx;
516     if (Verdefs.size() <= VerdefIndex)
517       Verdefs.resize(VerdefIndex + 1);
518     Verdefs[VerdefIndex] = CurVerdef;
519   }
520 
521   return Verdefs;
522 }
523 
524 // Fully parse the shared object file. This must be called after parseSoName().
525 template <class ELFT> void SharedFile<ELFT>::parseRest() {
526   // Create mapping from version identifiers to Elf_Verdef entries.
527   const Elf_Versym *Versym = nullptr;
528   std::vector<const Elf_Verdef *> Verdefs = parseVerdefs(Versym);
529 
530   Elf_Sym_Range Syms = this->getElfSymbols(true);
531   for (const Elf_Sym &Sym : Syms) {
532     unsigned VersymIndex = 0;
533     if (Versym) {
534       VersymIndex = Versym->vs_index;
535       ++Versym;
536     }
537 
538     StringRef Name = check(Sym.getName(this->StringTable));
539     if (Sym.isUndefined()) {
540       Undefs.push_back(Name);
541       continue;
542     }
543 
544     if (Versym) {
545       // Ignore local symbols and non-default versions.
546       if (VersymIndex == VER_NDX_LOCAL || (VersymIndex & VERSYM_HIDDEN))
547         continue;
548     }
549 
550     const Elf_Verdef *V =
551         VersymIndex == VER_NDX_GLOBAL ? nullptr : Verdefs[VersymIndex];
552     elf::Symtab<ELFT>::X->addShared(this, Name, Sym, V);
553   }
554 }
555 
556 static ELFKind getELFKind(MemoryBufferRef MB) {
557   std::string TripleStr = getBitcodeTargetTriple(MB, Driver->Context);
558   Triple TheTriple(TripleStr);
559   bool Is64Bits = TheTriple.isArch64Bit();
560   if (TheTriple.isLittleEndian())
561     return Is64Bits ? ELF64LEKind : ELF32LEKind;
562   return Is64Bits ? ELF64BEKind : ELF32BEKind;
563 }
564 
565 static uint8_t getMachineKind(MemoryBufferRef MB) {
566   std::string TripleStr = getBitcodeTargetTriple(MB, Driver->Context);
567   switch (Triple(TripleStr).getArch()) {
568     case Triple::aarch64:
569       return EM_AARCH64;
570     case Triple::arm:
571       return EM_ARM;
572     case Triple::mips:
573     case Triple::mipsel:
574     case Triple::mips64:
575     case Triple::mips64el:
576       return EM_MIPS;
577     case Triple::ppc:
578       return EM_PPC;
579     case Triple::ppc64:
580       return EM_PPC64;
581     case Triple::x86:
582       return EM_386;
583     case Triple::x86_64:
584       return EM_X86_64;
585     default:
586       fatal("could not infer e_machine from bitcode target triple " + TripleStr);
587   }
588 }
589 
590 BitcodeFile::BitcodeFile(MemoryBufferRef MB) :
591     InputFile(BitcodeKind, MB) {
592   EKind = getELFKind(MB);
593   EMachine = getMachineKind(MB);
594 }
595 
596 static uint8_t getGvVisibility(const GlobalValue *GV) {
597   switch (GV->getVisibility()) {
598   case GlobalValue::DefaultVisibility:
599     return STV_DEFAULT;
600   case GlobalValue::HiddenVisibility:
601     return STV_HIDDEN;
602   case GlobalValue::ProtectedVisibility:
603     return STV_PROTECTED;
604   }
605   llvm_unreachable("unknown visibility");
606 }
607 
608 template <class ELFT>
609 Symbol *BitcodeFile::createSymbol(const DenseSet<const Comdat *> &KeptComdats,
610                                   const IRObjectFile &Obj,
611                                   const BasicSymbolRef &Sym) {
612   const GlobalValue *GV = Obj.getSymbolGV(Sym.getRawDataRefImpl());
613 
614   SmallString<64> Name;
615   raw_svector_ostream OS(Name);
616   Sym.printName(OS);
617   StringRef NameRef = Saver.save(StringRef(Name));
618 
619   uint32_t Flags = Sym.getFlags();
620   bool IsWeak = Flags & BasicSymbolRef::SF_Weak;
621   uint32_t Binding = IsWeak ? STB_WEAK : STB_GLOBAL;
622 
623   uint8_t Type = STT_NOTYPE;
624   bool CanOmitFromDynSym = false;
625   // FIXME: Expose a thread-local flag for module asm symbols.
626   if (GV) {
627     if (GV->isThreadLocal())
628       Type = STT_TLS;
629     CanOmitFromDynSym = canBeOmittedFromSymbolTable(GV);
630   }
631 
632   uint8_t Visibility;
633   if (GV)
634     Visibility = getGvVisibility(GV);
635   else
636     // FIXME: Set SF_Hidden flag correctly for module asm symbols, and expose
637     // protected visibility.
638     Visibility = STV_DEFAULT;
639 
640   if (GV)
641     if (const Comdat *C = GV->getComdat())
642       if (!KeptComdats.count(C))
643         return Symtab<ELFT>::X->addUndefined(NameRef, Binding, Visibility, Type,
644                                              CanOmitFromDynSym, this);
645 
646   const Module &M = Obj.getModule();
647   if (Flags & BasicSymbolRef::SF_Undefined)
648     return Symtab<ELFT>::X->addUndefined(NameRef, Binding, Visibility, Type,
649                                          CanOmitFromDynSym, this);
650   if (Flags & BasicSymbolRef::SF_Common) {
651     // FIXME: Set SF_Common flag correctly for module asm symbols, and expose
652     // size and alignment.
653     assert(GV);
654     const DataLayout &DL = M.getDataLayout();
655     uint64_t Size = DL.getTypeAllocSize(GV->getValueType());
656     return Symtab<ELFT>::X->addCommon(NameRef, Size, GV->getAlignment(),
657                                       Binding, Visibility, STT_OBJECT, this);
658   }
659   return Symtab<ELFT>::X->addBitcode(NameRef, IsWeak, Visibility, Type,
660                                      CanOmitFromDynSym, this);
661 }
662 
663 bool BitcodeFile::shouldSkip(uint32_t Flags) {
664   if (!(Flags & BasicSymbolRef::SF_Global))
665     return true;
666   if (Flags & BasicSymbolRef::SF_FormatSpecific)
667     return true;
668   return false;
669 }
670 
671 template <class ELFT>
672 void BitcodeFile::parse(DenseSet<StringRef> &ComdatGroups) {
673   Obj = check(IRObjectFile::create(MB, Driver->Context));
674   const Module &M = Obj->getModule();
675 
676   DenseSet<const Comdat *> KeptComdats;
677   for (const auto &P : M.getComdatSymbolTable()) {
678     StringRef N = Saver.save(P.first());
679     if (ComdatGroups.insert(N).second)
680       KeptComdats.insert(&P.second);
681   }
682 
683   for (const BasicSymbolRef &Sym : Obj->symbols())
684     if (!shouldSkip(Sym.getFlags()))
685       Symbols.push_back(createSymbol<ELFT>(KeptComdats, *Obj, Sym));
686 }
687 
688 template <template <class> class T>
689 static std::unique_ptr<InputFile> createELFFile(MemoryBufferRef MB) {
690   unsigned char Size;
691   unsigned char Endian;
692   std::tie(Size, Endian) = getElfArchType(MB.getBuffer());
693   if (Endian != ELFDATA2LSB && Endian != ELFDATA2MSB)
694     fatal("invalid data encoding: " + MB.getBufferIdentifier());
695 
696   std::unique_ptr<InputFile> Obj;
697   if (Size == ELFCLASS32 && Endian == ELFDATA2LSB)
698     Obj.reset(new T<ELF32LE>(MB));
699   else if (Size == ELFCLASS32 && Endian == ELFDATA2MSB)
700     Obj.reset(new T<ELF32BE>(MB));
701   else if (Size == ELFCLASS64 && Endian == ELFDATA2LSB)
702     Obj.reset(new T<ELF64LE>(MB));
703   else if (Size == ELFCLASS64 && Endian == ELFDATA2MSB)
704     Obj.reset(new T<ELF64BE>(MB));
705   else
706     fatal("invalid file class: " + MB.getBufferIdentifier());
707 
708   if (!Config->FirstElf)
709     Config->FirstElf = Obj.get();
710   return Obj;
711 }
712 
713 static bool isBitcode(MemoryBufferRef MB) {
714   using namespace sys::fs;
715   return identify_magic(MB.getBuffer()) == file_magic::bitcode;
716 }
717 
718 std::unique_ptr<InputFile> elf::createObjectFile(MemoryBufferRef MB,
719                                                  StringRef ArchiveName) {
720   std::unique_ptr<InputFile> F;
721   if (isBitcode(MB))
722     F.reset(new BitcodeFile(MB));
723   else
724     F = createELFFile<ObjectFile>(MB);
725   F->ArchiveName = ArchiveName;
726   return F;
727 }
728 
729 std::unique_ptr<InputFile> elf::createSharedFile(MemoryBufferRef MB) {
730   return createELFFile<SharedFile>(MB);
731 }
732 
733 MemoryBufferRef LazyObjectFile::getBuffer() {
734   if (Seen)
735     return MemoryBufferRef();
736   Seen = true;
737   return MB;
738 }
739 
740 template <class ELFT>
741 void LazyObjectFile::parse() {
742   for (StringRef Sym : getSymbols())
743     Symtab<ELFT>::X->addLazyObject(Sym, *this);
744 }
745 
746 template <class ELFT> std::vector<StringRef> LazyObjectFile::getElfSymbols() {
747   typedef typename ELFT::Shdr Elf_Shdr;
748   typedef typename ELFT::Sym Elf_Sym;
749   typedef typename ELFT::SymRange Elf_Sym_Range;
750 
751   const ELFFile<ELFT> Obj = createELFObj<ELFT>(this->MB);
752   for (const Elf_Shdr &Sec : Obj.sections()) {
753     if (Sec.sh_type != SHT_SYMTAB)
754       continue;
755     Elf_Sym_Range Syms = Obj.symbols(&Sec);
756     uint32_t FirstNonLocal = Sec.sh_info;
757     StringRef StringTable = check(Obj.getStringTableForSymtab(Sec));
758     std::vector<StringRef> V;
759     for (const Elf_Sym &Sym : Syms.slice(FirstNonLocal))
760       if (Sym.st_shndx != SHN_UNDEF)
761         V.push_back(check(Sym.getName(StringTable)));
762     return V;
763   }
764   return {};
765 }
766 
767 std::vector<StringRef> LazyObjectFile::getBitcodeSymbols() {
768   LLVMContext Context;
769   std::unique_ptr<IRObjectFile> Obj =
770       check(IRObjectFile::create(this->MB, Context));
771   std::vector<StringRef> V;
772   for (const BasicSymbolRef &Sym : Obj->symbols()) {
773     uint32_t Flags = Sym.getFlags();
774     if (BitcodeFile::shouldSkip(Flags))
775       continue;
776     if (Flags & BasicSymbolRef::SF_Undefined)
777       continue;
778     SmallString<64> Name;
779     raw_svector_ostream OS(Name);
780     Sym.printName(OS);
781     V.push_back(Saver.save(StringRef(Name)));
782   }
783   return V;
784 }
785 
786 // Returns a vector of globally-visible defined symbol names.
787 std::vector<StringRef> LazyObjectFile::getSymbols() {
788   if (isBitcode(this->MB))
789     return getBitcodeSymbols();
790 
791   unsigned char Size;
792   unsigned char Endian;
793   std::tie(Size, Endian) = getElfArchType(this->MB.getBuffer());
794   if (Size == ELFCLASS32) {
795     if (Endian == ELFDATA2LSB)
796       return getElfSymbols<ELF32LE>();
797     return getElfSymbols<ELF32BE>();
798   }
799   if (Endian == ELFDATA2LSB)
800     return getElfSymbols<ELF64LE>();
801   return getElfSymbols<ELF64BE>();
802 }
803 
804 template void ArchiveFile::parse<ELF32LE>();
805 template void ArchiveFile::parse<ELF32BE>();
806 template void ArchiveFile::parse<ELF64LE>();
807 template void ArchiveFile::parse<ELF64BE>();
808 
809 template void BitcodeFile::parse<ELF32LE>(llvm::DenseSet<StringRef> &);
810 template void BitcodeFile::parse<ELF32BE>(llvm::DenseSet<StringRef> &);
811 template void BitcodeFile::parse<ELF64LE>(llvm::DenseSet<StringRef> &);
812 template void BitcodeFile::parse<ELF64BE>(llvm::DenseSet<StringRef> &);
813 
814 template void LazyObjectFile::parse<ELF32LE>();
815 template void LazyObjectFile::parse<ELF32BE>();
816 template void LazyObjectFile::parse<ELF64LE>();
817 template void LazyObjectFile::parse<ELF64BE>();
818 
819 template class elf::ELFFileBase<ELF32LE>;
820 template class elf::ELFFileBase<ELF32BE>;
821 template class elf::ELFFileBase<ELF64LE>;
822 template class elf::ELFFileBase<ELF64BE>;
823 
824 template class elf::ObjectFile<ELF32LE>;
825 template class elf::ObjectFile<ELF32BE>;
826 template class elf::ObjectFile<ELF64LE>;
827 template class elf::ObjectFile<ELF64BE>;
828 
829 template class elf::SharedFile<ELF32LE>;
830 template class elf::SharedFile<ELF32BE>;
831 template class elf::SharedFile<ELF64LE>;
832 template class elf::SharedFile<ELF64BE>;
833