1 //===- InputFiles.cpp -----------------------------------------------------===// 2 // 3 // The LLVM Linker 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "InputFiles.h" 11 #include "Error.h" 12 #include "InputSection.h" 13 #include "LinkerScript.h" 14 #include "Memory.h" 15 #include "SymbolTable.h" 16 #include "Symbols.h" 17 #include "SyntheticSections.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/CodeGen/Analysis.h" 20 #include "llvm/DebugInfo/DWARF/DWARFContext.h" 21 #include "llvm/IR/LLVMContext.h" 22 #include "llvm/IR/Module.h" 23 #include "llvm/LTO/LTO.h" 24 #include "llvm/MC/StringTableBuilder.h" 25 #include "llvm/Object/ELFObjectFile.h" 26 #include "llvm/Support/Path.h" 27 #include "llvm/Support/TarWriter.h" 28 #include "llvm/Support/raw_ostream.h" 29 30 using namespace llvm; 31 using namespace llvm::ELF; 32 using namespace llvm::object; 33 using namespace llvm::sys::fs; 34 35 using namespace lld; 36 using namespace lld::elf; 37 38 std::vector<BinaryFile *> elf::BinaryFiles; 39 std::vector<BitcodeFile *> elf::BitcodeFiles; 40 std::vector<InputFile *> elf::ObjectFiles; 41 std::vector<InputFile *> elf::SharedFiles; 42 43 TarWriter *elf::Tar; 44 45 InputFile::InputFile(Kind K, MemoryBufferRef M) : MB(M), FileKind(K) {} 46 47 Optional<MemoryBufferRef> elf::readFile(StringRef Path) { 48 // The --chroot option changes our virtual root directory. 49 // This is useful when you are dealing with files created by --reproduce. 50 if (!Config->Chroot.empty() && Path.startswith("/")) 51 Path = Saver.save(Config->Chroot + Path); 52 53 log(Path); 54 55 auto MBOrErr = MemoryBuffer::getFile(Path); 56 if (auto EC = MBOrErr.getError()) { 57 error("cannot open " + Path + ": " + EC.message()); 58 return None; 59 } 60 61 std::unique_ptr<MemoryBuffer> &MB = *MBOrErr; 62 MemoryBufferRef MBRef = MB->getMemBufferRef(); 63 make<std::unique_ptr<MemoryBuffer>>(std::move(MB)); // take MB ownership 64 65 if (Tar) 66 Tar->append(relativeToRoot(Path), MBRef.getBuffer()); 67 return MBRef; 68 } 69 70 template <class ELFT> void ObjFile<ELFT>::initializeDwarfLine() { 71 DWARFContext Dwarf(make_unique<LLDDwarfObj<ELFT>>(this)); 72 const DWARFObject &Obj = Dwarf.getDWARFObj(); 73 DwarfLine.reset(new DWARFDebugLine); 74 DWARFDataExtractor LineData(Obj, Obj.getLineSection(), Config->IsLE, 75 Config->Wordsize); 76 77 // The second parameter is offset in .debug_line section 78 // for compilation unit (CU) of interest. We have only one 79 // CU (object file), so offset is always 0. 80 DwarfLine->getOrParseLineTable(LineData, 0); 81 } 82 83 // Returns source line information for a given offset 84 // using DWARF debug info. 85 template <class ELFT> 86 Optional<DILineInfo> ObjFile<ELFT>::getDILineInfo(InputSectionBase *S, 87 uint64_t Offset) { 88 llvm::call_once(InitDwarfLine, [this]() { initializeDwarfLine(); }); 89 90 // The offset to CU is 0. 91 const DWARFDebugLine::LineTable *Tbl = DwarfLine->getLineTable(0); 92 if (!Tbl) 93 return None; 94 95 // Use fake address calcuated by adding section file offset and offset in 96 // section. See comments for ObjectInfo class. 97 DILineInfo Info; 98 Tbl->getFileLineInfoForAddress( 99 S->getOffsetInFile() + Offset, nullptr, 100 DILineInfoSpecifier::FileLineInfoKind::AbsoluteFilePath, Info); 101 if (Info.Line == 0) 102 return None; 103 return Info; 104 } 105 106 // Returns source line information for a given offset 107 // using DWARF debug info. 108 template <class ELFT> 109 std::string ObjFile<ELFT>::getLineInfo(InputSectionBase *S, uint64_t Offset) { 110 if (Optional<DILineInfo> Info = getDILineInfo(S, Offset)) 111 return Info->FileName + ":" + std::to_string(Info->Line); 112 return ""; 113 } 114 115 // Returns "<internal>", "foo.a(bar.o)" or "baz.o". 116 std::string lld::toString(const InputFile *F) { 117 if (!F) 118 return "<internal>"; 119 120 if (F->ToStringCache.empty()) { 121 if (F->ArchiveName.empty()) 122 F->ToStringCache = F->getName(); 123 else 124 F->ToStringCache = (F->ArchiveName + "(" + F->getName() + ")").str(); 125 } 126 return F->ToStringCache; 127 } 128 129 template <class ELFT> 130 ELFFileBase<ELFT>::ELFFileBase(Kind K, MemoryBufferRef MB) : InputFile(K, MB) { 131 if (ELFT::TargetEndianness == support::little) 132 EKind = ELFT::Is64Bits ? ELF64LEKind : ELF32LEKind; 133 else 134 EKind = ELFT::Is64Bits ? ELF64BEKind : ELF32BEKind; 135 136 EMachine = getObj().getHeader()->e_machine; 137 OSABI = getObj().getHeader()->e_ident[llvm::ELF::EI_OSABI]; 138 } 139 140 template <class ELFT> 141 typename ELFT::SymRange ELFFileBase<ELFT>::getGlobalELFSyms() { 142 return makeArrayRef(ELFSyms.begin() + FirstNonLocal, ELFSyms.end()); 143 } 144 145 template <class ELFT> 146 uint32_t ELFFileBase<ELFT>::getSectionIndex(const Elf_Sym &Sym) const { 147 return check(getObj().getSectionIndex(&Sym, ELFSyms, SymtabSHNDX), 148 toString(this)); 149 } 150 151 template <class ELFT> 152 void ELFFileBase<ELFT>::initSymtab(ArrayRef<Elf_Shdr> Sections, 153 const Elf_Shdr *Symtab) { 154 FirstNonLocal = Symtab->sh_info; 155 ELFSyms = check(getObj().symbols(Symtab), toString(this)); 156 if (FirstNonLocal == 0 || FirstNonLocal > ELFSyms.size()) 157 fatal(toString(this) + ": invalid sh_info in symbol table"); 158 159 StringTable = check(getObj().getStringTableForSymtab(*Symtab, Sections), 160 toString(this)); 161 } 162 163 template <class ELFT> 164 ObjFile<ELFT>::ObjFile(MemoryBufferRef M, StringRef ArchiveName) 165 : ELFFileBase<ELFT>(Base::ObjKind, M) { 166 this->ArchiveName = ArchiveName; 167 } 168 169 template <class ELFT> ArrayRef<SymbolBody *> ObjFile<ELFT>::getLocalSymbols() { 170 if (this->Symbols.empty()) 171 return {}; 172 return makeArrayRef(this->Symbols).slice(1, this->FirstNonLocal - 1); 173 } 174 175 template <class ELFT> 176 void ObjFile<ELFT>::parse(DenseSet<CachedHashStringRef> &ComdatGroups) { 177 // Read section and symbol tables. 178 initializeSections(ComdatGroups); 179 initializeSymbols(); 180 } 181 182 // Sections with SHT_GROUP and comdat bits define comdat section groups. 183 // They are identified and deduplicated by group name. This function 184 // returns a group name. 185 template <class ELFT> 186 StringRef ObjFile<ELFT>::getShtGroupSignature(ArrayRef<Elf_Shdr> Sections, 187 const Elf_Shdr &Sec) { 188 // Group signatures are stored as symbol names in object files. 189 // sh_info contains a symbol index, so we fetch a symbol and read its name. 190 if (this->ELFSyms.empty()) 191 this->initSymtab( 192 Sections, 193 check(object::getSection<ELFT>(Sections, Sec.sh_link), toString(this))); 194 195 const Elf_Sym *Sym = check( 196 object::getSymbol<ELFT>(this->ELFSyms, Sec.sh_info), toString(this)); 197 StringRef Signature = check(Sym->getName(this->StringTable), toString(this)); 198 199 // As a special case, if a symbol is a section symbol and has no name, 200 // we use a section name as a signature. 201 // 202 // Such SHT_GROUP sections are invalid from the perspective of the ELF 203 // standard, but GNU gold 1.14 (the neweset version as of July 2017) or 204 // older produce such sections as outputs for the -r option, so we need 205 // a bug-compatibility. 206 if (Signature.empty() && Sym->getType() == STT_SECTION) 207 return getSectionName(Sec); 208 return Signature; 209 } 210 211 template <class ELFT> 212 ArrayRef<typename ObjFile<ELFT>::Elf_Word> 213 ObjFile<ELFT>::getShtGroupEntries(const Elf_Shdr &Sec) { 214 const ELFFile<ELFT> &Obj = this->getObj(); 215 ArrayRef<Elf_Word> Entries = check( 216 Obj.template getSectionContentsAsArray<Elf_Word>(&Sec), toString(this)); 217 if (Entries.empty() || Entries[0] != GRP_COMDAT) 218 fatal(toString(this) + ": unsupported SHT_GROUP format"); 219 return Entries.slice(1); 220 } 221 222 template <class ELFT> bool ObjFile<ELFT>::shouldMerge(const Elf_Shdr &Sec) { 223 // We don't merge sections if -O0 (default is -O1). This makes sometimes 224 // the linker significantly faster, although the output will be bigger. 225 if (Config->Optimize == 0) 226 return false; 227 228 // Do not merge sections if generating a relocatable object. It makes 229 // the code simpler because we do not need to update relocation addends 230 // to reflect changes introduced by merging. Instead of that we write 231 // such "merge" sections into separate OutputSections and keep SHF_MERGE 232 // / SHF_STRINGS flags and sh_entsize value to be able to perform merging 233 // later during a final linking. 234 if (Config->Relocatable) 235 return false; 236 237 // A mergeable section with size 0 is useless because they don't have 238 // any data to merge. A mergeable string section with size 0 can be 239 // argued as invalid because it doesn't end with a null character. 240 // We'll avoid a mess by handling them as if they were non-mergeable. 241 if (Sec.sh_size == 0) 242 return false; 243 244 // Check for sh_entsize. The ELF spec is not clear about the zero 245 // sh_entsize. It says that "the member [sh_entsize] contains 0 if 246 // the section does not hold a table of fixed-size entries". We know 247 // that Rust 1.13 produces a string mergeable section with a zero 248 // sh_entsize. Here we just accept it rather than being picky about it. 249 uint64_t EntSize = Sec.sh_entsize; 250 if (EntSize == 0) 251 return false; 252 if (Sec.sh_size % EntSize) 253 fatal(toString(this) + 254 ": SHF_MERGE section size must be a multiple of sh_entsize"); 255 256 uint64_t Flags = Sec.sh_flags; 257 if (!(Flags & SHF_MERGE)) 258 return false; 259 if (Flags & SHF_WRITE) 260 fatal(toString(this) + ": writable SHF_MERGE section is not supported"); 261 262 // Don't try to merge if the alignment is larger than the sh_entsize and this 263 // is not SHF_STRINGS. 264 // 265 // Since this is not a SHF_STRINGS, we would need to pad after every entity. 266 // It would be equivalent for the producer of the .o to just set a larger 267 // sh_entsize. 268 if (Flags & SHF_STRINGS) 269 return true; 270 271 return Sec.sh_addralign <= EntSize; 272 } 273 274 template <class ELFT> 275 void ObjFile<ELFT>::initializeSections( 276 DenseSet<CachedHashStringRef> &ComdatGroups) { 277 const ELFFile<ELFT> &Obj = this->getObj(); 278 279 ArrayRef<Elf_Shdr> ObjSections = 280 check(this->getObj().sections(), toString(this)); 281 uint64_t Size = ObjSections.size(); 282 this->Sections.resize(Size); 283 this->SectionStringTable = 284 check(Obj.getSectionStringTable(ObjSections), toString(this)); 285 286 for (size_t I = 0, E = ObjSections.size(); I < E; I++) { 287 if (this->Sections[I] == &InputSection::Discarded) 288 continue; 289 const Elf_Shdr &Sec = ObjSections[I]; 290 291 // SHF_EXCLUDE'ed sections are discarded by the linker. However, 292 // if -r is given, we'll let the final link discard such sections. 293 // This is compatible with GNU. 294 if ((Sec.sh_flags & SHF_EXCLUDE) && !Config->Relocatable) { 295 this->Sections[I] = &InputSection::Discarded; 296 continue; 297 } 298 299 switch (Sec.sh_type) { 300 case SHT_GROUP: { 301 // De-duplicate section groups by their signatures. 302 StringRef Signature = getShtGroupSignature(ObjSections, Sec); 303 bool IsNew = ComdatGroups.insert(CachedHashStringRef(Signature)).second; 304 this->Sections[I] = &InputSection::Discarded; 305 306 // If it is a new section group, we want to keep group members. 307 // Group leader sections, which contain indices of group members, are 308 // discarded because they are useless beyond this point. The only 309 // exception is the -r option because in order to produce re-linkable 310 // object files, we want to pass through basically everything. 311 if (IsNew) { 312 if (Config->Relocatable) 313 this->Sections[I] = createInputSection(Sec); 314 continue; 315 } 316 317 // Otherwise, discard group members. 318 for (uint32_t SecIndex : getShtGroupEntries(Sec)) { 319 if (SecIndex >= Size) 320 fatal(toString(this) + 321 ": invalid section index in group: " + Twine(SecIndex)); 322 this->Sections[SecIndex] = &InputSection::Discarded; 323 } 324 break; 325 } 326 case SHT_SYMTAB: 327 this->initSymtab(ObjSections, &Sec); 328 break; 329 case SHT_SYMTAB_SHNDX: 330 this->SymtabSHNDX = 331 check(Obj.getSHNDXTable(Sec, ObjSections), toString(this)); 332 break; 333 case SHT_STRTAB: 334 case SHT_NULL: 335 break; 336 default: 337 this->Sections[I] = createInputSection(Sec); 338 } 339 340 // .ARM.exidx sections have a reverse dependency on the InputSection they 341 // have a SHF_LINK_ORDER dependency, this is identified by the sh_link. 342 if (Sec.sh_flags & SHF_LINK_ORDER) { 343 if (Sec.sh_link >= this->Sections.size()) 344 fatal(toString(this) + ": invalid sh_link index: " + 345 Twine(Sec.sh_link)); 346 this->Sections[Sec.sh_link]->DependentSections.push_back( 347 this->Sections[I]); 348 } 349 } 350 } 351 352 template <class ELFT> 353 InputSectionBase *ObjFile<ELFT>::getRelocTarget(const Elf_Shdr &Sec) { 354 uint32_t Idx = Sec.sh_info; 355 if (Idx >= this->Sections.size()) 356 fatal(toString(this) + ": invalid relocated section index: " + Twine(Idx)); 357 InputSectionBase *Target = this->Sections[Idx]; 358 359 // Strictly speaking, a relocation section must be included in the 360 // group of the section it relocates. However, LLVM 3.3 and earlier 361 // would fail to do so, so we gracefully handle that case. 362 if (Target == &InputSection::Discarded) 363 return nullptr; 364 365 if (!Target) 366 fatal(toString(this) + ": unsupported relocation reference"); 367 return Target; 368 } 369 370 // Create a regular InputSection class that has the same contents 371 // as a given section. 372 InputSectionBase *toRegularSection(MergeInputSection *Sec) { 373 auto *Ret = make<InputSection>(Sec->Flags, Sec->Type, Sec->Alignment, 374 Sec->Data, Sec->Name); 375 Ret->File = Sec->File; 376 return Ret; 377 } 378 379 template <class ELFT> 380 InputSectionBase *ObjFile<ELFT>::createInputSection(const Elf_Shdr &Sec) { 381 StringRef Name = getSectionName(Sec); 382 383 switch (Sec.sh_type) { 384 case SHT_ARM_ATTRIBUTES: 385 // FIXME: ARM meta-data section. Retain the first attribute section 386 // we see. The eglibc ARM dynamic loaders require the presence of an 387 // attribute section for dlopen to work. 388 // In a full implementation we would merge all attribute sections. 389 if (InX::ARMAttributes == nullptr) { 390 InX::ARMAttributes = make<InputSection>(this, &Sec, Name); 391 return InX::ARMAttributes; 392 } 393 return &InputSection::Discarded; 394 case SHT_RELA: 395 case SHT_REL: { 396 // Find the relocation target section and associate this 397 // section with it. Target can be discarded, for example 398 // if it is a duplicated member of SHT_GROUP section, we 399 // do not create or proccess relocatable sections then. 400 InputSectionBase *Target = getRelocTarget(Sec); 401 if (!Target) 402 return nullptr; 403 404 // This section contains relocation information. 405 // If -r is given, we do not interpret or apply relocation 406 // but just copy relocation sections to output. 407 if (Config->Relocatable) 408 return make<InputSection>(this, &Sec, Name); 409 410 if (Target->FirstRelocation) 411 fatal(toString(this) + 412 ": multiple relocation sections to one section are not supported"); 413 414 // Mergeable sections with relocations are tricky because relocations 415 // need to be taken into account when comparing section contents for 416 // merging. It's not worth supporting such mergeable sections because 417 // they are rare and it'd complicates the internal design (we usually 418 // have to determine if two sections are mergeable early in the link 419 // process much before applying relocations). We simply handle mergeable 420 // sections with relocations as non-mergeable. 421 if (auto *MS = dyn_cast<MergeInputSection>(Target)) { 422 Target = toRegularSection(MS); 423 this->Sections[Sec.sh_info] = Target; 424 } 425 426 size_t NumRelocations; 427 if (Sec.sh_type == SHT_RELA) { 428 ArrayRef<Elf_Rela> Rels = 429 check(this->getObj().relas(&Sec), toString(this)); 430 Target->FirstRelocation = Rels.begin(); 431 NumRelocations = Rels.size(); 432 Target->AreRelocsRela = true; 433 } else { 434 ArrayRef<Elf_Rel> Rels = check(this->getObj().rels(&Sec), toString(this)); 435 Target->FirstRelocation = Rels.begin(); 436 NumRelocations = Rels.size(); 437 Target->AreRelocsRela = false; 438 } 439 assert(isUInt<31>(NumRelocations)); 440 Target->NumRelocations = NumRelocations; 441 442 // Relocation sections processed by the linker are usually removed 443 // from the output, so returning `nullptr` for the normal case. 444 // However, if -emit-relocs is given, we need to leave them in the output. 445 // (Some post link analysis tools need this information.) 446 if (Config->EmitRelocs) { 447 InputSection *RelocSec = make<InputSection>(this, &Sec, Name); 448 // We will not emit relocation section if target was discarded. 449 Target->DependentSections.push_back(RelocSec); 450 return RelocSec; 451 } 452 return nullptr; 453 } 454 } 455 456 // The GNU linker uses .note.GNU-stack section as a marker indicating 457 // that the code in the object file does not expect that the stack is 458 // executable (in terms of NX bit). If all input files have the marker, 459 // the GNU linker adds a PT_GNU_STACK segment to tells the loader to 460 // make the stack non-executable. Most object files have this section as 461 // of 2017. 462 // 463 // But making the stack non-executable is a norm today for security 464 // reasons. Failure to do so may result in a serious security issue. 465 // Therefore, we make LLD always add PT_GNU_STACK unless it is 466 // explicitly told to do otherwise (by -z execstack). Because the stack 467 // executable-ness is controlled solely by command line options, 468 // .note.GNU-stack sections are simply ignored. 469 if (Name == ".note.GNU-stack") 470 return &InputSection::Discarded; 471 472 // Split stacks is a feature to support a discontiguous stack. At least 473 // as of 2017, it seems that the feature is not being used widely. 474 // Only GNU gold supports that. We don't. For the details about that, 475 // see https://gcc.gnu.org/wiki/SplitStacks 476 if (Name == ".note.GNU-split-stack") { 477 error(toString(this) + 478 ": object file compiled with -fsplit-stack is not supported"); 479 return &InputSection::Discarded; 480 } 481 482 if (Config->Strip != StripPolicy::None && Name.startswith(".debug")) 483 return &InputSection::Discarded; 484 485 // If -gdb-index is given, LLD creates .gdb_index section, and that 486 // section serves the same purpose as .debug_gnu_pub{names,types} sections. 487 // If that's the case, we want to eliminate .debug_gnu_pub{names,types} 488 // because they are redundant and can waste large amount of disk space 489 // (for example, they are about 400 MiB in total for a clang debug build.) 490 // We still create the section and mark it dead so that the gdb index code 491 // can use the InputSection to access the data. 492 if (Config->GdbIndex && 493 (Name == ".debug_gnu_pubnames" || Name == ".debug_gnu_pubtypes")) { 494 auto *Ret = make<InputSection>(this, &Sec, Name); 495 Script->discard({Ret}); 496 return Ret; 497 } 498 499 // The linkonce feature is a sort of proto-comdat. Some glibc i386 object 500 // files contain definitions of symbol "__x86.get_pc_thunk.bx" in linkonce 501 // sections. Drop those sections to avoid duplicate symbol errors. 502 // FIXME: This is glibc PR20543, we should remove this hack once that has been 503 // fixed for a while. 504 if (Name.startswith(".gnu.linkonce.")) 505 return &InputSection::Discarded; 506 507 // The linker merges EH (exception handling) frames and creates a 508 // .eh_frame_hdr section for runtime. So we handle them with a special 509 // class. For relocatable outputs, they are just passed through. 510 if (Name == ".eh_frame" && !Config->Relocatable) 511 return make<EhInputSection>(this, &Sec, Name); 512 513 if (shouldMerge(Sec)) 514 return make<MergeInputSection>(this, &Sec, Name); 515 return make<InputSection>(this, &Sec, Name); 516 } 517 518 template <class ELFT> 519 StringRef ObjFile<ELFT>::getSectionName(const Elf_Shdr &Sec) { 520 return check(this->getObj().getSectionName(&Sec, SectionStringTable), 521 toString(this)); 522 } 523 524 template <class ELFT> void ObjFile<ELFT>::initializeSymbols() { 525 this->Symbols.reserve(this->ELFSyms.size()); 526 for (const Elf_Sym &Sym : this->ELFSyms) 527 this->Symbols.push_back(createSymbolBody(&Sym)); 528 } 529 530 template <class ELFT> 531 InputSectionBase *ObjFile<ELFT>::getSection(const Elf_Sym &Sym) const { 532 uint32_t Index = this->getSectionIndex(Sym); 533 if (Index >= this->Sections.size()) 534 fatal(toString(this) + ": invalid section index: " + Twine(Index)); 535 InputSectionBase *S = this->Sections[Index]; 536 537 // We found that GNU assembler 2.17.50 [FreeBSD] 2007-07-03 could 538 // generate broken objects. STT_SECTION/STT_NOTYPE symbols can be 539 // associated with SHT_REL[A]/SHT_SYMTAB/SHT_STRTAB sections. 540 // In this case it is fine for section to be null here as we do not 541 // allocate sections of these types. 542 if (!S) { 543 if (Index == 0 || Sym.getType() == STT_SECTION || 544 Sym.getType() == STT_NOTYPE) 545 return nullptr; 546 fatal(toString(this) + ": invalid section index: " + Twine(Index)); 547 } 548 549 if (S == &InputSection::Discarded) 550 return S; 551 return S->Repl; 552 } 553 554 template <class ELFT> 555 SymbolBody *ObjFile<ELFT>::createSymbolBody(const Elf_Sym *Sym) { 556 int Binding = Sym->getBinding(); 557 InputSectionBase *Sec = getSection(*Sym); 558 559 uint8_t StOther = Sym->st_other; 560 uint8_t Type = Sym->getType(); 561 uint64_t Value = Sym->st_value; 562 uint64_t Size = Sym->st_size; 563 564 if (Binding == STB_LOCAL) { 565 if (Sym->getType() == STT_FILE) 566 SourceFile = check(Sym->getName(this->StringTable), toString(this)); 567 568 if (this->StringTable.size() <= Sym->st_name) 569 fatal(toString(this) + ": invalid symbol name offset"); 570 571 StringRefZ Name = this->StringTable.data() + Sym->st_name; 572 if (Sym->st_shndx == SHN_UNDEF) 573 return make<Undefined>(Name, /*IsLocal=*/true, StOther, Type); 574 575 return make<DefinedRegular>(Name, /*IsLocal=*/true, StOther, Type, Value, 576 Size, Sec); 577 } 578 579 StringRef Name = check(Sym->getName(this->StringTable), toString(this)); 580 581 switch (Sym->st_shndx) { 582 case SHN_UNDEF: 583 return Symtab 584 ->addUndefined<ELFT>(Name, /*IsLocal=*/false, Binding, StOther, Type, 585 /*CanOmitFromDynSym=*/false, this) 586 ->body(); 587 case SHN_COMMON: 588 if (Value == 0 || Value >= UINT32_MAX) 589 fatal(toString(this) + ": common symbol '" + Name + 590 "' has invalid alignment: " + Twine(Value)); 591 return Symtab->addCommon(Name, Size, Value, Binding, StOther, Type, this) 592 ->body(); 593 } 594 595 switch (Binding) { 596 default: 597 fatal(toString(this) + ": unexpected binding: " + Twine(Binding)); 598 case STB_GLOBAL: 599 case STB_WEAK: 600 case STB_GNU_UNIQUE: 601 if (Sec == &InputSection::Discarded) 602 return Symtab 603 ->addUndefined<ELFT>(Name, /*IsLocal=*/false, Binding, StOther, Type, 604 /*CanOmitFromDynSym=*/false, this) 605 ->body(); 606 return Symtab 607 ->addRegular<ELFT>(Name, StOther, Type, Value, Size, Binding, Sec, this) 608 ->body(); 609 } 610 } 611 612 ArchiveFile::ArchiveFile(std::unique_ptr<Archive> &&File) 613 : InputFile(ArchiveKind, File->getMemoryBufferRef()), 614 File(std::move(File)) {} 615 616 template <class ELFT> void ArchiveFile::parse() { 617 Symbols.reserve(File->getNumberOfSymbols()); 618 for (const Archive::Symbol &Sym : File->symbols()) 619 Symbols.push_back(Symtab->addLazyArchive<ELFT>(this, Sym)->body()); 620 } 621 622 // Returns a buffer pointing to a member file containing a given symbol. 623 std::pair<MemoryBufferRef, uint64_t> 624 ArchiveFile::getMember(const Archive::Symbol *Sym) { 625 Archive::Child C = 626 check(Sym->getMember(), toString(this) + 627 ": could not get the member for symbol " + 628 Sym->getName()); 629 630 if (!Seen.insert(C.getChildOffset()).second) 631 return {MemoryBufferRef(), 0}; 632 633 MemoryBufferRef Ret = 634 check(C.getMemoryBufferRef(), 635 toString(this) + 636 ": could not get the buffer for the member defining symbol " + 637 Sym->getName()); 638 639 if (C.getParent()->isThin() && Tar) 640 Tar->append(relativeToRoot(check(C.getFullName(), toString(this))), 641 Ret.getBuffer()); 642 if (C.getParent()->isThin()) 643 return {Ret, 0}; 644 return {Ret, C.getChildOffset()}; 645 } 646 647 template <class ELFT> 648 SharedFile<ELFT>::SharedFile(MemoryBufferRef M, StringRef DefaultSoName) 649 : ELFFileBase<ELFT>(Base::SharedKind, M), SoName(DefaultSoName), 650 AsNeeded(Config->AsNeeded) {} 651 652 template <class ELFT> 653 const typename ELFT::Shdr * 654 SharedFile<ELFT>::getSection(const Elf_Sym &Sym) const { 655 return check( 656 this->getObj().getSection(&Sym, this->ELFSyms, this->SymtabSHNDX), 657 toString(this)); 658 } 659 660 // Partially parse the shared object file so that we can call 661 // getSoName on this object. 662 template <class ELFT> void SharedFile<ELFT>::parseSoName() { 663 const Elf_Shdr *DynamicSec = nullptr; 664 const ELFFile<ELFT> Obj = this->getObj(); 665 ArrayRef<Elf_Shdr> Sections = check(Obj.sections(), toString(this)); 666 667 // Search for .dynsym, .dynamic, .symtab, .gnu.version and .gnu.version_d. 668 for (const Elf_Shdr &Sec : Sections) { 669 switch (Sec.sh_type) { 670 default: 671 continue; 672 case SHT_DYNSYM: 673 this->initSymtab(Sections, &Sec); 674 break; 675 case SHT_DYNAMIC: 676 DynamicSec = &Sec; 677 break; 678 case SHT_SYMTAB_SHNDX: 679 this->SymtabSHNDX = 680 check(Obj.getSHNDXTable(Sec, Sections), toString(this)); 681 break; 682 case SHT_GNU_versym: 683 this->VersymSec = &Sec; 684 break; 685 case SHT_GNU_verdef: 686 this->VerdefSec = &Sec; 687 break; 688 } 689 } 690 691 if (this->VersymSec && this->ELFSyms.empty()) 692 error("SHT_GNU_versym should be associated with symbol table"); 693 694 // Search for a DT_SONAME tag to initialize this->SoName. 695 if (!DynamicSec) 696 return; 697 ArrayRef<Elf_Dyn> Arr = 698 check(Obj.template getSectionContentsAsArray<Elf_Dyn>(DynamicSec), 699 toString(this)); 700 for (const Elf_Dyn &Dyn : Arr) { 701 if (Dyn.d_tag == DT_SONAME) { 702 uint64_t Val = Dyn.getVal(); 703 if (Val >= this->StringTable.size()) 704 fatal(toString(this) + ": invalid DT_SONAME entry"); 705 SoName = this->StringTable.data() + Val; 706 return; 707 } 708 } 709 } 710 711 // Parse the version definitions in the object file if present. Returns a vector 712 // whose nth element contains a pointer to the Elf_Verdef for version identifier 713 // n. Version identifiers that are not definitions map to nullptr. The array 714 // always has at least length 1. 715 template <class ELFT> 716 std::vector<const typename ELFT::Verdef *> 717 SharedFile<ELFT>::parseVerdefs(const Elf_Versym *&Versym) { 718 std::vector<const Elf_Verdef *> Verdefs(1); 719 // We only need to process symbol versions for this DSO if it has both a 720 // versym and a verdef section, which indicates that the DSO contains symbol 721 // version definitions. 722 if (!VersymSec || !VerdefSec) 723 return Verdefs; 724 725 // The location of the first global versym entry. 726 const char *Base = this->MB.getBuffer().data(); 727 Versym = reinterpret_cast<const Elf_Versym *>(Base + VersymSec->sh_offset) + 728 this->FirstNonLocal; 729 730 // We cannot determine the largest verdef identifier without inspecting 731 // every Elf_Verdef, but both bfd and gold assign verdef identifiers 732 // sequentially starting from 1, so we predict that the largest identifier 733 // will be VerdefCount. 734 unsigned VerdefCount = VerdefSec->sh_info; 735 Verdefs.resize(VerdefCount + 1); 736 737 // Build the Verdefs array by following the chain of Elf_Verdef objects 738 // from the start of the .gnu.version_d section. 739 const char *Verdef = Base + VerdefSec->sh_offset; 740 for (unsigned I = 0; I != VerdefCount; ++I) { 741 auto *CurVerdef = reinterpret_cast<const Elf_Verdef *>(Verdef); 742 Verdef += CurVerdef->vd_next; 743 unsigned VerdefIndex = CurVerdef->vd_ndx; 744 if (Verdefs.size() <= VerdefIndex) 745 Verdefs.resize(VerdefIndex + 1); 746 Verdefs[VerdefIndex] = CurVerdef; 747 } 748 749 return Verdefs; 750 } 751 752 // Fully parse the shared object file. This must be called after parseSoName(). 753 template <class ELFT> void SharedFile<ELFT>::parseRest() { 754 // Create mapping from version identifiers to Elf_Verdef entries. 755 const Elf_Versym *Versym = nullptr; 756 std::vector<const Elf_Verdef *> Verdefs = parseVerdefs(Versym); 757 758 Elf_Sym_Range Syms = this->getGlobalELFSyms(); 759 for (const Elf_Sym &Sym : Syms) { 760 unsigned VersymIndex = 0; 761 if (Versym) { 762 VersymIndex = Versym->vs_index; 763 ++Versym; 764 } 765 bool Hidden = VersymIndex & VERSYM_HIDDEN; 766 VersymIndex = VersymIndex & ~VERSYM_HIDDEN; 767 768 StringRef Name = check(Sym.getName(this->StringTable), toString(this)); 769 if (Sym.isUndefined()) { 770 Undefs.push_back(Name); 771 continue; 772 } 773 774 // Ignore local symbols. 775 if (Versym && VersymIndex == VER_NDX_LOCAL) 776 continue; 777 778 const Elf_Verdef *V = 779 VersymIndex == VER_NDX_GLOBAL ? nullptr : Verdefs[VersymIndex]; 780 781 if (!Hidden) 782 Symtab->addShared(this, Name, Sym, V); 783 784 // Also add the symbol with the versioned name to handle undefined symbols 785 // with explicit versions. 786 if (V) { 787 StringRef VerName = this->StringTable.data() + V->getAux()->vda_name; 788 Name = Saver.save(Name + "@" + VerName); 789 Symtab->addShared(this, Name, Sym, V); 790 } 791 } 792 } 793 794 static ELFKind getBitcodeELFKind(const Triple &T) { 795 if (T.isLittleEndian()) 796 return T.isArch64Bit() ? ELF64LEKind : ELF32LEKind; 797 return T.isArch64Bit() ? ELF64BEKind : ELF32BEKind; 798 } 799 800 static uint8_t getBitcodeMachineKind(StringRef Path, const Triple &T) { 801 switch (T.getArch()) { 802 case Triple::aarch64: 803 return EM_AARCH64; 804 case Triple::arm: 805 case Triple::thumb: 806 return EM_ARM; 807 case Triple::avr: 808 return EM_AVR; 809 case Triple::mips: 810 case Triple::mipsel: 811 case Triple::mips64: 812 case Triple::mips64el: 813 return EM_MIPS; 814 case Triple::ppc: 815 return EM_PPC; 816 case Triple::ppc64: 817 return EM_PPC64; 818 case Triple::x86: 819 return T.isOSIAMCU() ? EM_IAMCU : EM_386; 820 case Triple::x86_64: 821 return EM_X86_64; 822 default: 823 fatal(Path + ": could not infer e_machine from bitcode target triple " + 824 T.str()); 825 } 826 } 827 828 BitcodeFile::BitcodeFile(MemoryBufferRef MB, StringRef ArchiveName, 829 uint64_t OffsetInArchive) 830 : InputFile(BitcodeKind, MB) { 831 this->ArchiveName = ArchiveName; 832 833 // Here we pass a new MemoryBufferRef which is identified by ArchiveName 834 // (the fully resolved path of the archive) + member name + offset of the 835 // member in the archive. 836 // ThinLTO uses the MemoryBufferRef identifier to access its internal 837 // data structures and if two archives define two members with the same name, 838 // this causes a collision which result in only one of the objects being 839 // taken into consideration at LTO time (which very likely causes undefined 840 // symbols later in the link stage). 841 MemoryBufferRef MBRef(MB.getBuffer(), 842 Saver.save(ArchiveName + MB.getBufferIdentifier() + 843 utostr(OffsetInArchive))); 844 Obj = check(lto::InputFile::create(MBRef), toString(this)); 845 846 Triple T(Obj->getTargetTriple()); 847 EKind = getBitcodeELFKind(T); 848 EMachine = getBitcodeMachineKind(MB.getBufferIdentifier(), T); 849 } 850 851 static uint8_t mapVisibility(GlobalValue::VisibilityTypes GvVisibility) { 852 switch (GvVisibility) { 853 case GlobalValue::DefaultVisibility: 854 return STV_DEFAULT; 855 case GlobalValue::HiddenVisibility: 856 return STV_HIDDEN; 857 case GlobalValue::ProtectedVisibility: 858 return STV_PROTECTED; 859 } 860 llvm_unreachable("unknown visibility"); 861 } 862 863 template <class ELFT> 864 static Symbol *createBitcodeSymbol(const std::vector<bool> &KeptComdats, 865 const lto::InputFile::Symbol &ObjSym, 866 BitcodeFile *F) { 867 StringRef NameRef = Saver.save(ObjSym.getName()); 868 uint32_t Binding = ObjSym.isWeak() ? STB_WEAK : STB_GLOBAL; 869 870 uint8_t Type = ObjSym.isTLS() ? STT_TLS : STT_NOTYPE; 871 uint8_t Visibility = mapVisibility(ObjSym.getVisibility()); 872 bool CanOmitFromDynSym = ObjSym.canBeOmittedFromSymbolTable(); 873 874 int C = ObjSym.getComdatIndex(); 875 if (C != -1 && !KeptComdats[C]) 876 return Symtab->addUndefined<ELFT>(NameRef, /*IsLocal=*/false, Binding, 877 Visibility, Type, CanOmitFromDynSym, F); 878 879 if (ObjSym.isUndefined()) 880 return Symtab->addUndefined<ELFT>(NameRef, /*IsLocal=*/false, Binding, 881 Visibility, Type, CanOmitFromDynSym, F); 882 883 if (ObjSym.isCommon()) 884 return Symtab->addCommon(NameRef, ObjSym.getCommonSize(), 885 ObjSym.getCommonAlignment(), Binding, Visibility, 886 STT_OBJECT, F); 887 888 return Symtab->addBitcode(NameRef, Binding, Visibility, Type, 889 CanOmitFromDynSym, F); 890 } 891 892 template <class ELFT> 893 void BitcodeFile::parse(DenseSet<CachedHashStringRef> &ComdatGroups) { 894 std::vector<bool> KeptComdats; 895 for (StringRef S : Obj->getComdatTable()) 896 KeptComdats.push_back(ComdatGroups.insert(CachedHashStringRef(S)).second); 897 898 for (const lto::InputFile::Symbol &ObjSym : Obj->symbols()) 899 Symbols.push_back( 900 createBitcodeSymbol<ELFT>(KeptComdats, ObjSym, this)->body()); 901 } 902 903 static ELFKind getELFKind(MemoryBufferRef MB) { 904 unsigned char Size; 905 unsigned char Endian; 906 std::tie(Size, Endian) = getElfArchType(MB.getBuffer()); 907 908 if (Endian != ELFDATA2LSB && Endian != ELFDATA2MSB) 909 fatal(MB.getBufferIdentifier() + ": invalid data encoding"); 910 if (Size != ELFCLASS32 && Size != ELFCLASS64) 911 fatal(MB.getBufferIdentifier() + ": invalid file class"); 912 913 size_t BufSize = MB.getBuffer().size(); 914 if ((Size == ELFCLASS32 && BufSize < sizeof(Elf32_Ehdr)) || 915 (Size == ELFCLASS64 && BufSize < sizeof(Elf64_Ehdr))) 916 fatal(MB.getBufferIdentifier() + ": file is too short"); 917 918 if (Size == ELFCLASS32) 919 return (Endian == ELFDATA2LSB) ? ELF32LEKind : ELF32BEKind; 920 return (Endian == ELFDATA2LSB) ? ELF64LEKind : ELF64BEKind; 921 } 922 923 template <class ELFT> void BinaryFile::parse() { 924 ArrayRef<uint8_t> Data = toArrayRef(MB.getBuffer()); 925 auto *Section = 926 make<InputSection>(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, 8, Data, ".data"); 927 Sections.push_back(Section); 928 929 // For each input file foo that is embedded to a result as a binary 930 // blob, we define _binary_foo_{start,end,size} symbols, so that 931 // user programs can access blobs by name. Non-alphanumeric 932 // characters in a filename are replaced with underscore. 933 std::string S = "_binary_" + MB.getBufferIdentifier().str(); 934 for (size_t I = 0; I < S.size(); ++I) 935 if (!elf::isAlnum(S[I])) 936 S[I] = '_'; 937 938 Symtab->addRegular<ELFT>(Saver.save(S + "_start"), STV_DEFAULT, STT_OBJECT, 939 0, 0, STB_GLOBAL, Section, nullptr); 940 Symtab->addRegular<ELFT>(Saver.save(S + "_end"), STV_DEFAULT, STT_OBJECT, 941 Data.size(), 0, STB_GLOBAL, Section, nullptr); 942 Symtab->addRegular<ELFT>(Saver.save(S + "_size"), STV_DEFAULT, STT_OBJECT, 943 Data.size(), 0, STB_GLOBAL, nullptr, nullptr); 944 } 945 946 static bool isBitcode(MemoryBufferRef MB) { 947 using namespace sys::fs; 948 return identify_magic(MB.getBuffer()) == file_magic::bitcode; 949 } 950 951 InputFile *elf::createObjectFile(MemoryBufferRef MB, StringRef ArchiveName, 952 uint64_t OffsetInArchive) { 953 if (isBitcode(MB)) 954 return make<BitcodeFile>(MB, ArchiveName, OffsetInArchive); 955 956 switch (getELFKind(MB)) { 957 case ELF32LEKind: 958 return make<ObjFile<ELF32LE>>(MB, ArchiveName); 959 case ELF32BEKind: 960 return make<ObjFile<ELF32BE>>(MB, ArchiveName); 961 case ELF64LEKind: 962 return make<ObjFile<ELF64LE>>(MB, ArchiveName); 963 case ELF64BEKind: 964 return make<ObjFile<ELF64BE>>(MB, ArchiveName); 965 default: 966 llvm_unreachable("getELFKind"); 967 } 968 } 969 970 InputFile *elf::createSharedFile(MemoryBufferRef MB, StringRef DefaultSoName) { 971 switch (getELFKind(MB)) { 972 case ELF32LEKind: 973 return make<SharedFile<ELF32LE>>(MB, DefaultSoName); 974 case ELF32BEKind: 975 return make<SharedFile<ELF32BE>>(MB, DefaultSoName); 976 case ELF64LEKind: 977 return make<SharedFile<ELF64LE>>(MB, DefaultSoName); 978 case ELF64BEKind: 979 return make<SharedFile<ELF64BE>>(MB, DefaultSoName); 980 default: 981 llvm_unreachable("getELFKind"); 982 } 983 } 984 985 MemoryBufferRef LazyObjFile::getBuffer() { 986 if (Seen) 987 return MemoryBufferRef(); 988 Seen = true; 989 return MB; 990 } 991 992 InputFile *LazyObjFile::fetch() { 993 MemoryBufferRef MBRef = getBuffer(); 994 if (MBRef.getBuffer().empty()) 995 return nullptr; 996 return createObjectFile(MBRef, ArchiveName, OffsetInArchive); 997 } 998 999 template <class ELFT> void LazyObjFile::parse() { 1000 for (StringRef Sym : getSymbolNames()) 1001 Symtab->addLazyObject<ELFT>(Sym, *this); 1002 } 1003 1004 template <class ELFT> std::vector<StringRef> LazyObjFile::getElfSymbols() { 1005 typedef typename ELFT::Shdr Elf_Shdr; 1006 typedef typename ELFT::Sym Elf_Sym; 1007 typedef typename ELFT::SymRange Elf_Sym_Range; 1008 1009 const ELFFile<ELFT> Obj(this->MB.getBuffer()); 1010 ArrayRef<Elf_Shdr> Sections = check(Obj.sections(), toString(this)); 1011 for (const Elf_Shdr &Sec : Sections) { 1012 if (Sec.sh_type != SHT_SYMTAB) 1013 continue; 1014 1015 Elf_Sym_Range Syms = check(Obj.symbols(&Sec), toString(this)); 1016 uint32_t FirstNonLocal = Sec.sh_info; 1017 StringRef StringTable = 1018 check(Obj.getStringTableForSymtab(Sec, Sections), toString(this)); 1019 std::vector<StringRef> V; 1020 1021 for (const Elf_Sym &Sym : Syms.slice(FirstNonLocal)) 1022 if (Sym.st_shndx != SHN_UNDEF) 1023 V.push_back(check(Sym.getName(StringTable), toString(this))); 1024 return V; 1025 } 1026 return {}; 1027 } 1028 1029 std::vector<StringRef> LazyObjFile::getBitcodeSymbols() { 1030 std::unique_ptr<lto::InputFile> Obj = 1031 check(lto::InputFile::create(this->MB), toString(this)); 1032 std::vector<StringRef> V; 1033 for (const lto::InputFile::Symbol &Sym : Obj->symbols()) 1034 if (!Sym.isUndefined()) 1035 V.push_back(Saver.save(Sym.getName())); 1036 return V; 1037 } 1038 1039 // Returns a vector of globally-visible defined symbol names. 1040 std::vector<StringRef> LazyObjFile::getSymbolNames() { 1041 if (isBitcode(this->MB)) 1042 return getBitcodeSymbols(); 1043 1044 switch (getELFKind(this->MB)) { 1045 case ELF32LEKind: 1046 return getElfSymbols<ELF32LE>(); 1047 case ELF32BEKind: 1048 return getElfSymbols<ELF32BE>(); 1049 case ELF64LEKind: 1050 return getElfSymbols<ELF64LE>(); 1051 case ELF64BEKind: 1052 return getElfSymbols<ELF64BE>(); 1053 default: 1054 llvm_unreachable("getELFKind"); 1055 } 1056 } 1057 1058 template void ArchiveFile::parse<ELF32LE>(); 1059 template void ArchiveFile::parse<ELF32BE>(); 1060 template void ArchiveFile::parse<ELF64LE>(); 1061 template void ArchiveFile::parse<ELF64BE>(); 1062 1063 template void BitcodeFile::parse<ELF32LE>(DenseSet<CachedHashStringRef> &); 1064 template void BitcodeFile::parse<ELF32BE>(DenseSet<CachedHashStringRef> &); 1065 template void BitcodeFile::parse<ELF64LE>(DenseSet<CachedHashStringRef> &); 1066 template void BitcodeFile::parse<ELF64BE>(DenseSet<CachedHashStringRef> &); 1067 1068 template void LazyObjFile::parse<ELF32LE>(); 1069 template void LazyObjFile::parse<ELF32BE>(); 1070 template void LazyObjFile::parse<ELF64LE>(); 1071 template void LazyObjFile::parse<ELF64BE>(); 1072 1073 template class elf::ELFFileBase<ELF32LE>; 1074 template class elf::ELFFileBase<ELF32BE>; 1075 template class elf::ELFFileBase<ELF64LE>; 1076 template class elf::ELFFileBase<ELF64BE>; 1077 1078 template class elf::ObjFile<ELF32LE>; 1079 template class elf::ObjFile<ELF32BE>; 1080 template class elf::ObjFile<ELF64LE>; 1081 template class elf::ObjFile<ELF64BE>; 1082 1083 template class elf::SharedFile<ELF32LE>; 1084 template class elf::SharedFile<ELF32BE>; 1085 template class elf::SharedFile<ELF64LE>; 1086 template class elf::SharedFile<ELF64BE>; 1087 1088 template void BinaryFile::parse<ELF32LE>(); 1089 template void BinaryFile::parse<ELF32BE>(); 1090 template void BinaryFile::parse<ELF64LE>(); 1091 template void BinaryFile::parse<ELF64BE>(); 1092